summaryrefslogtreecommitdiff
path: root/gcc/ada/s-osprim-mingw.adb
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/ada/s-osprim-mingw.adb
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'gcc/ada/s-osprim-mingw.adb')
-rw-r--r--gcc/ada/s-osprim-mingw.adb342
1 files changed, 342 insertions, 0 deletions
diff --git a/gcc/ada/s-osprim-mingw.adb b/gcc/ada/s-osprim-mingw.adb
new file mode 100644
index 000000000..6c05b524f
--- /dev/null
+++ b/gcc/ada/s-osprim-mingw.adb
@@ -0,0 +1,342 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
+-- --
+-- S Y S T E M . O S _ P R I M I T I V E S --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1998-2009, Free Software Foundation, Inc. --
+-- --
+-- GNARL is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. --
+-- --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception, --
+-- version 3.1, as published by the Free Software Foundation. --
+-- --
+-- You should have received a copy of the GNU General Public License and --
+-- a copy of the GCC Runtime Library Exception along with this program; --
+-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
+-- <http://www.gnu.org/licenses/>. --
+-- --
+-- GNARL was developed by the GNARL team at Florida State University. --
+-- Extensive contributions were provided by Ada Core Technologies, Inc. --
+-- --
+------------------------------------------------------------------------------
+
+-- This is the NT version of this package
+
+with System.Win32.Ext;
+
+package body System.OS_Primitives is
+
+ use System.Win32;
+ use System.Win32.Ext;
+
+ ----------------------------------------
+ -- Data for the high resolution clock --
+ ----------------------------------------
+
+ -- Declare some pointers to access multi-word data above. This is needed
+ -- to workaround a limitation in the GNU/Linker auto-import feature used
+ -- to build the GNAT runtime DLLs. In fact the Clock and Monotonic_Clock
+ -- routines are inlined and they are using some multi-word variables.
+ -- GNU/Linker will fail to auto-import those variables when building
+ -- libgnarl.dll. The indirection level introduced here has no measurable
+ -- penalties.
+
+ -- Note that access variables below must not be declared as constant
+ -- otherwise the compiler optimization will remove this indirect access.
+
+ type DA is access all Duration;
+ -- Use to have indirect access to multi-word variables
+
+ type LIA is access all LARGE_INTEGER;
+ -- Use to have indirect access to multi-word variables
+
+ type LLIA is access all Long_Long_Integer;
+ -- Use to have indirect access to multi-word variables
+
+ Tick_Frequency : aliased LARGE_INTEGER;
+ TFA : constant LIA := Tick_Frequency'Access;
+ -- Holds frequency of high-performance counter used by Clock
+ -- Windows NT uses a 1_193_182 Hz counter on PCs.
+
+ Base_Ticks : aliased LARGE_INTEGER;
+ BTA : constant LIA := Base_Ticks'Access;
+ -- Holds the Tick count for the base time
+
+ Base_Monotonic_Ticks : aliased LARGE_INTEGER;
+ BMTA : constant LIA := Base_Monotonic_Ticks'Access;
+ -- Holds the Tick count for the base monotonic time
+
+ Base_Clock : aliased Duration;
+ BCA : constant DA := Base_Clock'Access;
+ -- Holds the current clock for the standard clock's base time
+
+ Base_Monotonic_Clock : aliased Duration;
+ BMCA : constant DA := Base_Monotonic_Clock'Access;
+ -- Holds the current clock for monotonic clock's base time
+
+ Base_Time : aliased Long_Long_Integer;
+ BTiA : constant LLIA := Base_Time'Access;
+ -- Holds the base time used to check for system time change, used with
+ -- the standard clock.
+
+ procedure Get_Base_Time;
+ -- Retrieve the base time and base ticks. These values will be used by
+ -- clock to compute the current time by adding to it a fraction of the
+ -- performance counter. This is for the implementation of a
+ -- high-resolution clock. Note that this routine does not change the base
+ -- monotonic values used by the monotonic clock.
+
+ -----------
+ -- Clock --
+ -----------
+
+ -- This implementation of clock provides high resolution timer values
+ -- using QueryPerformanceCounter. This call return a 64 bits values (based
+ -- on the 8253 16 bits counter). This counter is updated every 1/1_193_182
+ -- times per seconds. The call to QueryPerformanceCounter takes 6
+ -- microsecs to complete.
+
+ function Clock return Duration is
+ Max_Shift : constant Duration := 2.0;
+ Hundreds_Nano_In_Sec : constant Long_Long_Float := 1.0E7;
+ Current_Ticks : aliased LARGE_INTEGER;
+ Elap_Secs_Tick : Duration;
+ Elap_Secs_Sys : Duration;
+ Now : aliased Long_Long_Integer;
+
+ begin
+ if QueryPerformanceCounter (Current_Ticks'Access) = Win32.FALSE then
+ return 0.0;
+ end if;
+
+ GetSystemTimeAsFileTime (Now'Access);
+
+ Elap_Secs_Sys :=
+ Duration (Long_Long_Float (abs (Now - BTiA.all)) /
+ Hundreds_Nano_In_Sec);
+
+ Elap_Secs_Tick :=
+ Duration (Long_Long_Float (Current_Ticks - BTA.all) /
+ Long_Long_Float (TFA.all));
+
+ -- If we have a shift of more than Max_Shift seconds we resynchronize
+ -- the Clock. This is probably due to a manual Clock adjustment, an
+ -- DST adjustment or an NTP synchronisation. And we want to adjust the
+ -- time for this system (non-monotonic) clock.
+
+ if abs (Elap_Secs_Sys - Elap_Secs_Tick) > Max_Shift then
+ Get_Base_Time;
+
+ Elap_Secs_Tick :=
+ Duration (Long_Long_Float (Current_Ticks - BTA.all) /
+ Long_Long_Float (TFA.all));
+ end if;
+
+ return BCA.all + Elap_Secs_Tick;
+ end Clock;
+
+ -------------------
+ -- Get_Base_Time --
+ -------------------
+
+ procedure Get_Base_Time is
+
+ -- The resolution for GetSystemTime is 1 millisecond
+
+ -- The time to get both base times should take less than 1 millisecond.
+ -- Therefore, the elapsed time reported by GetSystemTime between both
+ -- actions should be null.
+
+ epoch_1970 : constant := 16#19D_B1DE_D53E_8000#; -- win32 UTC epoch
+ system_time_ns : constant := 100; -- 100 ns per tick
+ Sec_Unit : constant := 10#1#E9;
+ Max_Elapsed : constant LARGE_INTEGER :=
+ LARGE_INTEGER (Tick_Frequency / 100_000);
+ -- Look for a precision of 0.01 ms
+
+ Loc_Ticks, Ctrl_Ticks : aliased LARGE_INTEGER;
+ Loc_Time, Ctrl_Time : aliased Long_Long_Integer;
+ Elapsed : LARGE_INTEGER;
+ Current_Max : LARGE_INTEGER := LARGE_INTEGER'Last;
+
+ begin
+ -- Here we must be sure that both of these calls are done in a short
+ -- amount of time. Both are base time and should in theory be taken
+ -- at the very same time.
+
+ -- The goal of the following loop is to synchronize the system time
+ -- with the Win32 performance counter by getting a base offset for both.
+ -- Using these offsets it is then possible to compute actual time using
+ -- a performance counter which has a better precision than the Win32
+ -- time API.
+
+ -- Try at most 10th times to reach the best synchronisation (below 1
+ -- millisecond) otherwise the runtime will use the best value reached
+ -- during the runs.
+
+ for K in 1 .. 10 loop
+ if QueryPerformanceCounter (Loc_Ticks'Access) = Win32.FALSE then
+ pragma Assert
+ (Standard.False,
+ "Could not query high performance counter in Clock");
+ null;
+ end if;
+
+ GetSystemTimeAsFileTime (Ctrl_Time'Access);
+
+ -- Scan for clock tick, will take up to 16ms/1ms depending on PC.
+ -- This cannot be an infinite loop or the system hardware is badly
+ -- damaged.
+
+ loop
+ GetSystemTimeAsFileTime (Loc_Time'Access);
+
+ if QueryPerformanceCounter (Ctrl_Ticks'Access) = Win32.FALSE then
+ pragma Assert
+ (Standard.False,
+ "Could not query high performance counter in Clock");
+ null;
+ end if;
+
+ exit when Loc_Time /= Ctrl_Time;
+ Loc_Ticks := Ctrl_Ticks;
+ end loop;
+
+ -- Check elapsed Performance Counter between samples
+ -- to choose the best one.
+
+ Elapsed := Ctrl_Ticks - Loc_Ticks;
+
+ if Elapsed < Current_Max then
+ Base_Time := Loc_Time;
+ Base_Ticks := Loc_Ticks;
+ Current_Max := Elapsed;
+
+ -- Exit the loop when we have reached the expected precision
+
+ exit when Elapsed <= Max_Elapsed;
+ end if;
+ end loop;
+
+ Base_Clock := Duration
+ (Long_Long_Float ((Base_Time - epoch_1970) * system_time_ns) /
+ Long_Long_Float (Sec_Unit));
+ end Get_Base_Time;
+
+ ---------------------
+ -- Monotonic_Clock --
+ ---------------------
+
+ function Monotonic_Clock return Duration is
+ Current_Ticks : aliased LARGE_INTEGER;
+ Elap_Secs_Tick : Duration;
+ begin
+ if QueryPerformanceCounter (Current_Ticks'Access) = Win32.FALSE then
+ return 0.0;
+ else
+ Elap_Secs_Tick :=
+ Duration (Long_Long_Float (Current_Ticks - BMTA.all) /
+ Long_Long_Float (TFA.all));
+ return BMCA.all + Elap_Secs_Tick;
+ end if;
+ end Monotonic_Clock;
+
+ -----------------
+ -- Timed_Delay --
+ -----------------
+
+ procedure Timed_Delay (Time : Duration; Mode : Integer) is
+
+ function Mode_Clock return Duration;
+ pragma Inline (Mode_Clock);
+ -- Return the current clock value using either the monotonic clock or
+ -- standard clock depending on the Mode value.
+
+ ----------------
+ -- Mode_Clock --
+ ----------------
+
+ function Mode_Clock return Duration is
+ begin
+ case Mode is
+ when Absolute_RT =>
+ return Monotonic_Clock;
+ when others =>
+ return Clock;
+ end case;
+ end Mode_Clock;
+
+ -- Local Variables
+
+ Base_Time : constant Duration := Mode_Clock;
+ -- Base_Time is used to detect clock set backward, in this case we
+ -- cannot ensure the delay accuracy.
+
+ Rel_Time : Duration;
+ Abs_Time : Duration;
+ Check_Time : Duration := Base_Time;
+
+ -- Start of processing for Timed Delay
+
+ begin
+ if Mode = Relative then
+ Rel_Time := Time;
+ Abs_Time := Time + Check_Time;
+ else
+ Rel_Time := Time - Check_Time;
+ Abs_Time := Time;
+ end if;
+
+ if Rel_Time > 0.0 then
+ loop
+ Sleep (DWORD (Rel_Time * 1000.0));
+ Check_Time := Mode_Clock;
+
+ exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
+
+ Rel_Time := Abs_Time - Check_Time;
+ end loop;
+ end if;
+ end Timed_Delay;
+
+ ----------------
+ -- Initialize --
+ ----------------
+
+ Initialized : Boolean := False;
+
+ procedure Initialize is
+ begin
+ if Initialized then
+ return;
+ end if;
+
+ Initialized := True;
+
+ -- Get starting time as base
+
+ if QueryPerformanceFrequency (Tick_Frequency'Access) = Win32.FALSE then
+ raise Program_Error with
+ "cannot get high performance counter frequency";
+ end if;
+
+ Get_Base_Time;
+
+ -- Keep base clock and ticks for the monotonic clock. These values
+ -- should never be changed to ensure proper behavior of the monotonic
+ -- clock.
+
+ Base_Monotonic_Clock := Base_Clock;
+ Base_Monotonic_Ticks := Base_Ticks;
+ end Initialize;
+
+end System.OS_Primitives;