// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This package implements utility functions to help with black box testing. package quick import ( "flag" "fmt" "math" "os" "rand" "reflect" "strings" ) var defaultMaxCount *int = flag.Int("quickchecks", 100, "The default number of iterations for each check") // A Generator can generate random values of its own type. type Generator interface { // Generate returns a random instance of the type on which it is a // method using the size as a size hint. Generate(rand *rand.Rand, size int) reflect.Value } // randFloat32 generates a random float taking the full range of a float32. func randFloat32(rand *rand.Rand) float32 { f := rand.Float64() * math.MaxFloat32 if rand.Int()&1 == 1 { f = -f } return float32(f) } // randFloat64 generates a random float taking the full range of a float64. func randFloat64(rand *rand.Rand) float64 { f := rand.Float64() if rand.Int()&1 == 1 { f = -f } return f } // randInt64 returns a random integer taking half the range of an int64. func randInt64(rand *rand.Rand) int64 { return rand.Int63() - 1<<62 } // complexSize is the maximum length of arbitrary values that contain other // values. const complexSize = 50 // Value returns an arbitrary value of the given type. // If the type implements the Generator interface, that will be used. // Note: in order to create arbitrary values for structs, all the members must be public. func Value(t reflect.Type, rand *rand.Rand) (value reflect.Value, ok bool) { if m, ok := reflect.MakeZero(t).Interface().(Generator); ok { return m.Generate(rand, complexSize), true } switch concrete := t.(type) { case *reflect.BoolType: return reflect.NewValue(rand.Int()&1 == 0), true case *reflect.FloatType, *reflect.IntType, *reflect.UintType, *reflect.ComplexType: switch t.Kind() { case reflect.Float32: return reflect.NewValue(randFloat32(rand)), true case reflect.Float64: return reflect.NewValue(randFloat64(rand)), true case reflect.Complex64: return reflect.NewValue(complex(randFloat32(rand), randFloat32(rand))), true case reflect.Complex128: return reflect.NewValue(complex(randFloat64(rand), randFloat64(rand))), true case reflect.Int16: return reflect.NewValue(int16(randInt64(rand))), true case reflect.Int32: return reflect.NewValue(int32(randInt64(rand))), true case reflect.Int64: return reflect.NewValue(randInt64(rand)), true case reflect.Int8: return reflect.NewValue(int8(randInt64(rand))), true case reflect.Int: return reflect.NewValue(int(randInt64(rand))), true case reflect.Uint16: return reflect.NewValue(uint16(randInt64(rand))), true case reflect.Uint32: return reflect.NewValue(uint32(randInt64(rand))), true case reflect.Uint64: return reflect.NewValue(uint64(randInt64(rand))), true case reflect.Uint8: return reflect.NewValue(uint8(randInt64(rand))), true case reflect.Uint: return reflect.NewValue(uint(randInt64(rand))), true case reflect.Uintptr: return reflect.NewValue(uintptr(randInt64(rand))), true } case *reflect.MapType: numElems := rand.Intn(complexSize) m := reflect.MakeMap(concrete) for i := 0; i < numElems; i++ { key, ok1 := Value(concrete.Key(), rand) value, ok2 := Value(concrete.Elem(), rand) if !ok1 || !ok2 { return nil, false } m.SetElem(key, value) } return m, true case *reflect.PtrType: v, ok := Value(concrete.Elem(), rand) if !ok { return nil, false } p := reflect.MakeZero(concrete) p.(*reflect.PtrValue).PointTo(v) return p, true case *reflect.SliceType: numElems := rand.Intn(complexSize) s := reflect.MakeSlice(concrete, numElems, numElems) for i := 0; i < numElems; i++ { v, ok := Value(concrete.Elem(), rand) if !ok { return nil, false } s.Elem(i).SetValue(v) } return s, true case *reflect.StringType: numChars := rand.Intn(complexSize) codePoints := make([]int, numChars) for i := 0; i < numChars; i++ { codePoints[i] = rand.Intn(0x10ffff) } return reflect.NewValue(string(codePoints)), true case *reflect.StructType: s := reflect.MakeZero(t).(*reflect.StructValue) for i := 0; i < s.NumField(); i++ { v, ok := Value(concrete.Field(i).Type, rand) if !ok { return nil, false } s.Field(i).SetValue(v) } return s, true default: return nil, false } return } // A Config structure contains options for running a test. type Config struct { // MaxCount sets the maximum number of iterations. If zero, // MaxCountScale is used. MaxCount int // MaxCountScale is a non-negative scale factor applied to the default // maximum. If zero, the default is unchanged. MaxCountScale float64 // If non-nil, rand is a source of random numbers. Otherwise a default // pseudo-random source will be used. Rand *rand.Rand // If non-nil, Values is a function which generates a slice of arbitrary // Values that are congruent with the arguments to the function being // tested. Otherwise, Values is used to generate the values. Values func([]reflect.Value, *rand.Rand) } var defaultConfig Config // getRand returns the *rand.Rand to use for a given Config. func (c *Config) getRand() *rand.Rand { if c.Rand == nil { return rand.New(rand.NewSource(0)) } return c.Rand } // getMaxCount returns the maximum number of iterations to run for a given // Config. func (c *Config) getMaxCount() (maxCount int) { maxCount = c.MaxCount if maxCount == 0 { if c.MaxCountScale != 0 { maxCount = int(c.MaxCountScale * float64(*defaultMaxCount)) } else { maxCount = *defaultMaxCount } } return } // A SetupError is the result of an error in the way that check is being // used, independent of the functions being tested. type SetupError string func (s SetupError) String() string { return string(s) } // A CheckError is the result of Check finding an error. type CheckError struct { Count int In []interface{} } func (s *CheckError) String() string { return fmt.Sprintf("#%d: failed on input %s", s.Count, toString(s.In)) } // A CheckEqualError is the result CheckEqual finding an error. type CheckEqualError struct { CheckError Out1 []interface{} Out2 []interface{} } func (s *CheckEqualError) String() string { return fmt.Sprintf("#%d: failed on input %s. Output 1: %s. Output 2: %s", s.Count, toString(s.In), toString(s.Out1), toString(s.Out2)) } // Check looks for an input to f, any function that returns bool, // such that f returns false. It calls f repeatedly, with arbitrary // values for each argument. If f returns false on a given input, // Check returns that input as a *CheckError. // For example: // // func TestOddMultipleOfThree(t *testing.T) { // f := func(x int) bool { // y := OddMultipleOfThree(x) // return y%2 == 1 && y%3 == 0 // } // if err := quick.Check(f, nil); err != nil { // t.Error(err) // } // } func Check(function interface{}, config *Config) (err os.Error) { if config == nil { config = &defaultConfig } f, fType, ok := functionAndType(function) if !ok { err = SetupError("argument is not a function") return } if fType.NumOut() != 1 { err = SetupError("function returns more than one value.") return } if _, ok := fType.Out(0).(*reflect.BoolType); !ok { err = SetupError("function does not return a bool") return } arguments := make([]reflect.Value, fType.NumIn()) rand := config.getRand() maxCount := config.getMaxCount() for i := 0; i < maxCount; i++ { err = arbitraryValues(arguments, fType, config, rand) if err != nil { return } if !f.Call(arguments)[0].(*reflect.BoolValue).Get() { err = &CheckError{i + 1, toInterfaces(arguments)} return } } return } // CheckEqual looks for an input on which f and g return different results. // It calls f and g repeatedly with arbitrary values for each argument. // If f and g return different answers, CheckEqual returns a *CheckEqualError // describing the input and the outputs. func CheckEqual(f, g interface{}, config *Config) (err os.Error) { if config == nil { config = &defaultConfig } x, xType, ok := functionAndType(f) if !ok { err = SetupError("f is not a function") return } y, yType, ok := functionAndType(g) if !ok { err = SetupError("g is not a function") return } if xType != yType { err = SetupError("functions have different types") return } arguments := make([]reflect.Value, xType.NumIn()) rand := config.getRand() maxCount := config.getMaxCount() for i := 0; i < maxCount; i++ { err = arbitraryValues(arguments, xType, config, rand) if err != nil { return } xOut := toInterfaces(x.Call(arguments)) yOut := toInterfaces(y.Call(arguments)) if !reflect.DeepEqual(xOut, yOut) { err = &CheckEqualError{CheckError{i + 1, toInterfaces(arguments)}, xOut, yOut} return } } return } // arbitraryValues writes Values to args such that args contains Values // suitable for calling f. func arbitraryValues(args []reflect.Value, f *reflect.FuncType, config *Config, rand *rand.Rand) (err os.Error) { if config.Values != nil { config.Values(args, rand) return } for j := 0; j < len(args); j++ { var ok bool args[j], ok = Value(f.In(j), rand) if !ok { err = SetupError(fmt.Sprintf("cannot create arbitrary value of type %s for argument %d", f.In(j), j)) return } } return } func functionAndType(f interface{}) (v *reflect.FuncValue, t *reflect.FuncType, ok bool) { v, ok = reflect.NewValue(f).(*reflect.FuncValue) if !ok { return } t = v.Type().(*reflect.FuncType) return } func toInterfaces(values []reflect.Value) []interface{} { ret := make([]interface{}, len(values)) for i, v := range values { ret[i] = v.Interface() } return ret } func toString(interfaces []interface{}) string { s := make([]string, len(interfaces)) for i, v := range interfaces { s[i] = fmt.Sprintf("%#v", v) } return strings.Join(s, ", ") }