// Allocator details.
// Copyright (C) 2004, 2005, 2006, 2009, 2010 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// .
//
// ISO C++ 14882:
//
#include
#include
#include
#include
namespace
{
#ifdef __GTHREADS
struct __freelist
{
typedef __gnu_cxx::__pool::_Thread_record _Thread_record;
_Thread_record* _M_thread_freelist;
_Thread_record* _M_thread_freelist_array;
size_t _M_max_threads;
__gthread_key_t _M_key;
~__freelist()
{
if (_M_thread_freelist_array)
{
__gthread_key_delete(_M_key);
::operator delete(static_cast(_M_thread_freelist_array));
}
}
};
__freelist&
get_freelist()
{
static __freelist freelist;
return freelist;
}
__gnu_cxx::__mutex&
get_freelist_mutex()
{
static __gnu_cxx::__mutex freelist_mutex;
return freelist_mutex;
}
static void
_M_destroy_thread_key(void* __id)
{
// Return this thread id record to the front of thread_freelist.
__freelist& freelist = get_freelist();
{
__gnu_cxx::__scoped_lock sentry(get_freelist_mutex());
size_t _M_id = reinterpret_cast(__id);
typedef __gnu_cxx::__pool::_Thread_record _Thread_record;
_Thread_record* __tr = &freelist._M_thread_freelist_array[_M_id - 1];
__tr->_M_next = freelist._M_thread_freelist;
freelist._M_thread_freelist = __tr;
}
}
#endif
} // anonymous namespace
namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
void
__pool::_M_destroy() throw()
{
if (_M_init && !_M_options._M_force_new)
{
for (size_t __n = 0; __n < _M_bin_size; ++__n)
{
_Bin_record& __bin = _M_bin[__n];
while (__bin._M_address)
{
_Block_address* __tmp = __bin._M_address->_M_next;
::operator delete(__bin._M_address->_M_initial);
__bin._M_address = __tmp;
}
::operator delete(__bin._M_first);
}
::operator delete(_M_bin);
::operator delete(_M_binmap);
}
}
void
__pool::_M_reclaim_block(char* __p, size_t __bytes) throw ()
{
// Round up to power of 2 and figure out which bin to use.
const size_t __which = _M_binmap[__bytes];
_Bin_record& __bin = _M_bin[__which];
char* __c = __p - _M_get_align();
_Block_record* __block = reinterpret_cast<_Block_record*>(__c);
// Single threaded application - return to global pool.
__block->_M_next = __bin._M_first[0];
__bin._M_first[0] = __block;
}
char*
__pool::_M_reserve_block(size_t __bytes, const size_t __thread_id)
{
// Round up to power of 2 and figure out which bin to use.
const size_t __which = _M_binmap[__bytes];
_Bin_record& __bin = _M_bin[__which];
const _Tune& __options = _M_get_options();
const size_t __bin_size = (__options._M_min_bin << __which)
+ __options._M_align;
size_t __block_count = __options._M_chunk_size - sizeof(_Block_address);
__block_count /= __bin_size;
// Get a new block dynamically, set it up for use.
void* __v = ::operator new(__options._M_chunk_size);
_Block_address* __address = static_cast<_Block_address*>(__v);
__address->_M_initial = __v;
__address->_M_next = __bin._M_address;
__bin._M_address = __address;
char* __c = static_cast(__v) + sizeof(_Block_address);
_Block_record* __block = reinterpret_cast<_Block_record*>(__c);
__bin._M_first[__thread_id] = __block;
while (--__block_count > 0)
{
__c += __bin_size;
__block->_M_next = reinterpret_cast<_Block_record*>(__c);
__block = __block->_M_next;
}
__block->_M_next = 0;
__block = __bin._M_first[__thread_id];
__bin._M_first[__thread_id] = __block->_M_next;
// NB: For alignment reasons, we can't use the first _M_align
// bytes, even when sizeof(_Block_record) < _M_align.
return reinterpret_cast(__block) + __options._M_align;
}
void
__pool::_M_initialize()
{
// _M_force_new must not change after the first allocate(), which
// in turn calls this method, so if it's false, it's false forever
// and we don't need to return here ever again.
if (_M_options._M_force_new)
{
_M_init = true;
return;
}
// Create the bins.
// Calculate the number of bins required based on _M_max_bytes.
// _M_bin_size is statically-initialized to one.
size_t __bin_size = _M_options._M_min_bin;
while (_M_options._M_max_bytes > __bin_size)
{
__bin_size <<= 1;
++_M_bin_size;
}
// Setup the bin map for quick lookup of the relevant bin.
const size_t __j = (_M_options._M_max_bytes + 1) * sizeof(_Binmap_type);
_M_binmap = static_cast<_Binmap_type*>(::operator new(__j));
_Binmap_type* __bp = _M_binmap;
_Binmap_type __bin_max = _M_options._M_min_bin;
_Binmap_type __bint = 0;
for (_Binmap_type __ct = 0; __ct <= _M_options._M_max_bytes; ++__ct)
{
if (__ct > __bin_max)
{
__bin_max <<= 1;
++__bint;
}
*__bp++ = __bint;
}
// Initialize _M_bin and its members.
void* __v = ::operator new(sizeof(_Bin_record) * _M_bin_size);
_M_bin = static_cast<_Bin_record*>(__v);
for (size_t __n = 0; __n < _M_bin_size; ++__n)
{
_Bin_record& __bin = _M_bin[__n];
__v = ::operator new(sizeof(_Block_record*));
__bin._M_first = static_cast<_Block_record**>(__v);
__bin._M_first[0] = 0;
__bin._M_address = 0;
}
_M_init = true;
}
#ifdef __GTHREADS
void
__pool::_M_destroy() throw()
{
if (_M_init && !_M_options._M_force_new)
{
if (__gthread_active_p())
{
for (size_t __n = 0; __n < _M_bin_size; ++__n)
{
_Bin_record& __bin = _M_bin[__n];
while (__bin._M_address)
{
_Block_address* __tmp = __bin._M_address->_M_next;
::operator delete(__bin._M_address->_M_initial);
__bin._M_address = __tmp;
}
::operator delete(__bin._M_first);
::operator delete(__bin._M_free);
::operator delete(__bin._M_used);
::operator delete(__bin._M_mutex);
}
}
else
{
for (size_t __n = 0; __n < _M_bin_size; ++__n)
{
_Bin_record& __bin = _M_bin[__n];
while (__bin._M_address)
{
_Block_address* __tmp = __bin._M_address->_M_next;
::operator delete(__bin._M_address->_M_initial);
__bin._M_address = __tmp;
}
::operator delete(__bin._M_first);
}
}
::operator delete(_M_bin);
::operator delete(_M_binmap);
}
}
void
__pool::_M_reclaim_block(char* __p, size_t __bytes) throw ()
{
// Round up to power of 2 and figure out which bin to use.
const size_t __which = _M_binmap[__bytes];
const _Bin_record& __bin = _M_bin[__which];
// Know __p not null, assume valid block.
char* __c = __p - _M_get_align();
_Block_record* __block = reinterpret_cast<_Block_record*>(__c);
if (__gthread_active_p())
{
// Calculate the number of records to remove from our freelist:
// in order to avoid too much contention we wait until the
// number of records is "high enough".
const size_t __thread_id = _M_get_thread_id();
const _Tune& __options = _M_get_options();
const size_t __limit = (100 * (_M_bin_size - __which)
* __options._M_freelist_headroom);
size_t __remove = __bin._M_free[__thread_id];
__remove *= __options._M_freelist_headroom;
// NB: We assume that reads of _Atomic_words are atomic.
const size_t __max_threads = __options._M_max_threads + 1;
_Atomic_word* const __reclaimed_base =
reinterpret_cast<_Atomic_word*>(__bin._M_used + __max_threads);
const _Atomic_word __reclaimed = __reclaimed_base[__thread_id];
const size_t __net_used = __bin._M_used[__thread_id] - __reclaimed;
// NB: For performance sake we don't resync every time, in order
// to spare atomic ops. Note that if __reclaimed increased by,
// say, 1024, since the last sync, it means that the other
// threads executed the atomic in the else below at least the
// same number of times (at least, because _M_reserve_block may
// have decreased the counter), therefore one more cannot hurt.
if (__reclaimed > 1024)
{
__bin._M_used[__thread_id] -= __reclaimed;
__atomic_add(&__reclaimed_base[__thread_id], -__reclaimed);
}
if (__remove >= __net_used)
__remove -= __net_used;
else
__remove = 0;
if (__remove > __limit && __remove > __bin._M_free[__thread_id])
{
_Block_record* __first = __bin._M_first[__thread_id];
_Block_record* __tmp = __first;
__remove /= __options._M_freelist_headroom;
const size_t __removed = __remove;
while (--__remove > 0)
__tmp = __tmp->_M_next;
__bin._M_first[__thread_id] = __tmp->_M_next;
__bin._M_free[__thread_id] -= __removed;
__gthread_mutex_lock(__bin._M_mutex);
__tmp->_M_next = __bin._M_first[0];
__bin._M_first[0] = __first;
__bin._M_free[0] += __removed;
__gthread_mutex_unlock(__bin._M_mutex);
}
// Return this block to our list and update counters and
// owner id as needed.
if (__block->_M_thread_id == __thread_id)
--__bin._M_used[__thread_id];
else
__atomic_add(&__reclaimed_base[__block->_M_thread_id], 1);
__block->_M_next = __bin._M_first[__thread_id];
__bin._M_first[__thread_id] = __block;
++__bin._M_free[__thread_id];
}
else
{
// Not using threads, so single threaded application - return
// to global pool.
__block->_M_next = __bin._M_first[0];
__bin._M_first[0] = __block;
}
}
char*
__pool::_M_reserve_block(size_t __bytes, const size_t __thread_id)
{
// Round up to power of 2 and figure out which bin to use.
const size_t __which = _M_binmap[__bytes];
const _Tune& __options = _M_get_options();
const size_t __bin_size = ((__options._M_min_bin << __which)
+ __options._M_align);
size_t __block_count = __options._M_chunk_size - sizeof(_Block_address);
__block_count /= __bin_size;
// Are we using threads?
// - Yes, check if there are free blocks on the global
// list. If so, grab up to __block_count blocks in one
// lock and change ownership. If the global list is
// empty, we allocate a new chunk and add those blocks
// directly to our own freelist (with us as owner).
// - No, all operations are made directly to global pool 0
// no need to lock or change ownership but check for free
// blocks on global list (and if not add new ones) and
// get the first one.
_Bin_record& __bin = _M_bin[__which];
_Block_record* __block = 0;
if (__gthread_active_p())
{
// Resync the _M_used counters.
const size_t __max_threads = __options._M_max_threads + 1;
_Atomic_word* const __reclaimed_base =
reinterpret_cast<_Atomic_word*>(__bin._M_used + __max_threads);
const _Atomic_word __reclaimed = __reclaimed_base[__thread_id];
__bin._M_used[__thread_id] -= __reclaimed;
__atomic_add(&__reclaimed_base[__thread_id], -__reclaimed);
__gthread_mutex_lock(__bin._M_mutex);
if (__bin._M_first[0] == 0)
{
void* __v = ::operator new(__options._M_chunk_size);
_Block_address* __address = static_cast<_Block_address*>(__v);
__address->_M_initial = __v;
__address->_M_next = __bin._M_address;
__bin._M_address = __address;
__gthread_mutex_unlock(__bin._M_mutex);
// No need to hold the lock when we are adding a whole
// chunk to our own list.
char* __c = static_cast(__v) + sizeof(_Block_address);
__block = reinterpret_cast<_Block_record*>(__c);
__bin._M_free[__thread_id] = __block_count;
__bin._M_first[__thread_id] = __block;
while (--__block_count > 0)
{
__c += __bin_size;
__block->_M_next = reinterpret_cast<_Block_record*>(__c);
__block = __block->_M_next;
}
__block->_M_next = 0;
}
else
{
// Is the number of required blocks greater than or equal
// to the number that can be provided by the global free
// list?
__bin._M_first[__thread_id] = __bin._M_first[0];
if (__block_count >= __bin._M_free[0])
{
__bin._M_free[__thread_id] = __bin._M_free[0];
__bin._M_free[0] = 0;
__bin._M_first[0] = 0;
}
else
{
__bin._M_free[__thread_id] = __block_count;
__bin._M_free[0] -= __block_count;
__block = __bin._M_first[0];
while (--__block_count > 0)
__block = __block->_M_next;
__bin._M_first[0] = __block->_M_next;
__block->_M_next = 0;
}
__gthread_mutex_unlock(__bin._M_mutex);
}
}
else
{
void* __v = ::operator new(__options._M_chunk_size);
_Block_address* __address = static_cast<_Block_address*>(__v);
__address->_M_initial = __v;
__address->_M_next = __bin._M_address;
__bin._M_address = __address;
char* __c = static_cast(__v) + sizeof(_Block_address);
__block = reinterpret_cast<_Block_record*>(__c);
__bin._M_first[0] = __block;
while (--__block_count > 0)
{
__c += __bin_size;
__block->_M_next = reinterpret_cast<_Block_record*>(__c);
__block = __block->_M_next;
}
__block->_M_next = 0;
}
__block = __bin._M_first[__thread_id];
__bin._M_first[__thread_id] = __block->_M_next;
if (__gthread_active_p())
{
__block->_M_thread_id = __thread_id;
--__bin._M_free[__thread_id];
++__bin._M_used[__thread_id];
}
// NB: For alignment reasons, we can't use the first _M_align
// bytes, even when sizeof(_Block_record) < _M_align.
return reinterpret_cast(__block) + __options._M_align;
}
void
__pool::_M_initialize()
{
// _M_force_new must not change after the first allocate(),
// which in turn calls this method, so if it's false, it's false
// forever and we don't need to return here ever again.
if (_M_options._M_force_new)
{
_M_init = true;
return;
}
// Create the bins.
// Calculate the number of bins required based on _M_max_bytes.
// _M_bin_size is statically-initialized to one.
size_t __bin_size = _M_options._M_min_bin;
while (_M_options._M_max_bytes > __bin_size)
{
__bin_size <<= 1;
++_M_bin_size;
}
// Setup the bin map for quick lookup of the relevant bin.
const size_t __j = (_M_options._M_max_bytes + 1) * sizeof(_Binmap_type);
_M_binmap = static_cast<_Binmap_type*>(::operator new(__j));
_Binmap_type* __bp = _M_binmap;
_Binmap_type __bin_max = _M_options._M_min_bin;
_Binmap_type __bint = 0;
for (_Binmap_type __ct = 0; __ct <= _M_options._M_max_bytes; ++__ct)
{
if (__ct > __bin_max)
{
__bin_max <<= 1;
++__bint;
}
*__bp++ = __bint;
}
// Initialize _M_bin and its members.
void* __v = ::operator new(sizeof(_Bin_record) * _M_bin_size);
_M_bin = static_cast<_Bin_record*>(__v);
// If __gthread_active_p() create and initialize the list of
// free thread ids. Single threaded applications use thread id 0
// directly and have no need for this.
if (__gthread_active_p())
{
__freelist& freelist = get_freelist();
{
__gnu_cxx::__scoped_lock sentry(get_freelist_mutex());
if (!freelist._M_thread_freelist_array
|| freelist._M_max_threads < _M_options._M_max_threads)
{
const size_t __k = sizeof(_Thread_record)
* _M_options._M_max_threads;
__v = ::operator new(__k);
_M_thread_freelist = static_cast<_Thread_record*>(__v);
// NOTE! The first assignable thread id is 1 since the
// global pool uses id 0
size_t __i;
for (__i = 1; __i < _M_options._M_max_threads; ++__i)
{
_Thread_record& __tr = _M_thread_freelist[__i - 1];
__tr._M_next = &_M_thread_freelist[__i];
__tr._M_id = __i;
}
// Set last record.
_M_thread_freelist[__i - 1]._M_next = 0;
_M_thread_freelist[__i - 1]._M_id = __i;
if (!freelist._M_thread_freelist_array)
{
// Initialize per thread key to hold pointer to
// _M_thread_freelist.
__gthread_key_create(&freelist._M_key,
::_M_destroy_thread_key);
freelist._M_thread_freelist = _M_thread_freelist;
}
else
{
_Thread_record* _M_old_freelist
= freelist._M_thread_freelist;
_Thread_record* _M_old_array
= freelist._M_thread_freelist_array;
freelist._M_thread_freelist
= &_M_thread_freelist[_M_old_freelist - _M_old_array];
while (_M_old_freelist)
{
size_t next_id;
if (_M_old_freelist->_M_next)
next_id = _M_old_freelist->_M_next - _M_old_array;
else
next_id = freelist._M_max_threads;
_M_thread_freelist[_M_old_freelist->_M_id - 1]._M_next
= &_M_thread_freelist[next_id];
_M_old_freelist = _M_old_freelist->_M_next;
}
::operator delete(static_cast(_M_old_array));
}
freelist._M_thread_freelist_array = _M_thread_freelist;
freelist._M_max_threads = _M_options._M_max_threads;
}
}
const size_t __max_threads = _M_options._M_max_threads + 1;
for (size_t __n = 0; __n < _M_bin_size; ++__n)
{
_Bin_record& __bin = _M_bin[__n];
__v = ::operator new(sizeof(_Block_record*) * __max_threads);
std::memset(__v, 0, sizeof(_Block_record*) * __max_threads);
__bin._M_first = static_cast<_Block_record**>(__v);
__bin._M_address = 0;
__v = ::operator new(sizeof(size_t) * __max_threads);
std::memset(__v, 0, sizeof(size_t) * __max_threads);
__bin._M_free = static_cast(__v);
__v = ::operator new(sizeof(size_t) * __max_threads
+ sizeof(_Atomic_word) * __max_threads);
std::memset(__v, 0, (sizeof(size_t) * __max_threads
+ sizeof(_Atomic_word) * __max_threads));
__bin._M_used = static_cast(__v);
__v = ::operator new(sizeof(__gthread_mutex_t));
__bin._M_mutex = static_cast<__gthread_mutex_t*>(__v);
#ifdef __GTHREAD_MUTEX_INIT
{
// Do not copy a POSIX/gthr mutex once in use.
__gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT;
*__bin._M_mutex = __tmp;
}
#else
{ __GTHREAD_MUTEX_INIT_FUNCTION(__bin._M_mutex); }
#endif
}
}
else
{
for (size_t __n = 0; __n < _M_bin_size; ++__n)
{
_Bin_record& __bin = _M_bin[__n];
__v = ::operator new(sizeof(_Block_record*));
__bin._M_first = static_cast<_Block_record**>(__v);
__bin._M_first[0] = 0;
__bin._M_address = 0;
}
}
_M_init = true;
}
size_t
__pool::_M_get_thread_id()
{
// If we have thread support and it's active we check the thread
// key value and return its id or if it's not set we take the
// first record from _M_thread_freelist and sets the key and
// returns its id.
if (__gthread_active_p())
{
__freelist& freelist = get_freelist();
void* v = __gthread_getspecific(freelist._M_key);
size_t _M_id = (size_t)v;
if (_M_id == 0)
{
{
__gnu_cxx::__scoped_lock sentry(get_freelist_mutex());
if (freelist._M_thread_freelist)
{
_M_id = freelist._M_thread_freelist->_M_id;
freelist._M_thread_freelist
= freelist._M_thread_freelist->_M_next;
}
}
__gthread_setspecific(freelist._M_key, (void*)_M_id);
}
return _M_id >= _M_options._M_max_threads ? 0 : _M_id;
}
// Otherwise (no thread support or inactive) all requests are
// served from the global pool 0.
return 0;
}
// XXX GLIBCXX_ABI Deprecated
void
__pool::_M_destroy_thread_key(void*) throw () { }
// XXX GLIBCXX_ABI Deprecated
void
__pool::_M_initialize(__destroy_handler)
{
// _M_force_new must not change after the first allocate(),
// which in turn calls this method, so if it's false, it's false
// forever and we don't need to return here ever again.
if (_M_options._M_force_new)
{
_M_init = true;
return;
}
// Create the bins.
// Calculate the number of bins required based on _M_max_bytes.
// _M_bin_size is statically-initialized to one.
size_t __bin_size = _M_options._M_min_bin;
while (_M_options._M_max_bytes > __bin_size)
{
__bin_size <<= 1;
++_M_bin_size;
}
// Setup the bin map for quick lookup of the relevant bin.
const size_t __j = (_M_options._M_max_bytes + 1) * sizeof(_Binmap_type);
_M_binmap = static_cast<_Binmap_type*>(::operator new(__j));
_Binmap_type* __bp = _M_binmap;
_Binmap_type __bin_max = _M_options._M_min_bin;
_Binmap_type __bint = 0;
for (_Binmap_type __ct = 0; __ct <= _M_options._M_max_bytes; ++__ct)
{
if (__ct > __bin_max)
{
__bin_max <<= 1;
++__bint;
}
*__bp++ = __bint;
}
// Initialize _M_bin and its members.
void* __v = ::operator new(sizeof(_Bin_record) * _M_bin_size);
_M_bin = static_cast<_Bin_record*>(__v);
// If __gthread_active_p() create and initialize the list of
// free thread ids. Single threaded applications use thread id 0
// directly and have no need for this.
if (__gthread_active_p())
{
__freelist& freelist = get_freelist();
{
__gnu_cxx::__scoped_lock sentry(get_freelist_mutex());
if (!freelist._M_thread_freelist_array
|| freelist._M_max_threads < _M_options._M_max_threads)
{
const size_t __k = sizeof(_Thread_record)
* _M_options._M_max_threads;
__v = ::operator new(__k);
_M_thread_freelist = static_cast<_Thread_record*>(__v);
// NOTE! The first assignable thread id is 1 since the
// global pool uses id 0
size_t __i;
for (__i = 1; __i < _M_options._M_max_threads; ++__i)
{
_Thread_record& __tr = _M_thread_freelist[__i - 1];
__tr._M_next = &_M_thread_freelist[__i];
__tr._M_id = __i;
}
// Set last record.
_M_thread_freelist[__i - 1]._M_next = 0;
_M_thread_freelist[__i - 1]._M_id = __i;
if (!freelist._M_thread_freelist_array)
{
// Initialize per thread key to hold pointer to
// _M_thread_freelist.
__gthread_key_create(&freelist._M_key,
::_M_destroy_thread_key);
freelist._M_thread_freelist = _M_thread_freelist;
}
else
{
_Thread_record* _M_old_freelist
= freelist._M_thread_freelist;
_Thread_record* _M_old_array
= freelist._M_thread_freelist_array;
freelist._M_thread_freelist
= &_M_thread_freelist[_M_old_freelist - _M_old_array];
while (_M_old_freelist)
{
size_t next_id;
if (_M_old_freelist->_M_next)
next_id = _M_old_freelist->_M_next - _M_old_array;
else
next_id = freelist._M_max_threads;
_M_thread_freelist[_M_old_freelist->_M_id - 1]._M_next
= &_M_thread_freelist[next_id];
_M_old_freelist = _M_old_freelist->_M_next;
}
::operator delete(static_cast(_M_old_array));
}
freelist._M_thread_freelist_array = _M_thread_freelist;
freelist._M_max_threads = _M_options._M_max_threads;
}
}
const size_t __max_threads = _M_options._M_max_threads + 1;
for (size_t __n = 0; __n < _M_bin_size; ++__n)
{
_Bin_record& __bin = _M_bin[__n];
__v = ::operator new(sizeof(_Block_record*) * __max_threads);
std::memset(__v, 0, sizeof(_Block_record*) * __max_threads);
__bin._M_first = static_cast<_Block_record**>(__v);
__bin._M_address = 0;
__v = ::operator new(sizeof(size_t) * __max_threads);
std::memset(__v, 0, sizeof(size_t) * __max_threads);
__bin._M_free = static_cast(__v);
__v = ::operator new(sizeof(size_t) * __max_threads +
sizeof(_Atomic_word) * __max_threads);
std::memset(__v, 0, (sizeof(size_t) * __max_threads
+ sizeof(_Atomic_word) * __max_threads));
__bin._M_used = static_cast(__v);
__v = ::operator new(sizeof(__gthread_mutex_t));
__bin._M_mutex = static_cast<__gthread_mutex_t*>(__v);
#ifdef __GTHREAD_MUTEX_INIT
{
// Do not copy a POSIX/gthr mutex once in use.
__gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT;
*__bin._M_mutex = __tmp;
}
#else
{ __GTHREAD_MUTEX_INIT_FUNCTION(__bin._M_mutex); }
#endif
}
}
else
{
for (size_t __n = 0; __n < _M_bin_size; ++__n)
{
_Bin_record& __bin = _M_bin[__n];
__v = ::operator new(sizeof(_Block_record*));
__bin._M_first = static_cast<_Block_record**>(__v);
__bin._M_first[0] = 0;
__bin._M_address = 0;
}
}
_M_init = true;
}
#endif
// Instantiations.
template class __mt_alloc;
template class __mt_alloc;
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace