// unique_ptr implementation -*- C++ -*- // Copyright (C) 2008, 2009, 2010, 2011 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file bits/unique_ptr.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{memory} */ #ifndef _UNIQUE_PTR_H #define _UNIQUE_PTR_H 1 #include #include #include #include #include namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION /** * @addtogroup pointer_abstractions * @{ */ /// Primary template, default_delete. template struct default_delete { constexpr default_delete() = default; template::value>::type> default_delete(const default_delete<_Up>&) { } void operator()(_Tp* __ptr) const { static_assert(sizeof(_Tp)>0, "can't delete pointer to incomplete type"); delete __ptr; } }; // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 740 - omit specialization for array objects with a compile time length /// Specialization, default_delete. template struct default_delete<_Tp[]> { constexpr default_delete() = default; void operator()(_Tp* __ptr) const { static_assert(sizeof(_Tp)>0, "can't delete pointer to incomplete type"); delete [] __ptr; } template void operator()(_Up*) const = delete; }; /// 20.7.12.2 unique_ptr for single objects. template > class unique_ptr { // use SFINAE to determine whether _Del::pointer exists class _Pointer { template static typename _Up::pointer __test(typename _Up::pointer*); template static _Tp* __test(...); typedef typename remove_reference<_Dp>::type _Del; public: typedef decltype( __test<_Del>(0)) type; }; typedef std::tuple __tuple_type; __tuple_type _M_t; public: typedef typename _Pointer::type pointer; typedef _Tp element_type; typedef _Dp deleter_type; // Constructors. constexpr unique_ptr() : _M_t() { static_assert(!std::is_pointer::value, "constructed with null function pointer deleter"); } explicit unique_ptr(pointer __p) : _M_t(__p, deleter_type()) { static_assert(!std::is_pointer::value, "constructed with null function pointer deleter"); } unique_ptr(pointer __p, typename std::conditional::value, deleter_type, const deleter_type&>::type __d) : _M_t(__p, __d) { } unique_ptr(pointer __p, typename std::remove_reference::type&& __d) : _M_t(std::move(__p), std::move(__d)) { static_assert(!std::is_reference::value, "rvalue deleter bound to reference"); } constexpr unique_ptr(nullptr_t) : _M_t() { static_assert(!std::is_pointer::value, "constructed with null function pointer deleter"); } // Move constructors. unique_ptr(unique_ptr&& __u) : _M_t(__u.release(), std::forward(__u.get_deleter())) { } template::pointer, pointer>::value && !std::is_array<_Up>::value && ((std::is_reference<_Dp>::value && std::is_same<_Ep, _Dp>::value) || (!std::is_reference<_Dp>::value && std::is_convertible<_Ep, _Dp>::value))> ::type> unique_ptr(unique_ptr<_Up, _Ep>&& __u) : _M_t(__u.release(), std::forward<_Ep>(__u.get_deleter())) { } #if _GLIBCXX_USE_DEPRECATED template::value && std::is_same<_Dp, default_delete<_Tp>>::value>::type> unique_ptr(auto_ptr<_Up>&& __u) : _M_t(__u.release(), deleter_type()) { } #endif // Destructor. ~unique_ptr() { reset(); } // Assignment. unique_ptr& operator=(unique_ptr&& __u) { reset(__u.release()); get_deleter() = std::forward(__u.get_deleter()); return *this; } template::pointer, pointer>::value && !std::is_array<_Up>::value>::type> unique_ptr& operator=(unique_ptr<_Up, _Ep>&& __u) { reset(__u.release()); get_deleter() = std::forward<_Ep>(__u.get_deleter()); return *this; } unique_ptr& operator=(nullptr_t) { reset(); return *this; } // Observers. typename std::add_lvalue_reference::type operator*() const { _GLIBCXX_DEBUG_ASSERT(get() != pointer()); return *get(); } pointer operator->() const { _GLIBCXX_DEBUG_ASSERT(get() != pointer()); return get(); } pointer get() const { return std::get<0>(_M_t); } deleter_type& get_deleter() { return std::get<1>(_M_t); } const deleter_type& get_deleter() const { return std::get<1>(_M_t); } explicit operator bool() const { return get() == pointer() ? false : true; } // Modifiers. pointer release() { pointer __p = get(); std::get<0>(_M_t) = pointer(); return __p; } void reset(pointer __p = pointer()) { using std::swap; swap(std::get<0>(_M_t), __p); if (__p != pointer()) get_deleter()(__p); } void swap(unique_ptr& __u) { using std::swap; swap(_M_t, __u._M_t); } // Disable copy from lvalue. unique_ptr(const unique_ptr&) = delete; unique_ptr& operator=(const unique_ptr&) = delete; }; /// 20.7.12.3 unique_ptr for array objects with a runtime length // [unique.ptr.runtime] // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 740 - omit specialization for array objects with a compile time length template class unique_ptr<_Tp[], _Dp> { typedef std::tuple<_Tp*, _Dp> __tuple_type; __tuple_type _M_t; public: typedef _Tp* pointer; typedef _Tp element_type; typedef _Dp deleter_type; // Constructors. constexpr unique_ptr() : _M_t() { static_assert(!std::is_pointer::value, "constructed with null function pointer deleter"); } explicit unique_ptr(pointer __p) : _M_t(__p, deleter_type()) { static_assert(!std::is_pointer::value, "constructed with null function pointer deleter"); } unique_ptr(pointer __p, typename std::conditional::value, deleter_type, const deleter_type&>::type __d) : _M_t(__p, __d) { } unique_ptr(pointer __p, typename std::remove_reference::type && __d) : _M_t(std::move(__p), std::move(__d)) { static_assert(!std::is_reference::value, "rvalue deleter bound to reference"); } constexpr unique_ptr(nullptr_t) : _M_t() { static_assert(!std::is_pointer::value, "constructed with null function pointer deleter"); } // Move constructors. unique_ptr(unique_ptr&& __u) : _M_t(__u.release(), std::forward(__u.get_deleter())) { } template unique_ptr(unique_ptr<_Up, _Ep>&& __u) : _M_t(__u.release(), std::forward<_Ep>(__u.get_deleter())) { } // Destructor. ~unique_ptr() { reset(); } // Assignment. unique_ptr& operator=(unique_ptr&& __u) { reset(__u.release()); get_deleter() = std::forward(__u.get_deleter()); return *this; } template unique_ptr& operator=(unique_ptr<_Up, _Ep>&& __u) { reset(__u.release()); get_deleter() = std::forward<_Ep>(__u.get_deleter()); return *this; } unique_ptr& operator=(nullptr_t) { reset(); return *this; } // Observers. typename std::add_lvalue_reference::type operator[](size_t __i) const { _GLIBCXX_DEBUG_ASSERT(get() != pointer()); return get()[__i]; } pointer get() const { return std::get<0>(_M_t); } deleter_type& get_deleter() { return std::get<1>(_M_t); } const deleter_type& get_deleter() const { return std::get<1>(_M_t); } explicit operator bool() const { return get() == pointer() ? false : true; } // Modifiers. pointer release() { pointer __p = get(); std::get<0>(_M_t) = pointer(); return __p; } void reset(pointer __p = pointer()) { using std::swap; swap(std::get<0>(_M_t), __p); if (__p != nullptr) get_deleter()(__p); } void reset(nullptr_t) { pointer __p = get(); std::get<0>(_M_t) = pointer(); if (__p != nullptr) get_deleter()(__p); } // DR 821. template void reset(_Up) = delete; void swap(unique_ptr& __u) { using std::swap; swap(_M_t, __u._M_t); } // Disable copy from lvalue. unique_ptr(const unique_ptr&) = delete; unique_ptr& operator=(const unique_ptr&) = delete; // Disable construction from convertible pointer types. // (N2315 - 20.6.5.3.1) template unique_ptr(_Up*, typename std::conditional::value, deleter_type, const deleter_type&>::type, typename std::enable_if::value>::type* = 0) = delete; template unique_ptr(_Up*, typename std::remove_reference::type&&, typename std::enable_if::value>::type* = 0) = delete; template explicit unique_ptr(_Up*, typename std::enable_if::value>::type* = 0) = delete; }; template inline void swap(unique_ptr<_Tp, _Dp>& __x, unique_ptr<_Tp, _Dp>& __y) { __x.swap(__y); } template inline bool operator==(const unique_ptr<_Tp, _Dp>& __x, const unique_ptr<_Up, _Ep>& __y) { return __x.get() == __y.get(); } template inline bool operator==(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) { return __x.get() == nullptr; } template inline bool operator==(nullptr_t, const unique_ptr<_Tp, _Dp>& __y) { return nullptr == __y.get(); } template inline bool operator!=(const unique_ptr<_Tp, _Dp>& __x, const unique_ptr<_Up, _Ep>& __y) { return !(__x.get() == __y.get()); } template inline bool operator!=(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) { return __x.get() != nullptr; } template inline bool operator!=(nullptr_t, const unique_ptr<_Tp, _Dp>& __y) { return nullptr != __y.get(); } template inline bool operator<(const unique_ptr<_Tp, _Dp>& __x, const unique_ptr<_Up, _Ep>& __y) { return __x.get() < __y.get(); } template inline bool operator<=(const unique_ptr<_Tp, _Dp>& __x, const unique_ptr<_Up, _Ep>& __y) { return !(__y.get() < __x.get()); } template inline bool operator>(const unique_ptr<_Tp, _Dp>& __x, const unique_ptr<_Up, _Ep>& __y) { return __y.get() < __x.get(); } template inline bool operator>=(const unique_ptr<_Tp, _Dp>& __x, const unique_ptr<_Up, _Ep>& __y) { return !(__x.get() < __y.get()); } /// std::hash specialization for unique_ptr. template struct hash> : public std::unary_function, size_t> { size_t operator()(const unique_ptr<_Tp, _Dp>& __u) const { typedef unique_ptr<_Tp, _Dp> _UP; return std::hash()(__u.get()); } }; // @} group pointer_abstractions _GLIBCXX_END_NAMESPACE_VERSION } // namespace #endif /* _UNIQUE_PTR_H */