/* SizeRequirements.java -- Copyright (C) 2002, 2005 Free Software Foundation, Inc. This file is part of GNU Classpath. GNU Classpath is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU Classpath is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Classpath; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. Linking this library statically or dynamically with other modules is making a combined work based on this library. Thus, the terms and conditions of the GNU General Public License cover the whole combination. As a special exception, the copyright holders of this library give you permission to link this library with independent modules to produce an executable, regardless of the license terms of these independent modules, and to copy and distribute the resulting executable under terms of your choice, provided that you also meet, for each linked independent module, the terms and conditions of the license of that module. An independent module is a module which is not derived from or based on this library. If you modify this library, you may extend this exception to your version of the library, but you are not obligated to do so. If you do not wish to do so, delete this exception statement from your version. */ package javax.swing; import java.io.Serializable; /** * This class calculates information about the size and position requirements * of components. * * Two types of layout are supported: *
children
.
*
* @param children the SizeRequirements of each of the components
*
* @return the SizeRequirements that describe how much space is needed
* to place the components end-to-end
*/
public static SizeRequirements
getTiledSizeRequirements(SizeRequirements[] children)
{
long minimum = 0;
long preferred = 0;
long maximum = 0;
for (int i = 0; i < children.length; i++)
{
minimum += children[i].minimum;
preferred += children[i].preferred;
maximum += children[i].maximum;
}
// Overflow check.
if (minimum > Integer.MAX_VALUE)
minimum = Integer.MAX_VALUE;
if (preferred > Integer.MAX_VALUE)
preferred = Integer.MAX_VALUE;
if (maximum > Integer.MAX_VALUE)
maximum = Integer.MAX_VALUE;
SizeRequirements result = new SizeRequirements((int) minimum,
(int) preferred,
(int) maximum,
0.5F);
return result;
}
/**
* Calculates how much space is nessecary to place a set of components
* aligned according to their alignment value.
* The size requirements of the components is specified in
* children
.
*
* @param children the SizeRequirements of each of the components
*
* @return the SizeRequirements that describe how much space is needed
* to place the components aligned
*/
public static SizeRequirements
getAlignedSizeRequirements(SizeRequirements[] children)
{
float minLeft = 0;
float minRight = 0;
float prefLeft = 0;
float prefRight = 0;
float maxLeft = 0;
float maxRight = 0;
for (int i = 0; i < children.length; i++)
{
float myMinLeft = children[i].minimum * children[i].alignment;
float myMinRight = children[i].minimum - myMinLeft;
minLeft = Math.max(myMinLeft, minLeft);
minRight = Math.max(myMinRight, minRight);
float myPrefLeft = children[i].preferred * children[i].alignment;
float myPrefRight = children[i].preferred - myPrefLeft;
prefLeft = Math.max(myPrefLeft, prefLeft);
prefRight = Math.max(myPrefRight, prefRight);
float myMaxLeft = children[i].maximum * children[i].alignment;
float myMaxRight = children[i].maximum - myMaxLeft;
maxLeft = Math.max(myMaxLeft, maxLeft);
maxRight = Math.max(myMaxRight, maxRight);
}
int minSize = (int) (minLeft + minRight);
int prefSize = (int) (prefLeft + prefRight);
int maxSize = (int) (maxLeft + maxRight);
float align = prefLeft / (prefRight + prefLeft);
if (Float.isNaN(align))
align = 0;
return new SizeRequirements(minSize, prefSize, maxSize, align);
}
/**
* Calculate the offsets and spans of the components, when they should
* be placed end-to-end.
*
* You must specify the amount of allocated space in
* allocated
, the total size requirements of the set of
* components in total
(this can be calculated using
* {@link #getTiledSizeRequirements} and the size requirements of the
* components in children
.
*
* The calculated offset and span values for each component are then
* stored in the arrays offsets
and spans
.
*
* The components are placed in the forward direction, beginning with
* an offset of 0.
*
* @param allocated the amount of allocated space
* @param total the total size requirements of the components
* @param children the size requirement of each component
* @param offsets will hold the offset values for each component
* @param spans will hold the span values for each component
*/
public static void calculateTiledPositions(int allocated,
SizeRequirements total,
SizeRequirements[] children,
int[] offsets, int[] spans)
{
calculateTiledPositions(allocated, total, children, offsets, spans, true);
}
/**
* Calculate the offsets and spans of the components, when they should
* be placed end-to-end.
*
* You must specify the amount of allocated space in
* allocated
, the total size requirements of the set of
* components in total
(this can be calculated using
* {@link #getTiledSizeRequirements} and the size requirements of the
* components in children
.
*
* The calculated offset and span values for each component are then
* stored in the arrays offsets
and spans
.
*
* Depending on the value of forward
the components are
* placed in the forward direction (left-right or top-bottom), where
* the offsets begin with 0, or in the reverse direction
* (right-left or bottom-top).
*
* @param allocated the amount of allocated space
* @param total the total size requirements of the components
* @param children the size requirement of each component
* @param offsets will hold the offset values for each component
* @param spans will hold the span values for each component
* @param forward whether the components should be placed in the forward
* direction (left-right or top-bottom) or reverse direction
* (right-left or bottom-top)
*/
public static void calculateTiledPositions(int allocated,
SizeRequirements total,
SizeRequirements[] children,
int[] offsets, int[] spans,
boolean forward)
{
int span = 0;
if (forward)
{
int offset = 0;
for (int i = 0; i < children.length; i++)
{
offsets[i] = offset;
spans[i] = children[i].preferred;
span += spans[i];
offset += children[i].preferred;
}
}
else
{
int offset = allocated;
for (int i = 0; i < children.length; i++)
{
offset -= children[i].preferred;
offsets[i] = offset;
span += spans[i];
spans[i] = children[i].preferred;
}
}
// Adjust spans so that we exactly fill the allocated region. If
if (span > allocated)
adjustSmaller(allocated, children, spans, span);
else if (span < allocated)
adjustGreater(allocated, children, spans, span);
// Adjust offsets.
if (forward)
{
int offset = 0;
for (int i = 0; i < children.length; i++)
{
offsets[i] = offset;
offset += spans[i];
}
}
else
{
int offset = allocated;
for (int i = 0; i < children.length; i++)
{
offset -= spans[i];
offsets[i] = offset;
}
}
}
private static void adjustSmaller(int allocated, SizeRequirements[] children,
int[] spans, int span)
{
// Sum up (prefSize - minSize) over all children
int sumDelta = 0;
for (int i = 0; i < children.length; i++)
sumDelta += children[i].preferred - children[i].minimum;
// If we have sumDelta == 0, then all components have prefSize == maxSize
// and we can't do anything about it.
if (sumDelta == 0)
return;
// Adjust all sizes according to their preferred and minimum sizes.
for (int i = 0; i < children.length; i++)
{
double factor = ((double) (children[i].preferred - children[i].minimum))
/ ((double) sumDelta);
// In case we have a sumDelta of 0, the factor should also be 0.
if (Double.isNaN(factor))
factor = 0;
spans[i] -= factor * (span - allocated);
}
}
private static void adjustGreater(int allocated, SizeRequirements[] children,
int[] spans, int span)
{
// Sum up (maxSize - prefSize) over all children
long sumDelta = 0;
for (int i = 0; i < children.length; i++)
{
sumDelta += children[i].maximum - children[i].preferred;
}
// If we have sumDelta == 0, then all components have prefSize == maxSize
// and we can't do anything about it.
if (sumDelta == 0)
return;
// Adjust all sizes according to their preferred and minimum sizes.
for (int i = 0; i < children.length; i++)
{
double factor = ((double) (children[i].maximum - children[i].preferred))
/ ((double) sumDelta);
spans[i] += factor * (allocated - span);
}
}
/**
* Calculate the offsets and spans of the components, when they should
* be placed end-to-end.
*
* You must specify the amount of allocated space in
* allocated
, the total size requirements of the set of
* components in total
(this can be calculated using
* {@link #getTiledSizeRequirements} and the size requirements of the
* components in children
.
*
* The calculated offset and span values for each component are then
* stored in the arrays offsets
and spans
.
*
* The components are tiled in the forward direction, beginning with
* an offset of 0.
*
* @param allocated the amount of allocated space
* @param total the total size requirements of the components
* @param children the size requirement of each component
* @param offsets will hold the offset values for each component
* @param spans will hold the span values for each component
*/
public static void calculateAlignedPositions(int allocated,
SizeRequirements total,
SizeRequirements[] children,
int[] offsets, int[] spans)
{
calculateAlignedPositions(allocated, total, children, offsets, spans,
true);
}
/**
* Calculate the offsets and spans of the components, when they should
* be placed end-to-end.
*
* You must specify the amount of allocated space in
* allocated
, the total size requirements of the set of
* components in total
(this can be calculated using
* {@link #getTiledSizeRequirements} and the size requirements of the
* components in children
.
*
* The calculated offset and span values for each component are then
* stored in the arrays offsets
and spans
.
*
* Depending on the value of forward
the components are
* placed in the forward direction (left-right or top-bottom), where
* the offsets begin with 0, or in the reverse direction
* (right-left or bottom-top).
*
* @param allocated the amount of allocated space
* @param total the total size requirements of the components
* @param children the size requirement of each component
* @param spans will hold the span values for each component
* @param forward whether the components should be placed in the forward
* direction (left-right or top-bottom) or reverse direction
* (right-left or bottom-top)
*/
public static void calculateAlignedPositions(int allocated,
SizeRequirements total,
SizeRequirements[] children,
int[] offset, int[] spans,
boolean forward)
{
// First we compute the position of the baseline.
float baseline = allocated * total.alignment;
// Now we can layout the components along the baseline.
for (int i = 0; i < children.length; i++)
{
float align = children[i].alignment;
// Try to fit the component into the available space.
int[] spanAndOffset = new int[2];
if (align < .5F || baseline == 0)
adjustFromRight(children[i], baseline, allocated, spanAndOffset);
else
adjustFromLeft(children[i], baseline, allocated, spanAndOffset);
spans[i] = spanAndOffset[0];
offset[i] = spanAndOffset[1];
}
}
/**
* Adjusts the span and offset of a component for the aligned layout.
*
* @param reqs
* @param baseline
* @param allocated
* @param spanAndOffset
*/
private static void adjustFromRight(SizeRequirements reqs, float baseline,
int allocated, int[] spanAndOffset)
{
float right = allocated - baseline;
// If the resulting span exceeds the maximum of the component, then adjust
// accordingly.
float maxRight = ((float) reqs.maximum) * (1.F - reqs.alignment);
if (right / (1.F - reqs.alignment) > reqs.maximum)
right = maxRight;
// If we have not enough space on the left side, then adjust accordingly.
if (right / (1.F - reqs.alignment) * reqs.alignment > allocated - baseline)
right = ((float) (allocated - baseline))
/ reqs.alignment * (1.F - reqs.alignment);
spanAndOffset[0] = (int) (right / (1.F - reqs.alignment));
spanAndOffset[1] = (int) (baseline - spanAndOffset[0] * reqs.alignment);
}
/**
* Adjusts the span and offset of a component for the aligned layout.
*
* @param reqs
* @param baseline
* @param allocated
* @param spanAndOffset
*/
private static void adjustFromLeft(SizeRequirements reqs, float baseline,
int allocated, int[] spanAndOffset)
{
float left = baseline;
// If the resulting span exceeds the maximum of the component, then adjust
// accordingly.
float maxLeft = ((float) reqs.maximum) * reqs.alignment;
if (left / reqs.alignment > reqs.maximum)
left = maxLeft;
// If we have not enough space on the right side, then adjust accordingly.
if (left / reqs.alignment * (1.F - reqs.alignment) > allocated - baseline)
left = ((float) (allocated - baseline))
/ (1.F - reqs.alignment) * reqs.alignment;
spanAndOffset[0] = (int) (left / reqs.alignment);
spanAndOffset[1] = (int) (baseline - spanAndOffset[0] * reqs.alignment);
}
/**
* Returns an array of new preferred sizes for the children based on
* delta
. delta
specifies a change in the
* allocated space. The sizes of the children will be shortened or
* lengthened to accomodate the new allocation.
*
* @param delta the change of the size of the total allocation for
* the components
* @param children the size requirements of each component
*
* @return the new preferred sizes for each component
*/
public static int[] adjustSizes(int delta, SizeRequirements[] children)
{
return null; // TODO
}
}