1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
* { dg-do run }
program main
************************************************************
* program to solve a finite difference
* discretization of Helmholtz equation :
* (d2/dx2)u + (d2/dy2)u - alpha u = f
* using Jacobi iterative method.
*
* Modified: Sanjiv Shah, Kuck and Associates, Inc. (KAI), 1998
* Author: Joseph Robicheaux, Kuck and Associates, Inc. (KAI), 1998
*
* Directives are used in this code to achieve paralleism.
* All do loops are parallized with default 'static' scheduling.
*
* Input : n - grid dimension in x direction
* m - grid dimension in y direction
* alpha - Helmholtz constant (always greater than 0.0)
* tol - error tolerance for iterative solver
* relax - Successice over relaxation parameter
* mits - Maximum iterations for iterative solver
*
* On output
* : u(n,m) - Dependent variable (solutions)
* : f(n,m) - Right hand side function
*************************************************************
implicit none
integer n,m,mits,mtemp
include "omp_lib.h"
double precision tol,relax,alpha
common /idat/ n,m,mits,mtemp
common /fdat/tol,alpha,relax
*
* Read info
*
write(*,*) "Input n,m - grid dimension in x,y direction "
n = 64
m = 64
* read(5,*) n,m
write(*,*) n, m
write(*,*) "Input alpha - Helmholts constant "
alpha = 0.5
* read(5,*) alpha
write(*,*) alpha
write(*,*) "Input relax - Successive over-relaxation parameter"
relax = 0.9
* read(5,*) relax
write(*,*) relax
write(*,*) "Input tol - error tolerance for iterative solver"
tol = 1.0E-12
* read(5,*) tol
write(*,*) tol
write(*,*) "Input mits - Maximum iterations for solver"
mits = 100
* read(5,*) mits
write(*,*) mits
call omp_set_num_threads (2)
*
* Calls a driver routine
*
call driver ()
stop
end
subroutine driver ( )
*************************************************************
* Subroutine driver ()
* This is where the arrays are allocated and initialzed.
*
* Working varaibles/arrays
* dx - grid spacing in x direction
* dy - grid spacing in y direction
*************************************************************
implicit none
integer n,m,mits,mtemp
double precision tol,relax,alpha
common /idat/ n,m,mits,mtemp
common /fdat/tol,alpha,relax
double precision u(n,m),f(n,m),dx,dy
* Initialize data
call initialize (n,m,alpha,dx,dy,u,f)
* Solve Helmholtz equation
call jacobi (n,m,dx,dy,alpha,relax,u,f,tol,mits)
* Check error between exact solution
call error_check (n,m,alpha,dx,dy,u,f)
return
end
subroutine initialize (n,m,alpha,dx,dy,u,f)
******************************************************
* Initializes data
* Assumes exact solution is u(x,y) = (1-x^2)*(1-y^2)
*
******************************************************
implicit none
integer n,m
double precision u(n,m),f(n,m),dx,dy,alpha
integer i,j, xx,yy
double precision PI
parameter (PI=3.1415926)
dx = 2.0 / (n-1)
dy = 2.0 / (m-1)
* Initilize initial condition and RHS
!$omp parallel do private(xx,yy)
do j = 1,m
do i = 1,n
xx = -1.0 + dx * dble(i-1) ! -1 < x < 1
yy = -1.0 + dy * dble(j-1) ! -1 < y < 1
u(i,j) = 0.0
f(i,j) = -alpha *(1.0-xx*xx)*(1.0-yy*yy)
& - 2.0*(1.0-xx*xx)-2.0*(1.0-yy*yy)
enddo
enddo
!$omp end parallel do
return
end
subroutine jacobi (n,m,dx,dy,alpha,omega,u,f,tol,maxit)
******************************************************************
* Subroutine HelmholtzJ
* Solves poisson equation on rectangular grid assuming :
* (1) Uniform discretization in each direction, and
* (2) Dirichlect boundary conditions
*
* Jacobi method is used in this routine
*
* Input : n,m Number of grid points in the X/Y directions
* dx,dy Grid spacing in the X/Y directions
* alpha Helmholtz eqn. coefficient
* omega Relaxation factor
* f(n,m) Right hand side function
* u(n,m) Dependent variable/Solution
* tol Tolerance for iterative solver
* maxit Maximum number of iterations
*
* Output : u(n,m) - Solution
*****************************************************************
implicit none
integer n,m,maxit
double precision dx,dy,f(n,m),u(n,m),alpha, tol,omega
*
* Local variables
*
integer i,j,k,k_local
double precision error,resid,rsum,ax,ay,b
double precision error_local, uold(n,m)
real ta,tb,tc,td,te,ta1,ta2,tb1,tb2,tc1,tc2,td1,td2
real te1,te2
real second
external second
*
* Initialize coefficients
ax = 1.0/(dx*dx) ! X-direction coef
ay = 1.0/(dy*dy) ! Y-direction coef
b = -2.0/(dx*dx)-2.0/(dy*dy) - alpha ! Central coeff
error = 10.0 * tol
k = 1
do while (k.le.maxit .and. error.gt. tol)
error = 0.0
* Copy new solution into old
!$omp parallel
!$omp do
do j=1,m
do i=1,n
uold(i,j) = u(i,j)
enddo
enddo
* Compute stencil, residual, & update
!$omp do private(resid) reduction(+:error)
do j = 2,m-1
do i = 2,n-1
* Evaluate residual
resid = (ax*(uold(i-1,j) + uold(i+1,j))
& + ay*(uold(i,j-1) + uold(i,j+1))
& + b * uold(i,j) - f(i,j))/b
* Update solution
u(i,j) = uold(i,j) - omega * resid
* Accumulate residual error
error = error + resid*resid
end do
enddo
!$omp enddo nowait
!$omp end parallel
* Error check
k = k + 1
error = sqrt(error)/dble(n*m)
*
enddo ! End iteration loop
*
print *, 'Total Number of Iterations ', k
print *, 'Residual ', error
return
end
subroutine error_check (n,m,alpha,dx,dy,u,f)
implicit none
************************************************************
* Checks error between numerical and exact solution
*
************************************************************
integer n,m
double precision u(n,m),f(n,m),dx,dy,alpha
integer i,j
double precision xx,yy,temp,error
dx = 2.0 / (n-1)
dy = 2.0 / (m-1)
error = 0.0
!$omp parallel do private(xx,yy,temp) reduction(+:error)
do j = 1,m
do i = 1,n
xx = -1.0d0 + dx * dble(i-1)
yy = -1.0d0 + dy * dble(j-1)
temp = u(i,j) - (1.0-xx*xx)*(1.0-yy*yy)
error = error + temp*temp
enddo
enddo
error = sqrt(error)/dble(n*m)
print *, 'Solution Error : ',error
return
end
|