/* Integer.java -- object wrapper for int Copyright (C) 1998, 1999, 2001, 2002, 2004, 2005 Free Software Foundation, Inc. This file is part of GNU Classpath. GNU Classpath is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU Classpath is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Classpath; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. Linking this library statically or dynamically with other modules is making a combined work based on this library. Thus, the terms and conditions of the GNU General Public License cover the whole combination. As a special exception, the copyright holders of this library give you permission to link this library with independent modules to produce an executable, regardless of the license terms of these independent modules, and to copy and distribute the resulting executable under terms of your choice, provided that you also meet, for each linked independent module, the terms and conditions of the license of that module. An independent module is a module which is not derived from or based on this library. If you modify this library, you may extend this exception to your version of the library, but you are not obligated to do so. If you do not wish to do so, delete this exception statement from your version. */ package java.lang; /** * Instances of class Integer represent primitive * int values. * * Additionally, this class provides various helper functions and variables * related to ints. * * @author Paul Fisher * @author John Keiser * @author Warren Levy * @author Eric Blake (ebb9@email.byu.edu) * @author Tom Tromey (tromey@redhat.com) * @author Andrew John Hughes (gnu_andrew@member.fsf.org) * @author Ian Rogers * @since 1.0 * @status updated to 1.5 */ public final class Integer extends Number implements Comparable { /** * Compatible with JDK 1.0.2+. */ private static final long serialVersionUID = 1360826667806852920L; /** * The minimum value an int can represent is -2147483648 (or * -231). */ public static final int MIN_VALUE = 0x80000000; /** * The maximum value an int can represent is 2147483647 (or * 231 - 1). */ public static final int MAX_VALUE = 0x7fffffff; /** * The primitive type int is represented by this * Class object. * @since 1.1 */ public static final Class TYPE = (Class) VMClassLoader.getPrimitiveClass('I'); /** * The number of bits needed to represent an int. * @since 1.5 */ public static final int SIZE = 32; // This caches some Integer values, and is used by boxing // conversions via valueOf(). We must cache at least -128..127; // these constants control how much we actually cache. private static final int MIN_CACHE = -128; private static final int MAX_CACHE = 127; private static final Integer[] intCache = new Integer[MAX_CACHE - MIN_CACHE + 1]; static { for (int i=MIN_CACHE; i <= MAX_CACHE; i++) intCache[i - MIN_CACHE] = new Integer(i); } /** * The immutable value of this Integer. * * @serial the wrapped int */ private final int value; /** * Create an Integer object representing the value of the * int argument. * * @param value the value to use */ public Integer(int value) { this.value = value; } /** * Create an Integer object representing the value of the * argument after conversion to an int. * * @param s the string to convert * @throws NumberFormatException if the String does not contain an int * @see #valueOf(String) */ public Integer(String s) { value = parseInt(s, 10, false); } /** * Return the size of a string large enough to hold the given number * * @param num the number we want the string length for (must be positive) * @param radix the radix (base) that will be used for the string * @return a size sufficient for a string of num */ private static int stringSize(int num, int radix) { int exp; if (radix < 4) { exp = 1; } else if (radix < 8) { exp = 2; } else if (radix < 16) { exp = 3; } else if (radix < 32) { exp = 4; } else { exp = 5; } int size=0; do { num >>>= exp; size++; } while(num != 0); return size; } /** * Converts the int to a String using * the specified radix (base). If the radix exceeds * Character.MIN_RADIX or Character.MAX_RADIX, 10 * is used instead. If the result is negative, the leading character is * '-' ('\\u002D'). The remaining characters come from * Character.forDigit(digit, radix) ('0'-'9','a'-'z'). * * @param num the int to convert to String * @param radix the radix (base) to use in the conversion * @return the String representation of the argument */ public static String toString(int num, int radix) { if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) radix = 10; // Is the value negative? boolean isNeg = num < 0; // Is the string a single character? if (!isNeg && num < radix) return new String(digits, num, 1, true); // Compute string size and allocate buffer // account for a leading '-' if the value is negative int size; int i; char[] buffer; if (isNeg) { num = -num; // When the value is MIN_VALUE, it overflows when made positive if (num < 0) { i = size = stringSize(MAX_VALUE, radix) + 2; buffer = new char[size]; buffer[--i] = digits[(int) (-(num + radix) % radix)]; num = -(num / radix); } else { i = size = stringSize(num, radix) + 1; buffer = new char[size]; } } else { i = size = stringSize(num, radix); buffer = new char[size]; } do { buffer[--i] = digits[num % radix]; num /= radix; } while (num > 0); if (isNeg) buffer[--i] = '-'; // Package constructor avoids an array copy. return new String(buffer, i, size - i, true); } /** * Converts the int to a String assuming it is * unsigned in base 16. * * @param i the int to convert to String * @return the String representation of the argument */ public static String toHexString(int i) { return toUnsignedString(i, 4); } /** * Converts the int to a String assuming it is * unsigned in base 8. * * @param i the int to convert to String * @return the String representation of the argument */ public static String toOctalString(int i) { return toUnsignedString(i, 3); } /** * Converts the int to a String assuming it is * unsigned in base 2. * * @param i the int to convert to String * @return the String representation of the argument */ public static String toBinaryString(int i) { return toUnsignedString(i, 1); } /** * Converts the int to a String and assumes * a radix of 10. * * @param i the int to convert to String * @return the String representation of the argument * @see #toString(int, int) */ public static String toString(int i) { // This is tricky: in libgcj, String.valueOf(int) is a fast native // implementation. In Classpath it just calls back to // Integer.toString(int, int). return String.valueOf(i); } /** * Converts the specified String into an int * using the specified radix (base). The string must not be null * or empty. It may begin with an optional '-', which will negate the answer, * provided that there are also valid digits. Each digit is parsed as if by * Character.digit(d, radix), and must be in the range * 0 to radix - 1. Finally, the result must be * within MIN_VALUE to MAX_VALUE, inclusive. * Unlike Double.parseDouble, you may not have a leading '+'. * * @param str the String to convert * @param radix the radix (base) to use in the conversion * @return the String argument converted to int * @throws NumberFormatException if s cannot be parsed as an * int */ public static int parseInt(String str, int radix) { return parseInt(str, radix, false); } /** * Converts the specified String into an int. * This function assumes a radix of 10. * * @param s the String to convert * @return the int value of s * @throws NumberFormatException if s cannot be parsed as an * int * @see #parseInt(String, int) */ public static int parseInt(String s) { return parseInt(s, 10, false); } /** * Creates a new Integer object using the String * and specified radix (base). * * @param s the String to convert * @param radix the radix (base) to convert with * @return the new Integer * @throws NumberFormatException if s cannot be parsed as an * int * @see #parseInt(String, int) */ public static Integer valueOf(String s, int radix) { return valueOf(parseInt(s, radix, false)); } /** * Creates a new Integer object using the String, * assuming a radix of 10. * * @param s the String to convert * @return the new Integer * @throws NumberFormatException if s cannot be parsed as an * int * @see #Integer(String) * @see #parseInt(String) */ public static Integer valueOf(String s) { return valueOf(parseInt(s, 10, false)); } /** * Returns an Integer object wrapping the value. * In contrast to the Integer constructor, this method * will cache some values. It is used by boxing conversion. * * @param val the value to wrap * @return the Integer */ public static Integer valueOf(int val) { if (val < MIN_CACHE || val > MAX_CACHE) return new Integer(val); else return intCache[val - MIN_CACHE]; } /** * Return the value of this Integer as a byte. * * @return the byte value */ public byte byteValue() { return (byte) value; } /** * Return the value of this Integer as a short. * * @return the short value */ public short shortValue() { return (short) value; } /** * Return the value of this Integer. * @return the int value */ public int intValue() { return value; } /** * Return the value of this Integer as a long. * * @return the long value */ public long longValue() { return value; } /** * Return the value of this Integer as a float. * * @return the float value */ public float floatValue() { return value; } /** * Return the value of this Integer as a double. * * @return the double value */ public double doubleValue() { return value; } /** * Converts the Integer value to a String and * assumes a radix of 10. * * @return the String representation */ public String toString() { return String.valueOf(value); } /** * Return a hashcode representing this Object. Integer's hash * code is simply its value. * * @return this Object's hash code */ public int hashCode() { return value; } /** * Returns true if obj is an instance of * Integer and represents the same int value. * * @param obj the object to compare * @return whether these Objects are semantically equal */ public boolean equals(Object obj) { return obj instanceof Integer && value == ((Integer) obj).value; } /** * Get the specified system property as an Integer. The * decode() method will be used to interpret the value of * the property. * * @param nm the name of the system property * @return the system property as an Integer, or null if the * property is not found or cannot be decoded * @throws SecurityException if accessing the system property is forbidden * @see System#getProperty(String) * @see #decode(String) */ public static Integer getInteger(String nm) { return getInteger(nm, null); } /** * Get the specified system property as an Integer, or use a * default int value if the property is not found or is not * decodable. The decode() method will be used to interpret * the value of the property. * * @param nm the name of the system property * @param val the default value * @return the value of the system property, or the default * @throws SecurityException if accessing the system property is forbidden * @see System#getProperty(String) * @see #decode(String) */ public static Integer getInteger(String nm, int val) { Integer result = getInteger(nm, null); return result == null ? valueOf(val) : result; } /** * Get the specified system property as an Integer, or use a * default Integer value if the property is not found or is * not decodable. The decode() method will be used to * interpret the value of the property. * * @param nm the name of the system property * @param def the default value * @return the value of the system property, or the default * @throws SecurityException if accessing the system property is forbidden * @see System#getProperty(String) * @see #decode(String) */ public static Integer getInteger(String nm, Integer def) { if (nm == null || "".equals(nm)) return def; nm = System.getProperty(nm); if (nm == null) return def; try { return decode(nm); } catch (NumberFormatException e) { return def; } } /** * Convert the specified String into an Integer. * The String may represent decimal, hexadecimal, or * octal numbers. * *

The extended BNF grammar is as follows:
*

   * DecodableString:
   *      ( [ - ] DecimalNumber )
   *    | ( [ - ] ( 0x | 0X
   *              | # ) HexDigit { HexDigit } )
   *    | ( [ - ] 0 { OctalDigit } )
   * DecimalNumber:
   *        DecimalDigit except '0' { DecimalDigit }
   * DecimalDigit:
   *        Character.digit(d, 10) has value 0 to 9
   * OctalDigit:
   *        Character.digit(d, 8) has value 0 to 7
   * DecimalDigit:
   *        Character.digit(d, 16) has value 0 to 15
   * 
* Finally, the value must be in the range MIN_VALUE to * MAX_VALUE, or an exception is thrown. * * @param str the String to interpret * @return the value of the String as an Integer * @throws NumberFormatException if s cannot be parsed as a * int * @throws NullPointerException if s is null * @since 1.2 */ public static Integer decode(String str) { return valueOf(parseInt(str, 10, true)); } /** * Compare two Integers numerically by comparing their int * values. The result is positive if the first is greater, negative if the * second is greater, and 0 if the two are equal. * * @param i the Integer to compare * @return the comparison * @since 1.2 */ public int compareTo(Integer i) { if (value == i.value) return 0; // Returns just -1 or 1 on inequality; doing math might overflow. return value > i.value ? 1 : -1; } /** * Return the number of bits set in x. * @param x value to examine * @since 1.5 */ public static int bitCount(int x) { // Successively collapse alternating bit groups into a sum. x = ((x >> 1) & 0x55555555) + (x & 0x55555555); x = ((x >> 2) & 0x33333333) + (x & 0x33333333); x = ((x >> 4) & 0x0f0f0f0f) + (x & 0x0f0f0f0f); x = ((x >> 8) & 0x00ff00ff) + (x & 0x00ff00ff); return ((x >> 16) & 0x0000ffff) + (x & 0x0000ffff); } /** * Rotate x to the left by distance bits. * @param x the value to rotate * @param distance the number of bits by which to rotate * @since 1.5 */ public static int rotateLeft(int x, int distance) { // This trick works because the shift operators implicitly mask // the shift count. return (x << distance) | (x >>> - distance); } /** * Rotate x to the right by distance bits. * @param x the value to rotate * @param distance the number of bits by which to rotate * @since 1.5 */ public static int rotateRight(int x, int distance) { // This trick works because the shift operators implicitly mask // the shift count. return (x << - distance) | (x >>> distance); } /** * Find the highest set bit in value, and return a new value * with only that bit set. * @param value the value to examine * @since 1.5 */ public static int highestOneBit(int value) { value |= value >>> 1; value |= value >>> 2; value |= value >>> 4; value |= value >>> 8; value |= value >>> 16; return value ^ (value >>> 1); } /** * Return the number of leading zeros in value. * @param value the value to examine * @since 1.5 */ public static int numberOfLeadingZeros(int value) { value |= value >>> 1; value |= value >>> 2; value |= value >>> 4; value |= value >>> 8; value |= value >>> 16; return bitCount(~value); } /** * Find the lowest set bit in value, and return a new value * with only that bit set. * @param value the value to examine * @since 1.5 */ public static int lowestOneBit(int value) { // Classic assembly trick. return value & - value; } /** * Find the number of trailing zeros in value. * @param value the value to examine * @since 1.5 */ public static int numberOfTrailingZeros(int value) { return bitCount((value & -value) - 1); } /** * Return 1 if x is positive, -1 if it is negative, and 0 if it is * zero. * @param x the value to examine * @since 1.5 */ public static int signum(int x) { return (x >> 31) | (-x >>> 31); // The LHS propagates the sign bit through every bit in the word; // if X < 0, every bit is set to 1, else 0. if X > 0, the RHS // negates x and shifts the resulting 1 in the sign bit to the // LSB, leaving every other bit 0. // Hacker's Delight, Section 2-7 } /** * Reverse the bytes in val. * @since 1.5 */ public static int reverseBytes(int val) { return ( ((val >> 24) & 0xff) | ((val >> 8) & 0xff00) | ((val << 8) & 0xff0000) | ((val << 24) & 0xff000000)); } /** * Reverse the bits in val. * @since 1.5 */ public static int reverse(int val) { // Successively swap alternating bit groups. val = ((val >> 1) & 0x55555555) + ((val << 1) & ~0x55555555); val = ((val >> 2) & 0x33333333) + ((val << 2) & ~0x33333333); val = ((val >> 4) & 0x0f0f0f0f) + ((val << 4) & ~0x0f0f0f0f); val = ((val >> 8) & 0x00ff00ff) + ((val << 8) & ~0x00ff00ff); return ((val >> 16) & 0x0000ffff) + ((val << 16) & ~0x0000ffff); } /** * Helper for converting unsigned numbers to String. * * @param num the number * @param exp log2(digit) (ie. 1, 3, or 4 for binary, oct, hex) */ // Package visible for use by Long. static String toUnsignedString(int num, int exp) { // Compute string length int size = 1; int copy = num >>> exp; while (copy != 0) { size++; copy >>>= exp; } // Quick path for single character strings if (size == 1) return new String(digits, num, 1, true); // Encode into buffer int mask = (1 << exp) - 1; char[] buffer = new char[size]; int i = size; do { buffer[--i] = digits[num & mask]; num >>>= exp; } while (num != 0); // Package constructor avoids an array copy. return new String(buffer, i, size - i, true); } /** * Helper for parsing ints, used by Integer, Short, and Byte. * * @param str the string to parse * @param radix the radix to use, must be 10 if decode is true * @param decode if called from decode * @return the parsed int value * @throws NumberFormatException if there is an error * @throws NullPointerException if decode is true and str if null * @see #parseInt(String, int) * @see #decode(String) * @see Byte#parseByte(String, int) * @see Short#parseShort(String, int) */ static int parseInt(String str, int radix, boolean decode) { if (! decode && str == null) throw new NumberFormatException(); int index = 0; int len = str.length(); boolean isNeg = false; if (len == 0) throw new NumberFormatException("string length is null"); int ch = str.charAt(index); if (ch == '-') { if (len == 1) throw new NumberFormatException("pure '-'"); isNeg = true; ch = str.charAt(++index); } else if (ch == '+') { if (len == 1) throw new NumberFormatException("pure '+'"); ch = str.charAt(++index); } if (decode) { if (ch == '0') { if (++index == len) return 0; if ((str.charAt(index) & ~('x' ^ 'X')) == 'X') { radix = 16; index++; } else radix = 8; } else if (ch == '#') { radix = 16; index++; } } if (index == len) throw new NumberFormatException("non terminated number: " + str); int max = MAX_VALUE / radix; // We can't directly write `max = (MAX_VALUE + 1) / radix'. // So instead we fake it. if (isNeg && MAX_VALUE % radix == radix - 1) ++max; int val = 0; while (index < len) { if (val < 0 || val > max) throw new NumberFormatException("number overflow (pos=" + index + ") : " + str); ch = Character.digit(str.charAt(index++), radix); val = val * radix + ch; if (ch < 0 || (val < 0 && (! isNeg || val != MIN_VALUE))) throw new NumberFormatException("invalid character at position " + index + " in " + str); } return isNeg ? -val : val; } }