/* FIPS186.java -- Copyright 2001, 2002, 2003, 2006 Free Software Foundation, Inc. This file is a part of GNU Classpath. GNU Classpath is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GNU Classpath is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Classpath; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Linking this library statically or dynamically with other modules is making a combined work based on this library. Thus, the terms and conditions of the GNU General Public License cover the whole combination. As a special exception, the copyright holders of this library give you permission to link this library with independent modules to produce an executable, regardless of the license terms of these independent modules, and to copy and distribute the resulting executable under terms of your choice, provided that you also meet, for each linked independent module, the terms and conditions of the license of that module. An independent module is a module which is not derived from or based on this library. If you modify this library, you may extend this exception to your version of the library, but you are not obligated to do so. If you do not wish to do so, delete this exception statement from your version. */ package gnu.java.security.key.dss; import gnu.java.security.hash.Sha160; import gnu.java.security.util.PRNG; import java.math.BigInteger; import java.security.SecureRandom; /** * An implementation of the DSA parameters generation as described in FIPS-186. *
* References: *
* Digital Signature
* Standard (DSS), Federal Information Processing Standards Publication
* 186. National Institute of Standards and Technology.
*/
public class FIPS186
{
public static final int DSA_PARAMS_SEED = 0;
public static final int DSA_PARAMS_COUNTER = 1;
public static final int DSA_PARAMS_Q = 2;
public static final int DSA_PARAMS_P = 3;
public static final int DSA_PARAMS_E = 4;
public static final int DSA_PARAMS_G = 5;
/** The BigInteger constant 2. */
private static final BigInteger TWO = BigInteger.valueOf(2L);
private static final BigInteger TWO_POW_160 = TWO.pow(160);
/** The SHA instance to use. */
private Sha160 sha = new Sha160();
/** The length of the modulus of DSS keys generated by this instance. */
private int L;
/** The optional {@link SecureRandom} instance to use. */
private SecureRandom rnd = null;
/** Our default source of randomness. */
private PRNG prng = null;
public FIPS186(int L, SecureRandom rnd)
{
super();
this.L = L;
this.rnd = rnd;
}
/**
* This method generates the DSS p
, q
, and
* g
parameters only when L
(the modulus length)
* is not one of the following: 512
, 768
and
* 1024
. For those values of L
, this
* implementation uses pre-computed values of p
,
* q
, and g
given in the document CryptoSpec
* included in the security guide documentation of the standard JDK
* distribution.
*
* The DSS requires two primes , p
and q
,
* satisfying the following three conditions:
*
2159 < q < 2160
2L-1 < p < 2L
for a
* specified L
, where L = 512 + 64j
for some
* 0 <= j <= 8
q
, in the range 2159 < q < 2160.
* Once this is accomplished, the same SEED value is used to construct
* an X
in the range 2L-1
* < X < 2L. The prime, p
, is then
* formed by rounding X
to a number congruent to 1 mod
* 2q
. In this implementation we use the same SEED value given
* in FIPS-186, Appendix 5.
*/
public BigInteger[] generateParameters()
{
int counter, offset;
BigInteger SEED, alpha, U, q, OFFSET, SEED_PLUS_OFFSET, W, X, p, c, g;
byte[] a, u;
byte[] kb = new byte[20]; // to hold 160 bits of randomness
// Let L-1 = n*160 + b, where b and n are integers and 0 <= b < 160.
int b = (L - 1) % 160;
int n = (L - 1 - b) / 160;
BigInteger[] V = new BigInteger[n + 1];
algorithm: while (true)
{
step1: while (true)
{
// 1. Choose an arbitrary sequence of at least 160 bits and
// call it SEED.
nextRandomBytes(kb);
SEED = new BigInteger(1, kb).setBit(159).setBit(0);
// Let g be the length of SEED in bits. here always 160
// 2. Compute: U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]
alpha = SEED.add(BigInteger.ONE).mod(TWO_POW_160);
synchronized (sha)
{
a = SEED.toByteArray();
sha.update(a, 0, a.length);
a = sha.digest();
u = alpha.toByteArray();
sha.update(u, 0, u.length);
u = sha.digest();
}
for (int i = 0; i < a.length; i++)
a[i] ^= u[i];
U = new BigInteger(1, a);
// 3. Form q from U by setting the most significant bit (the
// 2**159 bit) and the least significant bit to 1. In terms of
// boolean operations, q = U OR 2**159 OR 1. Note that
// 2**159 < q < 2**160.
q = U.setBit(159).setBit(0);
// 4. Use a robust primality testing algorithm to test whether
// q is prime(1). A robust primality test is one where the
// probability of a non-prime number passing the test is at
// most 1/2**80.
// 5. If q is not prime, go to step 1.
if (q.isProbablePrime(80))
break step1;
} // step1
// 6. Let counter = 0 and offset = 2.
counter = 0;
offset = 2;
while (true)
{
OFFSET = BigInteger.valueOf(offset & 0xFFFFFFFFL);
SEED_PLUS_OFFSET = SEED.add(OFFSET);
// 7. For k = 0,...,n let V[k] = SHA[(SEED + offset + k) mod 2**g].
synchronized (sha)
{
for (int k = 0; k <= n; k++)
{
a = SEED_PLUS_OFFSET
.add(BigInteger.valueOf(k & 0xFFFFFFFFL))
.mod(TWO_POW_160).toByteArray();
sha.update(a, 0, a.length);
V[k] = new BigInteger(1, sha.digest());
}
}
// 8. Let W be the integer:
// V[0]+V[1]*2**160+...+V[n-1]*2**((n-1)*160)+(V[n]mod2**b)*2**(n*160)
// and let : X = W + 2**(L-1).
// Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L.
W = V[0];
for (int k = 1; k < n; k++)
W = W.add(V[k].multiply(TWO.pow(k * 160)));
W = W.add(V[n].mod(TWO.pow(b)).multiply(TWO.pow(n * 160)));
X = W.add(TWO.pow(L - 1));
// 9. Let c = X mod 2q and set p = X - (c - 1).
// Note that p is congruent to 1 mod 2q.
c = X.mod(TWO.multiply(q));
p = X.subtract(c.subtract(BigInteger.ONE));
// 10. If p < 2**(L-1), then go to step 13.
if (p.compareTo(TWO.pow(L - 1)) >= 0)
{
// 11. Perform a robust primality test on p.
// 12. If p passes the test performed in step 11, go to step 15.
if (p.isProbablePrime(80))
break algorithm;
}
// 13. Let counter = counter + 1 and offset = offset + n + 1.
counter++;
offset += n + 1;
// 14. If counter >= 4096 go to step 1, otherwise go to step 7.
if (counter >= 4096)
continue algorithm;
} // step7
} // algorithm
// compute g. from FIPS-186, Appendix 4:
// 1. Generate p and q as specified in Appendix 2.
// 2. Let e = (p - 1) / q
BigInteger e = p.subtract(BigInteger.ONE).divide(q);
BigInteger h = TWO;
BigInteger p_minus_1 = p.subtract(BigInteger.ONE);
g = TWO;
// 3. Set h = any integer, where 1 < h < p - 1 and
// h differs from any value previously tried
for (; h.compareTo(p_minus_1) < 0; h = h.add(BigInteger.ONE))
{
// 4. Set g = h**e mod p
g = h.modPow(e, p);
// 5. If g = 1, go to step 3
if (! g.equals(BigInteger.ONE))
break;
}
return new BigInteger[] { SEED, BigInteger.valueOf(counter), q, p, e, g };
}
/**
* Fills the designated byte array with random data.
*
* @param buffer the byte array to fill with random data.
*/
private void nextRandomBytes(byte[] buffer)
{
if (rnd != null)
rnd.nextBytes(buffer);
else
getDefaultPRNG().nextBytes(buffer);
}
private PRNG getDefaultPRNG()
{
if (prng == null)
prng = PRNG.getInstance();
return prng;
}
}