// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gob // TODO(rsc): When garbage collector changes, revisit // the allocations in this file that use unsafe.Pointer. import ( "bytes" "io" "math" "os" "reflect" "unicode" "unsafe" "utf8" ) var ( errBadUint = os.ErrorString("gob: encoded unsigned integer out of range") errBadType = os.ErrorString("gob: unknown type id or corrupted data") errRange = os.ErrorString("gob: internal error: field numbers out of bounds") ) // The execution state of an instance of the decoder. A new state // is created for nested objects. type decodeState struct { dec *Decoder // The buffer is stored with an extra indirection because it may be replaced // if we load a type during decode (when reading an interface value). b **bytes.Buffer fieldnum int // the last field number read. buf []byte } func newDecodeState(dec *Decoder, b **bytes.Buffer) *decodeState { d := new(decodeState) d.dec = dec d.b = b d.buf = make([]byte, uint64Size) return d } func overflow(name string) os.ErrorString { return os.ErrorString(`value for "` + name + `" out of range`) } // decodeUintReader reads an encoded unsigned integer from an io.Reader. // Used only by the Decoder to read the message length. func decodeUintReader(r io.Reader, buf []byte) (x uint64, err os.Error) { _, err = r.Read(buf[0:1]) if err != nil { return } b := buf[0] if b <= 0x7f { return uint64(b), nil } nb := -int(int8(b)) if nb > uint64Size { err = errBadUint return } var n int n, err = io.ReadFull(r, buf[0:nb]) if err != nil { if err == os.EOF { err = io.ErrUnexpectedEOF } return } // Could check that the high byte is zero but it's not worth it. for i := 0; i < n; i++ { x <<= 8 x |= uint64(buf[i]) } return } // decodeUint reads an encoded unsigned integer from state.r. // Does not check for overflow. func (state *decodeState) decodeUint() (x uint64) { b, err := state.b.ReadByte() if err != nil { error(err) } if b <= 0x7f { return uint64(b) } nb := -int(int8(b)) if nb > uint64Size { error(errBadUint) } n, err := state.b.Read(state.buf[0:nb]) if err != nil { error(err) } // Don't need to check error; it's safe to loop regardless. // Could check that the high byte is zero but it's not worth it. for i := 0; i < n; i++ { x <<= 8 x |= uint64(state.buf[i]) } return x } // decodeInt reads an encoded signed integer from state.r. // Does not check for overflow. func (state *decodeState) decodeInt() int64 { x := state.decodeUint() if x&1 != 0 { return ^int64(x >> 1) } return int64(x >> 1) } type decOp func(i *decInstr, state *decodeState, p unsafe.Pointer) // The 'instructions' of the decoding machine type decInstr struct { op decOp field int // field number of the wire type indir int // how many pointer indirections to reach the value in the struct offset uintptr // offset in the structure of the field to encode ovfl os.ErrorString // error message for overflow/underflow (for arrays, of the elements) } // Since the encoder writes no zeros, if we arrive at a decoder we have // a value to extract and store. The field number has already been read // (it's how we knew to call this decoder). // Each decoder is responsible for handling any indirections associated // with the data structure. If any pointer so reached is nil, allocation must // be done. // Walk the pointer hierarchy, allocating if we find a nil. Stop one before the end. func decIndirect(p unsafe.Pointer, indir int) unsafe.Pointer { for ; indir > 1; indir-- { if *(*unsafe.Pointer)(p) == nil { // Allocation required *(*unsafe.Pointer)(p) = unsafe.Pointer(new(unsafe.Pointer)) } p = *(*unsafe.Pointer)(p) } return p } func ignoreUint(i *decInstr, state *decodeState, p unsafe.Pointer) { state.decodeUint() } func ignoreTwoUints(i *decInstr, state *decodeState, p unsafe.Pointer) { state.decodeUint() state.decodeUint() } func decBool(i *decInstr, state *decodeState, p unsafe.Pointer) { if i.indir > 0 { if *(*unsafe.Pointer)(p) == nil { *(*unsafe.Pointer)(p) = unsafe.Pointer(new(bool)) } p = *(*unsafe.Pointer)(p) } *(*bool)(p) = state.decodeInt() != 0 } func decInt8(i *decInstr, state *decodeState, p unsafe.Pointer) { if i.indir > 0 { if *(*unsafe.Pointer)(p) == nil { *(*unsafe.Pointer)(p) = unsafe.Pointer(new(int8)) } p = *(*unsafe.Pointer)(p) } v := state.decodeInt() if v < math.MinInt8 || math.MaxInt8 < v { error(i.ovfl) } else { *(*int8)(p) = int8(v) } } func decUint8(i *decInstr, state *decodeState, p unsafe.Pointer) { if i.indir > 0 { if *(*unsafe.Pointer)(p) == nil { *(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint8)) } p = *(*unsafe.Pointer)(p) } v := state.decodeUint() if math.MaxUint8 < v { error(i.ovfl) } else { *(*uint8)(p) = uint8(v) } } func decInt16(i *decInstr, state *decodeState, p unsafe.Pointer) { if i.indir > 0 { if *(*unsafe.Pointer)(p) == nil { *(*unsafe.Pointer)(p) = unsafe.Pointer(new(int16)) } p = *(*unsafe.Pointer)(p) } v := state.decodeInt() if v < math.MinInt16 || math.MaxInt16 < v { error(i.ovfl) } else { *(*int16)(p) = int16(v) } } func decUint16(i *decInstr, state *decodeState, p unsafe.Pointer) { if i.indir > 0 { if *(*unsafe.Pointer)(p) == nil { *(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint16)) } p = *(*unsafe.Pointer)(p) } v := state.decodeUint() if math.MaxUint16 < v { error(i.ovfl) } else { *(*uint16)(p) = uint16(v) } } func decInt32(i *decInstr, state *decodeState, p unsafe.Pointer) { if i.indir > 0 { if *(*unsafe.Pointer)(p) == nil { *(*unsafe.Pointer)(p) = unsafe.Pointer(new(int32)) } p = *(*unsafe.Pointer)(p) } v := state.decodeInt() if v < math.MinInt32 || math.MaxInt32 < v { error(i.ovfl) } else { *(*int32)(p) = int32(v) } } func decUint32(i *decInstr, state *decodeState, p unsafe.Pointer) { if i.indir > 0 { if *(*unsafe.Pointer)(p) == nil { *(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint32)) } p = *(*unsafe.Pointer)(p) } v := state.decodeUint() if math.MaxUint32 < v { error(i.ovfl) } else { *(*uint32)(p) = uint32(v) } } func decInt64(i *decInstr, state *decodeState, p unsafe.Pointer) { if i.indir > 0 { if *(*unsafe.Pointer)(p) == nil { *(*unsafe.Pointer)(p) = unsafe.Pointer(new(int64)) } p = *(*unsafe.Pointer)(p) } *(*int64)(p) = int64(state.decodeInt()) } func decUint64(i *decInstr, state *decodeState, p unsafe.Pointer) { if i.indir > 0 { if *(*unsafe.Pointer)(p) == nil { *(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint64)) } p = *(*unsafe.Pointer)(p) } *(*uint64)(p) = uint64(state.decodeUint()) } // Floating-point numbers are transmitted as uint64s holding the bits // of the underlying representation. They are sent byte-reversed, with // the exponent end coming out first, so integer floating point numbers // (for example) transmit more compactly. This routine does the // unswizzling. func floatFromBits(u uint64) float64 { var v uint64 for i := 0; i < 8; i++ { v <<= 8 v |= u & 0xFF u >>= 8 } return math.Float64frombits(v) } func storeFloat32(i *decInstr, state *decodeState, p unsafe.Pointer) { v := floatFromBits(state.decodeUint()) av := v if av < 0 { av = -av } // +Inf is OK in both 32- and 64-bit floats. Underflow is always OK. if math.MaxFloat32 < av && av <= math.MaxFloat64 { error(i.ovfl) } else { *(*float32)(p) = float32(v) } } func decFloat32(i *decInstr, state *decodeState, p unsafe.Pointer) { if i.indir > 0 { if *(*unsafe.Pointer)(p) == nil { *(*unsafe.Pointer)(p) = unsafe.Pointer(new(float32)) } p = *(*unsafe.Pointer)(p) } storeFloat32(i, state, p) } func decFloat64(i *decInstr, state *decodeState, p unsafe.Pointer) { if i.indir > 0 { if *(*unsafe.Pointer)(p) == nil { *(*unsafe.Pointer)(p) = unsafe.Pointer(new(float64)) } p = *(*unsafe.Pointer)(p) } *(*float64)(p) = floatFromBits(uint64(state.decodeUint())) } // Complex numbers are just a pair of floating-point numbers, real part first. func decComplex64(i *decInstr, state *decodeState, p unsafe.Pointer) { if i.indir > 0 { if *(*unsafe.Pointer)(p) == nil { *(*unsafe.Pointer)(p) = unsafe.Pointer(new(complex64)) } p = *(*unsafe.Pointer)(p) } storeFloat32(i, state, p) storeFloat32(i, state, unsafe.Pointer(uintptr(p)+uintptr(unsafe.Sizeof(float32(0))))) } func decComplex128(i *decInstr, state *decodeState, p unsafe.Pointer) { if i.indir > 0 { if *(*unsafe.Pointer)(p) == nil { *(*unsafe.Pointer)(p) = unsafe.Pointer(new(complex128)) } p = *(*unsafe.Pointer)(p) } real := floatFromBits(uint64(state.decodeUint())) imag := floatFromBits(uint64(state.decodeUint())) *(*complex128)(p) = complex(real, imag) } // uint8 arrays are encoded as an unsigned count followed by the raw bytes. func decUint8Array(i *decInstr, state *decodeState, p unsafe.Pointer) { if i.indir > 0 { if *(*unsafe.Pointer)(p) == nil { *(*unsafe.Pointer)(p) = unsafe.Pointer(new([]uint8)) } p = *(*unsafe.Pointer)(p) } b := make([]uint8, state.decodeUint()) state.b.Read(b) *(*[]uint8)(p) = b } // Strings are encoded as an unsigned count followed by the raw bytes. func decString(i *decInstr, state *decodeState, p unsafe.Pointer) { if i.indir > 0 { if *(*unsafe.Pointer)(p) == nil { *(*unsafe.Pointer)(p) = unsafe.Pointer(new([]byte)) } p = *(*unsafe.Pointer)(p) } b := make([]byte, state.decodeUint()) state.b.Read(b) *(*string)(p) = string(b) } func ignoreUint8Array(i *decInstr, state *decodeState, p unsafe.Pointer) { b := make([]byte, state.decodeUint()) state.b.Read(b) } // Execution engine // The encoder engine is an array of instructions indexed by field number of the incoming // decoder. It is executed with random access according to field number. type decEngine struct { instr []decInstr numInstr int // the number of active instructions } // allocate makes sure storage is available for an object of underlying type rtyp // that is indir levels of indirection through p. func allocate(rtyp reflect.Type, p uintptr, indir int) uintptr { if indir == 0 { return p } up := unsafe.Pointer(p) if indir > 1 { up = decIndirect(up, indir) } if *(*unsafe.Pointer)(up) == nil { // Allocate object. *(*unsafe.Pointer)(up) = unsafe.New(rtyp) } return *(*uintptr)(up) } func (dec *Decoder) decodeSingle(engine *decEngine, rtyp reflect.Type, b **bytes.Buffer, p uintptr, indir int) (err os.Error) { defer catchError(&err) p = allocate(rtyp, p, indir) state := newDecodeState(dec, b) state.fieldnum = singletonField basep := p delta := int(state.decodeUint()) if delta != 0 { errorf("gob decode: corrupted data: non-zero delta for singleton") } instr := &engine.instr[singletonField] ptr := unsafe.Pointer(basep) // offset will be zero if instr.indir > 1 { ptr = decIndirect(ptr, instr.indir) } instr.op(instr, state, ptr) return nil } func (dec *Decoder) decodeStruct(engine *decEngine, rtyp *reflect.StructType, b **bytes.Buffer, p uintptr, indir int) (err os.Error) { defer catchError(&err) p = allocate(rtyp, p, indir) state := newDecodeState(dec, b) state.fieldnum = -1 basep := p for state.b.Len() > 0 { delta := int(state.decodeUint()) if delta < 0 { errorf("gob decode: corrupted data: negative delta") } if delta == 0 { // struct terminator is zero delta fieldnum break } fieldnum := state.fieldnum + delta if fieldnum >= len(engine.instr) { error(errRange) break } instr := &engine.instr[fieldnum] p := unsafe.Pointer(basep + instr.offset) if instr.indir > 1 { p = decIndirect(p, instr.indir) } instr.op(instr, state, p) state.fieldnum = fieldnum } return nil } func (dec *Decoder) ignoreStruct(engine *decEngine, b **bytes.Buffer) (err os.Error) { defer catchError(&err) state := newDecodeState(dec, b) state.fieldnum = -1 for state.b.Len() > 0 { delta := int(state.decodeUint()) if delta < 0 { errorf("gob ignore decode: corrupted data: negative delta") } if delta == 0 { // struct terminator is zero delta fieldnum break } fieldnum := state.fieldnum + delta if fieldnum >= len(engine.instr) { error(errRange) } instr := &engine.instr[fieldnum] instr.op(instr, state, unsafe.Pointer(nil)) state.fieldnum = fieldnum } return nil } func (dec *Decoder) decodeArrayHelper(state *decodeState, p uintptr, elemOp decOp, elemWid uintptr, length, elemIndir int, ovfl os.ErrorString) { instr := &decInstr{elemOp, 0, elemIndir, 0, ovfl} for i := 0; i < length; i++ { up := unsafe.Pointer(p) if elemIndir > 1 { up = decIndirect(up, elemIndir) } elemOp(instr, state, up) p += uintptr(elemWid) } } func (dec *Decoder) decodeArray(atyp *reflect.ArrayType, state *decodeState, p uintptr, elemOp decOp, elemWid uintptr, length, indir, elemIndir int, ovfl os.ErrorString) { if indir > 0 { p = allocate(atyp, p, 1) // All but the last level has been allocated by dec.Indirect } if n := state.decodeUint(); n != uint64(length) { errorf("gob: length mismatch in decodeArray") } dec.decodeArrayHelper(state, p, elemOp, elemWid, length, elemIndir, ovfl) } func decodeIntoValue(state *decodeState, op decOp, indir int, v reflect.Value, ovfl os.ErrorString) reflect.Value { instr := &decInstr{op, 0, indir, 0, ovfl} up := unsafe.Pointer(v.Addr()) if indir > 1 { up = decIndirect(up, indir) } op(instr, state, up) return v } func (dec *Decoder) decodeMap(mtyp *reflect.MapType, state *decodeState, p uintptr, keyOp, elemOp decOp, indir, keyIndir, elemIndir int, ovfl os.ErrorString) { if indir > 0 { p = allocate(mtyp, p, 1) // All but the last level has been allocated by dec.Indirect } up := unsafe.Pointer(p) if *(*unsafe.Pointer)(up) == nil { // maps are represented as a pointer in the runtime // Allocate map. *(*unsafe.Pointer)(up) = unsafe.Pointer(reflect.MakeMap(mtyp).Get()) } // Maps cannot be accessed by moving addresses around the way // that slices etc. can. We must recover a full reflection value for // the iteration. v := reflect.NewValue(unsafe.Unreflect(mtyp, unsafe.Pointer((p)))).(*reflect.MapValue) n := int(state.decodeUint()) for i := 0; i < n; i++ { key := decodeIntoValue(state, keyOp, keyIndir, reflect.MakeZero(mtyp.Key()), ovfl) elem := decodeIntoValue(state, elemOp, elemIndir, reflect.MakeZero(mtyp.Elem()), ovfl) v.SetElem(key, elem) } } func (dec *Decoder) ignoreArrayHelper(state *decodeState, elemOp decOp, length int) { instr := &decInstr{elemOp, 0, 0, 0, os.ErrorString("no error")} for i := 0; i < length; i++ { elemOp(instr, state, nil) } } func (dec *Decoder) ignoreArray(state *decodeState, elemOp decOp, length int) { if n := state.decodeUint(); n != uint64(length) { errorf("gob: length mismatch in ignoreArray") } dec.ignoreArrayHelper(state, elemOp, length) } func (dec *Decoder) ignoreMap(state *decodeState, keyOp, elemOp decOp) { n := int(state.decodeUint()) keyInstr := &decInstr{keyOp, 0, 0, 0, os.ErrorString("no error")} elemInstr := &decInstr{elemOp, 0, 0, 0, os.ErrorString("no error")} for i := 0; i < n; i++ { keyOp(keyInstr, state, nil) elemOp(elemInstr, state, nil) } } func (dec *Decoder) decodeSlice(atyp *reflect.SliceType, state *decodeState, p uintptr, elemOp decOp, elemWid uintptr, indir, elemIndir int, ovfl os.ErrorString) { n := int(uintptr(state.decodeUint())) if indir > 0 { up := unsafe.Pointer(p) if *(*unsafe.Pointer)(up) == nil { // Allocate the slice header. *(*unsafe.Pointer)(up) = unsafe.Pointer(new([]unsafe.Pointer)) } p = *(*uintptr)(up) } // Allocate storage for the slice elements, that is, the underlying array. // Always write a header at p. hdrp := (*reflect.SliceHeader)(unsafe.Pointer(p)) hdrp.Data = uintptr(unsafe.NewArray(atyp.Elem(), n)) hdrp.Len = n hdrp.Cap = n dec.decodeArrayHelper(state, hdrp.Data, elemOp, elemWid, n, elemIndir, ovfl) } func (dec *Decoder) ignoreSlice(state *decodeState, elemOp decOp) { dec.ignoreArrayHelper(state, elemOp, int(state.decodeUint())) } // setInterfaceValue sets an interface value to a concrete value through // reflection. If the concrete value does not implement the interface, the // setting will panic. This routine turns the panic into an error return. // This dance avoids manually checking that the value satisfies the // interface. // TODO(rsc): avoid panic+recover after fixing issue 327. func setInterfaceValue(ivalue *reflect.InterfaceValue, value reflect.Value) { defer func() { if e := recover(); e != nil { error(e.(os.Error)) } }() ivalue.Set(value) } // decodeInterface receives the name of a concrete type followed by its value. // If the name is empty, the value is nil and no value is sent. func (dec *Decoder) decodeInterface(ityp *reflect.InterfaceType, state *decodeState, p uintptr, indir int) { // Create an interface reflect.Value. We need one even for the nil case. ivalue := reflect.MakeZero(ityp).(*reflect.InterfaceValue) // Read the name of the concrete type. b := make([]byte, state.decodeUint()) state.b.Read(b) name := string(b) if name == "" { // Copy the representation of the nil interface value to the target. // This is horribly unsafe and special. *(*[2]uintptr)(unsafe.Pointer(p)) = ivalue.Get() return } // The concrete type must be registered. typ, ok := nameToConcreteType[name] if !ok { errorf("gob: name not registered for interface: %q", name) } // Read the concrete value. value := reflect.MakeZero(typ) dec.decodeValueFromBuffer(value, false, true) if dec.err != nil { error(dec.err) } // Allocate the destination interface value. if indir > 0 { p = allocate(ityp, p, 1) // All but the last level has been allocated by dec.Indirect } // Assign the concrete value to the interface. // Tread carefully; it might not satisfy the interface. setInterfaceValue(ivalue, value) // Copy the representation of the interface value to the target. // This is horribly unsafe and special. *(*[2]uintptr)(unsafe.Pointer(p)) = ivalue.Get() } func (dec *Decoder) ignoreInterface(state *decodeState) { // Read the name of the concrete type. b := make([]byte, state.decodeUint()) _, err := state.b.Read(b) if err != nil { error(err) } dec.decodeValueFromBuffer(nil, true, true) if dec.err != nil { error(err) } } // Index by Go types. var decOpMap = []decOp{ reflect.Bool: decBool, reflect.Int8: decInt8, reflect.Int16: decInt16, reflect.Int32: decInt32, reflect.Int64: decInt64, reflect.Uint8: decUint8, reflect.Uint16: decUint16, reflect.Uint32: decUint32, reflect.Uint64: decUint64, reflect.Float32: decFloat32, reflect.Float64: decFloat64, reflect.Complex64: decComplex64, reflect.Complex128: decComplex128, reflect.String: decString, } // Indexed by gob types. tComplex will be added during type.init(). var decIgnoreOpMap = map[typeId]decOp{ tBool: ignoreUint, tInt: ignoreUint, tUint: ignoreUint, tFloat: ignoreUint, tBytes: ignoreUint8Array, tString: ignoreUint8Array, tComplex: ignoreTwoUints, } // Return the decoding op for the base type under rt and // the indirection count to reach it. func (dec *Decoder) decOpFor(wireId typeId, rt reflect.Type, name string) (decOp, int) { typ, indir := indirect(rt) var op decOp k := typ.Kind() if int(k) < len(decOpMap) { op = decOpMap[k] } if op == nil { // Special cases switch t := typ.(type) { case *reflect.ArrayType: name = "element of " + name elemId := dec.wireType[wireId].ArrayT.Elem elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name) ovfl := overflow(name) op = func(i *decInstr, state *decodeState, p unsafe.Pointer) { state.dec.decodeArray(t, state, uintptr(p), elemOp, t.Elem().Size(), t.Len(), i.indir, elemIndir, ovfl) } case *reflect.MapType: name = "element of " + name keyId := dec.wireType[wireId].MapT.Key elemId := dec.wireType[wireId].MapT.Elem keyOp, keyIndir := dec.decOpFor(keyId, t.Key(), name) elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name) ovfl := overflow(name) op = func(i *decInstr, state *decodeState, p unsafe.Pointer) { up := unsafe.Pointer(p) state.dec.decodeMap(t, state, uintptr(up), keyOp, elemOp, i.indir, keyIndir, elemIndir, ovfl) } case *reflect.SliceType: name = "element of " + name if t.Elem().Kind() == reflect.Uint8 { op = decUint8Array break } var elemId typeId if tt, ok := builtinIdToType[wireId]; ok { elemId = tt.(*sliceType).Elem } else { elemId = dec.wireType[wireId].SliceT.Elem } elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name) ovfl := overflow(name) op = func(i *decInstr, state *decodeState, p unsafe.Pointer) { state.dec.decodeSlice(t, state, uintptr(p), elemOp, t.Elem().Size(), i.indir, elemIndir, ovfl) } case *reflect.StructType: // Generate a closure that calls out to the engine for the nested type. enginePtr, err := dec.getDecEnginePtr(wireId, typ) if err != nil { error(err) } op = func(i *decInstr, state *decodeState, p unsafe.Pointer) { // indirect through enginePtr to delay evaluation for recursive structs err = dec.decodeStruct(*enginePtr, t, state.b, uintptr(p), i.indir) if err != nil { error(err) } } case *reflect.InterfaceType: op = func(i *decInstr, state *decodeState, p unsafe.Pointer) { dec.decodeInterface(t, state, uintptr(p), i.indir) } } } if op == nil { errorf("gob: decode can't handle type %s", rt.String()) } return op, indir } // Return the decoding op for a field that has no destination. func (dec *Decoder) decIgnoreOpFor(wireId typeId) decOp { op, ok := decIgnoreOpMap[wireId] if !ok { if wireId == tInterface { // Special case because it's a method: the ignored item might // define types and we need to record their state in the decoder. op = func(i *decInstr, state *decodeState, p unsafe.Pointer) { dec.ignoreInterface(state) } return op } // Special cases wire := dec.wireType[wireId] switch { case wire == nil: panic("internal error: can't find ignore op for type " + wireId.string()) case wire.ArrayT != nil: elemId := wire.ArrayT.Elem elemOp := dec.decIgnoreOpFor(elemId) op = func(i *decInstr, state *decodeState, p unsafe.Pointer) { state.dec.ignoreArray(state, elemOp, wire.ArrayT.Len) } case wire.MapT != nil: keyId := dec.wireType[wireId].MapT.Key elemId := dec.wireType[wireId].MapT.Elem keyOp := dec.decIgnoreOpFor(keyId) elemOp := dec.decIgnoreOpFor(elemId) op = func(i *decInstr, state *decodeState, p unsafe.Pointer) { state.dec.ignoreMap(state, keyOp, elemOp) } case wire.SliceT != nil: elemId := wire.SliceT.Elem elemOp := dec.decIgnoreOpFor(elemId) op = func(i *decInstr, state *decodeState, p unsafe.Pointer) { state.dec.ignoreSlice(state, elemOp) } case wire.StructT != nil: // Generate a closure that calls out to the engine for the nested type. enginePtr, err := dec.getIgnoreEnginePtr(wireId) if err != nil { error(err) } op = func(i *decInstr, state *decodeState, p unsafe.Pointer) { // indirect through enginePtr to delay evaluation for recursive structs state.dec.ignoreStruct(*enginePtr, state.b) } } } if op == nil { errorf("ignore can't handle type %s", wireId.string()) } return op } // Are these two gob Types compatible? // Answers the question for basic types, arrays, and slices. // Structs are considered ok; fields will be checked later. func (dec *Decoder) compatibleType(fr reflect.Type, fw typeId) bool { fr, _ = indirect(fr) switch t := fr.(type) { default: // map, chan, etc: cannot handle. return false case *reflect.BoolType: return fw == tBool case *reflect.IntType: return fw == tInt case *reflect.UintType: return fw == tUint case *reflect.FloatType: return fw == tFloat case *reflect.ComplexType: return fw == tComplex case *reflect.StringType: return fw == tString case *reflect.InterfaceType: return fw == tInterface case *reflect.ArrayType: wire, ok := dec.wireType[fw] if !ok || wire.ArrayT == nil { return false } array := wire.ArrayT return t.Len() == array.Len && dec.compatibleType(t.Elem(), array.Elem) case *reflect.MapType: wire, ok := dec.wireType[fw] if !ok || wire.MapT == nil { return false } MapType := wire.MapT return dec.compatibleType(t.Key(), MapType.Key) && dec.compatibleType(t.Elem(), MapType.Elem) case *reflect.SliceType: // Is it an array of bytes? if t.Elem().Kind() == reflect.Uint8 { return fw == tBytes } // Extract and compare element types. var sw *sliceType if tt, ok := builtinIdToType[fw]; ok { sw = tt.(*sliceType) } else { sw = dec.wireType[fw].SliceT } elem, _ := indirect(t.Elem()) return sw != nil && dec.compatibleType(elem, sw.Elem) case *reflect.StructType: return true } return true } // typeString returns a human-readable description of the type identified by remoteId. func (dec *Decoder) typeString(remoteId typeId) string { if t := idToType[remoteId]; t != nil { // globally known type. return t.string() } return dec.wireType[remoteId].string() } func (dec *Decoder) compileSingle(remoteId typeId, rt reflect.Type) (engine *decEngine, err os.Error) { engine = new(decEngine) engine.instr = make([]decInstr, 1) // one item name := rt.String() // best we can do if !dec.compatibleType(rt, remoteId) { return nil, os.ErrorString("gob: wrong type received for local value " + name + ": " + dec.typeString(remoteId)) } op, indir := dec.decOpFor(remoteId, rt, name) ovfl := os.ErrorString(`value for "` + name + `" out of range`) engine.instr[singletonField] = decInstr{op, singletonField, indir, 0, ovfl} engine.numInstr = 1 return } // Is this an exported - upper case - name? func isExported(name string) bool { rune, _ := utf8.DecodeRuneInString(name) return unicode.IsUpper(rune) } func (dec *Decoder) compileDec(remoteId typeId, rt reflect.Type) (engine *decEngine, err os.Error) { defer catchError(&err) srt, ok := rt.(*reflect.StructType) if !ok { return dec.compileSingle(remoteId, rt) } var wireStruct *structType // Builtin types can come from global pool; the rest must be defined by the decoder. // Also we know we're decoding a struct now, so the client must have sent one. if t, ok := builtinIdToType[remoteId]; ok { wireStruct, _ = t.(*structType) } else { wireStruct = dec.wireType[remoteId].StructT } if wireStruct == nil { errorf("gob: type mismatch in decoder: want struct type %s; got non-struct", rt.String()) } engine = new(decEngine) engine.instr = make([]decInstr, len(wireStruct.Field)) // Loop over the fields of the wire type. for fieldnum := 0; fieldnum < len(wireStruct.Field); fieldnum++ { wireField := wireStruct.Field[fieldnum] if wireField.Name == "" { errorf("gob: empty name for remote field of type %s", wireStruct.Name) } ovfl := overflow(wireField.Name) // Find the field of the local type with the same name. localField, present := srt.FieldByName(wireField.Name) // TODO(r): anonymous names if !present || !isExported(wireField.Name) { op := dec.decIgnoreOpFor(wireField.Id) engine.instr[fieldnum] = decInstr{op, fieldnum, 0, 0, ovfl} continue } if !dec.compatibleType(localField.Type, wireField.Id) { errorf("gob: wrong type (%s) for received field %s.%s", localField.Type, wireStruct.Name, wireField.Name) } op, indir := dec.decOpFor(wireField.Id, localField.Type, localField.Name) engine.instr[fieldnum] = decInstr{op, fieldnum, indir, uintptr(localField.Offset), ovfl} engine.numInstr++ } return } func (dec *Decoder) getDecEnginePtr(remoteId typeId, rt reflect.Type) (enginePtr **decEngine, err os.Error) { decoderMap, ok := dec.decoderCache[rt] if !ok { decoderMap = make(map[typeId]**decEngine) dec.decoderCache[rt] = decoderMap } if enginePtr, ok = decoderMap[remoteId]; !ok { // To handle recursive types, mark this engine as underway before compiling. enginePtr = new(*decEngine) decoderMap[remoteId] = enginePtr *enginePtr, err = dec.compileDec(remoteId, rt) if err != nil { decoderMap[remoteId] = nil, false } } return } // When ignoring struct data, in effect we compile it into this type type emptyStruct struct{} var emptyStructType = reflect.Typeof(emptyStruct{}) func (dec *Decoder) getIgnoreEnginePtr(wireId typeId) (enginePtr **decEngine, err os.Error) { var ok bool if enginePtr, ok = dec.ignorerCache[wireId]; !ok { // To handle recursive types, mark this engine as underway before compiling. enginePtr = new(*decEngine) dec.ignorerCache[wireId] = enginePtr *enginePtr, err = dec.compileDec(wireId, emptyStructType) if err != nil { dec.ignorerCache[wireId] = nil, false } } return } func (dec *Decoder) decode(wireId typeId, val reflect.Value) os.Error { // Dereference down to the underlying struct type. rt, indir := indirect(val.Type()) enginePtr, err := dec.getDecEnginePtr(wireId, rt) if err != nil { return err } engine := *enginePtr if st, ok := rt.(*reflect.StructType); ok { if engine.numInstr == 0 && st.NumField() > 0 && len(dec.wireType[wireId].StructT.Field) > 0 { name := rt.Name() return os.ErrorString("gob: type mismatch: no fields matched compiling decoder for " + name) } return dec.decodeStruct(engine, st, dec.state.b, uintptr(val.Addr()), indir) } return dec.decodeSingle(engine, rt, dec.state.b, uintptr(val.Addr()), indir) } func init() { var iop, uop decOp switch reflect.Typeof(int(0)).Bits() { case 32: iop = decInt32 uop = decUint32 case 64: iop = decInt64 uop = decUint64 default: panic("gob: unknown size of int/uint") } decOpMap[reflect.Int] = iop decOpMap[reflect.Uint] = uop // Finally uintptr switch reflect.Typeof(uintptr(0)).Bits() { case 32: uop = decUint32 case 64: uop = decUint64 default: panic("gob: unknown size of uintptr") } decOpMap[reflect.Uintptr] = uop }