// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // The image package implements a basic 2-D image library. package image // A Config consists of an image's color model and dimensions. type Config struct { ColorModel ColorModel Width, Height int } // An Image is a finite rectangular grid of Colors drawn from a ColorModel. type Image interface { // ColorModel returns the Image's ColorModel. ColorModel() ColorModel // Bounds returns the domain for which At can return non-zero color. // The bounds do not necessarily contain the point (0, 0). Bounds() Rectangle // At returns the color of the pixel at (x, y). // At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid. // At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one. At(x, y int) Color } // An RGBA is an in-memory image of RGBAColor values. type RGBA struct { // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. Pix []RGBAColor Stride int // Rect is the image's bounds. Rect Rectangle } func (p *RGBA) ColorModel() ColorModel { return RGBAColorModel } func (p *RGBA) Bounds() Rectangle { return p.Rect } func (p *RGBA) At(x, y int) Color { if !p.Rect.Contains(Point{x, y}) { return RGBAColor{} } return p.Pix[y*p.Stride+x] } func (p *RGBA) Set(x, y int, c Color) { if !p.Rect.Contains(Point{x, y}) { return } p.Pix[y*p.Stride+x] = toRGBAColor(c).(RGBAColor) } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *RGBA) Opaque() bool { if p.Rect.Empty() { return true } base := p.Rect.Min.Y * p.Stride i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for _, c := range p.Pix[i0:i1] { if c.A != 0xff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewRGBA returns a new RGBA with the given width and height. func NewRGBA(w, h int) *RGBA { buf := make([]RGBAColor, w*h) return &RGBA{buf, w, Rectangle{ZP, Point{w, h}}} } // An RGBA64 is an in-memory image of RGBA64Color values. type RGBA64 struct { // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. Pix []RGBA64Color Stride int // Rect is the image's bounds. Rect Rectangle } func (p *RGBA64) ColorModel() ColorModel { return RGBA64ColorModel } func (p *RGBA64) Bounds() Rectangle { return p.Rect } func (p *RGBA64) At(x, y int) Color { if !p.Rect.Contains(Point{x, y}) { return RGBA64Color{} } return p.Pix[y*p.Stride+x] } func (p *RGBA64) Set(x, y int, c Color) { if !p.Rect.Contains(Point{x, y}) { return } p.Pix[y*p.Stride+x] = toRGBA64Color(c).(RGBA64Color) } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *RGBA64) Opaque() bool { if p.Rect.Empty() { return true } base := p.Rect.Min.Y * p.Stride i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for _, c := range p.Pix[i0:i1] { if c.A != 0xffff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewRGBA64 returns a new RGBA64 with the given width and height. func NewRGBA64(w, h int) *RGBA64 { pix := make([]RGBA64Color, w*h) return &RGBA64{pix, w, Rectangle{ZP, Point{w, h}}} } // An NRGBA is an in-memory image of NRGBAColor values. type NRGBA struct { // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. Pix []NRGBAColor Stride int // Rect is the image's bounds. Rect Rectangle } func (p *NRGBA) ColorModel() ColorModel { return NRGBAColorModel } func (p *NRGBA) Bounds() Rectangle { return p.Rect } func (p *NRGBA) At(x, y int) Color { if !p.Rect.Contains(Point{x, y}) { return NRGBAColor{} } return p.Pix[y*p.Stride+x] } func (p *NRGBA) Set(x, y int, c Color) { if !p.Rect.Contains(Point{x, y}) { return } p.Pix[y*p.Stride+x] = toNRGBAColor(c).(NRGBAColor) } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *NRGBA) Opaque() bool { if p.Rect.Empty() { return true } base := p.Rect.Min.Y * p.Stride i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for _, c := range p.Pix[i0:i1] { if c.A != 0xff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewNRGBA returns a new NRGBA with the given width and height. func NewNRGBA(w, h int) *NRGBA { pix := make([]NRGBAColor, w*h) return &NRGBA{pix, w, Rectangle{ZP, Point{w, h}}} } // An NRGBA64 is an in-memory image of NRGBA64Color values. type NRGBA64 struct { // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. Pix []NRGBA64Color Stride int // Rect is the image's bounds. Rect Rectangle } func (p *NRGBA64) ColorModel() ColorModel { return NRGBA64ColorModel } func (p *NRGBA64) Bounds() Rectangle { return p.Rect } func (p *NRGBA64) At(x, y int) Color { if !p.Rect.Contains(Point{x, y}) { return NRGBA64Color{} } return p.Pix[y*p.Stride+x] } func (p *NRGBA64) Set(x, y int, c Color) { if !p.Rect.Contains(Point{x, y}) { return } p.Pix[y*p.Stride+x] = toNRGBA64Color(c).(NRGBA64Color) } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *NRGBA64) Opaque() bool { if p.Rect.Empty() { return true } base := p.Rect.Min.Y * p.Stride i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for _, c := range p.Pix[i0:i1] { if c.A != 0xffff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewNRGBA64 returns a new NRGBA64 with the given width and height. func NewNRGBA64(w, h int) *NRGBA64 { pix := make([]NRGBA64Color, w*h) return &NRGBA64{pix, w, Rectangle{ZP, Point{w, h}}} } // An Alpha is an in-memory image of AlphaColor values. type Alpha struct { // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. Pix []AlphaColor Stride int // Rect is the image's bounds. Rect Rectangle } func (p *Alpha) ColorModel() ColorModel { return AlphaColorModel } func (p *Alpha) Bounds() Rectangle { return p.Rect } func (p *Alpha) At(x, y int) Color { if !p.Rect.Contains(Point{x, y}) { return AlphaColor{} } return p.Pix[y*p.Stride+x] } func (p *Alpha) Set(x, y int, c Color) { if !p.Rect.Contains(Point{x, y}) { return } p.Pix[y*p.Stride+x] = toAlphaColor(c).(AlphaColor) } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *Alpha) Opaque() bool { if p.Rect.Empty() { return true } base := p.Rect.Min.Y * p.Stride i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for _, c := range p.Pix[i0:i1] { if c.A != 0xff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewAlpha returns a new Alpha with the given width and height. func NewAlpha(w, h int) *Alpha { pix := make([]AlphaColor, w*h) return &Alpha{pix, w, Rectangle{ZP, Point{w, h}}} } // An Alpha16 is an in-memory image of Alpha16Color values. type Alpha16 struct { // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. Pix []Alpha16Color Stride int // Rect is the image's bounds. Rect Rectangle } func (p *Alpha16) ColorModel() ColorModel { return Alpha16ColorModel } func (p *Alpha16) Bounds() Rectangle { return p.Rect } func (p *Alpha16) At(x, y int) Color { if !p.Rect.Contains(Point{x, y}) { return Alpha16Color{} } return p.Pix[y*p.Stride+x] } func (p *Alpha16) Set(x, y int, c Color) { if !p.Rect.Contains(Point{x, y}) { return } p.Pix[y*p.Stride+x] = toAlpha16Color(c).(Alpha16Color) } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *Alpha16) Opaque() bool { if p.Rect.Empty() { return true } base := p.Rect.Min.Y * p.Stride i0, i1 := base+p.Rect.Min.X, base+p.Rect.Max.X for y := p.Rect.Min.Y; y < p.Rect.Max.Y; y++ { for _, c := range p.Pix[i0:i1] { if c.A != 0xffff { return false } } i0 += p.Stride i1 += p.Stride } return true } // NewAlpha16 returns a new Alpha16 with the given width and height. func NewAlpha16(w, h int) *Alpha16 { pix := make([]Alpha16Color, w*h) return &Alpha16{pix, w, Rectangle{ZP, Point{w, h}}} } // A Gray is an in-memory image of GrayColor values. type Gray struct { // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. Pix []GrayColor Stride int // Rect is the image's bounds. Rect Rectangle } func (p *Gray) ColorModel() ColorModel { return GrayColorModel } func (p *Gray) Bounds() Rectangle { return p.Rect } func (p *Gray) At(x, y int) Color { if !p.Rect.Contains(Point{x, y}) { return GrayColor{} } return p.Pix[y*p.Stride+x] } func (p *Gray) Set(x, y int, c Color) { if !p.Rect.Contains(Point{x, y}) { return } p.Pix[y*p.Stride+x] = toGrayColor(c).(GrayColor) } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *Gray) Opaque() bool { return true } // NewGray returns a new Gray with the given width and height. func NewGray(w, h int) *Gray { pix := make([]GrayColor, w*h) return &Gray{pix, w, Rectangle{ZP, Point{w, h}}} } // A Gray16 is an in-memory image of Gray16Color values. type Gray16 struct { // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. Pix []Gray16Color Stride int // Rect is the image's bounds. Rect Rectangle } func (p *Gray16) ColorModel() ColorModel { return Gray16ColorModel } func (p *Gray16) Bounds() Rectangle { return p.Rect } func (p *Gray16) At(x, y int) Color { if !p.Rect.Contains(Point{x, y}) { return Gray16Color{} } return p.Pix[y*p.Stride+x] } func (p *Gray16) Set(x, y int, c Color) { if !p.Rect.Contains(Point{x, y}) { return } p.Pix[y*p.Stride+x] = toGray16Color(c).(Gray16Color) } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *Gray16) Opaque() bool { return true } // NewGray16 returns a new Gray16 with the given width and height. func NewGray16(w, h int) *Gray16 { pix := make([]Gray16Color, w*h) return &Gray16{pix, w, Rectangle{ZP, Point{w, h}}} } // A PalettedColorModel represents a fixed palette of colors. type PalettedColorModel []Color func diff(a, b uint32) uint32 { if a > b { return a - b } return b - a } // Convert returns the palette color closest to c in Euclidean R,G,B space. func (p PalettedColorModel) Convert(c Color) Color { if len(p) == 0 { return nil } cr, cg, cb, _ := c.RGBA() // Shift by 1 bit to avoid potential uint32 overflow in sum-squared-difference. cr >>= 1 cg >>= 1 cb >>= 1 result := Color(nil) bestSSD := uint32(1<<32 - 1) for _, v := range p { vr, vg, vb, _ := v.RGBA() vr >>= 1 vg >>= 1 vb >>= 1 dr, dg, db := diff(cr, vr), diff(cg, vg), diff(cb, vb) ssd := (dr * dr) + (dg * dg) + (db * db) if ssd < bestSSD { bestSSD = ssd result = v } } return result } // A Paletted is an in-memory image backed by a 2-D slice of uint8 values and a PalettedColorModel. type Paletted struct { // Pix holds the image's pixels. The pixel at (x, y) is Pix[y*Stride+x]. Pix []uint8 Stride int // Rect is the image's bounds. Rect Rectangle // Palette is the image's palette. Palette PalettedColorModel } func (p *Paletted) ColorModel() ColorModel { return p.Palette } func (p *Paletted) Bounds() Rectangle { return p.Rect } func (p *Paletted) At(x, y int) Color { if len(p.Palette) == 0 { return nil } if !p.Rect.Contains(Point{x, y}) { return p.Palette[0] } return p.Palette[p.Pix[y*p.Stride+x]] } func (p *Paletted) ColorIndexAt(x, y int) uint8 { if !p.Rect.Contains(Point{x, y}) { return 0 } return p.Pix[y*p.Stride+x] } func (p *Paletted) SetColorIndex(x, y int, index uint8) { if !p.Rect.Contains(Point{x, y}) { return } p.Pix[y*p.Stride+x] = index } // Opaque scans the entire image and returns whether or not it is fully opaque. func (p *Paletted) Opaque() bool { for _, c := range p.Palette { _, _, _, a := c.RGBA() if a != 0xffff { return false } } return true } // NewPaletted returns a new Paletted with the given width, height and palette. func NewPaletted(w, h int, m PalettedColorModel) *Paletted { pix := make([]uint8, w*h) return &Paletted{pix, w, Rectangle{ZP, Point{w, h}}, m} }