/* AbstractList.java -- Abstract implementation of most of List Copyright (C) 1998, 1999, 2000, 2001, 2002, 2004, 2005 Free Software Foundation, Inc. This file is part of GNU Classpath. GNU Classpath is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU Classpath is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Classpath; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. Linking this library statically or dynamically with other modules is making a combined work based on this library. Thus, the terms and conditions of the GNU General Public License cover the whole combination. As a special exception, the copyright holders of this library give you permission to link this library with independent modules to produce an executable, regardless of the license terms of these independent modules, and to copy and distribute the resulting executable under terms of your choice, provided that you also meet, for each linked independent module, the terms and conditions of the license of that module. An independent module is a module which is not derived from or based on this library. If you modify this library, you may extend this exception to your version of the library, but you are not obligated to do so. If you do not wish to do so, delete this exception statement from your version. */ package java.util; /** * A basic implementation of most of the methods in the List interface to make * it easier to create a List based on a random-access data structure. If * the list is sequential (such as a linked list), use AbstractSequentialList. * To create an unmodifiable list, it is only necessary to override the * size() and get(int) methods (this contrasts with all other abstract * collection classes which require an iterator to be provided). To make the * list modifiable, the set(int, Object) method should also be overridden, and * to make the list resizable, the add(int, Object) and remove(int) methods * should be overridden too. Other methods should be overridden if the * backing data structure allows for a more efficient implementation. * The precise implementation used by AbstractList is documented, so that * subclasses can tell which methods could be implemented more efficiently. *
*
* As recommended by Collection and List, the subclass should provide at
* least a no-argument and a Collection constructor. This class is not
* synchronized.
*
* @author Original author unknown
* @author Bryce McKinlay
* @author Eric Blake (ebb9@email.byu.edu)
* @see Collection
* @see List
* @see AbstractSequentialList
* @see AbstractCollection
* @see ListIterator
* @since 1.2
* @status updated to 1.4
*/
public abstract class AbstractList
*
* To make lists fail-fast, increment this field by just 1 in the
*
*
* This implementation returns true if the object is this, or false if the
* object is not a List. Otherwise, it iterates over both lists (with
* iterator()), returning false if two elements compare false or one list
* is shorter, and true if the iteration completes successfully.
*
* @param o the object to test for equality with this list
* @return true if o is equal to this list
* @see Object#equals(Object)
* @see #hashCode()
*/
public boolean equals(Object o)
{
if (o == this)
return true;
if (! (o instanceof List))
return false;
int size = size();
if (size != ((List) o).size())
return false;
Iterator
*
* This implementation uses size(), get(int), set(int, Object),
* add(int, Object), and remove(int) of the backing list, and does not
* support remove, set, or add unless the list does. This implementation
* is fail-fast if you correctly maintain modCount.
*
* @param index the position, between 0 and size() inclusive, to begin the
* iteration from
* @return a ListIterator over the elements of this list, in order, starting
* at index
* @throws IndexOutOfBoundsException if index < 0 || index > size()
* @see #modCount
*/
public ListIterator
*
* This implementation first checks for illegal or out of range arguments. It
* then obtains a ListIterator over the list using listIterator(fromIndex).
* It then calls next() and remove() on this iterator repeatedly, toIndex -
* fromIndex times.
*
* @param fromIndex the index, inclusive, to remove from.
* @param toIndex the index, exclusive, to remove to.
* @throws UnsupportedOperationException if the list does
* not support removing elements.
*/
protected void removeRange(int fromIndex, int toIndex)
{
ListIterator
*
* This implementation returns a subclass of AbstractList. It stores, in
* private fields, the offset and size of the sublist, and the expected
* modCount of the backing list. If the backing list implements RandomAccess,
* the sublist will also.
*
*
* The subclass's
*
* All methods first check to see if the actual modCount of the backing
* list is equal to its expected value, and throw a
* ConcurrentModificationException if it is not.
*
* @param fromIndex the index that the returned list should start from
* (inclusive)
* @param toIndex the index that the returned list should go to (exclusive)
* @return a List backed by a subsection of this list
* @throws IndexOutOfBoundsException if fromIndex < 0
* || toIndex > size()
* @throws IllegalArgumentException if fromIndex > toIndex
* @see ConcurrentModificationException
* @see RandomAccess
*/
public Listadd(int, Object)
and remove(int)
methods.
* Otherwise, this field may be ignored.
*/
protected transient int modCount;
/**
* The main constructor, for use by subclasses.
*/
protected AbstractList()
{
}
/**
* Returns the elements at the specified position in the list.
*
* @param index the element to return
* @return the element at that position
* @throws IndexOutOfBoundsException if index < 0 || index >= size()
*/
public abstract E get(int index);
/**
* Insert an element into the list at a given position (optional operation).
* This shifts all existing elements from that position to the end one
* index to the right. This version of add has no return, since it is
* assumed to always succeed if there is no exception. This implementation
* always throws UnsupportedOperationException, and must be overridden to
* make a modifiable List. If you want fail-fast iterators, be sure to
* increment modCount when overriding this.
*
* @param index the location to insert the item
* @param o the object to insert
* @throws UnsupportedOperationException if this list does not support the
* add operation
* @throws IndexOutOfBoundsException if index < 0 || index > size()
* @throws ClassCastException if o cannot be added to this list due to its
* type
* @throws IllegalArgumentException if o cannot be added to this list for
* some other reason
* @see #modCount
*/
public void add(int index, E o)
{
throw new UnsupportedOperationException();
}
/**
* Add an element to the end of the list (optional operation). If the list
* imposes restraints on what can be inserted, such as no null elements,
* this should be documented. This implementation calls
* add(size(), o);
, and will fail if that version does.
*
* @param o the object to add
* @return true, as defined by Collection for a modified list
* @throws UnsupportedOperationException if this list does not support the
* add operation
* @throws ClassCastException if o cannot be added to this list due to its
* type
* @throws IllegalArgumentException if o cannot be added to this list for
* some other reason
* @see #add(int, Object)
*/
public boolean add(E o)
{
add(size(), o);
return true;
}
/**
* Insert the contents of a collection into the list at a given position
* (optional operation). Shift all elements at that position to the right
* by the number of elements inserted. This operation is undefined if
* this list is modified during the operation (for example, if you try
* to insert a list into itself). This implementation uses the iterator of
* the collection, repeatedly calling add(int, Object); this will fail
* if add does. This can often be made more efficient.
*
* @param index the location to insert the collection
* @param c the collection to insert
* @return true if the list was modified by this action, that is, if c is
* non-empty
* @throws UnsupportedOperationException if this list does not support the
* addAll operation
* @throws IndexOutOfBoundsException if index < 0 || index > size()
* @throws ClassCastException if some element of c cannot be added to this
* list due to its type
* @throws IllegalArgumentException if some element of c cannot be added
* to this list for some other reason
* @throws NullPointerException if the specified collection is null
* @see #add(int, Object)
*/
public boolean addAll(int index, Collection extends E> c)
{
Iterator extends E> itr = c.iterator();
int size = c.size();
for (int pos = size; pos > 0; pos--)
add(index++, itr.next());
return size > 0;
}
/**
* Clear the list, such that a subsequent call to isEmpty() would return
* true (optional operation). This implementation calls
* removeRange(0, size())
, so it will fail unless remove
* or removeRange is overridden.
*
* @throws UnsupportedOperationException if this list does not support the
* clear operation
* @see #remove(int)
* @see #removeRange(int, int)
*/
public void clear()
{
removeRange(0, size());
}
/**
* Test whether this list is equal to another object. A List is defined to be
* equal to an object if and only if that object is also a List, and the two
* lists have the same sequence. Two lists l1 and l2 are equal if and only
* if l1.size() == l2.size()
, and for every integer n between 0
* and l1.size() - 1
inclusive, l1.get(n) == null ?
* l2.get(n) == null : l1.get(n).equals(l2.get(n))
.
* hashCode = 1;
Iterator i = list.iterator();
while (i.hasNext())
{
Object obj = i.next();
hashCode = 31 * hashCode + (obj == null ? 0 : obj.hashCode());
}
*
* This ensures that the general contract of Object.hashCode() is adhered to.
*
* @return the hash code of this list
*
* @see Object#hashCode()
* @see #equals(Object)
*/
public int hashCode()
{
int hashCode = 1;
Iteratoro == null ? get(n) == null :
* o.equals(get(n))
, or -1 if there is no such index
*/
public int indexOf(Object o)
{
ListIteratorreturn listIterator(0)
.
*
* @return an Iterator over the elements of this list, in order
* @see #modCount
*/
public Iteratornext()
* from the list, if the list supports object removal.
*
* @throws ConcurrentModificationException if the list
* has been modified elsewhere.
* @throws IllegalStateException if the iterator is positioned
* before the start of the list or the last object has already
* been removed.
* @throws UnsupportedOperationException if the list does
* not support removing elements.
*/
public void remove()
{
checkMod();
if (last < 0)
throw new IllegalStateException();
AbstractList.this.remove(last);
pos--;
size--;
last = -1;
knownMod = modCount;
}
};
}
/**
* Obtain the last index at which a given object is to be found in this
* list. This implementation grabs listIterator(size()), then searches
* backwards for a match or returns -1.
*
* @return the greatest integer n such that o == null ? get(n) == null
* : o.equals(get(n))
, or -1 if there is no such index
*/
public int lastIndexOf(Object o)
{
int pos = size();
ListIteratornext()
*
* @return The index of the next element.
*/
public int nextIndex()
{
return position;
}
/**
* Returns the index of the previous element in the
* list, which will be retrieved by previous()
*
* @return The index of the previous element.
*/
public int previousIndex()
{
return position - 1;
}
/**
* Removes the last object retrieved by next()
* or previous()
from the list, if the list
* supports object removal.
*
* @throws IllegalStateException if the iterator is positioned
* before the start of the list or the last object has already
* been removed.
* @throws UnsupportedOperationException if the list does
* not support removing elements.
* @throws ConcurrentModificationException if the list
* has been modified elsewhere.
*/
public void remove()
{
checkMod();
if (lastReturned < 0)
throw new IllegalStateException();
AbstractList.this.remove(lastReturned);
size--;
position = lastReturned;
lastReturned = -1;
knownMod = modCount;
}
/**
* Replaces the last object retrieved by next()
* or previous
with o, if the list supports object
* replacement and an add or remove operation has not already
* been performed.
*
* @throws IllegalStateException if the iterator is positioned
* before the start of the list or the last object has already
* been removed.
* @throws UnsupportedOperationException if the list doesn't support
* the addition or removal of elements.
* @throws ClassCastException if the type of o is not a valid type
* for this list.
* @throws IllegalArgumentException if something else related to o
* prevents its addition.
* @throws ConcurrentModificationException if the list
* has been modified elsewhere.
*/
public void set(E o)
{
checkMod();
if (lastReturned < 0)
throw new IllegalStateException();
AbstractList.this.set(lastReturned, o);
}
/**
* Adds the supplied object before the element that would be returned
* by a call to next()
, if the list supports addition.
*
* @param o The object to add to the list.
* @throws UnsupportedOperationException if the list doesn't support
* the addition of new elements.
* @throws ClassCastException if the type of o is not a valid type
* for this list.
* @throws IllegalArgumentException if something else related to o
* prevents its addition.
* @throws ConcurrentModificationException if the list
* has been modified elsewhere.
*/
public void add(E o)
{
checkMod();
AbstractList.this.add(position++, o);
size++;
lastReturned = -1;
knownMod = modCount;
}
};
}
/**
* Remove the element at a given position in this list (optional operation).
* Shifts all remaining elements to the left to fill the gap. This
* implementation always throws an UnsupportedOperationException.
* If you want fail-fast iterators, be sure to increment modCount when
* overriding this.
*
* @param index the position within the list of the object to remove
* @return the object that was removed
* @throws UnsupportedOperationException if this list does not support the
* remove operation
* @throws IndexOutOfBoundsException if index < 0 || index >= size()
* @see #modCount
*/
public E remove(int index)
{
throw new UnsupportedOperationException();
}
/**
* Remove a subsection of the list. This is called by the clear and
* removeRange methods of the class which implements subList, which are
* difficult for subclasses to override directly. Therefore, this method
* should be overridden instead by the more efficient implementation, if one
* exists. Overriding this can reduce quadratic efforts to constant time
* in some cases!
* set(int, Object)
, get(int)
,
* add(int, Object)
, remove(int)
,
* addAll(int, Collection)
and
* removeRange(int, int)
methods all delegate to the
* corresponding methods on the backing abstract list, after
* bounds-checking the index and adjusting for the offset. The
* addAll(Collection c)
method merely returns addAll(size, c).
* The listIterator(int)
method returns a "wrapper object"
* over a list iterator on the backing list, which is created with the
* corresponding method on the backing list. The iterator()
* method merely returns listIterator(), and the size()
method
* merely returns the subclass's size field.
* next()
*
* @return The index of the next element.
*/
public int nextIndex()
{
return i.nextIndex() - offset;
}
/**
* Returns the index of the previous element in the
* list, which will be retrieved by previous()
*
* @return The index of the previous element.
*/
public int previousIndex()
{
return i.previousIndex() - offset;
}
/**
* Removes the last object retrieved by next()
* from the list, if the list supports object removal.
*
* @throws IllegalStateException if the iterator is positioned
* before the start of the list or the last object has already
* been removed.
* @throws UnsupportedOperationException if the list does
* not support removing elements.
*/
public void remove()
{
i.remove();
size--;
position = nextIndex();
modCount = backingList.modCount;
}
/**
* Replaces the last object retrieved by next()
* or previous
with o, if the list supports object
* replacement and an add or remove operation has not already
* been performed.
*
* @throws IllegalStateException if the iterator is positioned
* before the start of the list or the last object has already
* been removed.
* @throws UnsupportedOperationException if the list doesn't support
* the addition or removal of elements.
* @throws ClassCastException if the type of o is not a valid type
* for this list.
* @throws IllegalArgumentException if something else related to o
* prevents its addition.
* @throws ConcurrentModificationException if the list
* has been modified elsewhere.
*/
public void set(E o)
{
i.set(o);
}
/**
* Adds the supplied object before the element that would be returned
* by a call to next()
, if the list supports addition.
*
* @param o The object to add to the list.
* @throws UnsupportedOperationException if the list doesn't support
* the addition of new elements.
* @throws ClassCastException if the type of o is not a valid type
* for this list.
* @throws IllegalArgumentException if something else related to o
* prevents its addition.
* @throws ConcurrentModificationException if the list
* has been modified elsewhere.
*/
public void add(E o)
{
i.add(o);
size++;
position++;
modCount = backingList.modCount;
}
// Here is the reason why the various modCount fields are mostly
// ignored in this wrapper listIterator.
// If the backing listIterator is failfast, then the following holds:
// Using any other method on this list will call a corresponding
// method on the backing list *after* the backing listIterator
// is created, which will in turn cause a ConcurrentModException
// when this listIterator comes to use the backing one. So it is
// implicitly failfast.
// If the backing listIterator is NOT failfast, then the whole of
// this list isn't failfast, because the modCount field of the
// backing list is not valid. It would still be *possible* to
// make the iterator failfast wrt modifications of the sublist
// only, but somewhat pointless when the list can be changed under
// us.
// Either way, no explicit handling of modCount is needed.
// However modCount = backingList.modCount must be executed in add
// and remove, and size must also be updated in these two methods,
// since they do not go through the corresponding methods of the subList.
};
}
} // class SubList
/**
* This class is a RandomAccess version of SubList, as required by
* {@link AbstractList#subList(int, int)}.
*
* @author Eric Blake (ebb9@email.byu.edu)
*/
private static final class RandomAccessSubList