diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/alias.c | |
download | cbb-gcc-4.6.4-upstream.tar.bz2 cbb-gcc-4.6.4-upstream.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'gcc/alias.c')
-rw-r--r-- | gcc/alias.c | 2936 |
1 files changed, 2936 insertions, 0 deletions
diff --git a/gcc/alias.c b/gcc/alias.c new file mode 100644 index 000000000..c5ff66487 --- /dev/null +++ b/gcc/alias.c @@ -0,0 +1,2936 @@ +/* Alias analysis for GNU C + Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, + 2007, 2008, 2009, 2010 Free Software Foundation, Inc. + Contributed by John Carr (jfc@mit.edu). + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "rtl.h" +#include "tree.h" +#include "tm_p.h" +#include "function.h" +#include "alias.h" +#include "emit-rtl.h" +#include "regs.h" +#include "hard-reg-set.h" +#include "basic-block.h" +#include "flags.h" +#include "output.h" +#include "diagnostic-core.h" +#include "cselib.h" +#include "splay-tree.h" +#include "ggc.h" +#include "langhooks.h" +#include "timevar.h" +#include "target.h" +#include "cgraph.h" +#include "tree-pass.h" +#include "ipa-type-escape.h" +#include "df.h" +#include "tree-ssa-alias.h" +#include "pointer-set.h" +#include "tree-flow.h" + +/* The aliasing API provided here solves related but different problems: + + Say there exists (in c) + + struct X { + struct Y y1; + struct Z z2; + } x1, *px1, *px2; + + struct Y y2, *py; + struct Z z2, *pz; + + + py = &px1.y1; + px2 = &x1; + + Consider the four questions: + + Can a store to x1 interfere with px2->y1? + Can a store to x1 interfere with px2->z2? + (*px2).z2 + Can a store to x1 change the value pointed to by with py? + Can a store to x1 change the value pointed to by with pz? + + The answer to these questions can be yes, yes, yes, and maybe. + + The first two questions can be answered with a simple examination + of the type system. If structure X contains a field of type Y then + a store thru a pointer to an X can overwrite any field that is + contained (recursively) in an X (unless we know that px1 != px2). + + The last two of the questions can be solved in the same way as the + first two questions but this is too conservative. The observation + is that in some cases analysis we can know if which (if any) fields + are addressed and if those addresses are used in bad ways. This + analysis may be language specific. In C, arbitrary operations may + be applied to pointers. However, there is some indication that + this may be too conservative for some C++ types. + + The pass ipa-type-escape does this analysis for the types whose + instances do not escape across the compilation boundary. + + Historically in GCC, these two problems were combined and a single + data structure was used to represent the solution to these + problems. We now have two similar but different data structures, + The data structure to solve the last two question is similar to the + first, but does not contain have the fields in it whose address are + never taken. For types that do escape the compilation unit, the + data structures will have identical information. +*/ + +/* The alias sets assigned to MEMs assist the back-end in determining + which MEMs can alias which other MEMs. In general, two MEMs in + different alias sets cannot alias each other, with one important + exception. Consider something like: + + struct S { int i; double d; }; + + a store to an `S' can alias something of either type `int' or type + `double'. (However, a store to an `int' cannot alias a `double' + and vice versa.) We indicate this via a tree structure that looks + like: + struct S + / \ + / \ + |/_ _\| + int double + + (The arrows are directed and point downwards.) + In this situation we say the alias set for `struct S' is the + `superset' and that those for `int' and `double' are `subsets'. + + To see whether two alias sets can point to the same memory, we must + see if either alias set is a subset of the other. We need not trace + past immediate descendants, however, since we propagate all + grandchildren up one level. + + Alias set zero is implicitly a superset of all other alias sets. + However, this is no actual entry for alias set zero. It is an + error to attempt to explicitly construct a subset of zero. */ + +struct GTY(()) alias_set_entry_d { + /* The alias set number, as stored in MEM_ALIAS_SET. */ + alias_set_type alias_set; + + /* Nonzero if would have a child of zero: this effectively makes this + alias set the same as alias set zero. */ + int has_zero_child; + + /* The children of the alias set. These are not just the immediate + children, but, in fact, all descendants. So, if we have: + + struct T { struct S s; float f; } + + continuing our example above, the children here will be all of + `int', `double', `float', and `struct S'. */ + splay_tree GTY((param1_is (int), param2_is (int))) children; +}; +typedef struct alias_set_entry_d *alias_set_entry; + +static int rtx_equal_for_memref_p (const_rtx, const_rtx); +static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT); +static void record_set (rtx, const_rtx, void *); +static int base_alias_check (rtx, rtx, enum machine_mode, + enum machine_mode); +static rtx find_base_value (rtx); +static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx); +static int insert_subset_children (splay_tree_node, void*); +static alias_set_entry get_alias_set_entry (alias_set_type); +static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx, + bool (*) (const_rtx, bool)); +static int aliases_everything_p (const_rtx); +static bool nonoverlapping_component_refs_p (const_tree, const_tree); +static tree decl_for_component_ref (tree); +static rtx adjust_offset_for_component_ref (tree, rtx); +static int write_dependence_p (const_rtx, const_rtx, int); + +static void memory_modified_1 (rtx, const_rtx, void *); + +/* Set up all info needed to perform alias analysis on memory references. */ + +/* Returns the size in bytes of the mode of X. */ +#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X))) + +/* Returns nonzero if MEM1 and MEM2 do not alias because they are in + different alias sets. We ignore alias sets in functions making use + of variable arguments because the va_arg macros on some systems are + not legal ANSI C. */ +#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \ + mems_in_disjoint_alias_sets_p (MEM1, MEM2) + +/* Cap the number of passes we make over the insns propagating alias + information through set chains. 10 is a completely arbitrary choice. */ +#define MAX_ALIAS_LOOP_PASSES 10 + +/* reg_base_value[N] gives an address to which register N is related. + If all sets after the first add or subtract to the current value + or otherwise modify it so it does not point to a different top level + object, reg_base_value[N] is equal to the address part of the source + of the first set. + + A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS + expressions represent certain special values: function arguments and + the stack, frame, and argument pointers. + + The contents of an ADDRESS is not normally used, the mode of the + ADDRESS determines whether the ADDRESS is a function argument or some + other special value. Pointer equality, not rtx_equal_p, determines whether + two ADDRESS expressions refer to the same base address. + + The only use of the contents of an ADDRESS is for determining if the + current function performs nonlocal memory memory references for the + purposes of marking the function as a constant function. */ + +static GTY(()) VEC(rtx,gc) *reg_base_value; +static rtx *new_reg_base_value; + +/* We preserve the copy of old array around to avoid amount of garbage + produced. About 8% of garbage produced were attributed to this + array. */ +static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value; + +#define static_reg_base_value \ + (this_target_rtl->x_static_reg_base_value) + +#define REG_BASE_VALUE(X) \ + (REGNO (X) < VEC_length (rtx, reg_base_value) \ + ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0) + +/* Vector indexed by N giving the initial (unchanging) value known for + pseudo-register N. This array is initialized in init_alias_analysis, + and does not change until end_alias_analysis is called. */ +static GTY((length("reg_known_value_size"))) rtx *reg_known_value; + +/* Indicates number of valid entries in reg_known_value. */ +static GTY(()) unsigned int reg_known_value_size; + +/* Vector recording for each reg_known_value whether it is due to a + REG_EQUIV note. Future passes (viz., reload) may replace the + pseudo with the equivalent expression and so we account for the + dependences that would be introduced if that happens. + + The REG_EQUIV notes created in assign_parms may mention the arg + pointer, and there are explicit insns in the RTL that modify the + arg pointer. Thus we must ensure that such insns don't get + scheduled across each other because that would invalidate the + REG_EQUIV notes. One could argue that the REG_EQUIV notes are + wrong, but solving the problem in the scheduler will likely give + better code, so we do it here. */ +static bool *reg_known_equiv_p; + +/* True when scanning insns from the start of the rtl to the + NOTE_INSN_FUNCTION_BEG note. */ +static bool copying_arguments; + +DEF_VEC_P(alias_set_entry); +DEF_VEC_ALLOC_P(alias_set_entry,gc); + +/* The splay-tree used to store the various alias set entries. */ +static GTY (()) VEC(alias_set_entry,gc) *alias_sets; + +/* Build a decomposed reference object for querying the alias-oracle + from the MEM rtx and store it in *REF. + Returns false if MEM is not suitable for the alias-oracle. */ + +static bool +ao_ref_from_mem (ao_ref *ref, const_rtx mem) +{ + tree expr = MEM_EXPR (mem); + tree base; + + if (!expr) + return false; + + ao_ref_init (ref, expr); + + /* Get the base of the reference and see if we have to reject or + adjust it. */ + base = ao_ref_base (ref); + if (base == NULL_TREE) + return false; + + /* The tree oracle doesn't like to have these. */ + if (TREE_CODE (base) == FUNCTION_DECL + || TREE_CODE (base) == LABEL_DECL) + return false; + + /* If this is a pointer dereference of a non-SSA_NAME punt. + ??? We could replace it with a pointer to anything. */ + if ((INDIRECT_REF_P (base) + || TREE_CODE (base) == MEM_REF) + && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME) + return false; + if (TREE_CODE (base) == TARGET_MEM_REF + && TMR_BASE (base) + && TREE_CODE (TMR_BASE (base)) != SSA_NAME) + return false; + + /* If this is a reference based on a partitioned decl replace the + base with an INDIRECT_REF of the pointer representative we + created during stack slot partitioning. */ + if (TREE_CODE (base) == VAR_DECL + && ! TREE_STATIC (base) + && cfun->gimple_df->decls_to_pointers != NULL) + { + void *namep; + namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base); + if (namep) + ref->base = build_simple_mem_ref (*(tree *)namep); + } + else if (TREE_CODE (base) == TARGET_MEM_REF + && TREE_CODE (TMR_BASE (base)) == ADDR_EXPR + && TREE_CODE (TREE_OPERAND (TMR_BASE (base), 0)) == VAR_DECL + && ! TREE_STATIC (TREE_OPERAND (TMR_BASE (base), 0)) + && cfun->gimple_df->decls_to_pointers != NULL) + { + void *namep; + namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, + TREE_OPERAND (TMR_BASE (base), 0)); + if (namep) + ref->base = build_simple_mem_ref (*(tree *)namep); + } + + ref->ref_alias_set = MEM_ALIAS_SET (mem); + + /* If MEM_OFFSET or MEM_SIZE are NULL we have to punt. + Keep points-to related information though. */ + if (!MEM_OFFSET (mem) + || !MEM_SIZE (mem)) + { + ref->ref = NULL_TREE; + ref->offset = 0; + ref->size = -1; + ref->max_size = -1; + return true; + } + + /* If the base decl is a parameter we can have negative MEM_OFFSET in + case of promoted subregs on bigendian targets. Trust the MEM_EXPR + here. */ + if (INTVAL (MEM_OFFSET (mem)) < 0 + && ((INTVAL (MEM_SIZE (mem)) + INTVAL (MEM_OFFSET (mem))) + * BITS_PER_UNIT) == ref->size) + return true; + + ref->offset += INTVAL (MEM_OFFSET (mem)) * BITS_PER_UNIT; + ref->size = INTVAL (MEM_SIZE (mem)) * BITS_PER_UNIT; + + /* The MEM may extend into adjacent fields, so adjust max_size if + necessary. */ + if (ref->max_size != -1 + && ref->size > ref->max_size) + ref->max_size = ref->size; + + /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of + the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */ + if (MEM_EXPR (mem) != get_spill_slot_decl (false) + && (ref->offset < 0 + || (DECL_P (ref->base) + && (!host_integerp (DECL_SIZE (ref->base), 1) + || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base))) + < (unsigned HOST_WIDE_INT)(ref->offset + ref->size)))))) + return false; + + return true; +} + +/* Query the alias-oracle on whether the two memory rtx X and MEM may + alias. If TBAA_P is set also apply TBAA. Returns true if the + two rtxen may alias, false otherwise. */ + +static bool +rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p) +{ + ao_ref ref1, ref2; + + if (!ao_ref_from_mem (&ref1, x) + || !ao_ref_from_mem (&ref2, mem)) + return true; + + return refs_may_alias_p_1 (&ref1, &ref2, + tbaa_p + && MEM_ALIAS_SET (x) != 0 + && MEM_ALIAS_SET (mem) != 0); +} + +/* Returns a pointer to the alias set entry for ALIAS_SET, if there is + such an entry, or NULL otherwise. */ + +static inline alias_set_entry +get_alias_set_entry (alias_set_type alias_set) +{ + return VEC_index (alias_set_entry, alias_sets, alias_set); +} + +/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that + the two MEMs cannot alias each other. */ + +static inline int +mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2) +{ +/* Perform a basic sanity check. Namely, that there are no alias sets + if we're not using strict aliasing. This helps to catch bugs + whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or + where a MEM is allocated in some way other than by the use of + gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to + use alias sets to indicate that spilled registers cannot alias each + other, we might need to remove this check. */ + gcc_assert (flag_strict_aliasing + || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2))); + + return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2)); +} + +/* Insert the NODE into the splay tree given by DATA. Used by + record_alias_subset via splay_tree_foreach. */ + +static int +insert_subset_children (splay_tree_node node, void *data) +{ + splay_tree_insert ((splay_tree) data, node->key, node->value); + + return 0; +} + +/* Return true if the first alias set is a subset of the second. */ + +bool +alias_set_subset_of (alias_set_type set1, alias_set_type set2) +{ + alias_set_entry ase; + + /* Everything is a subset of the "aliases everything" set. */ + if (set2 == 0) + return true; + + /* Otherwise, check if set1 is a subset of set2. */ + ase = get_alias_set_entry (set2); + if (ase != 0 + && (ase->has_zero_child + || splay_tree_lookup (ase->children, + (splay_tree_key) set1))) + return true; + return false; +} + +/* Return 1 if the two specified alias sets may conflict. */ + +int +alias_sets_conflict_p (alias_set_type set1, alias_set_type set2) +{ + alias_set_entry ase; + + /* The easy case. */ + if (alias_sets_must_conflict_p (set1, set2)) + return 1; + + /* See if the first alias set is a subset of the second. */ + ase = get_alias_set_entry (set1); + if (ase != 0 + && (ase->has_zero_child + || splay_tree_lookup (ase->children, + (splay_tree_key) set2))) + return 1; + + /* Now do the same, but with the alias sets reversed. */ + ase = get_alias_set_entry (set2); + if (ase != 0 + && (ase->has_zero_child + || splay_tree_lookup (ase->children, + (splay_tree_key) set1))) + return 1; + + /* The two alias sets are distinct and neither one is the + child of the other. Therefore, they cannot conflict. */ + return 0; +} + +/* Return 1 if the two specified alias sets will always conflict. */ + +int +alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2) +{ + if (set1 == 0 || set2 == 0 || set1 == set2) + return 1; + + return 0; +} + +/* Return 1 if any MEM object of type T1 will always conflict (using the + dependency routines in this file) with any MEM object of type T2. + This is used when allocating temporary storage. If T1 and/or T2 are + NULL_TREE, it means we know nothing about the storage. */ + +int +objects_must_conflict_p (tree t1, tree t2) +{ + alias_set_type set1, set2; + + /* If neither has a type specified, we don't know if they'll conflict + because we may be using them to store objects of various types, for + example the argument and local variables areas of inlined functions. */ + if (t1 == 0 && t2 == 0) + return 0; + + /* If they are the same type, they must conflict. */ + if (t1 == t2 + /* Likewise if both are volatile. */ + || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))) + return 1; + + set1 = t1 ? get_alias_set (t1) : 0; + set2 = t2 ? get_alias_set (t2) : 0; + + /* We can't use alias_sets_conflict_p because we must make sure + that every subtype of t1 will conflict with every subtype of + t2 for which a pair of subobjects of these respective subtypes + overlaps on the stack. */ + return alias_sets_must_conflict_p (set1, set2); +} + +/* Return true if all nested component references handled by + get_inner_reference in T are such that we should use the alias set + provided by the object at the heart of T. + + This is true for non-addressable components (which don't have their + own alias set), as well as components of objects in alias set zero. + This later point is a special case wherein we wish to override the + alias set used by the component, but we don't have per-FIELD_DECL + assignable alias sets. */ + +bool +component_uses_parent_alias_set (const_tree t) +{ + while (1) + { + /* If we're at the end, it vacuously uses its own alias set. */ + if (!handled_component_p (t)) + return false; + + switch (TREE_CODE (t)) + { + case COMPONENT_REF: + if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))) + return true; + break; + + case ARRAY_REF: + case ARRAY_RANGE_REF: + if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))) + return true; + break; + + case REALPART_EXPR: + case IMAGPART_EXPR: + break; + + default: + /* Bitfields and casts are never addressable. */ + return true; + } + + t = TREE_OPERAND (t, 0); + if (get_alias_set (TREE_TYPE (t)) == 0) + return true; + } +} + +/* Return the alias set for the memory pointed to by T, which may be + either a type or an expression. Return -1 if there is nothing + special about dereferencing T. */ + +static alias_set_type +get_deref_alias_set_1 (tree t) +{ + /* If we're not doing any alias analysis, just assume everything + aliases everything else. */ + if (!flag_strict_aliasing) + return 0; + + /* All we care about is the type. */ + if (! TYPE_P (t)) + t = TREE_TYPE (t); + + /* If we have an INDIRECT_REF via a void pointer, we don't + know anything about what that might alias. Likewise if the + pointer is marked that way. */ + if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE + || TYPE_REF_CAN_ALIAS_ALL (t)) + return 0; + + return -1; +} + +/* Return the alias set for the memory pointed to by T, which may be + either a type or an expression. */ + +alias_set_type +get_deref_alias_set (tree t) +{ + alias_set_type set = get_deref_alias_set_1 (t); + + /* Fall back to the alias-set of the pointed-to type. */ + if (set == -1) + { + if (! TYPE_P (t)) + t = TREE_TYPE (t); + set = get_alias_set (TREE_TYPE (t)); + } + + return set; +} + +/* Return the alias set for T, which may be either a type or an + expression. Call language-specific routine for help, if needed. */ + +alias_set_type +get_alias_set (tree t) +{ + alias_set_type set; + + /* If we're not doing any alias analysis, just assume everything + aliases everything else. Also return 0 if this or its type is + an error. */ + if (! flag_strict_aliasing || t == error_mark_node + || (! TYPE_P (t) + && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node))) + return 0; + + /* We can be passed either an expression or a type. This and the + language-specific routine may make mutually-recursive calls to each other + to figure out what to do. At each juncture, we see if this is a tree + that the language may need to handle specially. First handle things that + aren't types. */ + if (! TYPE_P (t)) + { + tree inner; + + /* Give the language a chance to do something with this tree + before we look at it. */ + STRIP_NOPS (t); + set = lang_hooks.get_alias_set (t); + if (set != -1) + return set; + + /* Get the base object of the reference. */ + inner = t; + while (handled_component_p (inner)) + { + /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use + the type of any component references that wrap it to + determine the alias-set. */ + if (TREE_CODE (inner) == VIEW_CONVERT_EXPR) + t = TREE_OPERAND (inner, 0); + inner = TREE_OPERAND (inner, 0); + } + + /* Handle pointer dereferences here, they can override the + alias-set. */ + if (INDIRECT_REF_P (inner)) + { + set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0)); + if (set != -1) + return set; + } + else if (TREE_CODE (inner) == TARGET_MEM_REF) + return get_deref_alias_set (TMR_OFFSET (inner)); + else if (TREE_CODE (inner) == MEM_REF) + { + set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1)); + if (set != -1) + return set; + } + + /* If the innermost reference is a MEM_REF that has a + conversion embedded treat it like a VIEW_CONVERT_EXPR above, + using the memory access type for determining the alias-set. */ + if (TREE_CODE (inner) == MEM_REF + && TYPE_MAIN_VARIANT (TREE_TYPE (inner)) + != TYPE_MAIN_VARIANT + (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))) + return get_deref_alias_set (TREE_OPERAND (inner, 1)); + + /* Otherwise, pick up the outermost object that we could have a pointer + to, processing conversions as above. */ + while (component_uses_parent_alias_set (t)) + { + t = TREE_OPERAND (t, 0); + STRIP_NOPS (t); + } + + /* If we've already determined the alias set for a decl, just return + it. This is necessary for C++ anonymous unions, whose component + variables don't look like union members (boo!). */ + if (TREE_CODE (t) == VAR_DECL + && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t))) + return MEM_ALIAS_SET (DECL_RTL (t)); + + /* Now all we care about is the type. */ + t = TREE_TYPE (t); + } + + /* Variant qualifiers don't affect the alias set, so get the main + variant. */ + t = TYPE_MAIN_VARIANT (t); + + /* Always use the canonical type as well. If this is a type that + requires structural comparisons to identify compatible types + use alias set zero. */ + if (TYPE_STRUCTURAL_EQUALITY_P (t)) + { + /* Allow the language to specify another alias set for this + type. */ + set = lang_hooks.get_alias_set (t); + if (set != -1) + return set; + return 0; + } + + t = TYPE_CANONICAL (t); + + /* Canonical types shouldn't form a tree nor should the canonical + type require structural equality checks. */ + gcc_checking_assert (TYPE_CANONICAL (t) == t + && !TYPE_STRUCTURAL_EQUALITY_P (t)); + + /* If this is a type with a known alias set, return it. */ + if (TYPE_ALIAS_SET_KNOWN_P (t)) + return TYPE_ALIAS_SET (t); + + /* We don't want to set TYPE_ALIAS_SET for incomplete types. */ + if (!COMPLETE_TYPE_P (t)) + { + /* For arrays with unknown size the conservative answer is the + alias set of the element type. */ + if (TREE_CODE (t) == ARRAY_TYPE) + return get_alias_set (TREE_TYPE (t)); + + /* But return zero as a conservative answer for incomplete types. */ + return 0; + } + + /* See if the language has special handling for this type. */ + set = lang_hooks.get_alias_set (t); + if (set != -1) + return set; + + /* There are no objects of FUNCTION_TYPE, so there's no point in + using up an alias set for them. (There are, of course, pointers + and references to functions, but that's different.) */ + else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE) + set = 0; + + /* Unless the language specifies otherwise, let vector types alias + their components. This avoids some nasty type punning issues in + normal usage. And indeed lets vectors be treated more like an + array slice. */ + else if (TREE_CODE (t) == VECTOR_TYPE) + set = get_alias_set (TREE_TYPE (t)); + + /* Unless the language specifies otherwise, treat array types the + same as their components. This avoids the asymmetry we get + through recording the components. Consider accessing a + character(kind=1) through a reference to a character(kind=1)[1:1]. + Or consider if we want to assign integer(kind=4)[0:D.1387] and + integer(kind=4)[4] the same alias set or not. + Just be pragmatic here and make sure the array and its element + type get the same alias set assigned. */ + else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t)) + set = get_alias_set (TREE_TYPE (t)); + + /* From the former common C and C++ langhook implementation: + + Unfortunately, there is no canonical form of a pointer type. + In particular, if we have `typedef int I', then `int *', and + `I *' are different types. So, we have to pick a canonical + representative. We do this below. + + Technically, this approach is actually more conservative that + it needs to be. In particular, `const int *' and `int *' + should be in different alias sets, according to the C and C++ + standard, since their types are not the same, and so, + technically, an `int **' and `const int **' cannot point at + the same thing. + + But, the standard is wrong. In particular, this code is + legal C++: + + int *ip; + int **ipp = &ip; + const int* const* cipp = ipp; + And, it doesn't make sense for that to be legal unless you + can dereference IPP and CIPP. So, we ignore cv-qualifiers on + the pointed-to types. This issue has been reported to the + C++ committee. + + In addition to the above canonicalization issue, with LTO + we should also canonicalize `T (*)[]' to `T *' avoiding + alias issues with pointer-to element types and pointer-to + array types. + + Likewise we need to deal with the situation of incomplete + pointed-to types and make `*(struct X **)&a' and + `*(struct X {} **)&a' alias. Otherwise we will have to + guarantee that all pointer-to incomplete type variants + will be replaced by pointer-to complete type variants if + they are available. + + With LTO the convenient situation of using `void *' to + access and store any pointer type will also become + more apparent (and `void *' is just another pointer-to + incomplete type). Assigning alias-set zero to `void *' + and all pointer-to incomplete types is a not appealing + solution. Assigning an effective alias-set zero only + affecting pointers might be - by recording proper subset + relationships of all pointer alias-sets. + + Pointer-to function types are another grey area which + needs caution. Globbing them all into one alias-set + or the above effective zero set would work. + + For now just assign the same alias-set to all pointers. + That's simple and avoids all the above problems. */ + else if (POINTER_TYPE_P (t) + && t != ptr_type_node) + return get_alias_set (ptr_type_node); + + /* Otherwise make a new alias set for this type. */ + else + set = new_alias_set (); + + TYPE_ALIAS_SET (t) = set; + + /* If this is an aggregate type or a complex type, we must record any + component aliasing information. */ + if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE) + record_component_aliases (t); + + return set; +} + +/* Return a brand-new alias set. */ + +alias_set_type +new_alias_set (void) +{ + if (flag_strict_aliasing) + { + if (alias_sets == 0) + VEC_safe_push (alias_set_entry, gc, alias_sets, 0); + VEC_safe_push (alias_set_entry, gc, alias_sets, 0); + return VEC_length (alias_set_entry, alias_sets) - 1; + } + else + return 0; +} + +/* Indicate that things in SUBSET can alias things in SUPERSET, but that + not everything that aliases SUPERSET also aliases SUBSET. For example, + in C, a store to an `int' can alias a load of a structure containing an + `int', and vice versa. But it can't alias a load of a 'double' member + of the same structure. Here, the structure would be the SUPERSET and + `int' the SUBSET. This relationship is also described in the comment at + the beginning of this file. + + This function should be called only once per SUPERSET/SUBSET pair. + + It is illegal for SUPERSET to be zero; everything is implicitly a + subset of alias set zero. */ + +void +record_alias_subset (alias_set_type superset, alias_set_type subset) +{ + alias_set_entry superset_entry; + alias_set_entry subset_entry; + + /* It is possible in complex type situations for both sets to be the same, + in which case we can ignore this operation. */ + if (superset == subset) + return; + + gcc_assert (superset); + + superset_entry = get_alias_set_entry (superset); + if (superset_entry == 0) + { + /* Create an entry for the SUPERSET, so that we have a place to + attach the SUBSET. */ + superset_entry = ggc_alloc_cleared_alias_set_entry_d (); + superset_entry->alias_set = superset; + superset_entry->children + = splay_tree_new_ggc (splay_tree_compare_ints, + ggc_alloc_splay_tree_scalar_scalar_splay_tree_s, + ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s); + superset_entry->has_zero_child = 0; + VEC_replace (alias_set_entry, alias_sets, superset, superset_entry); + } + + if (subset == 0) + superset_entry->has_zero_child = 1; + else + { + subset_entry = get_alias_set_entry (subset); + /* If there is an entry for the subset, enter all of its children + (if they are not already present) as children of the SUPERSET. */ + if (subset_entry) + { + if (subset_entry->has_zero_child) + superset_entry->has_zero_child = 1; + + splay_tree_foreach (subset_entry->children, insert_subset_children, + superset_entry->children); + } + + /* Enter the SUBSET itself as a child of the SUPERSET. */ + splay_tree_insert (superset_entry->children, + (splay_tree_key) subset, 0); + } +} + +/* Record that component types of TYPE, if any, are part of that type for + aliasing purposes. For record types, we only record component types + for fields that are not marked non-addressable. For array types, we + only record the component type if it is not marked non-aliased. */ + +void +record_component_aliases (tree type) +{ + alias_set_type superset = get_alias_set (type); + tree field; + + if (superset == 0) + return; + + switch (TREE_CODE (type)) + { + case RECORD_TYPE: + case UNION_TYPE: + case QUAL_UNION_TYPE: + /* Recursively record aliases for the base classes, if there are any. */ + if (TYPE_BINFO (type)) + { + int i; + tree binfo, base_binfo; + + for (binfo = TYPE_BINFO (type), i = 0; + BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) + record_alias_subset (superset, + get_alias_set (BINFO_TYPE (base_binfo))); + } + for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field)) + if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field)) + record_alias_subset (superset, get_alias_set (TREE_TYPE (field))); + break; + + case COMPLEX_TYPE: + record_alias_subset (superset, get_alias_set (TREE_TYPE (type))); + break; + + /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their + element type. */ + + default: + break; + } +} + +/* Allocate an alias set for use in storing and reading from the varargs + spill area. */ + +static GTY(()) alias_set_type varargs_set = -1; + +alias_set_type +get_varargs_alias_set (void) +{ +#if 1 + /* We now lower VA_ARG_EXPR, and there's currently no way to attach the + varargs alias set to an INDIRECT_REF (FIXME!), so we can't + consistently use the varargs alias set for loads from the varargs + area. So don't use it anywhere. */ + return 0; +#else + if (varargs_set == -1) + varargs_set = new_alias_set (); + + return varargs_set; +#endif +} + +/* Likewise, but used for the fixed portions of the frame, e.g., register + save areas. */ + +static GTY(()) alias_set_type frame_set = -1; + +alias_set_type +get_frame_alias_set (void) +{ + if (frame_set == -1) + frame_set = new_alias_set (); + + return frame_set; +} + +/* Inside SRC, the source of a SET, find a base address. */ + +static rtx +find_base_value (rtx src) +{ + unsigned int regno; + +#if defined (FIND_BASE_TERM) + /* Try machine-dependent ways to find the base term. */ + src = FIND_BASE_TERM (src); +#endif + + switch (GET_CODE (src)) + { + case SYMBOL_REF: + case LABEL_REF: + return src; + + case REG: + regno = REGNO (src); + /* At the start of a function, argument registers have known base + values which may be lost later. Returning an ADDRESS + expression here allows optimization based on argument values + even when the argument registers are used for other purposes. */ + if (regno < FIRST_PSEUDO_REGISTER && copying_arguments) + return new_reg_base_value[regno]; + + /* If a pseudo has a known base value, return it. Do not do this + for non-fixed hard regs since it can result in a circular + dependency chain for registers which have values at function entry. + + The test above is not sufficient because the scheduler may move + a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */ + if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno]) + && regno < VEC_length (rtx, reg_base_value)) + { + /* If we're inside init_alias_analysis, use new_reg_base_value + to reduce the number of relaxation iterations. */ + if (new_reg_base_value && new_reg_base_value[regno] + && DF_REG_DEF_COUNT (regno) == 1) + return new_reg_base_value[regno]; + + if (VEC_index (rtx, reg_base_value, regno)) + return VEC_index (rtx, reg_base_value, regno); + } + + return 0; + + case MEM: + /* Check for an argument passed in memory. Only record in the + copying-arguments block; it is too hard to track changes + otherwise. */ + if (copying_arguments + && (XEXP (src, 0) == arg_pointer_rtx + || (GET_CODE (XEXP (src, 0)) == PLUS + && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx))) + return gen_rtx_ADDRESS (VOIDmode, src); + return 0; + + case CONST: + src = XEXP (src, 0); + if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS) + break; + + /* ... fall through ... */ + + case PLUS: + case MINUS: + { + rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1); + + /* If either operand is a REG that is a known pointer, then it + is the base. */ + if (REG_P (src_0) && REG_POINTER (src_0)) + return find_base_value (src_0); + if (REG_P (src_1) && REG_POINTER (src_1)) + return find_base_value (src_1); + + /* If either operand is a REG, then see if we already have + a known value for it. */ + if (REG_P (src_0)) + { + temp = find_base_value (src_0); + if (temp != 0) + src_0 = temp; + } + + if (REG_P (src_1)) + { + temp = find_base_value (src_1); + if (temp!= 0) + src_1 = temp; + } + + /* If either base is named object or a special address + (like an argument or stack reference), then use it for the + base term. */ + if (src_0 != 0 + && (GET_CODE (src_0) == SYMBOL_REF + || GET_CODE (src_0) == LABEL_REF + || (GET_CODE (src_0) == ADDRESS + && GET_MODE (src_0) != VOIDmode))) + return src_0; + + if (src_1 != 0 + && (GET_CODE (src_1) == SYMBOL_REF + || GET_CODE (src_1) == LABEL_REF + || (GET_CODE (src_1) == ADDRESS + && GET_MODE (src_1) != VOIDmode))) + return src_1; + + /* Guess which operand is the base address: + If either operand is a symbol, then it is the base. If + either operand is a CONST_INT, then the other is the base. */ + if (CONST_INT_P (src_1) || CONSTANT_P (src_0)) + return find_base_value (src_0); + else if (CONST_INT_P (src_0) || CONSTANT_P (src_1)) + return find_base_value (src_1); + + return 0; + } + + case LO_SUM: + /* The standard form is (lo_sum reg sym) so look only at the + second operand. */ + return find_base_value (XEXP (src, 1)); + + case AND: + /* If the second operand is constant set the base + address to the first operand. */ + if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0) + return find_base_value (XEXP (src, 0)); + return 0; + + case TRUNCATE: + /* As we do not know which address space the pointer is refering to, we can + handle this only if the target does not support different pointer or + address modes depending on the address space. */ + if (!target_default_pointer_address_modes_p ()) + break; + if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode)) + break; + /* Fall through. */ + case HIGH: + case PRE_INC: + case PRE_DEC: + case POST_INC: + case POST_DEC: + case PRE_MODIFY: + case POST_MODIFY: + return find_base_value (XEXP (src, 0)); + + case ZERO_EXTEND: + case SIGN_EXTEND: /* used for NT/Alpha pointers */ + /* As we do not know which address space the pointer is refering to, we can + handle this only if the target does not support different pointer or + address modes depending on the address space. */ + if (!target_default_pointer_address_modes_p ()) + break; + + { + rtx temp = find_base_value (XEXP (src, 0)); + + if (temp != 0 && CONSTANT_P (temp)) + temp = convert_memory_address (Pmode, temp); + + return temp; + } + + default: + break; + } + + return 0; +} + +/* Called from init_alias_analysis indirectly through note_stores. */ + +/* While scanning insns to find base values, reg_seen[N] is nonzero if + register N has been set in this function. */ +static char *reg_seen; + +/* Addresses which are known not to alias anything else are identified + by a unique integer. */ +static int unique_id; + +static void +record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED) +{ + unsigned regno; + rtx src; + int n; + + if (!REG_P (dest)) + return; + + regno = REGNO (dest); + + gcc_checking_assert (regno < VEC_length (rtx, reg_base_value)); + + /* If this spans multiple hard registers, then we must indicate that every + register has an unusable value. */ + if (regno < FIRST_PSEUDO_REGISTER) + n = hard_regno_nregs[regno][GET_MODE (dest)]; + else + n = 1; + if (n != 1) + { + while (--n >= 0) + { + reg_seen[regno + n] = 1; + new_reg_base_value[regno + n] = 0; + } + return; + } + + if (set) + { + /* A CLOBBER wipes out any old value but does not prevent a previously + unset register from acquiring a base address (i.e. reg_seen is not + set). */ + if (GET_CODE (set) == CLOBBER) + { + new_reg_base_value[regno] = 0; + return; + } + src = SET_SRC (set); + } + else + { + if (reg_seen[regno]) + { + new_reg_base_value[regno] = 0; + return; + } + reg_seen[regno] = 1; + new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode, + GEN_INT (unique_id++)); + return; + } + + /* If this is not the first set of REGNO, see whether the new value + is related to the old one. There are two cases of interest: + + (1) The register might be assigned an entirely new value + that has the same base term as the original set. + + (2) The set might be a simple self-modification that + cannot change REGNO's base value. + + If neither case holds, reject the original base value as invalid. + Note that the following situation is not detected: + + extern int x, y; int *p = &x; p += (&y-&x); + + ANSI C does not allow computing the difference of addresses + of distinct top level objects. */ + if (new_reg_base_value[regno] != 0 + && find_base_value (src) != new_reg_base_value[regno]) + switch (GET_CODE (src)) + { + case LO_SUM: + case MINUS: + if (XEXP (src, 0) != dest && XEXP (src, 1) != dest) + new_reg_base_value[regno] = 0; + break; + case PLUS: + /* If the value we add in the PLUS is also a valid base value, + this might be the actual base value, and the original value + an index. */ + { + rtx other = NULL_RTX; + + if (XEXP (src, 0) == dest) + other = XEXP (src, 1); + else if (XEXP (src, 1) == dest) + other = XEXP (src, 0); + + if (! other || find_base_value (other)) + new_reg_base_value[regno] = 0; + break; + } + case AND: + if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1))) + new_reg_base_value[regno] = 0; + break; + default: + new_reg_base_value[regno] = 0; + break; + } + /* If this is the first set of a register, record the value. */ + else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno]) + && ! reg_seen[regno] && new_reg_base_value[regno] == 0) + new_reg_base_value[regno] = find_base_value (src); + + reg_seen[regno] = 1; +} + +/* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid + using hard registers with non-null REG_BASE_VALUE for renaming. */ +rtx +get_reg_base_value (unsigned int regno) +{ + return VEC_index (rtx, reg_base_value, regno); +} + +/* If a value is known for REGNO, return it. */ + +rtx +get_reg_known_value (unsigned int regno) +{ + if (regno >= FIRST_PSEUDO_REGISTER) + { + regno -= FIRST_PSEUDO_REGISTER; + if (regno < reg_known_value_size) + return reg_known_value[regno]; + } + return NULL; +} + +/* Set it. */ + +static void +set_reg_known_value (unsigned int regno, rtx val) +{ + if (regno >= FIRST_PSEUDO_REGISTER) + { + regno -= FIRST_PSEUDO_REGISTER; + if (regno < reg_known_value_size) + reg_known_value[regno] = val; + } +} + +/* Similarly for reg_known_equiv_p. */ + +bool +get_reg_known_equiv_p (unsigned int regno) +{ + if (regno >= FIRST_PSEUDO_REGISTER) + { + regno -= FIRST_PSEUDO_REGISTER; + if (regno < reg_known_value_size) + return reg_known_equiv_p[regno]; + } + return false; +} + +static void +set_reg_known_equiv_p (unsigned int regno, bool val) +{ + if (regno >= FIRST_PSEUDO_REGISTER) + { + regno -= FIRST_PSEUDO_REGISTER; + if (regno < reg_known_value_size) + reg_known_equiv_p[regno] = val; + } +} + + +/* Returns a canonical version of X, from the point of view alias + analysis. (For example, if X is a MEM whose address is a register, + and the register has a known value (say a SYMBOL_REF), then a MEM + whose address is the SYMBOL_REF is returned.) */ + +rtx +canon_rtx (rtx x) +{ + /* Recursively look for equivalences. */ + if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER) + { + rtx t = get_reg_known_value (REGNO (x)); + if (t == x) + return x; + if (t) + return canon_rtx (t); + } + + if (GET_CODE (x) == PLUS) + { + rtx x0 = canon_rtx (XEXP (x, 0)); + rtx x1 = canon_rtx (XEXP (x, 1)); + + if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1)) + { + if (CONST_INT_P (x0)) + return plus_constant (x1, INTVAL (x0)); + else if (CONST_INT_P (x1)) + return plus_constant (x0, INTVAL (x1)); + return gen_rtx_PLUS (GET_MODE (x), x0, x1); + } + } + + /* This gives us much better alias analysis when called from + the loop optimizer. Note we want to leave the original + MEM alone, but need to return the canonicalized MEM with + all the flags with their original values. */ + else if (MEM_P (x)) + x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0))); + + return x; +} + +/* Return 1 if X and Y are identical-looking rtx's. + Expect that X and Y has been already canonicalized. + + We use the data in reg_known_value above to see if two registers with + different numbers are, in fact, equivalent. */ + +static int +rtx_equal_for_memref_p (const_rtx x, const_rtx y) +{ + int i; + int j; + enum rtx_code code; + const char *fmt; + + if (x == 0 && y == 0) + return 1; + if (x == 0 || y == 0) + return 0; + + if (x == y) + return 1; + + code = GET_CODE (x); + /* Rtx's of different codes cannot be equal. */ + if (code != GET_CODE (y)) + return 0; + + /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. + (REG:SI x) and (REG:HI x) are NOT equivalent. */ + + if (GET_MODE (x) != GET_MODE (y)) + return 0; + + /* Some RTL can be compared without a recursive examination. */ + switch (code) + { + case REG: + return REGNO (x) == REGNO (y); + + case LABEL_REF: + return XEXP (x, 0) == XEXP (y, 0); + + case SYMBOL_REF: + return XSTR (x, 0) == XSTR (y, 0); + + case VALUE: + case CONST_INT: + case CONST_DOUBLE: + case CONST_FIXED: + /* There's no need to compare the contents of CONST_DOUBLEs or + CONST_INTs because pointer equality is a good enough + comparison for these nodes. */ + return 0; + + default: + break; + } + + /* canon_rtx knows how to handle plus. No need to canonicalize. */ + if (code == PLUS) + return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0)) + && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1))) + || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1)) + && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0)))); + /* For commutative operations, the RTX match if the operand match in any + order. Also handle the simple binary and unary cases without a loop. */ + if (COMMUTATIVE_P (x)) + { + rtx xop0 = canon_rtx (XEXP (x, 0)); + rtx yop0 = canon_rtx (XEXP (y, 0)); + rtx yop1 = canon_rtx (XEXP (y, 1)); + + return ((rtx_equal_for_memref_p (xop0, yop0) + && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1)) + || (rtx_equal_for_memref_p (xop0, yop1) + && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0))); + } + else if (NON_COMMUTATIVE_P (x)) + { + return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)), + canon_rtx (XEXP (y, 0))) + && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), + canon_rtx (XEXP (y, 1)))); + } + else if (UNARY_P (x)) + return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)), + canon_rtx (XEXP (y, 0))); + + /* Compare the elements. If any pair of corresponding elements + fail to match, return 0 for the whole things. + + Limit cases to types which actually appear in addresses. */ + + fmt = GET_RTX_FORMAT (code); + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + switch (fmt[i]) + { + case 'i': + if (XINT (x, i) != XINT (y, i)) + return 0; + break; + + case 'E': + /* Two vectors must have the same length. */ + if (XVECLEN (x, i) != XVECLEN (y, i)) + return 0; + + /* And the corresponding elements must match. */ + for (j = 0; j < XVECLEN (x, i); j++) + if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)), + canon_rtx (XVECEXP (y, i, j))) == 0) + return 0; + break; + + case 'e': + if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)), + canon_rtx (XEXP (y, i))) == 0) + return 0; + break; + + /* This can happen for asm operands. */ + case 's': + if (strcmp (XSTR (x, i), XSTR (y, i))) + return 0; + break; + + /* This can happen for an asm which clobbers memory. */ + case '0': + break; + + /* It is believed that rtx's at this level will never + contain anything but integers and other rtx's, + except for within LABEL_REFs and SYMBOL_REFs. */ + default: + gcc_unreachable (); + } + } + return 1; +} + +rtx +find_base_term (rtx x) +{ + cselib_val *val; + struct elt_loc_list *l; + +#if defined (FIND_BASE_TERM) + /* Try machine-dependent ways to find the base term. */ + x = FIND_BASE_TERM (x); +#endif + + switch (GET_CODE (x)) + { + case REG: + return REG_BASE_VALUE (x); + + case TRUNCATE: + /* As we do not know which address space the pointer is refering to, we can + handle this only if the target does not support different pointer or + address modes depending on the address space. */ + if (!target_default_pointer_address_modes_p ()) + return 0; + if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode)) + return 0; + /* Fall through. */ + case HIGH: + case PRE_INC: + case PRE_DEC: + case POST_INC: + case POST_DEC: + case PRE_MODIFY: + case POST_MODIFY: + return find_base_term (XEXP (x, 0)); + + case ZERO_EXTEND: + case SIGN_EXTEND: /* Used for Alpha/NT pointers */ + /* As we do not know which address space the pointer is refering to, we can + handle this only if the target does not support different pointer or + address modes depending on the address space. */ + if (!target_default_pointer_address_modes_p ()) + return 0; + + { + rtx temp = find_base_term (XEXP (x, 0)); + + if (temp != 0 && CONSTANT_P (temp)) + temp = convert_memory_address (Pmode, temp); + + return temp; + } + + case VALUE: + val = CSELIB_VAL_PTR (x); + if (!val) + return 0; + for (l = val->locs; l; l = l->next) + if ((x = find_base_term (l->loc)) != 0) + return x; + return 0; + + case LO_SUM: + /* The standard form is (lo_sum reg sym) so look only at the + second operand. */ + return find_base_term (XEXP (x, 1)); + + case CONST: + x = XEXP (x, 0); + if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS) + return 0; + /* Fall through. */ + case PLUS: + case MINUS: + { + rtx tmp1 = XEXP (x, 0); + rtx tmp2 = XEXP (x, 1); + + /* This is a little bit tricky since we have to determine which of + the two operands represents the real base address. Otherwise this + routine may return the index register instead of the base register. + + That may cause us to believe no aliasing was possible, when in + fact aliasing is possible. + + We use a few simple tests to guess the base register. Additional + tests can certainly be added. For example, if one of the operands + is a shift or multiply, then it must be the index register and the + other operand is the base register. */ + + if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2)) + return find_base_term (tmp2); + + /* If either operand is known to be a pointer, then use it + to determine the base term. */ + if (REG_P (tmp1) && REG_POINTER (tmp1)) + { + rtx base = find_base_term (tmp1); + if (base) + return base; + } + + if (REG_P (tmp2) && REG_POINTER (tmp2)) + { + rtx base = find_base_term (tmp2); + if (base) + return base; + } + + /* Neither operand was known to be a pointer. Go ahead and find the + base term for both operands. */ + tmp1 = find_base_term (tmp1); + tmp2 = find_base_term (tmp2); + + /* If either base term is named object or a special address + (like an argument or stack reference), then use it for the + base term. */ + if (tmp1 != 0 + && (GET_CODE (tmp1) == SYMBOL_REF + || GET_CODE (tmp1) == LABEL_REF + || (GET_CODE (tmp1) == ADDRESS + && GET_MODE (tmp1) != VOIDmode))) + return tmp1; + + if (tmp2 != 0 + && (GET_CODE (tmp2) == SYMBOL_REF + || GET_CODE (tmp2) == LABEL_REF + || (GET_CODE (tmp2) == ADDRESS + && GET_MODE (tmp2) != VOIDmode))) + return tmp2; + + /* We could not determine which of the two operands was the + base register and which was the index. So we can determine + nothing from the base alias check. */ + return 0; + } + + case AND: + if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0) + return find_base_term (XEXP (x, 0)); + return 0; + + case SYMBOL_REF: + case LABEL_REF: + return x; + + default: + return 0; + } +} + +/* Return 0 if the addresses X and Y are known to point to different + objects, 1 if they might be pointers to the same object. */ + +static int +base_alias_check (rtx x, rtx y, enum machine_mode x_mode, + enum machine_mode y_mode) +{ + rtx x_base = find_base_term (x); + rtx y_base = find_base_term (y); + + /* If the address itself has no known base see if a known equivalent + value has one. If either address still has no known base, nothing + is known about aliasing. */ + if (x_base == 0) + { + rtx x_c; + + if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x) + return 1; + + x_base = find_base_term (x_c); + if (x_base == 0) + return 1; + } + + if (y_base == 0) + { + rtx y_c; + if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y) + return 1; + + y_base = find_base_term (y_c); + if (y_base == 0) + return 1; + } + + /* If the base addresses are equal nothing is known about aliasing. */ + if (rtx_equal_p (x_base, y_base)) + return 1; + + /* The base addresses are different expressions. If they are not accessed + via AND, there is no conflict. We can bring knowledge of object + alignment into play here. For example, on alpha, "char a, b;" can + alias one another, though "char a; long b;" cannot. AND addesses may + implicitly alias surrounding objects; i.e. unaligned access in DImode + via AND address can alias all surrounding object types except those + with aligment 8 or higher. */ + if (GET_CODE (x) == AND && GET_CODE (y) == AND) + return 1; + if (GET_CODE (x) == AND + && (!CONST_INT_P (XEXP (x, 1)) + || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1)))) + return 1; + if (GET_CODE (y) == AND + && (!CONST_INT_P (XEXP (y, 1)) + || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1)))) + return 1; + + /* Differing symbols not accessed via AND never alias. */ + if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS) + return 0; + + /* If one address is a stack reference there can be no alias: + stack references using different base registers do not alias, + a stack reference can not alias a parameter, and a stack reference + can not alias a global. */ + if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode) + || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode)) + return 0; + + return 1; +} + +/* Convert the address X into something we can use. This is done by returning + it unchanged unless it is a value; in the latter case we call cselib to get + a more useful rtx. */ + +rtx +get_addr (rtx x) +{ + cselib_val *v; + struct elt_loc_list *l; + + if (GET_CODE (x) != VALUE) + return x; + v = CSELIB_VAL_PTR (x); + if (v) + { + for (l = v->locs; l; l = l->next) + if (CONSTANT_P (l->loc)) + return l->loc; + for (l = v->locs; l; l = l->next) + if (!REG_P (l->loc) && !MEM_P (l->loc)) + return l->loc; + if (v->locs) + return v->locs->loc; + } + return x; +} + +/* Return the address of the (N_REFS + 1)th memory reference to ADDR + where SIZE is the size in bytes of the memory reference. If ADDR + is not modified by the memory reference then ADDR is returned. */ + +static rtx +addr_side_effect_eval (rtx addr, int size, int n_refs) +{ + int offset = 0; + + switch (GET_CODE (addr)) + { + case PRE_INC: + offset = (n_refs + 1) * size; + break; + case PRE_DEC: + offset = -(n_refs + 1) * size; + break; + case POST_INC: + offset = n_refs * size; + break; + case POST_DEC: + offset = -n_refs * size; + break; + + default: + return addr; + } + + if (offset) + addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0), + GEN_INT (offset)); + else + addr = XEXP (addr, 0); + addr = canon_rtx (addr); + + return addr; +} + +/* Return one if X and Y (memory addresses) reference the + same location in memory or if the references overlap. + Return zero if they do not overlap, else return + minus one in which case they still might reference the same location. + + C is an offset accumulator. When + C is nonzero, we are testing aliases between X and Y + C. + XSIZE is the size in bytes of the X reference, + similarly YSIZE is the size in bytes for Y. + Expect that canon_rtx has been already called for X and Y. + + If XSIZE or YSIZE is zero, we do not know the amount of memory being + referenced (the reference was BLKmode), so make the most pessimistic + assumptions. + + If XSIZE or YSIZE is negative, we may access memory outside the object + being referenced as a side effect. This can happen when using AND to + align memory references, as is done on the Alpha. + + Nice to notice that varying addresses cannot conflict with fp if no + local variables had their addresses taken, but that's too hard now. + + ??? Contrary to the tree alias oracle this does not return + one for X + non-constant and Y + non-constant when X and Y are equal. + If that is fixed the TBAA hack for union type-punning can be removed. */ + +static int +memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c) +{ + if (GET_CODE (x) == VALUE) + { + if (REG_P (y)) + { + struct elt_loc_list *l = NULL; + if (CSELIB_VAL_PTR (x)) + for (l = CSELIB_VAL_PTR (x)->locs; l; l = l->next) + if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y)) + break; + if (l) + x = y; + else + x = get_addr (x); + } + /* Don't call get_addr if y is the same VALUE. */ + else if (x != y) + x = get_addr (x); + } + if (GET_CODE (y) == VALUE) + { + if (REG_P (x)) + { + struct elt_loc_list *l = NULL; + if (CSELIB_VAL_PTR (y)) + for (l = CSELIB_VAL_PTR (y)->locs; l; l = l->next) + if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x)) + break; + if (l) + y = x; + else + y = get_addr (y); + } + /* Don't call get_addr if x is the same VALUE. */ + else if (y != x) + y = get_addr (y); + } + if (GET_CODE (x) == HIGH) + x = XEXP (x, 0); + else if (GET_CODE (x) == LO_SUM) + x = XEXP (x, 1); + else + x = addr_side_effect_eval (x, xsize, 0); + if (GET_CODE (y) == HIGH) + y = XEXP (y, 0); + else if (GET_CODE (y) == LO_SUM) + y = XEXP (y, 1); + else + y = addr_side_effect_eval (y, ysize, 0); + + if (rtx_equal_for_memref_p (x, y)) + { + if (xsize <= 0 || ysize <= 0) + return 1; + if (c >= 0 && xsize > c) + return 1; + if (c < 0 && ysize+c > 0) + return 1; + return 0; + } + + /* This code used to check for conflicts involving stack references and + globals but the base address alias code now handles these cases. */ + + if (GET_CODE (x) == PLUS) + { + /* The fact that X is canonicalized means that this + PLUS rtx is canonicalized. */ + rtx x0 = XEXP (x, 0); + rtx x1 = XEXP (x, 1); + + if (GET_CODE (y) == PLUS) + { + /* The fact that Y is canonicalized means that this + PLUS rtx is canonicalized. */ + rtx y0 = XEXP (y, 0); + rtx y1 = XEXP (y, 1); + + if (rtx_equal_for_memref_p (x1, y1)) + return memrefs_conflict_p (xsize, x0, ysize, y0, c); + if (rtx_equal_for_memref_p (x0, y0)) + return memrefs_conflict_p (xsize, x1, ysize, y1, c); + if (CONST_INT_P (x1)) + { + if (CONST_INT_P (y1)) + return memrefs_conflict_p (xsize, x0, ysize, y0, + c - INTVAL (x1) + INTVAL (y1)); + else + return memrefs_conflict_p (xsize, x0, ysize, y, + c - INTVAL (x1)); + } + else if (CONST_INT_P (y1)) + return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1)); + + return -1; + } + else if (CONST_INT_P (x1)) + return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1)); + } + else if (GET_CODE (y) == PLUS) + { + /* The fact that Y is canonicalized means that this + PLUS rtx is canonicalized. */ + rtx y0 = XEXP (y, 0); + rtx y1 = XEXP (y, 1); + + if (CONST_INT_P (y1)) + return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1)); + else + return -1; + } + + if (GET_CODE (x) == GET_CODE (y)) + switch (GET_CODE (x)) + { + case MULT: + { + /* Handle cases where we expect the second operands to be the + same, and check only whether the first operand would conflict + or not. */ + rtx x0, y0; + rtx x1 = canon_rtx (XEXP (x, 1)); + rtx y1 = canon_rtx (XEXP (y, 1)); + if (! rtx_equal_for_memref_p (x1, y1)) + return -1; + x0 = canon_rtx (XEXP (x, 0)); + y0 = canon_rtx (XEXP (y, 0)); + if (rtx_equal_for_memref_p (x0, y0)) + return (xsize == 0 || ysize == 0 + || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)); + + /* Can't properly adjust our sizes. */ + if (!CONST_INT_P (x1)) + return -1; + xsize /= INTVAL (x1); + ysize /= INTVAL (x1); + c /= INTVAL (x1); + return memrefs_conflict_p (xsize, x0, ysize, y0, c); + } + + default: + break; + } + + /* Treat an access through an AND (e.g. a subword access on an Alpha) + as an access with indeterminate size. Assume that references + besides AND are aligned, so if the size of the other reference is + at least as large as the alignment, assume no other overlap. */ + if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))) + { + if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1))) + xsize = -1; + return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c); + } + if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1))) + { + /* ??? If we are indexing far enough into the array/structure, we + may yet be able to determine that we can not overlap. But we + also need to that we are far enough from the end not to overlap + a following reference, so we do nothing with that for now. */ + if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1))) + ysize = -1; + return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c); + } + + if (CONSTANT_P (x)) + { + if (CONST_INT_P (x) && CONST_INT_P (y)) + { + c += (INTVAL (y) - INTVAL (x)); + return (xsize <= 0 || ysize <= 0 + || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)); + } + + if (GET_CODE (x) == CONST) + { + if (GET_CODE (y) == CONST) + return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), + ysize, canon_rtx (XEXP (y, 0)), c); + else + return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), + ysize, y, c); + } + if (GET_CODE (y) == CONST) + return memrefs_conflict_p (xsize, x, ysize, + canon_rtx (XEXP (y, 0)), c); + + if (CONSTANT_P (y)) + return (xsize <= 0 || ysize <= 0 + || (rtx_equal_for_memref_p (x, y) + && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)))); + + return -1; + } + + return -1; +} + +/* Functions to compute memory dependencies. + + Since we process the insns in execution order, we can build tables + to keep track of what registers are fixed (and not aliased), what registers + are varying in known ways, and what registers are varying in unknown + ways. + + If both memory references are volatile, then there must always be a + dependence between the two references, since their order can not be + changed. A volatile and non-volatile reference can be interchanged + though. + + A MEM_IN_STRUCT reference at a non-AND varying address can never + conflict with a non-MEM_IN_STRUCT reference at a fixed address. We + also must allow AND addresses, because they may generate accesses + outside the object being referenced. This is used to generate + aligned addresses from unaligned addresses, for instance, the alpha + storeqi_unaligned pattern. */ + +/* Read dependence: X is read after read in MEM takes place. There can + only be a dependence here if both reads are volatile. */ + +int +read_dependence (const_rtx mem, const_rtx x) +{ + return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem); +} + +/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and + MEM2 is a reference to a structure at a varying address, or returns + MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL + value is returned MEM1 and MEM2 can never alias. VARIES_P is used + to decide whether or not an address may vary; it should return + nonzero whenever variation is possible. + MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */ + +static const_rtx +fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr, + rtx mem2_addr, + bool (*varies_p) (const_rtx, bool)) +{ + if (! flag_strict_aliasing) + return NULL_RTX; + + if (MEM_ALIAS_SET (mem2) + && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2) + && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1)) + /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a + varying address. */ + return mem1; + + if (MEM_ALIAS_SET (mem1) + && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2) + && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1)) + /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a + varying address. */ + return mem2; + + return NULL_RTX; +} + +/* Returns nonzero if something about the mode or address format MEM1 + indicates that it might well alias *anything*. */ + +static int +aliases_everything_p (const_rtx mem) +{ + if (GET_CODE (XEXP (mem, 0)) == AND) + /* If the address is an AND, it's very hard to know at what it is + actually pointing. */ + return 1; + + return 0; +} + +/* Return true if we can determine that the fields referenced cannot + overlap for any pair of objects. */ + +static bool +nonoverlapping_component_refs_p (const_tree x, const_tree y) +{ + const_tree fieldx, fieldy, typex, typey, orig_y; + + if (!flag_strict_aliasing) + return false; + + do + { + /* The comparison has to be done at a common type, since we don't + know how the inheritance hierarchy works. */ + orig_y = y; + do + { + fieldx = TREE_OPERAND (x, 1); + typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx)); + + y = orig_y; + do + { + fieldy = TREE_OPERAND (y, 1); + typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy)); + + if (typex == typey) + goto found; + + y = TREE_OPERAND (y, 0); + } + while (y && TREE_CODE (y) == COMPONENT_REF); + + x = TREE_OPERAND (x, 0); + } + while (x && TREE_CODE (x) == COMPONENT_REF); + /* Never found a common type. */ + return false; + + found: + /* If we're left with accessing different fields of a structure, + then no overlap. */ + if (TREE_CODE (typex) == RECORD_TYPE + && fieldx != fieldy) + return true; + + /* The comparison on the current field failed. If we're accessing + a very nested structure, look at the next outer level. */ + x = TREE_OPERAND (x, 0); + y = TREE_OPERAND (y, 0); + } + while (x && y + && TREE_CODE (x) == COMPONENT_REF + && TREE_CODE (y) == COMPONENT_REF); + + return false; +} + +/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */ + +static tree +decl_for_component_ref (tree x) +{ + do + { + x = TREE_OPERAND (x, 0); + } + while (x && TREE_CODE (x) == COMPONENT_REF); + + return x && DECL_P (x) ? x : NULL_TREE; +} + +/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the + offset of the field reference. */ + +static rtx +adjust_offset_for_component_ref (tree x, rtx offset) +{ + HOST_WIDE_INT ioffset; + + if (! offset) + return NULL_RTX; + + ioffset = INTVAL (offset); + do + { + tree offset = component_ref_field_offset (x); + tree field = TREE_OPERAND (x, 1); + + if (! host_integerp (offset, 1)) + return NULL_RTX; + ioffset += (tree_low_cst (offset, 1) + + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1) + / BITS_PER_UNIT)); + + x = TREE_OPERAND (x, 0); + } + while (x && TREE_CODE (x) == COMPONENT_REF); + + return GEN_INT (ioffset); +} + +/* Return nonzero if we can determine the exprs corresponding to memrefs + X and Y and they do not overlap. + If LOOP_VARIANT is set, skip offset-based disambiguation */ + +int +nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant) +{ + tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y); + rtx rtlx, rtly; + rtx basex, basey; + rtx moffsetx, moffsety; + HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem; + + /* Unless both have exprs, we can't tell anything. */ + if (exprx == 0 || expry == 0) + return 0; + + /* For spill-slot accesses make sure we have valid offsets. */ + if ((exprx == get_spill_slot_decl (false) + && ! MEM_OFFSET (x)) + || (expry == get_spill_slot_decl (false) + && ! MEM_OFFSET (y))) + return 0; + + /* If both are field references, we may be able to determine something. */ + if (TREE_CODE (exprx) == COMPONENT_REF + && TREE_CODE (expry) == COMPONENT_REF + && nonoverlapping_component_refs_p (exprx, expry)) + return 1; + + + /* If the field reference test failed, look at the DECLs involved. */ + moffsetx = MEM_OFFSET (x); + if (TREE_CODE (exprx) == COMPONENT_REF) + { + tree t = decl_for_component_ref (exprx); + if (! t) + return 0; + moffsetx = adjust_offset_for_component_ref (exprx, moffsetx); + exprx = t; + } + + moffsety = MEM_OFFSET (y); + if (TREE_CODE (expry) == COMPONENT_REF) + { + tree t = decl_for_component_ref (expry); + if (! t) + return 0; + moffsety = adjust_offset_for_component_ref (expry, moffsety); + expry = t; + } + + if (! DECL_P (exprx) || ! DECL_P (expry)) + return 0; + + /* With invalid code we can end up storing into the constant pool. + Bail out to avoid ICEing when creating RTL for this. + See gfortran.dg/lto/20091028-2_0.f90. */ + if (TREE_CODE (exprx) == CONST_DECL + || TREE_CODE (expry) == CONST_DECL) + return 1; + + rtlx = DECL_RTL (exprx); + rtly = DECL_RTL (expry); + + /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they + can't overlap unless they are the same because we never reuse that part + of the stack frame used for locals for spilled pseudos. */ + if ((!MEM_P (rtlx) || !MEM_P (rtly)) + && ! rtx_equal_p (rtlx, rtly)) + return 1; + + /* If we have MEMs refering to different address spaces (which can + potentially overlap), we cannot easily tell from the addresses + whether the references overlap. */ + if (MEM_P (rtlx) && MEM_P (rtly) + && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly)) + return 0; + + /* Get the base and offsets of both decls. If either is a register, we + know both are and are the same, so use that as the base. The only + we can avoid overlap is if we can deduce that they are nonoverlapping + pieces of that decl, which is very rare. */ + basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx; + if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1))) + offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0); + + basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly; + if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1))) + offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0); + + /* If the bases are different, we know they do not overlap if both + are constants or if one is a constant and the other a pointer into the + stack frame. Otherwise a different base means we can't tell if they + overlap or not. */ + if (! rtx_equal_p (basex, basey)) + return ((CONSTANT_P (basex) && CONSTANT_P (basey)) + || (CONSTANT_P (basex) && REG_P (basey) + && REGNO_PTR_FRAME_P (REGNO (basey))) + || (CONSTANT_P (basey) && REG_P (basex) + && REGNO_PTR_FRAME_P (REGNO (basex)))); + + /* Offset based disambiguation not appropriate for loop invariant */ + if (loop_invariant) + return 0; + + sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx)) + : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx)) + : -1); + sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly)) + : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) : + -1); + + /* If we have an offset for either memref, it can update the values computed + above. */ + if (moffsetx) + offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx); + if (moffsety) + offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety); + + /* If a memref has both a size and an offset, we can use the smaller size. + We can't do this if the offset isn't known because we must view this + memref as being anywhere inside the DECL's MEM. */ + if (MEM_SIZE (x) && moffsetx) + sizex = INTVAL (MEM_SIZE (x)); + if (MEM_SIZE (y) && moffsety) + sizey = INTVAL (MEM_SIZE (y)); + + /* Put the values of the memref with the lower offset in X's values. */ + if (offsetx > offsety) + { + tem = offsetx, offsetx = offsety, offsety = tem; + tem = sizex, sizex = sizey, sizey = tem; + } + + /* If we don't know the size of the lower-offset value, we can't tell + if they conflict. Otherwise, we do the test. */ + return sizex >= 0 && offsety >= offsetx + sizex; +} + +/* Helper for true_dependence and canon_true_dependence. + Checks for true dependence: X is read after store in MEM takes place. + + VARIES is the function that should be used as rtx_varies function. + + If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be + NULL_RTX, and the canonical addresses of MEM and X are both computed + here. If MEM_CANONICALIZED, then MEM must be already canonicalized. + + If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0). + + Returns 1 if there is a true dependence, 0 otherwise. */ + +static int +true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr, + const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool), + bool mem_canonicalized) +{ + rtx base; + int ret; + + gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX) + : (mem_addr == NULL_RTX && x_addr == NULL_RTX)); + + if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem)) + return 1; + + /* (mem:BLK (scratch)) is a special mechanism to conflict with everything. + This is used in epilogue deallocation functions, and in cselib. */ + if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH) + return 1; + if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH) + return 1; + if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER + || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER) + return 1; + + /* Read-only memory is by definition never modified, and therefore can't + conflict with anything. We don't expect to find read-only set on MEM, + but stupid user tricks can produce them, so don't die. */ + if (MEM_READONLY_P (x)) + return 0; + + /* If we have MEMs refering to different address spaces (which can + potentially overlap), we cannot easily tell from the addresses + whether the references overlap. */ + if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x)) + return 1; + + if (! mem_addr) + { + mem_addr = XEXP (mem, 0); + if (mem_mode == VOIDmode) + mem_mode = GET_MODE (mem); + } + + if (! x_addr) + { + x_addr = XEXP (x, 0); + if (!((GET_CODE (x_addr) == VALUE + && GET_CODE (mem_addr) != VALUE + && reg_mentioned_p (x_addr, mem_addr)) + || (GET_CODE (x_addr) != VALUE + && GET_CODE (mem_addr) == VALUE + && reg_mentioned_p (mem_addr, x_addr)))) + { + x_addr = get_addr (x_addr); + if (! mem_canonicalized) + mem_addr = get_addr (mem_addr); + } + } + + base = find_base_term (x_addr); + if (base && (GET_CODE (base) == LABEL_REF + || (GET_CODE (base) == SYMBOL_REF + && CONSTANT_POOL_ADDRESS_P (base)))) + return 0; + + if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode)) + return 0; + + x_addr = canon_rtx (x_addr); + if (!mem_canonicalized) + mem_addr = canon_rtx (mem_addr); + + if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr, + SIZE_FOR_MODE (x), x_addr, 0)) != -1) + return ret; + + if (DIFFERENT_ALIAS_SETS_P (x, mem)) + return 0; + + if (nonoverlapping_memrefs_p (mem, x, false)) + return 0; + + if (aliases_everything_p (x)) + return 1; + + /* We cannot use aliases_everything_p to test MEM, since we must look + at MEM_ADDR, rather than XEXP (mem, 0). */ + if (GET_CODE (mem_addr) == AND) + return 1; + + /* ??? In true_dependence we also allow BLKmode to alias anything. Why + don't we do this in anti_dependence and output_dependence? */ + if (mem_mode == BLKmode || GET_MODE (x) == BLKmode) + return 1; + + if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies)) + return 0; + + return rtx_refs_may_alias_p (x, mem, true); +} + +/* True dependence: X is read after store in MEM takes place. */ + +int +true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x, + bool (*varies) (const_rtx, bool)) +{ + return true_dependence_1 (mem, mem_mode, NULL_RTX, + x, NULL_RTX, varies, + /*mem_canonicalized=*/false); +} + +/* Canonical true dependence: X is read after store in MEM takes place. + Variant of true_dependence which assumes MEM has already been + canonicalized (hence we no longer do that here). + The mem_addr argument has been added, since true_dependence_1 computed + this value prior to canonicalizing. */ + +int +canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr, + const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool)) +{ + return true_dependence_1 (mem, mem_mode, mem_addr, + x, x_addr, varies, + /*mem_canonicalized=*/true); +} + +/* Returns nonzero if a write to X might alias a previous read from + (or, if WRITEP is nonzero, a write to) MEM. */ + +static int +write_dependence_p (const_rtx mem, const_rtx x, int writep) +{ + rtx x_addr, mem_addr; + const_rtx fixed_scalar; + rtx base; + int ret; + + if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem)) + return 1; + + /* (mem:BLK (scratch)) is a special mechanism to conflict with everything. + This is used in epilogue deallocation functions. */ + if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH) + return 1; + if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH) + return 1; + if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER + || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER) + return 1; + + /* A read from read-only memory can't conflict with read-write memory. */ + if (!writep && MEM_READONLY_P (mem)) + return 0; + + /* If we have MEMs refering to different address spaces (which can + potentially overlap), we cannot easily tell from the addresses + whether the references overlap. */ + if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x)) + return 1; + + x_addr = XEXP (x, 0); + mem_addr = XEXP (mem, 0); + if (!((GET_CODE (x_addr) == VALUE + && GET_CODE (mem_addr) != VALUE + && reg_mentioned_p (x_addr, mem_addr)) + || (GET_CODE (x_addr) != VALUE + && GET_CODE (mem_addr) == VALUE + && reg_mentioned_p (mem_addr, x_addr)))) + { + x_addr = get_addr (x_addr); + mem_addr = get_addr (mem_addr); + } + + if (! writep) + { + base = find_base_term (mem_addr); + if (base && (GET_CODE (base) == LABEL_REF + || (GET_CODE (base) == SYMBOL_REF + && CONSTANT_POOL_ADDRESS_P (base)))) + return 0; + } + + if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), + GET_MODE (mem))) + return 0; + + x_addr = canon_rtx (x_addr); + mem_addr = canon_rtx (mem_addr); + + if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr, + SIZE_FOR_MODE (x), x_addr, 0)) != -1) + return ret; + + if (nonoverlapping_memrefs_p (x, mem, false)) + return 0; + + fixed_scalar + = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, + rtx_addr_varies_p); + + if ((fixed_scalar == mem && !aliases_everything_p (x)) + || (fixed_scalar == x && !aliases_everything_p (mem))) + return 0; + + return rtx_refs_may_alias_p (x, mem, false); +} + +/* Anti dependence: X is written after read in MEM takes place. */ + +int +anti_dependence (const_rtx mem, const_rtx x) +{ + return write_dependence_p (mem, x, /*writep=*/0); +} + +/* Output dependence: X is written after store in MEM takes place. */ + +int +output_dependence (const_rtx mem, const_rtx x) +{ + return write_dependence_p (mem, x, /*writep=*/1); +} + + + +/* Check whether X may be aliased with MEM. Don't do offset-based + memory disambiguation & TBAA. */ +int +may_alias_p (const_rtx mem, const_rtx x) +{ + rtx x_addr, mem_addr; + + if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem)) + return 1; + + /* ??? In true_dependence we also allow BLKmode to alias anything. */ + if (GET_MODE (mem) == BLKmode || GET_MODE (x) == BLKmode) + return 1; + + if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER + || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER) + return 1; + + /* Read-only memory is by definition never modified, and therefore can't + conflict with anything. We don't expect to find read-only set on MEM, + but stupid user tricks can produce them, so don't die. */ + if (MEM_READONLY_P (x)) + return 0; + + /* If we have MEMs refering to different address spaces (which can + potentially overlap), we cannot easily tell from the addresses + whether the references overlap. */ + if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x)) + return 1; + + x_addr = XEXP (x, 0); + mem_addr = XEXP (mem, 0); + if (!((GET_CODE (x_addr) == VALUE + && GET_CODE (mem_addr) != VALUE + && reg_mentioned_p (x_addr, mem_addr)) + || (GET_CODE (x_addr) != VALUE + && GET_CODE (mem_addr) == VALUE + && reg_mentioned_p (mem_addr, x_addr)))) + { + x_addr = get_addr (x_addr); + mem_addr = get_addr (mem_addr); + } + + if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr))) + return 0; + + x_addr = canon_rtx (x_addr); + mem_addr = canon_rtx (mem_addr); + + if (nonoverlapping_memrefs_p (mem, x, true)) + return 0; + + if (aliases_everything_p (x)) + return 1; + + /* We cannot use aliases_everything_p to test MEM, since we must look + at MEM_ADDR, rather than XEXP (mem, 0). */ + if (GET_CODE (mem_addr) == AND) + return 1; + + if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, + rtx_addr_varies_p)) + return 0; + + /* TBAA not valid for loop_invarint */ + return rtx_refs_may_alias_p (x, mem, false); +} + +void +init_alias_target (void) +{ + int i; + + memset (static_reg_base_value, 0, sizeof static_reg_base_value); + + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + /* Check whether this register can hold an incoming pointer + argument. FUNCTION_ARG_REGNO_P tests outgoing register + numbers, so translate if necessary due to register windows. */ + if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i)) + && HARD_REGNO_MODE_OK (i, Pmode)) + static_reg_base_value[i] + = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i)); + + static_reg_base_value[STACK_POINTER_REGNUM] + = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx); + static_reg_base_value[ARG_POINTER_REGNUM] + = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx); + static_reg_base_value[FRAME_POINTER_REGNUM] + = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx); +#if !HARD_FRAME_POINTER_IS_FRAME_POINTER + static_reg_base_value[HARD_FRAME_POINTER_REGNUM] + = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx); +#endif +} + +/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed + to be memory reference. */ +static bool memory_modified; +static void +memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data) +{ + if (MEM_P (x)) + { + if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data)) + memory_modified = true; + } +} + + +/* Return true when INSN possibly modify memory contents of MEM + (i.e. address can be modified). */ +bool +memory_modified_in_insn_p (const_rtx mem, const_rtx insn) +{ + if (!INSN_P (insn)) + return false; + memory_modified = false; + note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem)); + return memory_modified; +} + +/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE + array. */ + +void +init_alias_analysis (void) +{ + unsigned int maxreg = max_reg_num (); + int changed, pass; + int i; + unsigned int ui; + rtx insn; + + timevar_push (TV_ALIAS_ANALYSIS); + + reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER; + reg_known_value = ggc_alloc_cleared_vec_rtx (reg_known_value_size); + reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size); + + /* If we have memory allocated from the previous run, use it. */ + if (old_reg_base_value) + reg_base_value = old_reg_base_value; + + if (reg_base_value) + VEC_truncate (rtx, reg_base_value, 0); + + VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg); + + new_reg_base_value = XNEWVEC (rtx, maxreg); + reg_seen = XNEWVEC (char, maxreg); + + /* The basic idea is that each pass through this loop will use the + "constant" information from the previous pass to propagate alias + information through another level of assignments. + + This could get expensive if the assignment chains are long. Maybe + we should throttle the number of iterations, possibly based on + the optimization level or flag_expensive_optimizations. + + We could propagate more information in the first pass by making use + of DF_REG_DEF_COUNT to determine immediately that the alias information + for a pseudo is "constant". + + A program with an uninitialized variable can cause an infinite loop + here. Instead of doing a full dataflow analysis to detect such problems + we just cap the number of iterations for the loop. + + The state of the arrays for the set chain in question does not matter + since the program has undefined behavior. */ + + pass = 0; + do + { + /* Assume nothing will change this iteration of the loop. */ + changed = 0; + + /* We want to assign the same IDs each iteration of this loop, so + start counting from zero each iteration of the loop. */ + unique_id = 0; + + /* We're at the start of the function each iteration through the + loop, so we're copying arguments. */ + copying_arguments = true; + + /* Wipe the potential alias information clean for this pass. */ + memset (new_reg_base_value, 0, maxreg * sizeof (rtx)); + + /* Wipe the reg_seen array clean. */ + memset (reg_seen, 0, maxreg); + + /* Mark all hard registers which may contain an address. + The stack, frame and argument pointers may contain an address. + An argument register which can hold a Pmode value may contain + an address even if it is not in BASE_REGS. + + The address expression is VOIDmode for an argument and + Pmode for other registers. */ + + memcpy (new_reg_base_value, static_reg_base_value, + FIRST_PSEUDO_REGISTER * sizeof (rtx)); + + /* Walk the insns adding values to the new_reg_base_value array. */ + for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) + { + if (INSN_P (insn)) + { + rtx note, set; + +#if defined (HAVE_prologue) || defined (HAVE_epilogue) + /* The prologue/epilogue insns are not threaded onto the + insn chain until after reload has completed. Thus, + there is no sense wasting time checking if INSN is in + the prologue/epilogue until after reload has completed. */ + if (reload_completed + && prologue_epilogue_contains (insn)) + continue; +#endif + + /* If this insn has a noalias note, process it, Otherwise, + scan for sets. A simple set will have no side effects + which could change the base value of any other register. */ + + if (GET_CODE (PATTERN (insn)) == SET + && REG_NOTES (insn) != 0 + && find_reg_note (insn, REG_NOALIAS, NULL_RTX)) + record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL); + else + note_stores (PATTERN (insn), record_set, NULL); + + set = single_set (insn); + + if (set != 0 + && REG_P (SET_DEST (set)) + && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER) + { + unsigned int regno = REGNO (SET_DEST (set)); + rtx src = SET_SRC (set); + rtx t; + + note = find_reg_equal_equiv_note (insn); + if (note && REG_NOTE_KIND (note) == REG_EQUAL + && DF_REG_DEF_COUNT (regno) != 1) + note = NULL_RTX; + + if (note != NULL_RTX + && GET_CODE (XEXP (note, 0)) != EXPR_LIST + && ! rtx_varies_p (XEXP (note, 0), 1) + && ! reg_overlap_mentioned_p (SET_DEST (set), + XEXP (note, 0))) + { + set_reg_known_value (regno, XEXP (note, 0)); + set_reg_known_equiv_p (regno, + REG_NOTE_KIND (note) == REG_EQUIV); + } + else if (DF_REG_DEF_COUNT (regno) == 1 + && GET_CODE (src) == PLUS + && REG_P (XEXP (src, 0)) + && (t = get_reg_known_value (REGNO (XEXP (src, 0)))) + && CONST_INT_P (XEXP (src, 1))) + { + t = plus_constant (t, INTVAL (XEXP (src, 1))); + set_reg_known_value (regno, t); + set_reg_known_equiv_p (regno, 0); + } + else if (DF_REG_DEF_COUNT (regno) == 1 + && ! rtx_varies_p (src, 1)) + { + set_reg_known_value (regno, src); + set_reg_known_equiv_p (regno, 0); + } + } + } + else if (NOTE_P (insn) + && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG) + copying_arguments = false; + } + + /* Now propagate values from new_reg_base_value to reg_base_value. */ + gcc_assert (maxreg == (unsigned int) max_reg_num ()); + + for (ui = 0; ui < maxreg; ui++) + { + if (new_reg_base_value[ui] + && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui) + && ! rtx_equal_p (new_reg_base_value[ui], + VEC_index (rtx, reg_base_value, ui))) + { + VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]); + changed = 1; + } + } + } + while (changed && ++pass < MAX_ALIAS_LOOP_PASSES); + + /* Fill in the remaining entries. */ + for (i = 0; i < (int)reg_known_value_size; i++) + if (reg_known_value[i] == 0) + reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER]; + + /* Clean up. */ + free (new_reg_base_value); + new_reg_base_value = 0; + free (reg_seen); + reg_seen = 0; + timevar_pop (TV_ALIAS_ANALYSIS); +} + +/* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2). + Special API for var-tracking pass purposes. */ + +void +vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2) +{ + VEC_replace (rtx, reg_base_value, REGNO (reg1), REG_BASE_VALUE (reg2)); +} + +void +end_alias_analysis (void) +{ + old_reg_base_value = reg_base_value; + ggc_free (reg_known_value); + reg_known_value = 0; + reg_known_value_size = 0; + free (reg_known_equiv_p); + reg_known_equiv_p = 0; +} + +#include "gt-alias.h" |