1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
/* expm1l.c
*
* Exponential function, minus 1
* 128-bit __float128 precision
*
*
*
* SYNOPSIS:
*
* __float128 x, y, expm1l();
*
* y = expm1l( x );
*
*
*
* DESCRIPTION:
*
* Returns e (2.71828...) raised to the x power, minus one.
*
* Range reduction is accomplished by separating the argument
* into an integer k and fraction f such that
*
* x k f
* e = 2 e.
*
* An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
* in the basic range [-0.5 ln 2, 0.5 ln 2].
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -79,+MAXLOG 100,000 1.7e-34 4.5e-35
*
*/
/* Copyright 2001 by Stephen L. Moshier
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "quadmath-imp.h"
/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
-.5 ln 2 < x < .5 ln 2
Theoretical peak relative error = 8.1e-36 */
static const __float128
P0 = 2.943520915569954073888921213330863757240E8Q,
P1 = -5.722847283900608941516165725053359168840E7Q,
P2 = 8.944630806357575461578107295909719817253E6Q,
P3 = -7.212432713558031519943281748462837065308E5Q,
P4 = 4.578962475841642634225390068461943438441E4Q,
P5 = -1.716772506388927649032068540558788106762E3Q,
P6 = 4.401308817383362136048032038528753151144E1Q,
P7 = -4.888737542888633647784737721812546636240E-1Q,
Q0 = 1.766112549341972444333352727998584753865E9Q,
Q1 = -7.848989743695296475743081255027098295771E8Q,
Q2 = 1.615869009634292424463780387327037251069E8Q,
Q3 = -2.019684072836541751428967854947019415698E7Q,
Q4 = 1.682912729190313538934190635536631941751E6Q,
Q5 = -9.615511549171441430850103489315371768998E4Q,
Q6 = 3.697714952261803935521187272204485251835E3Q,
Q7 = -8.802340681794263968892934703309274564037E1Q,
/* Q8 = 1.000000000000000000000000000000000000000E0 */
/* C1 + C2 = ln 2 */
C1 = 6.93145751953125E-1Q,
C2 = 1.428606820309417232121458176568075500134E-6Q,
/* ln (2^16384 * (1 - 2^-113)) */
maxlog = 1.1356523406294143949491931077970764891253E4Q,
/* ln 2^-114 */
minarg = -7.9018778583833765273564461846232128760607E1Q;
__float128
expm1q (__float128 x)
{
__float128 px, qx, xx;
int32_t ix, sign;
ieee854_float128 u;
int k;
/* Detect infinity and NaN. */
u.value = x;
ix = u.words32.w0;
sign = ix & 0x80000000;
ix &= 0x7fffffff;
if (ix >= 0x7fff0000)
{
/* Infinity. */
if (((ix & 0xffff) | u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
{
if (sign)
return -1.0Q;
else
return x;
}
/* NaN. No invalid exception. */
return x;
}
/* expm1(+- 0) = +- 0. */
if ((ix == 0) && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
return x;
/* Overflow. */
if (x > maxlog)
return (HUGE_VALQ * HUGE_VALQ);
/* Minimum value. */
if (x < minarg)
return (4.0/HUGE_VALQ - 1.0Q);
/* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
xx = C1 + C2; /* ln 2. */
px = floorq (0.5 + x / xx);
k = px;
/* remainder times ln 2 */
x -= px * C1;
x -= px * C2;
/* Approximate exp(remainder ln 2). */
px = (((((((P7 * x
+ P6) * x
+ P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x;
qx = (((((((x
+ Q7) * x
+ Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
xx = x * x;
qx = x + (0.5 * xx + xx * px / qx);
/* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
We have qx = exp(remainder ln 2) - 1, so
exp(x) - 1 = 2^k (qx + 1) - 1
= 2^k qx + 2^k - 1. */
px = ldexpq (1.0Q, k);
x = px * qx + (px - 1.0);
return x;
}
|