1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
/* Quad-precision floating point cosine on <-pi/4,pi/4>.
Copyright (C) 1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Jakub Jelinek <jj@ultra.linux.cz>
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#include "quadmath-imp.h"
static const __float128 c[] = {
#define ONE c[0]
1.00000000000000000000000000000000000E+00Q, /* 3fff0000000000000000000000000000 */
/* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
x in <0,1/256> */
#define SCOS1 c[1]
#define SCOS2 c[2]
#define SCOS3 c[3]
#define SCOS4 c[4]
#define SCOS5 c[5]
-5.00000000000000000000000000000000000E-01Q, /* bffe0000000000000000000000000000 */
4.16666666666666666666666666556146073E-02Q, /* 3ffa5555555555555555555555395023 */
-1.38888888888888888888309442601939728E-03Q, /* bff56c16c16c16c16c16a566e42c0375 */
2.48015873015862382987049502531095061E-05Q, /* 3fefa01a01a019ee02dcf7da2d6d5444 */
-2.75573112601362126593516899592158083E-07Q, /* bfe927e4f5dce637cb0b54908754bde0 */
/* cos x ~ ONE + x^2 ( COS1 + COS2 * x^2 + ... + COS7 * x^12 + COS8 * x^14 )
x in <0,0.1484375> */
#define COS1 c[6]
#define COS2 c[7]
#define COS3 c[8]
#define COS4 c[9]
#define COS5 c[10]
#define COS6 c[11]
#define COS7 c[12]
#define COS8 c[13]
-4.99999999999999999999999999999999759E-01Q, /* bffdfffffffffffffffffffffffffffb */
4.16666666666666666666666666651287795E-02Q, /* 3ffa5555555555555555555555516f30 */
-1.38888888888888888888888742314300284E-03Q, /* bff56c16c16c16c16c16c16a463dfd0d */
2.48015873015873015867694002851118210E-05Q, /* 3fefa01a01a01a01a0195cebe6f3d3a5 */
-2.75573192239858811636614709689300351E-07Q, /* bfe927e4fb7789f5aa8142a22044b51f */
2.08767569877762248667431926878073669E-09Q, /* 3fe21eed8eff881d1e9262d7adff4373 */
-1.14707451049343817400420280514614892E-11Q, /* bfda9397496922a9601ed3d4ca48944b */
4.77810092804389587579843296923533297E-14Q, /* 3fd2ae5f8197cbcdcaf7c3fb4523414c */
/* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
x in <0,1/256> */
#define SSIN1 c[14]
#define SSIN2 c[15]
#define SSIN3 c[16]
#define SSIN4 c[17]
#define SSIN5 c[18]
-1.66666666666666666666666666666666659E-01Q, /* bffc5555555555555555555555555555 */
8.33333333333333333333333333146298442E-03Q, /* 3ff81111111111111111111110fe195d */
-1.98412698412698412697726277416810661E-04Q, /* bff2a01a01a01a01a019e7121e080d88 */
2.75573192239848624174178393552189149E-06Q, /* 3fec71de3a556c640c6aaa51aa02ab41 */
-2.50521016467996193495359189395805639E-08Q, /* bfe5ae644ee90c47dc71839de75b2787 */
};
#define SINCOSQ_COS_HI 0
#define SINCOSQ_COS_LO 1
#define SINCOSQ_SIN_HI 2
#define SINCOSQ_SIN_LO 3
extern const __float128 __sincosq_table[];
__float128
__quadmath_kernel_cosq (__float128 x, __float128 y)
{
__float128 h, l, z, sin_l, cos_l_m1;
int64_t ix;
uint32_t tix, hix, index;
GET_FLT128_MSW64 (ix, x);
tix = ((uint64_t)ix) >> 32;
tix &= ~0x80000000; /* tix = |x|'s high 32 bits */
if (tix < 0x3ffc3000) /* |x| < 0.1484375 */
{
/* Argument is small enough to approximate it by a Chebyshev
polynomial of degree 16. */
if (tix < 0x3fc60000) /* |x| < 2^-57 */
if (!((int)x)) return ONE; /* generate inexact */
z = x * x;
return ONE + (z*(COS1+z*(COS2+z*(COS3+z*(COS4+
z*(COS5+z*(COS6+z*(COS7+z*COS8))))))));
}
else
{
/* So that we don't have to use too large polynomial, we find
l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83
possible values for h. We look up cosl(h) and sinl(h) in
pre-computed tables, compute cosl(l) and sinl(l) using a
Chebyshev polynomial of degree 10(11) and compute
cosl(h+l) = cosl(h)cosl(l) - sinl(h)sinl(l). */
index = 0x3ffe - (tix >> 16);
hix = (tix + (0x200 << index)) & (0xfffffc00 << index);
x = fabsq (x);
switch (index)
{
case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break;
case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break;
default:
case 2: index = (hix - 0x3ffc3000) >> 10; break;
}
SET_FLT128_WORDS64(h, ((uint64_t)hix) << 32, 0);
l = y - (h - x);
z = l * l;
sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
return __sincosq_table [index + SINCOSQ_COS_HI]
+ (__sincosq_table [index + SINCOSQ_COS_LO]
- (__sincosq_table [index + SINCOSQ_SIN_HI] * sin_l
- __sincosq_table [index + SINCOSQ_COS_HI] * cos_l_m1));
}
}
|