/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
/**
* A service that decouples the production of new asynchronous tasks
* from the consumption of the results of completed tasks. Producers
* submit tasks for execution. Consumers take
* completed tasks and process their results in the order they
* complete. A CompletionService can for example be used to
* manage asynchronous IO, in which tasks that perform reads are
* submitted in one part of a program or system, and then acted upon
* in a different part of the program when the reads complete,
* possibly in a different order than they were requested.
*
*
Typically, a CompletionService relies on a separate
* {@link Executor} to actually execute the tasks, in which case the
* CompletionService only manages an internal completion
* queue. The {@link ExecutorCompletionService} class provides an
* implementation of this approach.
*
*
Memory consistency effects: Actions in a thread prior to
* submitting a task to a {@code CompletionService}
* happen-before
* actions taken by that task, which in turn happen-before
* actions following a successful return from the corresponding {@code take()}.
*
*/
public interface CompletionService {
/**
* Submits a value-returning task for execution and returns a Future
* representing the pending results of the task. Upon completion,
* this task may be taken or polled.
*
* @param task the task to submit
* @return a Future representing pending completion of the task
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
* @throws NullPointerException if the task is null
*/
Future submit(Callable task);
/**
* Submits a Runnable task for execution and returns a Future
* representing that task. Upon completion, this task may be
* taken or polled.
*
* @param task the task to submit
* @param result the result to return upon successful completion
* @return a Future representing pending completion of the task,
* and whose get() method will return the given
* result value upon completion
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
* @throws NullPointerException if the task is null
*/
Future submit(Runnable task, V result);
/**
* Retrieves and removes the Future representing the next
* completed task, waiting if none are yet present.
*
* @return the Future representing the next completed task
* @throws InterruptedException if interrupted while waiting
*/
Future take() throws InterruptedException;
/**
* Retrieves and removes the Future representing the next
* completed task or null if none are present.
*
* @return the Future representing the next completed task, or
* null if none are present
*/
Future poll();
/**
* Retrieves and removes the Future representing the next
* completed task, waiting if necessary up to the specified wait
* time if none are yet present.
*
* @param timeout how long to wait before giving up, in units of
* unit
* @param unit a TimeUnit determining how to interpret the
* timeout parameter
* @return the Future representing the next completed task or
* null if the specified waiting time elapses
* before one is present
* @throws InterruptedException if interrupted while waiting
*/
Future poll(long timeout, TimeUnit unit) throws InterruptedException;
}