1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
/* Return arc hyperbole cosine for __float128 value.
Copyright (C) 1997, 1998, 2006 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#include "quadmath-imp.h"
__complex128
cacoshq (__complex128 x)
{
__complex128 res;
int rcls = fpclassifyq (__real__ x);
int icls = fpclassifyq (__imag__ x);
if (rcls <= QUADFP_INFINITE || icls <= QUADFP_INFINITE)
{
if (icls == QUADFP_INFINITE)
{
__real__ res = HUGE_VALQ;
if (rcls == QUADFP_NAN)
__imag__ res = nanq ("");
else
__imag__ res = copysignq ((rcls == QUADFP_INFINITE
? (__real__ x < 0.0
? M_PIq - M_PI_4q : M_PI_4q)
: M_PI_2q), __imag__ x);
}
else if (rcls == QUADFP_INFINITE)
{
__real__ res = HUGE_VALQ;
if (icls >= QUADFP_ZERO)
__imag__ res = copysignq (signbitq (__real__ x) ? M_PIq : 0.0,
__imag__ x);
else
__imag__ res = nanq ("");
}
else
{
__real__ res = nanq ("");
__imag__ res = nanq ("");
}
}
else if (rcls == QUADFP_ZERO && icls == QUADFP_ZERO)
{
__real__ res = 0.0;
__imag__ res = copysignq (M_PI_2q, __imag__ x);
}
else
{
__complex128 y;
__real__ y = (__real__ x - __imag__ x) * (__real__ x + __imag__ x) - 1.0;
__imag__ y = 2.0 * __real__ x * __imag__ x;
y = csqrtq (y);
if (__real__ x < 0.0)
y = -y;
__real__ y += __real__ x;
__imag__ y += __imag__ x;
res = clogq (y);
/* We have to use the positive branch. */
if (__real__ res < 0.0)
res = -res;
}
return res;
}
|