Double
represent primitive
* double
values.
*
* Additionally, this class provides various helper functions and variables
* related to doubles.
*
* @author Paul Fisher
* @author Andrew Haley (aph@cygnus.com)
* @author Eric Blake (ebb9@email.byu.edu)
* @author Tom Tromey (tromey@redhat.com)
* @author Andrew John Hughes (gnu_andrew@member.fsf.org)
* @since 1.0
* @status partly updated to 1.5
*/
public final class Double extends Number implements Comparabledouble
may represent
* is 1.7976931348623157e+308.
*/
public static final double MAX_VALUE = 1.7976931348623157e+308;
/**
* The minimum positive value a double
may represent
* is 5e-324.
*/
public static final double MIN_VALUE = 5e-324;
/**
* The value of a double representation -1.0/0.0, negative
* infinity.
*/
public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
/**
* The value of a double representing 1.0/0.0, positive infinity.
*/
public static final double POSITIVE_INFINITY = 1.0 / 0.0;
/**
* All IEEE 754 values of NaN have the same value in Java.
*/
public static final double NaN = 0.0 / 0.0;
/**
* The number of bits needed to represent a double
.
* @since 1.5
*/
public static final int SIZE = 64;
/**
* The primitive type double
is represented by this
* Class
object.
* @since 1.1
*/
public static final ClassDouble
from the primitive double
* specified.
*
* @param value the double
argument
*/
public Double(double value)
{
this.value = value;
}
/**
* Create a Double
from the specified String
.
* This method calls Double.parseDouble()
.
*
* @param s the String
to convert
* @throws NumberFormatException if s
cannot be parsed as a
* double
* @throws NullPointerException if s
is null
* @see #parseDouble(String)
*/
public Double(String s)
{
value = parseDouble(s);
}
/**
* Convert the double
to a String
.
* Floating-point string representation is fairly complex: here is a
* rundown of the possible values. "[-]
" indicates that a
* negative sign will be printed if the value (or exponent) is negative.
* "<number>
" means a string of digits ('0' to '9').
* "<digit>
" means a single digit ('0' to '9').Value of Double | String Representation |
---|---|
[+-] 0 | [-]0.0 |
Between [+-] 10-3 and 107, exclusive | *[-]number.number |
Other numeric value | *[-]<digit>.<number>
* E[-]<number> |
[+-] infinity | [-]Infinity |
NaN | NaN |
.
and at least one digit printed after
* it: even if the number is 3, it will be printed as 3.0
.
* After the ".", all digits will be printed except trailing zeros. The
* result is rounded to the shortest decimal number which will parse back
* to the same double.
*
* To create other output formats, use {@link java.text.NumberFormat}.
*
* @XXX specify where we are not in accord with the spec.
*
* @param d the double
to convert
* @return the String
representing the double
*/
public static String toString(double d)
{
return VMDouble.toString(d, false);
}
/**
* Convert a double value to a hexadecimal string. This converts as
* follows:
*
Double
object wrapping the value.
* In contrast to the Double
constructor, this method
* may cache some values. It is used by boxing conversion.
*
* @param val the value to wrap
* @return the Double
* @since 1.5
*/
public static Double valueOf(double val)
{
if ((val == 0.0) && (doubleToRawLongBits(val) == 0L))
return ZERO;
else if (val == 1.0)
return ONE;
else
return new Double(val);
}
/**
* Create a new Double
object using the String
.
*
* @param s the String
to convert
* @return the new Double
* @throws NumberFormatException if s
cannot be parsed as a
* double
* @throws NullPointerException if s
is null.
* @see #parseDouble(String)
*/
public static Double valueOf(String s)
{
return valueOf(parseDouble(s));
}
/**
* Parse the specified String
as a double
. The
* extended BNF grammar is as follows:* DecodableString: * ( [* *-
|+
]NaN
) * | ( [-
|+
]Infinity
) * | ( [-
|+
] FloatingPoint * [f
|F
|d
* |D
] ) * FloatingPoint: * ( { Digit }+ [.
{ Digit } ] * [ Exponent ] ) * | (.
{ Digit }+ [ Exponent ] ) * Exponent: * ( (e
|E
) * [-
|+
] { Digit }+ ) * Digit:'0'
through'9'
*
NaN and infinity are special cases, to allow parsing of the output * of toString. Otherwise, the result is determined by calculating * n * 10exponent to infinite precision, then rounding * to the nearest double. Remember that many numbers cannot be precisely * represented in floating point. In case of overflow, infinity is used, * and in case of underflow, signed zero is used. Unlike Integer.parseInt, * this does not accept Unicode digits outside the ASCII range. * *
If an unexpected character is found in the String
, a
* NumberFormatException
will be thrown. Leading and trailing
* 'whitespace' is ignored via String.trim()
, but spaces
* internal to the actual number are not allowed.
*
*
To parse numbers according to another format, consider using
* {@link java.text.NumberFormat}.
*
* @XXX specify where/how we are not in accord with the spec.
*
* @param str the String
to convert
* @return the double
value of s
* @throws NumberFormatException if s
cannot be parsed as a
* double
* @throws NullPointerException if s
is null
* @see #MIN_VALUE
* @see #MAX_VALUE
* @see #POSITIVE_INFINITY
* @see #NEGATIVE_INFINITY
* @since 1.2
*/
public static double parseDouble(String str)
{
return VMDouble.parseDouble(str);
}
/**
* Return true
if the double
has the same
* value as NaN
, otherwise return false
.
*
* @param v the double
to compare
* @return whether the argument is NaN
.
*/
public static boolean isNaN(double v)
{
// This works since NaN != NaN is the only reflexive inequality
// comparison which returns true.
return v != v;
}
/**
* Return true
if the double
has a value
* equal to either NEGATIVE_INFINITY
or
* POSITIVE_INFINITY
, otherwise return false
.
*
* @param v the double
to compare
* @return whether the argument is (-/+) infinity.
*/
public static boolean isInfinite(double v)
{
return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY;
}
/**
* Return true
if the value of this Double
* is the same as NaN
, otherwise return false
.
*
* @return whether this Double
is NaN
*/
public boolean isNaN()
{
return isNaN(value);
}
/**
* Return true
if the value of this Double
* is the same as NEGATIVE_INFINITY
or
* POSITIVE_INFINITY
, otherwise return false
.
*
* @return whether this Double
is (-/+) infinity
*/
public boolean isInfinite()
{
return isInfinite(value);
}
/**
* Convert the double
value of this Double
* to a String
. This method calls
* Double.toString(double)
to do its dirty work.
*
* @return the String
representation
* @see #toString(double)
*/
public String toString()
{
return toString(value);
}
/**
* Return the value of this Double
as a byte
.
*
* @return the byte value
* @since 1.1
*/
public byte byteValue()
{
return (byte) value;
}
/**
* Return the value of this Double
as a short
.
*
* @return the short value
* @since 1.1
*/
public short shortValue()
{
return (short) value;
}
/**
* Return the value of this Double
as an int
.
*
* @return the int value
*/
public int intValue()
{
return (int) value;
}
/**
* Return the value of this Double
as a long
.
*
* @return the long value
*/
public long longValue()
{
return (long) value;
}
/**
* Return the value of this Double
as a float
.
*
* @return the float value
*/
public float floatValue()
{
return (float) value;
}
/**
* Return the value of this Double
.
*
* @return the double value
*/
public double doubleValue()
{
return value;
}
/**
* Return a hashcode representing this Object. Double
's hash
* code is calculated by:
* long v = Double.doubleToLongBits(doubleValue());
.
*
* @return this Object's hash code
* @see #doubleToLongBits(double)
*/
public int hashCode()
{
long v = doubleToLongBits(value);
return (int) (v ^ (v >>> 32));
}
/**
* Returns
* int hash = (int)(v^(v>>32))true
if obj
is an instance of
* Double
and represents the same double value. Unlike comparing
* two doubles with ==
, this treats two instances of
* Double.NaN
as equal, but treats 0.0
and
* -0.0
as unequal.
*
*
Note that d1.equals(d2)
is identical to
* doubleToLongBits(d1.doubleValue()) ==
* doubleToLongBits(d2.doubleValue())
.
*
* @param obj the object to compare
* @return whether the objects are semantically equal
*/
public boolean equals(Object obj)
{
if (obj instanceof Double)
{
double d = ((Double) obj).value;
return (doubleToRawLongBits(value) == doubleToRawLongBits(d)) ||
(isNaN(value) && isNaN(d));
}
return false;
}
/**
* Convert the double to the IEEE 754 floating-point "double format" bit
* layout. Bit 63 (the most significant) is the sign bit, bits 62-52
* (masked by 0x7ff0000000000000L) represent the exponent, and bits 51-0
* (masked by 0x000fffffffffffffL) are the mantissa. This function
* collapses all versions of NaN to 0x7ff8000000000000L. The result of this
* function can be used as the argument to
* Double.longBitsToDouble(long)
to obtain the original
* double
value.
*
* @param value the double
to convert
* @return the bits of the double
* @see #longBitsToDouble(long)
*/
public static long doubleToLongBits(double value)
{
if (isNaN(value))
return 0x7ff8000000000000L;
else
return VMDouble.doubleToRawLongBits(value);
}
/**
* Convert the double to the IEEE 754 floating-point "double format" bit
* layout. Bit 63 (the most significant) is the sign bit, bits 62-52
* (masked by 0x7ff0000000000000L) represent the exponent, and bits 51-0
* (masked by 0x000fffffffffffffL) are the mantissa. This function
* leaves NaN alone, rather than collapsing to a canonical value. The
* result of this function can be used as the argument to
* Double.longBitsToDouble(long)
to obtain the original
* double
value.
*
* @param value the double
to convert
* @return the bits of the double
* @see #longBitsToDouble(long)
*/
public static long doubleToRawLongBits(double value)
{
return VMDouble.doubleToRawLongBits(value);
}
/**
* Convert the argument in IEEE 754 floating-point "double format" bit
* layout to the corresponding float. Bit 63 (the most significant) is the
* sign bit, bits 62-52 (masked by 0x7ff0000000000000L) represent the
* exponent, and bits 51-0 (masked by 0x000fffffffffffffL) are the mantissa.
* This function leaves NaN alone, so that you can recover the bit pattern
* with Double.doubleToRawLongBits(double)
.
*
* @param bits the bits to convert
* @return the double
represented by the bits
* @see #doubleToLongBits(double)
* @see #doubleToRawLongBits(double)
*/
public static double longBitsToDouble(long bits)
{
return VMDouble.longBitsToDouble(bits);
}
/**
* Compare two Doubles numerically by comparing their double
* values. The result is positive if the first is greater, negative if the
* second is greater, and 0 if the two are equal. However, this special
* cases NaN and signed zero as follows: NaN is considered greater than
* all other doubles, including POSITIVE_INFINITY
, and positive
* zero is considered greater than negative zero.
*
* @param d the Double to compare
* @return the comparison
* @since 1.2
*/
public int compareTo(Double d)
{
return compare(value, d.value);
}
/**
* Behaves like new Double(x).compareTo(new Double(y))
; in
* other words this compares two doubles, special casing NaN and zero,
* without the overhead of objects.
*
* @param x the first double to compare
* @param y the second double to compare
* @return the comparison
* @since 1.4
*/
public static int compare(double x, double y)
{
// handle the easy cases:
if (x < y)
return -1;
if (x > y)
return 1;
// handle equality respecting that 0.0 != -0.0 (hence not using x == y):
long lx = doubleToRawLongBits(x);
long ly = doubleToRawLongBits(y);
if (lx == ly)
return 0;
// handle NaNs:
if (x != x)
return (y != y) ? 0 : 1;
else if (y != y)
return -1;
// handle +/- 0.0
return (lx < ly) ? -1 : 1;
}
}