// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // The jpeg package implements a decoder for JPEG images, as defined in ITU-T T.81. package jpeg // See http://www.w3.org/Graphics/JPEG/itu-t81.pdf import ( "bufio" "image" "io" "os" ) // A FormatError reports that the input is not a valid JPEG. type FormatError string func (e FormatError) String() string { return "invalid JPEG format: " + string(e) } // An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature. type UnsupportedError string func (e UnsupportedError) String() string { return "unsupported JPEG feature: " + string(e) } // Component specification, specified in section B.2.2. type component struct { c uint8 // Component identifier. h uint8 // Horizontal sampling factor. v uint8 // Vertical sampling factor. tq uint8 // Quantization table destination selector. } const ( blockSize = 64 // A DCT block is 8x8. dcTableClass = 0 acTableClass = 1 maxTc = 1 maxTh = 3 maxTq = 3 // We only support 4:4:4, 4:2:2 and 4:2:0 downsampling, and assume that the components are Y, Cb, Cr. nComponent = 3 maxH = 2 maxV = 2 ) const ( soiMarker = 0xd8 // Start Of Image. eoiMarker = 0xd9 // End Of Image. sof0Marker = 0xc0 // Start Of Frame (Baseline). sof2Marker = 0xc2 // Start Of Frame (Progressive). dhtMarker = 0xc4 // Define Huffman Table. dqtMarker = 0xdb // Define Quantization Table. sosMarker = 0xda // Start Of Scan. driMarker = 0xdd // Define Restart Interval. rst0Marker = 0xd0 // ReSTart (0). rst7Marker = 0xd7 // ReSTart (7). app0Marker = 0xe0 // APPlication specific (0). app15Marker = 0xef // APPlication specific (15). comMarker = 0xfe // COMment. ) // Maps from the zig-zag ordering to the natural ordering. var unzig = [blockSize]int{ 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, } // If the passed in io.Reader does not also have ReadByte, then Decode will introduce its own buffering. type Reader interface { io.Reader ReadByte() (c byte, err os.Error) } type decoder struct { r Reader width, height int image *image.RGBA ri int // Restart Interval. comps [nComponent]component huff [maxTc + 1][maxTh + 1]huffman quant [maxTq + 1][blockSize]int b bits blocks [nComponent][maxH * maxV][blockSize]int tmp [1024]byte } // Reads and ignores the next n bytes. func (d *decoder) ignore(n int) os.Error { for n > 0 { m := len(d.tmp) if m > n { m = n } _, err := io.ReadFull(d.r, d.tmp[0:m]) if err != nil { return err } n -= m } return nil } // Specified in section B.2.2. func (d *decoder) processSOF(n int) os.Error { if n != 6+3*nComponent { return UnsupportedError("SOF has wrong length") } _, err := io.ReadFull(d.r, d.tmp[0:6+3*nComponent]) if err != nil { return err } // We only support 8-bit precision. if d.tmp[0] != 8 { return UnsupportedError("precision") } d.height = int(d.tmp[1])<<8 + int(d.tmp[2]) d.width = int(d.tmp[3])<<8 + int(d.tmp[4]) if d.tmp[5] != nComponent { return UnsupportedError("SOF has wrong number of image components") } for i := 0; i < nComponent; i++ { hv := d.tmp[7+3*i] d.comps[i].c = d.tmp[6+3*i] d.comps[i].h = hv >> 4 d.comps[i].v = hv & 0x0f d.comps[i].tq = d.tmp[8+3*i] // We only support YCbCr images, and 4:4:4, 4:2:2 or 4:2:0 chroma downsampling ratios. This implies that // the (h, v) values for the Y component are either (1, 1), (2, 1) or (2, 2), and the // (h, v) values for the Cr and Cb components must be (1, 1). if i == 0 { if hv != 0x11 && hv != 0x21 && hv != 0x22 { return UnsupportedError("luma downsample ratio") } } else { if hv != 0x11 { return UnsupportedError("chroma downsample ratio") } } } return nil } // Specified in section B.2.4.1. func (d *decoder) processDQT(n int) os.Error { const qtLength = 1 + blockSize for ; n >= qtLength; n -= qtLength { _, err := io.ReadFull(d.r, d.tmp[0:qtLength]) if err != nil { return err } pq := d.tmp[0] >> 4 if pq != 0 { return UnsupportedError("bad Pq value") } tq := d.tmp[0] & 0x0f if tq > maxTq { return FormatError("bad Tq value") } for i := range d.quant[tq] { d.quant[tq][i] = int(d.tmp[i+1]) } } if n != 0 { return FormatError("DQT has wrong length") } return nil } // Set the Pixel (px, py)'s RGB value, based on its YCbCr value. func (d *decoder) calcPixel(px, py, lumaBlock, lumaIndex, chromaIndex int) { y, cb, cr := d.blocks[0][lumaBlock][lumaIndex], d.blocks[1][0][chromaIndex], d.blocks[2][0][chromaIndex] // The JFIF specification (http://www.w3.org/Graphics/JPEG/jfif3.pdf, page 3) gives the formula // for translating YCbCr to RGB as: // R = Y + 1.402 (Cr-128) // G = Y - 0.34414 (Cb-128) - 0.71414 (Cr-128) // B = Y + 1.772 (Cb-128) yPlusHalf := 100000*y + 50000 cb -= 128 cr -= 128 r := (yPlusHalf + 140200*cr) / 100000 g := (yPlusHalf - 34414*cb - 71414*cr) / 100000 b := (yPlusHalf + 177200*cb) / 100000 if r < 0 { r = 0 } else if r > 255 { r = 255 } if g < 0 { g = 0 } else if g > 255 { g = 255 } if b < 0 { b = 0 } else if b > 255 { b = 255 } d.image.Pix[py*d.image.Stride+px] = image.RGBAColor{uint8(r), uint8(g), uint8(b), 0xff} } // Convert the MCU from YCbCr to RGB. func (d *decoder) convertMCU(mx, my, h0, v0 int) { lumaBlock := 0 for v := 0; v < v0; v++ { for h := 0; h < h0; h++ { chromaBase := 8*4*v + 4*h py := 8 * (v0*my + v) for y := 0; y < 8 && py < d.height; y++ { px := 8 * (h0*mx + h) lumaIndex := 8 * y chromaIndex := chromaBase + 8*(y/v0) for x := 0; x < 8 && px < d.width; x++ { d.calcPixel(px, py, lumaBlock, lumaIndex, chromaIndex) if h0 == 1 { chromaIndex += 1 } else { chromaIndex += x % 2 } lumaIndex++ px++ } py++ } lumaBlock++ } } } // Specified in section B.2.3. func (d *decoder) processSOS(n int) os.Error { if d.image == nil { d.image = image.NewRGBA(d.width, d.height) } if n != 4+2*nComponent { return UnsupportedError("SOS has wrong length") } _, err := io.ReadFull(d.r, d.tmp[0:4+2*nComponent]) if err != nil { return err } if d.tmp[0] != nComponent { return UnsupportedError("SOS has wrong number of image components") } var scanComps [nComponent]struct { td uint8 // DC table selector. ta uint8 // AC table selector. } h0, v0 := int(d.comps[0].h), int(d.comps[0].v) // The h and v values from the Y components. for i := 0; i < nComponent; i++ { cs := d.tmp[1+2*i] // Component selector. if cs != d.comps[i].c { return UnsupportedError("scan components out of order") } scanComps[i].td = d.tmp[2+2*i] >> 4 scanComps[i].ta = d.tmp[2+2*i] & 0x0f } // mxx and myy are the number of MCUs (Minimum Coded Units) in the image. mxx := (d.width + 8*int(h0) - 1) / (8 * int(h0)) myy := (d.height + 8*int(v0) - 1) / (8 * int(v0)) mcu, expectedRST := 0, uint8(rst0Marker) var allZeroes [blockSize]int var dc [nComponent]int for my := 0; my < myy; my++ { for mx := 0; mx < mxx; mx++ { for i := 0; i < nComponent; i++ { qt := &d.quant[d.comps[i].tq] for j := 0; j < int(d.comps[i].h*d.comps[i].v); j++ { d.blocks[i][j] = allZeroes // Decode the DC coefficient, as specified in section F.2.2.1. value, err := d.decodeHuffman(&d.huff[dcTableClass][scanComps[i].td]) if err != nil { return err } if value > 16 { return UnsupportedError("excessive DC component") } dcDelta, err := d.receiveExtend(value) if err != nil { return err } dc[i] += dcDelta d.blocks[i][j][0] = dc[i] * qt[0] // Decode the AC coefficients, as specified in section F.2.2.2. for k := 1; k < blockSize; k++ { value, err := d.decodeHuffman(&d.huff[acTableClass][scanComps[i].ta]) if err != nil { return err } v0 := value >> 4 v1 := value & 0x0f if v1 != 0 { k += int(v0) if k > blockSize { return FormatError("bad DCT index") } ac, err := d.receiveExtend(v1) if err != nil { return err } d.blocks[i][j][unzig[k]] = ac * qt[k] } else { if v0 != 0x0f { break } k += 0x0f } } idct(&d.blocks[i][j]) } // for j } // for i d.convertMCU(mx, my, int(d.comps[0].h), int(d.comps[0].v)) mcu++ if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy { // A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input, // but this one assumes well-formed input, and hence the restart marker follows immediately. _, err := io.ReadFull(d.r, d.tmp[0:2]) if err != nil { return err } if d.tmp[0] != 0xff || d.tmp[1] != expectedRST { return FormatError("bad RST marker") } expectedRST++ if expectedRST == rst7Marker+1 { expectedRST = rst0Marker } // Reset the Huffman decoder. d.b = bits{} // Reset the DC components, as per section F.2.1.3.1. for i := 0; i < nComponent; i++ { dc[i] = 0 } } } // for mx } // for my return nil } // Specified in section B.2.4.4. func (d *decoder) processDRI(n int) os.Error { if n != 2 { return FormatError("DRI has wrong length") } _, err := io.ReadFull(d.r, d.tmp[0:2]) if err != nil { return err } d.ri = int(d.tmp[0])<<8 + int(d.tmp[1]) return nil } // decode reads a JPEG image from r and returns it as an image.Image. func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, os.Error) { if rr, ok := r.(Reader); ok { d.r = rr } else { d.r = bufio.NewReader(r) } // Check for the Start Of Image marker. _, err := io.ReadFull(d.r, d.tmp[0:2]) if err != nil { return nil, err } if d.tmp[0] != 0xff || d.tmp[1] != soiMarker { return nil, FormatError("missing SOI marker") } // Process the remaining segments until the End Of Image marker. for { _, err := io.ReadFull(d.r, d.tmp[0:2]) if err != nil { return nil, err } if d.tmp[0] != 0xff { return nil, FormatError("missing 0xff marker start") } marker := d.tmp[1] if marker == eoiMarker { // End Of Image. break } // Read the 16-bit length of the segment. The value includes the 2 bytes for the // length itself, so we subtract 2 to get the number of remaining bytes. _, err = io.ReadFull(d.r, d.tmp[0:2]) if err != nil { return nil, err } n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2 if n < 0 { return nil, FormatError("short segment length") } switch { case marker == sof0Marker: // Start Of Frame (Baseline). err = d.processSOF(n) if configOnly { return nil, err } case marker == sof2Marker: // Start Of Frame (Progressive). err = UnsupportedError("progressive mode") case marker == dhtMarker: // Define Huffman Table. err = d.processDHT(n) case marker == dqtMarker: // Define Quantization Table. err = d.processDQT(n) case marker == sosMarker: // Start Of Scan. err = d.processSOS(n) case marker == driMarker: // Define Restart Interval. err = d.processDRI(n) case marker >= app0Marker && marker <= app15Marker || marker == comMarker: // APPlication specific, or COMment. err = d.ignore(n) default: err = UnsupportedError("unknown marker") } if err != nil { return nil, err } } return d.image, nil } // Decode reads a JPEG image from r and returns it as an image.Image. func Decode(r io.Reader) (image.Image, os.Error) { var d decoder return d.decode(r, false) } // DecodeConfig returns the color model and dimensions of a JPEG image without // decoding the entire image. func DecodeConfig(r io.Reader) (image.Config, os.Error) { var d decoder if _, err := d.decode(r, true); err != nil { return image.Config{}, err } return image.Config{image.RGBAColorModel, d.width, d.height}, nil } func init() { image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig) }