// -*- C++ -*- header. // Copyright (C) 2008, 2009, 2010, 2011 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file bits/atomic_2.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{atomic} */ #ifndef _GLIBCXX_ATOMIC_2_H #define _GLIBCXX_ATOMIC_2_H 1 #pragma GCC system_header namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION // 2 == __atomic2 == Always lock-free // Assumed: // _GLIBCXX_ATOMIC_BUILTINS_1 // _GLIBCXX_ATOMIC_BUILTINS_2 // _GLIBCXX_ATOMIC_BUILTINS_4 // _GLIBCXX_ATOMIC_BUILTINS_8 namespace __atomic2 { /// atomic_flag struct atomic_flag : public __atomic_flag_base { atomic_flag() = default; ~atomic_flag() = default; atomic_flag(const atomic_flag&) = delete; atomic_flag& operator=(const atomic_flag&) = delete; atomic_flag& operator=(const atomic_flag&) volatile = delete; // Conversion to ATOMIC_FLAG_INIT. atomic_flag(bool __i): __atomic_flag_base({ __i }) { } bool test_and_set(memory_order __m = memory_order_seq_cst) { // Redundant synchronize if built-in for lock is a full barrier. if (__m != memory_order_acquire && __m != memory_order_acq_rel) __sync_synchronize(); return __sync_lock_test_and_set(&_M_i, 1); } bool test_and_set(memory_order __m = memory_order_seq_cst) volatile { // Redundant synchronize if built-in for lock is a full barrier. if (__m != memory_order_acquire && __m != memory_order_acq_rel) __sync_synchronize(); return __sync_lock_test_and_set(&_M_i, 1); } void clear(memory_order __m = memory_order_seq_cst) { __glibcxx_assert(__m != memory_order_consume); __glibcxx_assert(__m != memory_order_acquire); __glibcxx_assert(__m != memory_order_acq_rel); __sync_lock_release(&_M_i); if (__m != memory_order_acquire && __m != memory_order_acq_rel) __sync_synchronize(); } void clear(memory_order __m = memory_order_seq_cst) volatile { __glibcxx_assert(__m != memory_order_consume); __glibcxx_assert(__m != memory_order_acquire); __glibcxx_assert(__m != memory_order_acq_rel); __sync_lock_release(&_M_i); if (__m != memory_order_acquire && __m != memory_order_acq_rel) __sync_synchronize(); } }; /// Base class for atomic integrals. // // For each of the integral types, define atomic_[integral type] struct // // atomic_bool bool // atomic_char char // atomic_schar signed char // atomic_uchar unsigned char // atomic_short short // atomic_ushort unsigned short // atomic_int int // atomic_uint unsigned int // atomic_long long // atomic_ulong unsigned long // atomic_llong long long // atomic_ullong unsigned long long // atomic_char16_t char16_t // atomic_char32_t char32_t // atomic_wchar_t wchar_t // // NB: Assuming _ITp is an integral scalar type that is 1, 2, 4, or // 8 bytes, since that is what GCC built-in functions for atomic // memory access expect. template struct __atomic_base { private: typedef _ITp __int_type; __int_type _M_i; public: __atomic_base() = default; ~__atomic_base() = default; __atomic_base(const __atomic_base&) = delete; __atomic_base& operator=(const __atomic_base&) = delete; __atomic_base& operator=(const __atomic_base&) volatile = delete; // Requires __int_type convertible to _M_i. constexpr __atomic_base(__int_type __i): _M_i (__i) { } operator __int_type() const { return load(); } operator __int_type() const volatile { return load(); } __int_type operator=(__int_type __i) { store(__i); return __i; } __int_type operator=(__int_type __i) volatile { store(__i); return __i; } __int_type operator++(int) { return fetch_add(1); } __int_type operator++(int) volatile { return fetch_add(1); } __int_type operator--(int) { return fetch_sub(1); } __int_type operator--(int) volatile { return fetch_sub(1); } __int_type operator++() { return __sync_add_and_fetch(&_M_i, 1); } __int_type operator++() volatile { return __sync_add_and_fetch(&_M_i, 1); } __int_type operator--() { return __sync_sub_and_fetch(&_M_i, 1); } __int_type operator--() volatile { return __sync_sub_and_fetch(&_M_i, 1); } __int_type operator+=(__int_type __i) { return __sync_add_and_fetch(&_M_i, __i); } __int_type operator+=(__int_type __i) volatile { return __sync_add_and_fetch(&_M_i, __i); } __int_type operator-=(__int_type __i) { return __sync_sub_and_fetch(&_M_i, __i); } __int_type operator-=(__int_type __i) volatile { return __sync_sub_and_fetch(&_M_i, __i); } __int_type operator&=(__int_type __i) { return __sync_and_and_fetch(&_M_i, __i); } __int_type operator&=(__int_type __i) volatile { return __sync_and_and_fetch(&_M_i, __i); } __int_type operator|=(__int_type __i) { return __sync_or_and_fetch(&_M_i, __i); } __int_type operator|=(__int_type __i) volatile { return __sync_or_and_fetch(&_M_i, __i); } __int_type operator^=(__int_type __i) { return __sync_xor_and_fetch(&_M_i, __i); } __int_type operator^=(__int_type __i) volatile { return __sync_xor_and_fetch(&_M_i, __i); } bool is_lock_free() const { return true; } bool is_lock_free() const volatile { return true; } void store(__int_type __i, memory_order __m = memory_order_seq_cst) { __glibcxx_assert(__m != memory_order_acquire); __glibcxx_assert(__m != memory_order_acq_rel); __glibcxx_assert(__m != memory_order_consume); if (__m == memory_order_relaxed) _M_i = __i; else { // write_mem_barrier(); _M_i = __i; if (__m == memory_order_seq_cst) __sync_synchronize(); } } void store(__int_type __i, memory_order __m = memory_order_seq_cst) volatile { __glibcxx_assert(__m != memory_order_acquire); __glibcxx_assert(__m != memory_order_acq_rel); __glibcxx_assert(__m != memory_order_consume); if (__m == memory_order_relaxed) _M_i = __i; else { // write_mem_barrier(); _M_i = __i; if (__m == memory_order_seq_cst) __sync_synchronize(); } } __int_type load(memory_order __m = memory_order_seq_cst) const { __glibcxx_assert(__m != memory_order_release); __glibcxx_assert(__m != memory_order_acq_rel); __sync_synchronize(); __int_type __ret = _M_i; __sync_synchronize(); return __ret; } __int_type load(memory_order __m = memory_order_seq_cst) const volatile { __glibcxx_assert(__m != memory_order_release); __glibcxx_assert(__m != memory_order_acq_rel); __sync_synchronize(); __int_type __ret = _M_i; __sync_synchronize(); return __ret; } __int_type exchange(__int_type __i, memory_order __m = memory_order_seq_cst) { // XXX built-in assumes memory_order_acquire. return __sync_lock_test_and_set(&_M_i, __i); } __int_type exchange(__int_type __i, memory_order __m = memory_order_seq_cst) volatile { // XXX built-in assumes memory_order_acquire. return __sync_lock_test_and_set(&_M_i, __i); } bool compare_exchange_weak(__int_type& __i1, __int_type __i2, memory_order __m1, memory_order __m2) { return compare_exchange_strong(__i1, __i2, __m1, __m2); } bool compare_exchange_weak(__int_type& __i1, __int_type __i2, memory_order __m1, memory_order __m2) volatile { return compare_exchange_strong(__i1, __i2, __m1, __m2); } bool compare_exchange_weak(__int_type& __i1, __int_type __i2, memory_order __m = memory_order_seq_cst) { return compare_exchange_weak(__i1, __i2, __m, __calculate_memory_order(__m)); } bool compare_exchange_weak(__int_type& __i1, __int_type __i2, memory_order __m = memory_order_seq_cst) volatile { return compare_exchange_weak(__i1, __i2, __m, __calculate_memory_order(__m)); } bool compare_exchange_strong(__int_type& __i1, __int_type __i2, memory_order __m1, memory_order __m2) { __glibcxx_assert(__m2 != memory_order_release); __glibcxx_assert(__m2 != memory_order_acq_rel); __glibcxx_assert(__m2 <= __m1); __int_type __i1o = __i1; __int_type __i1n = __sync_val_compare_and_swap(&_M_i, __i1o, __i2); // Assume extra stores (of same value) allowed in true case. __i1 = __i1n; return __i1o == __i1n; } bool compare_exchange_strong(__int_type& __i1, __int_type __i2, memory_order __m1, memory_order __m2) volatile { __glibcxx_assert(__m2 != memory_order_release); __glibcxx_assert(__m2 != memory_order_acq_rel); __glibcxx_assert(__m2 <= __m1); __int_type __i1o = __i1; __int_type __i1n = __sync_val_compare_and_swap(&_M_i, __i1o, __i2); // Assume extra stores (of same value) allowed in true case. __i1 = __i1n; return __i1o == __i1n; } bool compare_exchange_strong(__int_type& __i1, __int_type __i2, memory_order __m = memory_order_seq_cst) { return compare_exchange_strong(__i1, __i2, __m, __calculate_memory_order(__m)); } bool compare_exchange_strong(__int_type& __i1, __int_type __i2, memory_order __m = memory_order_seq_cst) volatile { return compare_exchange_strong(__i1, __i2, __m, __calculate_memory_order(__m)); } __int_type fetch_add(__int_type __i, memory_order __m = memory_order_seq_cst) { return __sync_fetch_and_add(&_M_i, __i); } __int_type fetch_add(__int_type __i, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_add(&_M_i, __i); } __int_type fetch_sub(__int_type __i, memory_order __m = memory_order_seq_cst) { return __sync_fetch_and_sub(&_M_i, __i); } __int_type fetch_sub(__int_type __i, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_sub(&_M_i, __i); } __int_type fetch_and(__int_type __i, memory_order __m = memory_order_seq_cst) { return __sync_fetch_and_and(&_M_i, __i); } __int_type fetch_and(__int_type __i, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_and(&_M_i, __i); } __int_type fetch_or(__int_type __i, memory_order __m = memory_order_seq_cst) { return __sync_fetch_and_or(&_M_i, __i); } __int_type fetch_or(__int_type __i, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_or(&_M_i, __i); } __int_type fetch_xor(__int_type __i, memory_order __m = memory_order_seq_cst) { return __sync_fetch_and_xor(&_M_i, __i); } __int_type fetch_xor(__int_type __i, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_xor(&_M_i, __i); } }; /// Partial specialization for pointer types. template struct __atomic_base<_PTp*> { private: typedef _PTp* __pointer_type; __pointer_type _M_p; public: __atomic_base() = default; ~__atomic_base() = default; __atomic_base(const __atomic_base&) = delete; __atomic_base& operator=(const __atomic_base&) = delete; __atomic_base& operator=(const __atomic_base&) volatile = delete; // Requires __pointer_type convertible to _M_p. constexpr __atomic_base(__pointer_type __p): _M_p (__p) { } operator __pointer_type() const { return load(); } operator __pointer_type() const volatile { return load(); } __pointer_type operator=(__pointer_type __p) { store(__p); return __p; } __pointer_type operator=(__pointer_type __p) volatile { store(__p); return __p; } __pointer_type operator++(int) { return fetch_add(1); } __pointer_type operator++(int) volatile { return fetch_add(1); } __pointer_type operator--(int) { return fetch_sub(1); } __pointer_type operator--(int) volatile { return fetch_sub(1); } __pointer_type operator++() { return fetch_add(1) + 1; } __pointer_type operator++() volatile { return fetch_add(1) + 1; } __pointer_type operator--() { return fetch_sub(1) -1; } __pointer_type operator--() volatile { return fetch_sub(1) -1; } __pointer_type operator+=(ptrdiff_t __d) { return fetch_add(__d) + __d; } __pointer_type operator+=(ptrdiff_t __d) volatile { return fetch_add(__d) + __d; } __pointer_type operator-=(ptrdiff_t __d) { return fetch_sub(__d) - __d; } __pointer_type operator-=(ptrdiff_t __d) volatile { return fetch_sub(__d) - __d; } bool is_lock_free() const { return true; } bool is_lock_free() const volatile { return true; } void store(__pointer_type __p, memory_order __m = memory_order_seq_cst) { __glibcxx_assert(__m != memory_order_acquire); __glibcxx_assert(__m != memory_order_acq_rel); __glibcxx_assert(__m != memory_order_consume); if (__m == memory_order_relaxed) _M_p = __p; else { // write_mem_barrier(); _M_p = __p; if (__m == memory_order_seq_cst) __sync_synchronize(); } } void store(__pointer_type __p, memory_order __m = memory_order_seq_cst) volatile { __glibcxx_assert(__m != memory_order_acquire); __glibcxx_assert(__m != memory_order_acq_rel); __glibcxx_assert(__m != memory_order_consume); if (__m == memory_order_relaxed) _M_p = __p; else { // write_mem_barrier(); _M_p = __p; if (__m == memory_order_seq_cst) __sync_synchronize(); } } __pointer_type load(memory_order __m = memory_order_seq_cst) const { __glibcxx_assert(__m != memory_order_release); __glibcxx_assert(__m != memory_order_acq_rel); __sync_synchronize(); __pointer_type __ret = _M_p; __sync_synchronize(); return __ret; } __pointer_type load(memory_order __m = memory_order_seq_cst) const volatile { __glibcxx_assert(__m != memory_order_release); __glibcxx_assert(__m != memory_order_acq_rel); __sync_synchronize(); __pointer_type __ret = _M_p; __sync_synchronize(); return __ret; } __pointer_type exchange(__pointer_type __p, memory_order __m = memory_order_seq_cst) { // XXX built-in assumes memory_order_acquire. return __sync_lock_test_and_set(&_M_p, __p); } __pointer_type exchange(__pointer_type __p, memory_order __m = memory_order_seq_cst) volatile { // XXX built-in assumes memory_order_acquire. return __sync_lock_test_and_set(&_M_p, __p); } bool compare_exchange_strong(__pointer_type& __p1, __pointer_type __p2, memory_order __m1, memory_order __m2) { __glibcxx_assert(__m2 != memory_order_release); __glibcxx_assert(__m2 != memory_order_acq_rel); __glibcxx_assert(__m2 <= __m1); __pointer_type __p1o = __p1; __pointer_type __p1n = __sync_val_compare_and_swap(&_M_p, __p1o, __p2); // Assume extra stores (of same value) allowed in true case. __p1 = __p1n; return __p1o == __p1n; } bool compare_exchange_strong(__pointer_type& __p1, __pointer_type __p2, memory_order __m1, memory_order __m2) volatile { __glibcxx_assert(__m2 != memory_order_release); __glibcxx_assert(__m2 != memory_order_acq_rel); __glibcxx_assert(__m2 <= __m1); __pointer_type __p1o = __p1; __pointer_type __p1n = __sync_val_compare_and_swap(&_M_p, __p1o, __p2); // Assume extra stores (of same value) allowed in true case. __p1 = __p1n; return __p1o == __p1n; } __pointer_type fetch_add(ptrdiff_t __d, memory_order __m = memory_order_seq_cst) { return __sync_fetch_and_add(&_M_p, __d); } __pointer_type fetch_add(ptrdiff_t __d, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_add(&_M_p, __d); } __pointer_type fetch_sub(ptrdiff_t __d, memory_order __m = memory_order_seq_cst) { return __sync_fetch_and_sub(&_M_p, __d); } __pointer_type fetch_sub(ptrdiff_t __d, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_sub(&_M_p, __d); } }; } // namespace __atomic2 _GLIBCXX_END_NAMESPACE_VERSION } // namespace std #endif