// -*- C++ -*- header. // Copyright (C) 2008, 2009, 2010, 2011 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file bits/atomic_0.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{atomic} */ #ifndef _GLIBCXX_ATOMIC_0_H #define _GLIBCXX_ATOMIC_0_H 1 #pragma GCC system_header namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION // 0 == __atomic0 == Never lock-free namespace __atomic0 { _GLIBCXX_BEGIN_EXTERN_C void atomic_flag_clear_explicit(__atomic_flag_base*, memory_order) _GLIBCXX_NOTHROW; void __atomic_flag_wait_explicit(__atomic_flag_base*, memory_order) _GLIBCXX_NOTHROW; _GLIBCXX_CONST __atomic_flag_base* __atomic_flag_for_address(const volatile void* __z) _GLIBCXX_NOTHROW; _GLIBCXX_END_EXTERN_C // Implementation specific defines. #define _ATOMIC_MEMBER_ _M_i // Implementation specific defines. #define _ATOMIC_LOAD_(__a, __x) \ ({typedef __typeof__(_ATOMIC_MEMBER_) __i_type; \ __i_type* __p = &_ATOMIC_MEMBER_; \ __atomic_flag_base* __g = __atomic_flag_for_address(__p); \ __atomic_flag_wait_explicit(__g, __x); \ __i_type __r = *__p; \ atomic_flag_clear_explicit(__g, __x); \ __r; }) #define _ATOMIC_STORE_(__a, __n, __x) \ ({typedef __typeof__(_ATOMIC_MEMBER_) __i_type; \ __i_type* __p = &_ATOMIC_MEMBER_; \ __typeof__(__n) __w = (__n); \ __atomic_flag_base* __g = __atomic_flag_for_address(__p); \ __atomic_flag_wait_explicit(__g, __x); \ *__p = __w; \ atomic_flag_clear_explicit(__g, __x); \ __w; }) #define _ATOMIC_MODIFY_(__a, __o, __n, __x) \ ({typedef __typeof__(_ATOMIC_MEMBER_) __i_type; \ __i_type* __p = &_ATOMIC_MEMBER_; \ __typeof__(__n) __w = (__n); \ __atomic_flag_base* __g = __atomic_flag_for_address(__p); \ __atomic_flag_wait_explicit(__g, __x); \ __i_type __r = *__p; \ *__p __o __w; \ atomic_flag_clear_explicit(__g, __x); \ __r; }) #define _ATOMIC_CMPEXCHNG_(__a, __e, __n, __x) \ ({typedef __typeof__(_ATOMIC_MEMBER_) __i_type; \ __i_type* __p = &_ATOMIC_MEMBER_; \ __typeof__(__e) __q = (__e); \ __typeof__(__n) __w = (__n); \ bool __r; \ __atomic_flag_base* __g = __atomic_flag_for_address(__p); \ __atomic_flag_wait_explicit(__g, __x); \ __i_type __t = *__p; \ if (*__q == __t) \ { \ *__p = (__i_type)__w; \ __r = true; \ } \ else { *__q = __t; __r = false; } \ atomic_flag_clear_explicit(__g, __x); \ __r; }) /// atomic_flag struct atomic_flag : public __atomic_flag_base { atomic_flag() = default; ~atomic_flag() = default; atomic_flag(const atomic_flag&) = delete; atomic_flag& operator=(const atomic_flag&) = delete; atomic_flag& operator=(const atomic_flag&) volatile = delete; // Conversion to ATOMIC_FLAG_INIT. atomic_flag(bool __i): __atomic_flag_base({ __i }) { } bool test_and_set(memory_order __m = memory_order_seq_cst); bool test_and_set(memory_order __m = memory_order_seq_cst) volatile; void clear(memory_order __m = memory_order_seq_cst); void clear(memory_order __m = memory_order_seq_cst) volatile; }; /// Base class for atomic integrals. // // For each of the integral types, define atomic_[integral type] struct // // atomic_bool bool // atomic_char char // atomic_schar signed char // atomic_uchar unsigned char // atomic_short short // atomic_ushort unsigned short // atomic_int int // atomic_uint unsigned int // atomic_long long // atomic_ulong unsigned long // atomic_llong long long // atomic_ullong unsigned long long // atomic_char16_t char16_t // atomic_char32_t char32_t // atomic_wchar_t wchar_t // Base type. // NB: Assuming _ITp is an integral scalar type that is 1, 2, 4, or 8 bytes, // since that is what GCC built-in functions for atomic memory access work on. template struct __atomic_base { private: typedef _ITp __int_type; __int_type _M_i; public: __atomic_base() = default; ~__atomic_base() = default; __atomic_base(const __atomic_base&) = delete; __atomic_base& operator=(const __atomic_base&) = delete; __atomic_base& operator=(const __atomic_base&) volatile = delete; // Requires __int_type convertible to _M_base._M_i. constexpr __atomic_base(__int_type __i): _M_i (__i) { } operator __int_type() const { return load(); } operator __int_type() const volatile { return load(); } __int_type operator=(__int_type __i) { store(__i); return __i; } __int_type operator=(__int_type __i) volatile { store(__i); return __i; } __int_type operator++(int) { return fetch_add(1); } __int_type operator++(int) volatile { return fetch_add(1); } __int_type operator--(int) { return fetch_sub(1); } __int_type operator--(int) volatile { return fetch_sub(1); } __int_type operator++() { return fetch_add(1) + 1; } __int_type operator++() volatile { return fetch_add(1) + 1; } __int_type operator--() { return fetch_sub(1) - 1; } __int_type operator--() volatile { return fetch_sub(1) - 1; } __int_type operator+=(__int_type __i) { return fetch_add(__i) + __i; } __int_type operator+=(__int_type __i) volatile { return fetch_add(__i) + __i; } __int_type operator-=(__int_type __i) { return fetch_sub(__i) - __i; } __int_type operator-=(__int_type __i) volatile { return fetch_sub(__i) - __i; } __int_type operator&=(__int_type __i) { return fetch_and(__i) & __i; } __int_type operator&=(__int_type __i) volatile { return fetch_and(__i) & __i; } __int_type operator|=(__int_type __i) { return fetch_or(__i) | __i; } __int_type operator|=(__int_type __i) volatile { return fetch_or(__i) | __i; } __int_type operator^=(__int_type __i) { return fetch_xor(__i) ^ __i; } __int_type operator^=(__int_type __i) volatile { return fetch_xor(__i) ^ __i; } bool is_lock_free() const { return false; } bool is_lock_free() const volatile { return false; } void store(__int_type __i, memory_order __m = memory_order_seq_cst) { __glibcxx_assert(__m != memory_order_acquire); __glibcxx_assert(__m != memory_order_acq_rel); __glibcxx_assert(__m != memory_order_consume); _ATOMIC_STORE_(this, __i, __m); } void store(__int_type __i, memory_order __m = memory_order_seq_cst) volatile { __glibcxx_assert(__m != memory_order_acquire); __glibcxx_assert(__m != memory_order_acq_rel); __glibcxx_assert(__m != memory_order_consume); _ATOMIC_STORE_(this, __i, __m); } __int_type load(memory_order __m = memory_order_seq_cst) const { __glibcxx_assert(__m != memory_order_release); __glibcxx_assert(__m != memory_order_acq_rel); return _ATOMIC_LOAD_(this, __m); } __int_type load(memory_order __m = memory_order_seq_cst) const volatile { __glibcxx_assert(__m != memory_order_release); __glibcxx_assert(__m != memory_order_acq_rel); return _ATOMIC_LOAD_(this, __m); } __int_type exchange(__int_type __i, memory_order __m = memory_order_seq_cst) { return _ATOMIC_MODIFY_(this, =, __i, __m); } __int_type exchange(__int_type __i, memory_order __m = memory_order_seq_cst) volatile { return _ATOMIC_MODIFY_(this, =, __i, __m); } bool compare_exchange_weak(__int_type& __i1, __int_type __i2, memory_order __m1, memory_order __m2) { __glibcxx_assert(__m2 != memory_order_release); __glibcxx_assert(__m2 != memory_order_acq_rel); __glibcxx_assert(__m2 <= __m1); return _ATOMIC_CMPEXCHNG_(this, &__i1, __i2, __m1); } bool compare_exchange_weak(__int_type& __i1, __int_type __i2, memory_order __m1, memory_order __m2) volatile { __glibcxx_assert(__m2 != memory_order_release); __glibcxx_assert(__m2 != memory_order_acq_rel); __glibcxx_assert(__m2 <= __m1); return _ATOMIC_CMPEXCHNG_(this, &__i1, __i2, __m1); } bool compare_exchange_weak(__int_type& __i1, __int_type __i2, memory_order __m = memory_order_seq_cst) { return compare_exchange_weak(__i1, __i2, __m, __calculate_memory_order(__m)); } bool compare_exchange_weak(__int_type& __i1, __int_type __i2, memory_order __m = memory_order_seq_cst) volatile { return compare_exchange_weak(__i1, __i2, __m, __calculate_memory_order(__m)); } bool compare_exchange_strong(__int_type& __i1, __int_type __i2, memory_order __m1, memory_order __m2) { __glibcxx_assert(__m2 != memory_order_release); __glibcxx_assert(__m2 != memory_order_acq_rel); __glibcxx_assert(__m2 <= __m1); return _ATOMIC_CMPEXCHNG_(this, &__i1, __i2, __m1); } bool compare_exchange_strong(__int_type& __i1, __int_type __i2, memory_order __m1, memory_order __m2) volatile { __glibcxx_assert(__m2 != memory_order_release); __glibcxx_assert(__m2 != memory_order_acq_rel); __glibcxx_assert(__m2 <= __m1); return _ATOMIC_CMPEXCHNG_(this, &__i1, __i2, __m1); } bool compare_exchange_strong(__int_type& __i1, __int_type __i2, memory_order __m = memory_order_seq_cst) { return compare_exchange_strong(__i1, __i2, __m, __calculate_memory_order(__m)); } bool compare_exchange_strong(__int_type& __i1, __int_type __i2, memory_order __m = memory_order_seq_cst) volatile { return compare_exchange_strong(__i1, __i2, __m, __calculate_memory_order(__m)); } __int_type fetch_add(__int_type __i, memory_order __m = memory_order_seq_cst) { return _ATOMIC_MODIFY_(this, +=, __i, __m); } __int_type fetch_add(__int_type __i, memory_order __m = memory_order_seq_cst) volatile { return _ATOMIC_MODIFY_(this, +=, __i, __m); } __int_type fetch_sub(__int_type __i, memory_order __m = memory_order_seq_cst) { return _ATOMIC_MODIFY_(this, -=, __i, __m); } __int_type fetch_sub(__int_type __i, memory_order __m = memory_order_seq_cst) volatile { return _ATOMIC_MODIFY_(this, -=, __i, __m); } __int_type fetch_and(__int_type __i, memory_order __m = memory_order_seq_cst) { return _ATOMIC_MODIFY_(this, &=, __i, __m); } __int_type fetch_and(__int_type __i, memory_order __m = memory_order_seq_cst) volatile { return _ATOMIC_MODIFY_(this, &=, __i, __m); } __int_type fetch_or(__int_type __i, memory_order __m = memory_order_seq_cst) { return _ATOMIC_MODIFY_(this, |=, __i, __m); } __int_type fetch_or(__int_type __i, memory_order __m = memory_order_seq_cst) volatile { return _ATOMIC_MODIFY_(this, |=, __i, __m); } __int_type fetch_xor(__int_type __i, memory_order __m = memory_order_seq_cst) { return _ATOMIC_MODIFY_(this, ^=, __i, __m); } __int_type fetch_xor(__int_type __i, memory_order __m = memory_order_seq_cst) volatile { return _ATOMIC_MODIFY_(this, ^=, __i, __m); } }; /// Partial specialization for pointer types. template struct __atomic_base<_PTp*> { private: typedef _PTp* __return_pointer_type; typedef void* __pointer_type; __pointer_type _M_i; public: __atomic_base() = default; ~__atomic_base() = default; __atomic_base(const __atomic_base&) = delete; __atomic_base& operator=(const __atomic_base&) = delete; __atomic_base& operator=(const __atomic_base&) volatile = delete; // Requires __pointer_type convertible to _M_i. constexpr __atomic_base(__return_pointer_type __p): _M_i (__p) { } operator __return_pointer_type() const { return reinterpret_cast<__return_pointer_type>(load()); } operator __return_pointer_type() const volatile { return reinterpret_cast<__return_pointer_type>(load()); } __return_pointer_type operator=(__pointer_type __p) { store(__p); return reinterpret_cast<__return_pointer_type>(__p); } __return_pointer_type operator=(__pointer_type __p) volatile { store(__p); return reinterpret_cast<__return_pointer_type>(__p); } __return_pointer_type operator++(int) { return reinterpret_cast<__return_pointer_type>(fetch_add(1)); } __return_pointer_type operator++(int) volatile { return reinterpret_cast<__return_pointer_type>(fetch_add(1)); } __return_pointer_type operator--(int) { return reinterpret_cast<__return_pointer_type>(fetch_sub(1)); } __return_pointer_type operator--(int) volatile { return reinterpret_cast<__return_pointer_type>(fetch_sub(1)); } __return_pointer_type operator++() { return reinterpret_cast<__return_pointer_type>(fetch_add(1) + 1); } __return_pointer_type operator++() volatile { return reinterpret_cast<__return_pointer_type>(fetch_add(1) + 1); } __return_pointer_type operator--() { return reinterpret_cast<__return_pointer_type>(fetch_sub(1) - 1); } __return_pointer_type operator--() volatile { return reinterpret_cast<__return_pointer_type>(fetch_sub(1) - 1); } __return_pointer_type operator+=(ptrdiff_t __d) { return reinterpret_cast<__return_pointer_type>(fetch_add(__d) + __d); } __return_pointer_type operator+=(ptrdiff_t __d) volatile { return reinterpret_cast<__return_pointer_type>(fetch_add(__d) + __d); } __return_pointer_type operator-=(ptrdiff_t __d) { return reinterpret_cast<__return_pointer_type>(fetch_sub(__d) - __d); } __return_pointer_type operator-=(ptrdiff_t __d) volatile { return reinterpret_cast<__return_pointer_type>(fetch_sub(__d) - __d); } bool is_lock_free() const { return true; } bool is_lock_free() const volatile { return true; } void store(__pointer_type __p, memory_order __m = memory_order_seq_cst) { __glibcxx_assert(__m != memory_order_acquire); __glibcxx_assert(__m != memory_order_acq_rel); __glibcxx_assert(__m != memory_order_consume); _ATOMIC_STORE_(this, __p, __m); } void store(__pointer_type __p, memory_order __m = memory_order_seq_cst) volatile { __glibcxx_assert(__m != memory_order_acquire); __glibcxx_assert(__m != memory_order_acq_rel); __glibcxx_assert(__m != memory_order_consume); volatile __pointer_type* __p2 = &_M_i; __typeof__(__p) __w = (__p); __atomic_flag_base* __g = __atomic_flag_for_address(__p2); __atomic_flag_wait_explicit(__g, __m); *__p2 = reinterpret_cast<__pointer_type>(__w); atomic_flag_clear_explicit(__g, __m); __w; } __return_pointer_type load(memory_order __m = memory_order_seq_cst) const { __glibcxx_assert(__m != memory_order_release); __glibcxx_assert(__m != memory_order_acq_rel); void* __v = _ATOMIC_LOAD_(this, __m); return reinterpret_cast<__return_pointer_type>(__v); } __return_pointer_type load(memory_order __m = memory_order_seq_cst) const volatile { __glibcxx_assert(__m != memory_order_release); __glibcxx_assert(__m != memory_order_acq_rel); void* __v = _ATOMIC_LOAD_(this, __m); return reinterpret_cast<__return_pointer_type>(__v); } __return_pointer_type exchange(__pointer_type __p, memory_order __m = memory_order_seq_cst) { void* __v = _ATOMIC_MODIFY_(this, =, __p, __m); return reinterpret_cast<__return_pointer_type>(__v); } __return_pointer_type exchange(__pointer_type __p, memory_order __m = memory_order_seq_cst) volatile { volatile __pointer_type* __p2 = &_M_i; __typeof__(__p) __w = (__p); __atomic_flag_base* __g = __atomic_flag_for_address(__p2); __atomic_flag_wait_explicit(__g, __m); __pointer_type __r = *__p2; *__p2 = __w; atomic_flag_clear_explicit(__g, __m); __r; return reinterpret_cast<__return_pointer_type>(_M_i); } bool compare_exchange_strong(__return_pointer_type& __rp1, __pointer_type __p2, memory_order __m1, memory_order __m2) { __glibcxx_assert(__m2 != memory_order_release); __glibcxx_assert(__m2 != memory_order_acq_rel); __glibcxx_assert(__m2 <= __m1); __pointer_type& __p1 = reinterpret_cast(__rp1); return _ATOMIC_CMPEXCHNG_(this, &__p1, __p2, __m1); } bool compare_exchange_strong(__return_pointer_type& __rp1, __pointer_type __p2, memory_order __m1, memory_order __m2) volatile { __glibcxx_assert(__m2 != memory_order_release); __glibcxx_assert(__m2 != memory_order_acq_rel); __glibcxx_assert(__m2 <= __m1); __pointer_type& __p1 = reinterpret_cast(__rp1); return _ATOMIC_CMPEXCHNG_(this, &__p1, __p2, __m1); } __return_pointer_type fetch_add(ptrdiff_t __d, memory_order __m = memory_order_seq_cst) { void* __v = _ATOMIC_MODIFY_(this, +=, __d, __m); return reinterpret_cast<__return_pointer_type>(__v); } __return_pointer_type fetch_add(ptrdiff_t __d, memory_order __m = memory_order_seq_cst) volatile { void* __v = _ATOMIC_MODIFY_(this, +=, __d, __m); return reinterpret_cast<__return_pointer_type>(__v); } __return_pointer_type fetch_sub(ptrdiff_t __d, memory_order __m = memory_order_seq_cst) { void* __v = _ATOMIC_MODIFY_(this, -=, __d, __m); return reinterpret_cast<__return_pointer_type>(__v); } __return_pointer_type fetch_sub(ptrdiff_t __d, memory_order __m = memory_order_seq_cst) volatile { void* __v = _ATOMIC_MODIFY_(this, -=, __d, __m); return reinterpret_cast<__return_pointer_type>(__v); } }; #undef _ATOMIC_LOAD_ #undef _ATOMIC_STORE_ #undef _ATOMIC_MODIFY_ #undef _ATOMIC_CMPEXCHNG_ } // namespace __atomic0 _GLIBCXX_END_NAMESPACE_VERSION } // namespace std #endif