summaryrefslogtreecommitdiff
path: root/gcc/alias.c
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/alias.c
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'gcc/alias.c')
-rw-r--r--gcc/alias.c2936
1 files changed, 2936 insertions, 0 deletions
diff --git a/gcc/alias.c b/gcc/alias.c
new file mode 100644
index 000000000..c5ff66487
--- /dev/null
+++ b/gcc/alias.c
@@ -0,0 +1,2936 @@
+/* Alias analysis for GNU C
+ Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
+ 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
+ Contributed by John Carr (jfc@mit.edu).
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "tree.h"
+#include "tm_p.h"
+#include "function.h"
+#include "alias.h"
+#include "emit-rtl.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+#include "flags.h"
+#include "output.h"
+#include "diagnostic-core.h"
+#include "cselib.h"
+#include "splay-tree.h"
+#include "ggc.h"
+#include "langhooks.h"
+#include "timevar.h"
+#include "target.h"
+#include "cgraph.h"
+#include "tree-pass.h"
+#include "ipa-type-escape.h"
+#include "df.h"
+#include "tree-ssa-alias.h"
+#include "pointer-set.h"
+#include "tree-flow.h"
+
+/* The aliasing API provided here solves related but different problems:
+
+ Say there exists (in c)
+
+ struct X {
+ struct Y y1;
+ struct Z z2;
+ } x1, *px1, *px2;
+
+ struct Y y2, *py;
+ struct Z z2, *pz;
+
+
+ py = &px1.y1;
+ px2 = &x1;
+
+ Consider the four questions:
+
+ Can a store to x1 interfere with px2->y1?
+ Can a store to x1 interfere with px2->z2?
+ (*px2).z2
+ Can a store to x1 change the value pointed to by with py?
+ Can a store to x1 change the value pointed to by with pz?
+
+ The answer to these questions can be yes, yes, yes, and maybe.
+
+ The first two questions can be answered with a simple examination
+ of the type system. If structure X contains a field of type Y then
+ a store thru a pointer to an X can overwrite any field that is
+ contained (recursively) in an X (unless we know that px1 != px2).
+
+ The last two of the questions can be solved in the same way as the
+ first two questions but this is too conservative. The observation
+ is that in some cases analysis we can know if which (if any) fields
+ are addressed and if those addresses are used in bad ways. This
+ analysis may be language specific. In C, arbitrary operations may
+ be applied to pointers. However, there is some indication that
+ this may be too conservative for some C++ types.
+
+ The pass ipa-type-escape does this analysis for the types whose
+ instances do not escape across the compilation boundary.
+
+ Historically in GCC, these two problems were combined and a single
+ data structure was used to represent the solution to these
+ problems. We now have two similar but different data structures,
+ The data structure to solve the last two question is similar to the
+ first, but does not contain have the fields in it whose address are
+ never taken. For types that do escape the compilation unit, the
+ data structures will have identical information.
+*/
+
+/* The alias sets assigned to MEMs assist the back-end in determining
+ which MEMs can alias which other MEMs. In general, two MEMs in
+ different alias sets cannot alias each other, with one important
+ exception. Consider something like:
+
+ struct S { int i; double d; };
+
+ a store to an `S' can alias something of either type `int' or type
+ `double'. (However, a store to an `int' cannot alias a `double'
+ and vice versa.) We indicate this via a tree structure that looks
+ like:
+ struct S
+ / \
+ / \
+ |/_ _\|
+ int double
+
+ (The arrows are directed and point downwards.)
+ In this situation we say the alias set for `struct S' is the
+ `superset' and that those for `int' and `double' are `subsets'.
+
+ To see whether two alias sets can point to the same memory, we must
+ see if either alias set is a subset of the other. We need not trace
+ past immediate descendants, however, since we propagate all
+ grandchildren up one level.
+
+ Alias set zero is implicitly a superset of all other alias sets.
+ However, this is no actual entry for alias set zero. It is an
+ error to attempt to explicitly construct a subset of zero. */
+
+struct GTY(()) alias_set_entry_d {
+ /* The alias set number, as stored in MEM_ALIAS_SET. */
+ alias_set_type alias_set;
+
+ /* Nonzero if would have a child of zero: this effectively makes this
+ alias set the same as alias set zero. */
+ int has_zero_child;
+
+ /* The children of the alias set. These are not just the immediate
+ children, but, in fact, all descendants. So, if we have:
+
+ struct T { struct S s; float f; }
+
+ continuing our example above, the children here will be all of
+ `int', `double', `float', and `struct S'. */
+ splay_tree GTY((param1_is (int), param2_is (int))) children;
+};
+typedef struct alias_set_entry_d *alias_set_entry;
+
+static int rtx_equal_for_memref_p (const_rtx, const_rtx);
+static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
+static void record_set (rtx, const_rtx, void *);
+static int base_alias_check (rtx, rtx, enum machine_mode,
+ enum machine_mode);
+static rtx find_base_value (rtx);
+static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
+static int insert_subset_children (splay_tree_node, void*);
+static alias_set_entry get_alias_set_entry (alias_set_type);
+static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
+ bool (*) (const_rtx, bool));
+static int aliases_everything_p (const_rtx);
+static bool nonoverlapping_component_refs_p (const_tree, const_tree);
+static tree decl_for_component_ref (tree);
+static rtx adjust_offset_for_component_ref (tree, rtx);
+static int write_dependence_p (const_rtx, const_rtx, int);
+
+static void memory_modified_1 (rtx, const_rtx, void *);
+
+/* Set up all info needed to perform alias analysis on memory references. */
+
+/* Returns the size in bytes of the mode of X. */
+#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
+
+/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
+ different alias sets. We ignore alias sets in functions making use
+ of variable arguments because the va_arg macros on some systems are
+ not legal ANSI C. */
+#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
+ mems_in_disjoint_alias_sets_p (MEM1, MEM2)
+
+/* Cap the number of passes we make over the insns propagating alias
+ information through set chains. 10 is a completely arbitrary choice. */
+#define MAX_ALIAS_LOOP_PASSES 10
+
+/* reg_base_value[N] gives an address to which register N is related.
+ If all sets after the first add or subtract to the current value
+ or otherwise modify it so it does not point to a different top level
+ object, reg_base_value[N] is equal to the address part of the source
+ of the first set.
+
+ A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
+ expressions represent certain special values: function arguments and
+ the stack, frame, and argument pointers.
+
+ The contents of an ADDRESS is not normally used, the mode of the
+ ADDRESS determines whether the ADDRESS is a function argument or some
+ other special value. Pointer equality, not rtx_equal_p, determines whether
+ two ADDRESS expressions refer to the same base address.
+
+ The only use of the contents of an ADDRESS is for determining if the
+ current function performs nonlocal memory memory references for the
+ purposes of marking the function as a constant function. */
+
+static GTY(()) VEC(rtx,gc) *reg_base_value;
+static rtx *new_reg_base_value;
+
+/* We preserve the copy of old array around to avoid amount of garbage
+ produced. About 8% of garbage produced were attributed to this
+ array. */
+static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
+
+#define static_reg_base_value \
+ (this_target_rtl->x_static_reg_base_value)
+
+#define REG_BASE_VALUE(X) \
+ (REGNO (X) < VEC_length (rtx, reg_base_value) \
+ ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
+
+/* Vector indexed by N giving the initial (unchanging) value known for
+ pseudo-register N. This array is initialized in init_alias_analysis,
+ and does not change until end_alias_analysis is called. */
+static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
+
+/* Indicates number of valid entries in reg_known_value. */
+static GTY(()) unsigned int reg_known_value_size;
+
+/* Vector recording for each reg_known_value whether it is due to a
+ REG_EQUIV note. Future passes (viz., reload) may replace the
+ pseudo with the equivalent expression and so we account for the
+ dependences that would be introduced if that happens.
+
+ The REG_EQUIV notes created in assign_parms may mention the arg
+ pointer, and there are explicit insns in the RTL that modify the
+ arg pointer. Thus we must ensure that such insns don't get
+ scheduled across each other because that would invalidate the
+ REG_EQUIV notes. One could argue that the REG_EQUIV notes are
+ wrong, but solving the problem in the scheduler will likely give
+ better code, so we do it here. */
+static bool *reg_known_equiv_p;
+
+/* True when scanning insns from the start of the rtl to the
+ NOTE_INSN_FUNCTION_BEG note. */
+static bool copying_arguments;
+
+DEF_VEC_P(alias_set_entry);
+DEF_VEC_ALLOC_P(alias_set_entry,gc);
+
+/* The splay-tree used to store the various alias set entries. */
+static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
+
+/* Build a decomposed reference object for querying the alias-oracle
+ from the MEM rtx and store it in *REF.
+ Returns false if MEM is not suitable for the alias-oracle. */
+
+static bool
+ao_ref_from_mem (ao_ref *ref, const_rtx mem)
+{
+ tree expr = MEM_EXPR (mem);
+ tree base;
+
+ if (!expr)
+ return false;
+
+ ao_ref_init (ref, expr);
+
+ /* Get the base of the reference and see if we have to reject or
+ adjust it. */
+ base = ao_ref_base (ref);
+ if (base == NULL_TREE)
+ return false;
+
+ /* The tree oracle doesn't like to have these. */
+ if (TREE_CODE (base) == FUNCTION_DECL
+ || TREE_CODE (base) == LABEL_DECL)
+ return false;
+
+ /* If this is a pointer dereference of a non-SSA_NAME punt.
+ ??? We could replace it with a pointer to anything. */
+ if ((INDIRECT_REF_P (base)
+ || TREE_CODE (base) == MEM_REF)
+ && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
+ return false;
+ if (TREE_CODE (base) == TARGET_MEM_REF
+ && TMR_BASE (base)
+ && TREE_CODE (TMR_BASE (base)) != SSA_NAME)
+ return false;
+
+ /* If this is a reference based on a partitioned decl replace the
+ base with an INDIRECT_REF of the pointer representative we
+ created during stack slot partitioning. */
+ if (TREE_CODE (base) == VAR_DECL
+ && ! TREE_STATIC (base)
+ && cfun->gimple_df->decls_to_pointers != NULL)
+ {
+ void *namep;
+ namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
+ if (namep)
+ ref->base = build_simple_mem_ref (*(tree *)namep);
+ }
+ else if (TREE_CODE (base) == TARGET_MEM_REF
+ && TREE_CODE (TMR_BASE (base)) == ADDR_EXPR
+ && TREE_CODE (TREE_OPERAND (TMR_BASE (base), 0)) == VAR_DECL
+ && ! TREE_STATIC (TREE_OPERAND (TMR_BASE (base), 0))
+ && cfun->gimple_df->decls_to_pointers != NULL)
+ {
+ void *namep;
+ namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers,
+ TREE_OPERAND (TMR_BASE (base), 0));
+ if (namep)
+ ref->base = build_simple_mem_ref (*(tree *)namep);
+ }
+
+ ref->ref_alias_set = MEM_ALIAS_SET (mem);
+
+ /* If MEM_OFFSET or MEM_SIZE are NULL we have to punt.
+ Keep points-to related information though. */
+ if (!MEM_OFFSET (mem)
+ || !MEM_SIZE (mem))
+ {
+ ref->ref = NULL_TREE;
+ ref->offset = 0;
+ ref->size = -1;
+ ref->max_size = -1;
+ return true;
+ }
+
+ /* If the base decl is a parameter we can have negative MEM_OFFSET in
+ case of promoted subregs on bigendian targets. Trust the MEM_EXPR
+ here. */
+ if (INTVAL (MEM_OFFSET (mem)) < 0
+ && ((INTVAL (MEM_SIZE (mem)) + INTVAL (MEM_OFFSET (mem)))
+ * BITS_PER_UNIT) == ref->size)
+ return true;
+
+ ref->offset += INTVAL (MEM_OFFSET (mem)) * BITS_PER_UNIT;
+ ref->size = INTVAL (MEM_SIZE (mem)) * BITS_PER_UNIT;
+
+ /* The MEM may extend into adjacent fields, so adjust max_size if
+ necessary. */
+ if (ref->max_size != -1
+ && ref->size > ref->max_size)
+ ref->max_size = ref->size;
+
+ /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
+ the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
+ if (MEM_EXPR (mem) != get_spill_slot_decl (false)
+ && (ref->offset < 0
+ || (DECL_P (ref->base)
+ && (!host_integerp (DECL_SIZE (ref->base), 1)
+ || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
+ < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
+ return false;
+
+ return true;
+}
+
+/* Query the alias-oracle on whether the two memory rtx X and MEM may
+ alias. If TBAA_P is set also apply TBAA. Returns true if the
+ two rtxen may alias, false otherwise. */
+
+static bool
+rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
+{
+ ao_ref ref1, ref2;
+
+ if (!ao_ref_from_mem (&ref1, x)
+ || !ao_ref_from_mem (&ref2, mem))
+ return true;
+
+ return refs_may_alias_p_1 (&ref1, &ref2,
+ tbaa_p
+ && MEM_ALIAS_SET (x) != 0
+ && MEM_ALIAS_SET (mem) != 0);
+}
+
+/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
+ such an entry, or NULL otherwise. */
+
+static inline alias_set_entry
+get_alias_set_entry (alias_set_type alias_set)
+{
+ return VEC_index (alias_set_entry, alias_sets, alias_set);
+}
+
+/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
+ the two MEMs cannot alias each other. */
+
+static inline int
+mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
+{
+/* Perform a basic sanity check. Namely, that there are no alias sets
+ if we're not using strict aliasing. This helps to catch bugs
+ whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
+ where a MEM is allocated in some way other than by the use of
+ gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
+ use alias sets to indicate that spilled registers cannot alias each
+ other, we might need to remove this check. */
+ gcc_assert (flag_strict_aliasing
+ || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
+
+ return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
+}
+
+/* Insert the NODE into the splay tree given by DATA. Used by
+ record_alias_subset via splay_tree_foreach. */
+
+static int
+insert_subset_children (splay_tree_node node, void *data)
+{
+ splay_tree_insert ((splay_tree) data, node->key, node->value);
+
+ return 0;
+}
+
+/* Return true if the first alias set is a subset of the second. */
+
+bool
+alias_set_subset_of (alias_set_type set1, alias_set_type set2)
+{
+ alias_set_entry ase;
+
+ /* Everything is a subset of the "aliases everything" set. */
+ if (set2 == 0)
+ return true;
+
+ /* Otherwise, check if set1 is a subset of set2. */
+ ase = get_alias_set_entry (set2);
+ if (ase != 0
+ && (ase->has_zero_child
+ || splay_tree_lookup (ase->children,
+ (splay_tree_key) set1)))
+ return true;
+ return false;
+}
+
+/* Return 1 if the two specified alias sets may conflict. */
+
+int
+alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
+{
+ alias_set_entry ase;
+
+ /* The easy case. */
+ if (alias_sets_must_conflict_p (set1, set2))
+ return 1;
+
+ /* See if the first alias set is a subset of the second. */
+ ase = get_alias_set_entry (set1);
+ if (ase != 0
+ && (ase->has_zero_child
+ || splay_tree_lookup (ase->children,
+ (splay_tree_key) set2)))
+ return 1;
+
+ /* Now do the same, but with the alias sets reversed. */
+ ase = get_alias_set_entry (set2);
+ if (ase != 0
+ && (ase->has_zero_child
+ || splay_tree_lookup (ase->children,
+ (splay_tree_key) set1)))
+ return 1;
+
+ /* The two alias sets are distinct and neither one is the
+ child of the other. Therefore, they cannot conflict. */
+ return 0;
+}
+
+/* Return 1 if the two specified alias sets will always conflict. */
+
+int
+alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
+{
+ if (set1 == 0 || set2 == 0 || set1 == set2)
+ return 1;
+
+ return 0;
+}
+
+/* Return 1 if any MEM object of type T1 will always conflict (using the
+ dependency routines in this file) with any MEM object of type T2.
+ This is used when allocating temporary storage. If T1 and/or T2 are
+ NULL_TREE, it means we know nothing about the storage. */
+
+int
+objects_must_conflict_p (tree t1, tree t2)
+{
+ alias_set_type set1, set2;
+
+ /* If neither has a type specified, we don't know if they'll conflict
+ because we may be using them to store objects of various types, for
+ example the argument and local variables areas of inlined functions. */
+ if (t1 == 0 && t2 == 0)
+ return 0;
+
+ /* If they are the same type, they must conflict. */
+ if (t1 == t2
+ /* Likewise if both are volatile. */
+ || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
+ return 1;
+
+ set1 = t1 ? get_alias_set (t1) : 0;
+ set2 = t2 ? get_alias_set (t2) : 0;
+
+ /* We can't use alias_sets_conflict_p because we must make sure
+ that every subtype of t1 will conflict with every subtype of
+ t2 for which a pair of subobjects of these respective subtypes
+ overlaps on the stack. */
+ return alias_sets_must_conflict_p (set1, set2);
+}
+
+/* Return true if all nested component references handled by
+ get_inner_reference in T are such that we should use the alias set
+ provided by the object at the heart of T.
+
+ This is true for non-addressable components (which don't have their
+ own alias set), as well as components of objects in alias set zero.
+ This later point is a special case wherein we wish to override the
+ alias set used by the component, but we don't have per-FIELD_DECL
+ assignable alias sets. */
+
+bool
+component_uses_parent_alias_set (const_tree t)
+{
+ while (1)
+ {
+ /* If we're at the end, it vacuously uses its own alias set. */
+ if (!handled_component_p (t))
+ return false;
+
+ switch (TREE_CODE (t))
+ {
+ case COMPONENT_REF:
+ if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
+ return true;
+ break;
+
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
+ return true;
+ break;
+
+ case REALPART_EXPR:
+ case IMAGPART_EXPR:
+ break;
+
+ default:
+ /* Bitfields and casts are never addressable. */
+ return true;
+ }
+
+ t = TREE_OPERAND (t, 0);
+ if (get_alias_set (TREE_TYPE (t)) == 0)
+ return true;
+ }
+}
+
+/* Return the alias set for the memory pointed to by T, which may be
+ either a type or an expression. Return -1 if there is nothing
+ special about dereferencing T. */
+
+static alias_set_type
+get_deref_alias_set_1 (tree t)
+{
+ /* If we're not doing any alias analysis, just assume everything
+ aliases everything else. */
+ if (!flag_strict_aliasing)
+ return 0;
+
+ /* All we care about is the type. */
+ if (! TYPE_P (t))
+ t = TREE_TYPE (t);
+
+ /* If we have an INDIRECT_REF via a void pointer, we don't
+ know anything about what that might alias. Likewise if the
+ pointer is marked that way. */
+ if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
+ || TYPE_REF_CAN_ALIAS_ALL (t))
+ return 0;
+
+ return -1;
+}
+
+/* Return the alias set for the memory pointed to by T, which may be
+ either a type or an expression. */
+
+alias_set_type
+get_deref_alias_set (tree t)
+{
+ alias_set_type set = get_deref_alias_set_1 (t);
+
+ /* Fall back to the alias-set of the pointed-to type. */
+ if (set == -1)
+ {
+ if (! TYPE_P (t))
+ t = TREE_TYPE (t);
+ set = get_alias_set (TREE_TYPE (t));
+ }
+
+ return set;
+}
+
+/* Return the alias set for T, which may be either a type or an
+ expression. Call language-specific routine for help, if needed. */
+
+alias_set_type
+get_alias_set (tree t)
+{
+ alias_set_type set;
+
+ /* If we're not doing any alias analysis, just assume everything
+ aliases everything else. Also return 0 if this or its type is
+ an error. */
+ if (! flag_strict_aliasing || t == error_mark_node
+ || (! TYPE_P (t)
+ && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
+ return 0;
+
+ /* We can be passed either an expression or a type. This and the
+ language-specific routine may make mutually-recursive calls to each other
+ to figure out what to do. At each juncture, we see if this is a tree
+ that the language may need to handle specially. First handle things that
+ aren't types. */
+ if (! TYPE_P (t))
+ {
+ tree inner;
+
+ /* Give the language a chance to do something with this tree
+ before we look at it. */
+ STRIP_NOPS (t);
+ set = lang_hooks.get_alias_set (t);
+ if (set != -1)
+ return set;
+
+ /* Get the base object of the reference. */
+ inner = t;
+ while (handled_component_p (inner))
+ {
+ /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
+ the type of any component references that wrap it to
+ determine the alias-set. */
+ if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
+ t = TREE_OPERAND (inner, 0);
+ inner = TREE_OPERAND (inner, 0);
+ }
+
+ /* Handle pointer dereferences here, they can override the
+ alias-set. */
+ if (INDIRECT_REF_P (inner))
+ {
+ set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
+ if (set != -1)
+ return set;
+ }
+ else if (TREE_CODE (inner) == TARGET_MEM_REF)
+ return get_deref_alias_set (TMR_OFFSET (inner));
+ else if (TREE_CODE (inner) == MEM_REF)
+ {
+ set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1));
+ if (set != -1)
+ return set;
+ }
+
+ /* If the innermost reference is a MEM_REF that has a
+ conversion embedded treat it like a VIEW_CONVERT_EXPR above,
+ using the memory access type for determining the alias-set. */
+ if (TREE_CODE (inner) == MEM_REF
+ && TYPE_MAIN_VARIANT (TREE_TYPE (inner))
+ != TYPE_MAIN_VARIANT
+ (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))
+ return get_deref_alias_set (TREE_OPERAND (inner, 1));
+
+ /* Otherwise, pick up the outermost object that we could have a pointer
+ to, processing conversions as above. */
+ while (component_uses_parent_alias_set (t))
+ {
+ t = TREE_OPERAND (t, 0);
+ STRIP_NOPS (t);
+ }
+
+ /* If we've already determined the alias set for a decl, just return
+ it. This is necessary for C++ anonymous unions, whose component
+ variables don't look like union members (boo!). */
+ if (TREE_CODE (t) == VAR_DECL
+ && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
+ return MEM_ALIAS_SET (DECL_RTL (t));
+
+ /* Now all we care about is the type. */
+ t = TREE_TYPE (t);
+ }
+
+ /* Variant qualifiers don't affect the alias set, so get the main
+ variant. */
+ t = TYPE_MAIN_VARIANT (t);
+
+ /* Always use the canonical type as well. If this is a type that
+ requires structural comparisons to identify compatible types
+ use alias set zero. */
+ if (TYPE_STRUCTURAL_EQUALITY_P (t))
+ {
+ /* Allow the language to specify another alias set for this
+ type. */
+ set = lang_hooks.get_alias_set (t);
+ if (set != -1)
+ return set;
+ return 0;
+ }
+
+ t = TYPE_CANONICAL (t);
+
+ /* Canonical types shouldn't form a tree nor should the canonical
+ type require structural equality checks. */
+ gcc_checking_assert (TYPE_CANONICAL (t) == t
+ && !TYPE_STRUCTURAL_EQUALITY_P (t));
+
+ /* If this is a type with a known alias set, return it. */
+ if (TYPE_ALIAS_SET_KNOWN_P (t))
+ return TYPE_ALIAS_SET (t);
+
+ /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
+ if (!COMPLETE_TYPE_P (t))
+ {
+ /* For arrays with unknown size the conservative answer is the
+ alias set of the element type. */
+ if (TREE_CODE (t) == ARRAY_TYPE)
+ return get_alias_set (TREE_TYPE (t));
+
+ /* But return zero as a conservative answer for incomplete types. */
+ return 0;
+ }
+
+ /* See if the language has special handling for this type. */
+ set = lang_hooks.get_alias_set (t);
+ if (set != -1)
+ return set;
+
+ /* There are no objects of FUNCTION_TYPE, so there's no point in
+ using up an alias set for them. (There are, of course, pointers
+ and references to functions, but that's different.) */
+ else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
+ set = 0;
+
+ /* Unless the language specifies otherwise, let vector types alias
+ their components. This avoids some nasty type punning issues in
+ normal usage. And indeed lets vectors be treated more like an
+ array slice. */
+ else if (TREE_CODE (t) == VECTOR_TYPE)
+ set = get_alias_set (TREE_TYPE (t));
+
+ /* Unless the language specifies otherwise, treat array types the
+ same as their components. This avoids the asymmetry we get
+ through recording the components. Consider accessing a
+ character(kind=1) through a reference to a character(kind=1)[1:1].
+ Or consider if we want to assign integer(kind=4)[0:D.1387] and
+ integer(kind=4)[4] the same alias set or not.
+ Just be pragmatic here and make sure the array and its element
+ type get the same alias set assigned. */
+ else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
+ set = get_alias_set (TREE_TYPE (t));
+
+ /* From the former common C and C++ langhook implementation:
+
+ Unfortunately, there is no canonical form of a pointer type.
+ In particular, if we have `typedef int I', then `int *', and
+ `I *' are different types. So, we have to pick a canonical
+ representative. We do this below.
+
+ Technically, this approach is actually more conservative that
+ it needs to be. In particular, `const int *' and `int *'
+ should be in different alias sets, according to the C and C++
+ standard, since their types are not the same, and so,
+ technically, an `int **' and `const int **' cannot point at
+ the same thing.
+
+ But, the standard is wrong. In particular, this code is
+ legal C++:
+
+ int *ip;
+ int **ipp = &ip;
+ const int* const* cipp = ipp;
+ And, it doesn't make sense for that to be legal unless you
+ can dereference IPP and CIPP. So, we ignore cv-qualifiers on
+ the pointed-to types. This issue has been reported to the
+ C++ committee.
+
+ In addition to the above canonicalization issue, with LTO
+ we should also canonicalize `T (*)[]' to `T *' avoiding
+ alias issues with pointer-to element types and pointer-to
+ array types.
+
+ Likewise we need to deal with the situation of incomplete
+ pointed-to types and make `*(struct X **)&a' and
+ `*(struct X {} **)&a' alias. Otherwise we will have to
+ guarantee that all pointer-to incomplete type variants
+ will be replaced by pointer-to complete type variants if
+ they are available.
+
+ With LTO the convenient situation of using `void *' to
+ access and store any pointer type will also become
+ more apparent (and `void *' is just another pointer-to
+ incomplete type). Assigning alias-set zero to `void *'
+ and all pointer-to incomplete types is a not appealing
+ solution. Assigning an effective alias-set zero only
+ affecting pointers might be - by recording proper subset
+ relationships of all pointer alias-sets.
+
+ Pointer-to function types are another grey area which
+ needs caution. Globbing them all into one alias-set
+ or the above effective zero set would work.
+
+ For now just assign the same alias-set to all pointers.
+ That's simple and avoids all the above problems. */
+ else if (POINTER_TYPE_P (t)
+ && t != ptr_type_node)
+ return get_alias_set (ptr_type_node);
+
+ /* Otherwise make a new alias set for this type. */
+ else
+ set = new_alias_set ();
+
+ TYPE_ALIAS_SET (t) = set;
+
+ /* If this is an aggregate type or a complex type, we must record any
+ component aliasing information. */
+ if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
+ record_component_aliases (t);
+
+ return set;
+}
+
+/* Return a brand-new alias set. */
+
+alias_set_type
+new_alias_set (void)
+{
+ if (flag_strict_aliasing)
+ {
+ if (alias_sets == 0)
+ VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
+ VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
+ return VEC_length (alias_set_entry, alias_sets) - 1;
+ }
+ else
+ return 0;
+}
+
+/* Indicate that things in SUBSET can alias things in SUPERSET, but that
+ not everything that aliases SUPERSET also aliases SUBSET. For example,
+ in C, a store to an `int' can alias a load of a structure containing an
+ `int', and vice versa. But it can't alias a load of a 'double' member
+ of the same structure. Here, the structure would be the SUPERSET and
+ `int' the SUBSET. This relationship is also described in the comment at
+ the beginning of this file.
+
+ This function should be called only once per SUPERSET/SUBSET pair.
+
+ It is illegal for SUPERSET to be zero; everything is implicitly a
+ subset of alias set zero. */
+
+void
+record_alias_subset (alias_set_type superset, alias_set_type subset)
+{
+ alias_set_entry superset_entry;
+ alias_set_entry subset_entry;
+
+ /* It is possible in complex type situations for both sets to be the same,
+ in which case we can ignore this operation. */
+ if (superset == subset)
+ return;
+
+ gcc_assert (superset);
+
+ superset_entry = get_alias_set_entry (superset);
+ if (superset_entry == 0)
+ {
+ /* Create an entry for the SUPERSET, so that we have a place to
+ attach the SUBSET. */
+ superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
+ superset_entry->alias_set = superset;
+ superset_entry->children
+ = splay_tree_new_ggc (splay_tree_compare_ints,
+ ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
+ ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
+ superset_entry->has_zero_child = 0;
+ VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
+ }
+
+ if (subset == 0)
+ superset_entry->has_zero_child = 1;
+ else
+ {
+ subset_entry = get_alias_set_entry (subset);
+ /* If there is an entry for the subset, enter all of its children
+ (if they are not already present) as children of the SUPERSET. */
+ if (subset_entry)
+ {
+ if (subset_entry->has_zero_child)
+ superset_entry->has_zero_child = 1;
+
+ splay_tree_foreach (subset_entry->children, insert_subset_children,
+ superset_entry->children);
+ }
+
+ /* Enter the SUBSET itself as a child of the SUPERSET. */
+ splay_tree_insert (superset_entry->children,
+ (splay_tree_key) subset, 0);
+ }
+}
+
+/* Record that component types of TYPE, if any, are part of that type for
+ aliasing purposes. For record types, we only record component types
+ for fields that are not marked non-addressable. For array types, we
+ only record the component type if it is not marked non-aliased. */
+
+void
+record_component_aliases (tree type)
+{
+ alias_set_type superset = get_alias_set (type);
+ tree field;
+
+ if (superset == 0)
+ return;
+
+ switch (TREE_CODE (type))
+ {
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ /* Recursively record aliases for the base classes, if there are any. */
+ if (TYPE_BINFO (type))
+ {
+ int i;
+ tree binfo, base_binfo;
+
+ for (binfo = TYPE_BINFO (type), i = 0;
+ BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
+ record_alias_subset (superset,
+ get_alias_set (BINFO_TYPE (base_binfo)));
+ }
+ for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
+ if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
+ record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
+ break;
+
+ case COMPLEX_TYPE:
+ record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
+ break;
+
+ /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
+ element type. */
+
+ default:
+ break;
+ }
+}
+
+/* Allocate an alias set for use in storing and reading from the varargs
+ spill area. */
+
+static GTY(()) alias_set_type varargs_set = -1;
+
+alias_set_type
+get_varargs_alias_set (void)
+{
+#if 1
+ /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
+ varargs alias set to an INDIRECT_REF (FIXME!), so we can't
+ consistently use the varargs alias set for loads from the varargs
+ area. So don't use it anywhere. */
+ return 0;
+#else
+ if (varargs_set == -1)
+ varargs_set = new_alias_set ();
+
+ return varargs_set;
+#endif
+}
+
+/* Likewise, but used for the fixed portions of the frame, e.g., register
+ save areas. */
+
+static GTY(()) alias_set_type frame_set = -1;
+
+alias_set_type
+get_frame_alias_set (void)
+{
+ if (frame_set == -1)
+ frame_set = new_alias_set ();
+
+ return frame_set;
+}
+
+/* Inside SRC, the source of a SET, find a base address. */
+
+static rtx
+find_base_value (rtx src)
+{
+ unsigned int regno;
+
+#if defined (FIND_BASE_TERM)
+ /* Try machine-dependent ways to find the base term. */
+ src = FIND_BASE_TERM (src);
+#endif
+
+ switch (GET_CODE (src))
+ {
+ case SYMBOL_REF:
+ case LABEL_REF:
+ return src;
+
+ case REG:
+ regno = REGNO (src);
+ /* At the start of a function, argument registers have known base
+ values which may be lost later. Returning an ADDRESS
+ expression here allows optimization based on argument values
+ even when the argument registers are used for other purposes. */
+ if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
+ return new_reg_base_value[regno];
+
+ /* If a pseudo has a known base value, return it. Do not do this
+ for non-fixed hard regs since it can result in a circular
+ dependency chain for registers which have values at function entry.
+
+ The test above is not sufficient because the scheduler may move
+ a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
+ if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
+ && regno < VEC_length (rtx, reg_base_value))
+ {
+ /* If we're inside init_alias_analysis, use new_reg_base_value
+ to reduce the number of relaxation iterations. */
+ if (new_reg_base_value && new_reg_base_value[regno]
+ && DF_REG_DEF_COUNT (regno) == 1)
+ return new_reg_base_value[regno];
+
+ if (VEC_index (rtx, reg_base_value, regno))
+ return VEC_index (rtx, reg_base_value, regno);
+ }
+
+ return 0;
+
+ case MEM:
+ /* Check for an argument passed in memory. Only record in the
+ copying-arguments block; it is too hard to track changes
+ otherwise. */
+ if (copying_arguments
+ && (XEXP (src, 0) == arg_pointer_rtx
+ || (GET_CODE (XEXP (src, 0)) == PLUS
+ && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
+ return gen_rtx_ADDRESS (VOIDmode, src);
+ return 0;
+
+ case CONST:
+ src = XEXP (src, 0);
+ if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
+ break;
+
+ /* ... fall through ... */
+
+ case PLUS:
+ case MINUS:
+ {
+ rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
+
+ /* If either operand is a REG that is a known pointer, then it
+ is the base. */
+ if (REG_P (src_0) && REG_POINTER (src_0))
+ return find_base_value (src_0);
+ if (REG_P (src_1) && REG_POINTER (src_1))
+ return find_base_value (src_1);
+
+ /* If either operand is a REG, then see if we already have
+ a known value for it. */
+ if (REG_P (src_0))
+ {
+ temp = find_base_value (src_0);
+ if (temp != 0)
+ src_0 = temp;
+ }
+
+ if (REG_P (src_1))
+ {
+ temp = find_base_value (src_1);
+ if (temp!= 0)
+ src_1 = temp;
+ }
+
+ /* If either base is named object or a special address
+ (like an argument or stack reference), then use it for the
+ base term. */
+ if (src_0 != 0
+ && (GET_CODE (src_0) == SYMBOL_REF
+ || GET_CODE (src_0) == LABEL_REF
+ || (GET_CODE (src_0) == ADDRESS
+ && GET_MODE (src_0) != VOIDmode)))
+ return src_0;
+
+ if (src_1 != 0
+ && (GET_CODE (src_1) == SYMBOL_REF
+ || GET_CODE (src_1) == LABEL_REF
+ || (GET_CODE (src_1) == ADDRESS
+ && GET_MODE (src_1) != VOIDmode)))
+ return src_1;
+
+ /* Guess which operand is the base address:
+ If either operand is a symbol, then it is the base. If
+ either operand is a CONST_INT, then the other is the base. */
+ if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
+ return find_base_value (src_0);
+ else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
+ return find_base_value (src_1);
+
+ return 0;
+ }
+
+ case LO_SUM:
+ /* The standard form is (lo_sum reg sym) so look only at the
+ second operand. */
+ return find_base_value (XEXP (src, 1));
+
+ case AND:
+ /* If the second operand is constant set the base
+ address to the first operand. */
+ if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
+ return find_base_value (XEXP (src, 0));
+ return 0;
+
+ case TRUNCATE:
+ /* As we do not know which address space the pointer is refering to, we can
+ handle this only if the target does not support different pointer or
+ address modes depending on the address space. */
+ if (!target_default_pointer_address_modes_p ())
+ break;
+ if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
+ break;
+ /* Fall through. */
+ case HIGH:
+ case PRE_INC:
+ case PRE_DEC:
+ case POST_INC:
+ case POST_DEC:
+ case PRE_MODIFY:
+ case POST_MODIFY:
+ return find_base_value (XEXP (src, 0));
+
+ case ZERO_EXTEND:
+ case SIGN_EXTEND: /* used for NT/Alpha pointers */
+ /* As we do not know which address space the pointer is refering to, we can
+ handle this only if the target does not support different pointer or
+ address modes depending on the address space. */
+ if (!target_default_pointer_address_modes_p ())
+ break;
+
+ {
+ rtx temp = find_base_value (XEXP (src, 0));
+
+ if (temp != 0 && CONSTANT_P (temp))
+ temp = convert_memory_address (Pmode, temp);
+
+ return temp;
+ }
+
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+/* Called from init_alias_analysis indirectly through note_stores. */
+
+/* While scanning insns to find base values, reg_seen[N] is nonzero if
+ register N has been set in this function. */
+static char *reg_seen;
+
+/* Addresses which are known not to alias anything else are identified
+ by a unique integer. */
+static int unique_id;
+
+static void
+record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
+{
+ unsigned regno;
+ rtx src;
+ int n;
+
+ if (!REG_P (dest))
+ return;
+
+ regno = REGNO (dest);
+
+ gcc_checking_assert (regno < VEC_length (rtx, reg_base_value));
+
+ /* If this spans multiple hard registers, then we must indicate that every
+ register has an unusable value. */
+ if (regno < FIRST_PSEUDO_REGISTER)
+ n = hard_regno_nregs[regno][GET_MODE (dest)];
+ else
+ n = 1;
+ if (n != 1)
+ {
+ while (--n >= 0)
+ {
+ reg_seen[regno + n] = 1;
+ new_reg_base_value[regno + n] = 0;
+ }
+ return;
+ }
+
+ if (set)
+ {
+ /* A CLOBBER wipes out any old value but does not prevent a previously
+ unset register from acquiring a base address (i.e. reg_seen is not
+ set). */
+ if (GET_CODE (set) == CLOBBER)
+ {
+ new_reg_base_value[regno] = 0;
+ return;
+ }
+ src = SET_SRC (set);
+ }
+ else
+ {
+ if (reg_seen[regno])
+ {
+ new_reg_base_value[regno] = 0;
+ return;
+ }
+ reg_seen[regno] = 1;
+ new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
+ GEN_INT (unique_id++));
+ return;
+ }
+
+ /* If this is not the first set of REGNO, see whether the new value
+ is related to the old one. There are two cases of interest:
+
+ (1) The register might be assigned an entirely new value
+ that has the same base term as the original set.
+
+ (2) The set might be a simple self-modification that
+ cannot change REGNO's base value.
+
+ If neither case holds, reject the original base value as invalid.
+ Note that the following situation is not detected:
+
+ extern int x, y; int *p = &x; p += (&y-&x);
+
+ ANSI C does not allow computing the difference of addresses
+ of distinct top level objects. */
+ if (new_reg_base_value[regno] != 0
+ && find_base_value (src) != new_reg_base_value[regno])
+ switch (GET_CODE (src))
+ {
+ case LO_SUM:
+ case MINUS:
+ if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
+ new_reg_base_value[regno] = 0;
+ break;
+ case PLUS:
+ /* If the value we add in the PLUS is also a valid base value,
+ this might be the actual base value, and the original value
+ an index. */
+ {
+ rtx other = NULL_RTX;
+
+ if (XEXP (src, 0) == dest)
+ other = XEXP (src, 1);
+ else if (XEXP (src, 1) == dest)
+ other = XEXP (src, 0);
+
+ if (! other || find_base_value (other))
+ new_reg_base_value[regno] = 0;
+ break;
+ }
+ case AND:
+ if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
+ new_reg_base_value[regno] = 0;
+ break;
+ default:
+ new_reg_base_value[regno] = 0;
+ break;
+ }
+ /* If this is the first set of a register, record the value. */
+ else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
+ && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
+ new_reg_base_value[regno] = find_base_value (src);
+
+ reg_seen[regno] = 1;
+}
+
+/* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
+ using hard registers with non-null REG_BASE_VALUE for renaming. */
+rtx
+get_reg_base_value (unsigned int regno)
+{
+ return VEC_index (rtx, reg_base_value, regno);
+}
+
+/* If a value is known for REGNO, return it. */
+
+rtx
+get_reg_known_value (unsigned int regno)
+{
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ {
+ regno -= FIRST_PSEUDO_REGISTER;
+ if (regno < reg_known_value_size)
+ return reg_known_value[regno];
+ }
+ return NULL;
+}
+
+/* Set it. */
+
+static void
+set_reg_known_value (unsigned int regno, rtx val)
+{
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ {
+ regno -= FIRST_PSEUDO_REGISTER;
+ if (regno < reg_known_value_size)
+ reg_known_value[regno] = val;
+ }
+}
+
+/* Similarly for reg_known_equiv_p. */
+
+bool
+get_reg_known_equiv_p (unsigned int regno)
+{
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ {
+ regno -= FIRST_PSEUDO_REGISTER;
+ if (regno < reg_known_value_size)
+ return reg_known_equiv_p[regno];
+ }
+ return false;
+}
+
+static void
+set_reg_known_equiv_p (unsigned int regno, bool val)
+{
+ if (regno >= FIRST_PSEUDO_REGISTER)
+ {
+ regno -= FIRST_PSEUDO_REGISTER;
+ if (regno < reg_known_value_size)
+ reg_known_equiv_p[regno] = val;
+ }
+}
+
+
+/* Returns a canonical version of X, from the point of view alias
+ analysis. (For example, if X is a MEM whose address is a register,
+ and the register has a known value (say a SYMBOL_REF), then a MEM
+ whose address is the SYMBOL_REF is returned.) */
+
+rtx
+canon_rtx (rtx x)
+{
+ /* Recursively look for equivalences. */
+ if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
+ {
+ rtx t = get_reg_known_value (REGNO (x));
+ if (t == x)
+ return x;
+ if (t)
+ return canon_rtx (t);
+ }
+
+ if (GET_CODE (x) == PLUS)
+ {
+ rtx x0 = canon_rtx (XEXP (x, 0));
+ rtx x1 = canon_rtx (XEXP (x, 1));
+
+ if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
+ {
+ if (CONST_INT_P (x0))
+ return plus_constant (x1, INTVAL (x0));
+ else if (CONST_INT_P (x1))
+ return plus_constant (x0, INTVAL (x1));
+ return gen_rtx_PLUS (GET_MODE (x), x0, x1);
+ }
+ }
+
+ /* This gives us much better alias analysis when called from
+ the loop optimizer. Note we want to leave the original
+ MEM alone, but need to return the canonicalized MEM with
+ all the flags with their original values. */
+ else if (MEM_P (x))
+ x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
+
+ return x;
+}
+
+/* Return 1 if X and Y are identical-looking rtx's.
+ Expect that X and Y has been already canonicalized.
+
+ We use the data in reg_known_value above to see if two registers with
+ different numbers are, in fact, equivalent. */
+
+static int
+rtx_equal_for_memref_p (const_rtx x, const_rtx y)
+{
+ int i;
+ int j;
+ enum rtx_code code;
+ const char *fmt;
+
+ if (x == 0 && y == 0)
+ return 1;
+ if (x == 0 || y == 0)
+ return 0;
+
+ if (x == y)
+ return 1;
+
+ code = GET_CODE (x);
+ /* Rtx's of different codes cannot be equal. */
+ if (code != GET_CODE (y))
+ return 0;
+
+ /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
+ (REG:SI x) and (REG:HI x) are NOT equivalent. */
+
+ if (GET_MODE (x) != GET_MODE (y))
+ return 0;
+
+ /* Some RTL can be compared without a recursive examination. */
+ switch (code)
+ {
+ case REG:
+ return REGNO (x) == REGNO (y);
+
+ case LABEL_REF:
+ return XEXP (x, 0) == XEXP (y, 0);
+
+ case SYMBOL_REF:
+ return XSTR (x, 0) == XSTR (y, 0);
+
+ case VALUE:
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case CONST_FIXED:
+ /* There's no need to compare the contents of CONST_DOUBLEs or
+ CONST_INTs because pointer equality is a good enough
+ comparison for these nodes. */
+ return 0;
+
+ default:
+ break;
+ }
+
+ /* canon_rtx knows how to handle plus. No need to canonicalize. */
+ if (code == PLUS)
+ return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
+ && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
+ || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
+ && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
+ /* For commutative operations, the RTX match if the operand match in any
+ order. Also handle the simple binary and unary cases without a loop. */
+ if (COMMUTATIVE_P (x))
+ {
+ rtx xop0 = canon_rtx (XEXP (x, 0));
+ rtx yop0 = canon_rtx (XEXP (y, 0));
+ rtx yop1 = canon_rtx (XEXP (y, 1));
+
+ return ((rtx_equal_for_memref_p (xop0, yop0)
+ && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
+ || (rtx_equal_for_memref_p (xop0, yop1)
+ && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
+ }
+ else if (NON_COMMUTATIVE_P (x))
+ {
+ return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
+ canon_rtx (XEXP (y, 0)))
+ && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
+ canon_rtx (XEXP (y, 1))));
+ }
+ else if (UNARY_P (x))
+ return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
+ canon_rtx (XEXP (y, 0)));
+
+ /* Compare the elements. If any pair of corresponding elements
+ fail to match, return 0 for the whole things.
+
+ Limit cases to types which actually appear in addresses. */
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ switch (fmt[i])
+ {
+ case 'i':
+ if (XINT (x, i) != XINT (y, i))
+ return 0;
+ break;
+
+ case 'E':
+ /* Two vectors must have the same length. */
+ if (XVECLEN (x, i) != XVECLEN (y, i))
+ return 0;
+
+ /* And the corresponding elements must match. */
+ for (j = 0; j < XVECLEN (x, i); j++)
+ if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
+ canon_rtx (XVECEXP (y, i, j))) == 0)
+ return 0;
+ break;
+
+ case 'e':
+ if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
+ canon_rtx (XEXP (y, i))) == 0)
+ return 0;
+ break;
+
+ /* This can happen for asm operands. */
+ case 's':
+ if (strcmp (XSTR (x, i), XSTR (y, i)))
+ return 0;
+ break;
+
+ /* This can happen for an asm which clobbers memory. */
+ case '0':
+ break;
+
+ /* It is believed that rtx's at this level will never
+ contain anything but integers and other rtx's,
+ except for within LABEL_REFs and SYMBOL_REFs. */
+ default:
+ gcc_unreachable ();
+ }
+ }
+ return 1;
+}
+
+rtx
+find_base_term (rtx x)
+{
+ cselib_val *val;
+ struct elt_loc_list *l;
+
+#if defined (FIND_BASE_TERM)
+ /* Try machine-dependent ways to find the base term. */
+ x = FIND_BASE_TERM (x);
+#endif
+
+ switch (GET_CODE (x))
+ {
+ case REG:
+ return REG_BASE_VALUE (x);
+
+ case TRUNCATE:
+ /* As we do not know which address space the pointer is refering to, we can
+ handle this only if the target does not support different pointer or
+ address modes depending on the address space. */
+ if (!target_default_pointer_address_modes_p ())
+ return 0;
+ if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
+ return 0;
+ /* Fall through. */
+ case HIGH:
+ case PRE_INC:
+ case PRE_DEC:
+ case POST_INC:
+ case POST_DEC:
+ case PRE_MODIFY:
+ case POST_MODIFY:
+ return find_base_term (XEXP (x, 0));
+
+ case ZERO_EXTEND:
+ case SIGN_EXTEND: /* Used for Alpha/NT pointers */
+ /* As we do not know which address space the pointer is refering to, we can
+ handle this only if the target does not support different pointer or
+ address modes depending on the address space. */
+ if (!target_default_pointer_address_modes_p ())
+ return 0;
+
+ {
+ rtx temp = find_base_term (XEXP (x, 0));
+
+ if (temp != 0 && CONSTANT_P (temp))
+ temp = convert_memory_address (Pmode, temp);
+
+ return temp;
+ }
+
+ case VALUE:
+ val = CSELIB_VAL_PTR (x);
+ if (!val)
+ return 0;
+ for (l = val->locs; l; l = l->next)
+ if ((x = find_base_term (l->loc)) != 0)
+ return x;
+ return 0;
+
+ case LO_SUM:
+ /* The standard form is (lo_sum reg sym) so look only at the
+ second operand. */
+ return find_base_term (XEXP (x, 1));
+
+ case CONST:
+ x = XEXP (x, 0);
+ if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
+ return 0;
+ /* Fall through. */
+ case PLUS:
+ case MINUS:
+ {
+ rtx tmp1 = XEXP (x, 0);
+ rtx tmp2 = XEXP (x, 1);
+
+ /* This is a little bit tricky since we have to determine which of
+ the two operands represents the real base address. Otherwise this
+ routine may return the index register instead of the base register.
+
+ That may cause us to believe no aliasing was possible, when in
+ fact aliasing is possible.
+
+ We use a few simple tests to guess the base register. Additional
+ tests can certainly be added. For example, if one of the operands
+ is a shift or multiply, then it must be the index register and the
+ other operand is the base register. */
+
+ if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
+ return find_base_term (tmp2);
+
+ /* If either operand is known to be a pointer, then use it
+ to determine the base term. */
+ if (REG_P (tmp1) && REG_POINTER (tmp1))
+ {
+ rtx base = find_base_term (tmp1);
+ if (base)
+ return base;
+ }
+
+ if (REG_P (tmp2) && REG_POINTER (tmp2))
+ {
+ rtx base = find_base_term (tmp2);
+ if (base)
+ return base;
+ }
+
+ /* Neither operand was known to be a pointer. Go ahead and find the
+ base term for both operands. */
+ tmp1 = find_base_term (tmp1);
+ tmp2 = find_base_term (tmp2);
+
+ /* If either base term is named object or a special address
+ (like an argument or stack reference), then use it for the
+ base term. */
+ if (tmp1 != 0
+ && (GET_CODE (tmp1) == SYMBOL_REF
+ || GET_CODE (tmp1) == LABEL_REF
+ || (GET_CODE (tmp1) == ADDRESS
+ && GET_MODE (tmp1) != VOIDmode)))
+ return tmp1;
+
+ if (tmp2 != 0
+ && (GET_CODE (tmp2) == SYMBOL_REF
+ || GET_CODE (tmp2) == LABEL_REF
+ || (GET_CODE (tmp2) == ADDRESS
+ && GET_MODE (tmp2) != VOIDmode)))
+ return tmp2;
+
+ /* We could not determine which of the two operands was the
+ base register and which was the index. So we can determine
+ nothing from the base alias check. */
+ return 0;
+ }
+
+ case AND:
+ if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
+ return find_base_term (XEXP (x, 0));
+ return 0;
+
+ case SYMBOL_REF:
+ case LABEL_REF:
+ return x;
+
+ default:
+ return 0;
+ }
+}
+
+/* Return 0 if the addresses X and Y are known to point to different
+ objects, 1 if they might be pointers to the same object. */
+
+static int
+base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
+ enum machine_mode y_mode)
+{
+ rtx x_base = find_base_term (x);
+ rtx y_base = find_base_term (y);
+
+ /* If the address itself has no known base see if a known equivalent
+ value has one. If either address still has no known base, nothing
+ is known about aliasing. */
+ if (x_base == 0)
+ {
+ rtx x_c;
+
+ if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
+ return 1;
+
+ x_base = find_base_term (x_c);
+ if (x_base == 0)
+ return 1;
+ }
+
+ if (y_base == 0)
+ {
+ rtx y_c;
+ if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
+ return 1;
+
+ y_base = find_base_term (y_c);
+ if (y_base == 0)
+ return 1;
+ }
+
+ /* If the base addresses are equal nothing is known about aliasing. */
+ if (rtx_equal_p (x_base, y_base))
+ return 1;
+
+ /* The base addresses are different expressions. If they are not accessed
+ via AND, there is no conflict. We can bring knowledge of object
+ alignment into play here. For example, on alpha, "char a, b;" can
+ alias one another, though "char a; long b;" cannot. AND addesses may
+ implicitly alias surrounding objects; i.e. unaligned access in DImode
+ via AND address can alias all surrounding object types except those
+ with aligment 8 or higher. */
+ if (GET_CODE (x) == AND && GET_CODE (y) == AND)
+ return 1;
+ if (GET_CODE (x) == AND
+ && (!CONST_INT_P (XEXP (x, 1))
+ || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
+ return 1;
+ if (GET_CODE (y) == AND
+ && (!CONST_INT_P (XEXP (y, 1))
+ || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
+ return 1;
+
+ /* Differing symbols not accessed via AND never alias. */
+ if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
+ return 0;
+
+ /* If one address is a stack reference there can be no alias:
+ stack references using different base registers do not alias,
+ a stack reference can not alias a parameter, and a stack reference
+ can not alias a global. */
+ if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
+ || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
+ return 0;
+
+ return 1;
+}
+
+/* Convert the address X into something we can use. This is done by returning
+ it unchanged unless it is a value; in the latter case we call cselib to get
+ a more useful rtx. */
+
+rtx
+get_addr (rtx x)
+{
+ cselib_val *v;
+ struct elt_loc_list *l;
+
+ if (GET_CODE (x) != VALUE)
+ return x;
+ v = CSELIB_VAL_PTR (x);
+ if (v)
+ {
+ for (l = v->locs; l; l = l->next)
+ if (CONSTANT_P (l->loc))
+ return l->loc;
+ for (l = v->locs; l; l = l->next)
+ if (!REG_P (l->loc) && !MEM_P (l->loc))
+ return l->loc;
+ if (v->locs)
+ return v->locs->loc;
+ }
+ return x;
+}
+
+/* Return the address of the (N_REFS + 1)th memory reference to ADDR
+ where SIZE is the size in bytes of the memory reference. If ADDR
+ is not modified by the memory reference then ADDR is returned. */
+
+static rtx
+addr_side_effect_eval (rtx addr, int size, int n_refs)
+{
+ int offset = 0;
+
+ switch (GET_CODE (addr))
+ {
+ case PRE_INC:
+ offset = (n_refs + 1) * size;
+ break;
+ case PRE_DEC:
+ offset = -(n_refs + 1) * size;
+ break;
+ case POST_INC:
+ offset = n_refs * size;
+ break;
+ case POST_DEC:
+ offset = -n_refs * size;
+ break;
+
+ default:
+ return addr;
+ }
+
+ if (offset)
+ addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
+ GEN_INT (offset));
+ else
+ addr = XEXP (addr, 0);
+ addr = canon_rtx (addr);
+
+ return addr;
+}
+
+/* Return one if X and Y (memory addresses) reference the
+ same location in memory or if the references overlap.
+ Return zero if they do not overlap, else return
+ minus one in which case they still might reference the same location.
+
+ C is an offset accumulator. When
+ C is nonzero, we are testing aliases between X and Y + C.
+ XSIZE is the size in bytes of the X reference,
+ similarly YSIZE is the size in bytes for Y.
+ Expect that canon_rtx has been already called for X and Y.
+
+ If XSIZE or YSIZE is zero, we do not know the amount of memory being
+ referenced (the reference was BLKmode), so make the most pessimistic
+ assumptions.
+
+ If XSIZE or YSIZE is negative, we may access memory outside the object
+ being referenced as a side effect. This can happen when using AND to
+ align memory references, as is done on the Alpha.
+
+ Nice to notice that varying addresses cannot conflict with fp if no
+ local variables had their addresses taken, but that's too hard now.
+
+ ??? Contrary to the tree alias oracle this does not return
+ one for X + non-constant and Y + non-constant when X and Y are equal.
+ If that is fixed the TBAA hack for union type-punning can be removed. */
+
+static int
+memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
+{
+ if (GET_CODE (x) == VALUE)
+ {
+ if (REG_P (y))
+ {
+ struct elt_loc_list *l = NULL;
+ if (CSELIB_VAL_PTR (x))
+ for (l = CSELIB_VAL_PTR (x)->locs; l; l = l->next)
+ if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
+ break;
+ if (l)
+ x = y;
+ else
+ x = get_addr (x);
+ }
+ /* Don't call get_addr if y is the same VALUE. */
+ else if (x != y)
+ x = get_addr (x);
+ }
+ if (GET_CODE (y) == VALUE)
+ {
+ if (REG_P (x))
+ {
+ struct elt_loc_list *l = NULL;
+ if (CSELIB_VAL_PTR (y))
+ for (l = CSELIB_VAL_PTR (y)->locs; l; l = l->next)
+ if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
+ break;
+ if (l)
+ y = x;
+ else
+ y = get_addr (y);
+ }
+ /* Don't call get_addr if x is the same VALUE. */
+ else if (y != x)
+ y = get_addr (y);
+ }
+ if (GET_CODE (x) == HIGH)
+ x = XEXP (x, 0);
+ else if (GET_CODE (x) == LO_SUM)
+ x = XEXP (x, 1);
+ else
+ x = addr_side_effect_eval (x, xsize, 0);
+ if (GET_CODE (y) == HIGH)
+ y = XEXP (y, 0);
+ else if (GET_CODE (y) == LO_SUM)
+ y = XEXP (y, 1);
+ else
+ y = addr_side_effect_eval (y, ysize, 0);
+
+ if (rtx_equal_for_memref_p (x, y))
+ {
+ if (xsize <= 0 || ysize <= 0)
+ return 1;
+ if (c >= 0 && xsize > c)
+ return 1;
+ if (c < 0 && ysize+c > 0)
+ return 1;
+ return 0;
+ }
+
+ /* This code used to check for conflicts involving stack references and
+ globals but the base address alias code now handles these cases. */
+
+ if (GET_CODE (x) == PLUS)
+ {
+ /* The fact that X is canonicalized means that this
+ PLUS rtx is canonicalized. */
+ rtx x0 = XEXP (x, 0);
+ rtx x1 = XEXP (x, 1);
+
+ if (GET_CODE (y) == PLUS)
+ {
+ /* The fact that Y is canonicalized means that this
+ PLUS rtx is canonicalized. */
+ rtx y0 = XEXP (y, 0);
+ rtx y1 = XEXP (y, 1);
+
+ if (rtx_equal_for_memref_p (x1, y1))
+ return memrefs_conflict_p (xsize, x0, ysize, y0, c);
+ if (rtx_equal_for_memref_p (x0, y0))
+ return memrefs_conflict_p (xsize, x1, ysize, y1, c);
+ if (CONST_INT_P (x1))
+ {
+ if (CONST_INT_P (y1))
+ return memrefs_conflict_p (xsize, x0, ysize, y0,
+ c - INTVAL (x1) + INTVAL (y1));
+ else
+ return memrefs_conflict_p (xsize, x0, ysize, y,
+ c - INTVAL (x1));
+ }
+ else if (CONST_INT_P (y1))
+ return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
+
+ return -1;
+ }
+ else if (CONST_INT_P (x1))
+ return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
+ }
+ else if (GET_CODE (y) == PLUS)
+ {
+ /* The fact that Y is canonicalized means that this
+ PLUS rtx is canonicalized. */
+ rtx y0 = XEXP (y, 0);
+ rtx y1 = XEXP (y, 1);
+
+ if (CONST_INT_P (y1))
+ return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
+ else
+ return -1;
+ }
+
+ if (GET_CODE (x) == GET_CODE (y))
+ switch (GET_CODE (x))
+ {
+ case MULT:
+ {
+ /* Handle cases where we expect the second operands to be the
+ same, and check only whether the first operand would conflict
+ or not. */
+ rtx x0, y0;
+ rtx x1 = canon_rtx (XEXP (x, 1));
+ rtx y1 = canon_rtx (XEXP (y, 1));
+ if (! rtx_equal_for_memref_p (x1, y1))
+ return -1;
+ x0 = canon_rtx (XEXP (x, 0));
+ y0 = canon_rtx (XEXP (y, 0));
+ if (rtx_equal_for_memref_p (x0, y0))
+ return (xsize == 0 || ysize == 0
+ || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
+
+ /* Can't properly adjust our sizes. */
+ if (!CONST_INT_P (x1))
+ return -1;
+ xsize /= INTVAL (x1);
+ ysize /= INTVAL (x1);
+ c /= INTVAL (x1);
+ return memrefs_conflict_p (xsize, x0, ysize, y0, c);
+ }
+
+ default:
+ break;
+ }
+
+ /* Treat an access through an AND (e.g. a subword access on an Alpha)
+ as an access with indeterminate size. Assume that references
+ besides AND are aligned, so if the size of the other reference is
+ at least as large as the alignment, assume no other overlap. */
+ if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
+ {
+ if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
+ xsize = -1;
+ return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
+ }
+ if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
+ {
+ /* ??? If we are indexing far enough into the array/structure, we
+ may yet be able to determine that we can not overlap. But we
+ also need to that we are far enough from the end not to overlap
+ a following reference, so we do nothing with that for now. */
+ if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
+ ysize = -1;
+ return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
+ }
+
+ if (CONSTANT_P (x))
+ {
+ if (CONST_INT_P (x) && CONST_INT_P (y))
+ {
+ c += (INTVAL (y) - INTVAL (x));
+ return (xsize <= 0 || ysize <= 0
+ || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
+ }
+
+ if (GET_CODE (x) == CONST)
+ {
+ if (GET_CODE (y) == CONST)
+ return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
+ ysize, canon_rtx (XEXP (y, 0)), c);
+ else
+ return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
+ ysize, y, c);
+ }
+ if (GET_CODE (y) == CONST)
+ return memrefs_conflict_p (xsize, x, ysize,
+ canon_rtx (XEXP (y, 0)), c);
+
+ if (CONSTANT_P (y))
+ return (xsize <= 0 || ysize <= 0
+ || (rtx_equal_for_memref_p (x, y)
+ && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
+
+ return -1;
+ }
+
+ return -1;
+}
+
+/* Functions to compute memory dependencies.
+
+ Since we process the insns in execution order, we can build tables
+ to keep track of what registers are fixed (and not aliased), what registers
+ are varying in known ways, and what registers are varying in unknown
+ ways.
+
+ If both memory references are volatile, then there must always be a
+ dependence between the two references, since their order can not be
+ changed. A volatile and non-volatile reference can be interchanged
+ though.
+
+ A MEM_IN_STRUCT reference at a non-AND varying address can never
+ conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
+ also must allow AND addresses, because they may generate accesses
+ outside the object being referenced. This is used to generate
+ aligned addresses from unaligned addresses, for instance, the alpha
+ storeqi_unaligned pattern. */
+
+/* Read dependence: X is read after read in MEM takes place. There can
+ only be a dependence here if both reads are volatile. */
+
+int
+read_dependence (const_rtx mem, const_rtx x)
+{
+ return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
+}
+
+/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
+ MEM2 is a reference to a structure at a varying address, or returns
+ MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
+ value is returned MEM1 and MEM2 can never alias. VARIES_P is used
+ to decide whether or not an address may vary; it should return
+ nonzero whenever variation is possible.
+ MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
+
+static const_rtx
+fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
+ rtx mem2_addr,
+ bool (*varies_p) (const_rtx, bool))
+{
+ if (! flag_strict_aliasing)
+ return NULL_RTX;
+
+ if (MEM_ALIAS_SET (mem2)
+ && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
+ && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
+ /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
+ varying address. */
+ return mem1;
+
+ if (MEM_ALIAS_SET (mem1)
+ && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
+ && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
+ /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
+ varying address. */
+ return mem2;
+
+ return NULL_RTX;
+}
+
+/* Returns nonzero if something about the mode or address format MEM1
+ indicates that it might well alias *anything*. */
+
+static int
+aliases_everything_p (const_rtx mem)
+{
+ if (GET_CODE (XEXP (mem, 0)) == AND)
+ /* If the address is an AND, it's very hard to know at what it is
+ actually pointing. */
+ return 1;
+
+ return 0;
+}
+
+/* Return true if we can determine that the fields referenced cannot
+ overlap for any pair of objects. */
+
+static bool
+nonoverlapping_component_refs_p (const_tree x, const_tree y)
+{
+ const_tree fieldx, fieldy, typex, typey, orig_y;
+
+ if (!flag_strict_aliasing)
+ return false;
+
+ do
+ {
+ /* The comparison has to be done at a common type, since we don't
+ know how the inheritance hierarchy works. */
+ orig_y = y;
+ do
+ {
+ fieldx = TREE_OPERAND (x, 1);
+ typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
+
+ y = orig_y;
+ do
+ {
+ fieldy = TREE_OPERAND (y, 1);
+ typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
+
+ if (typex == typey)
+ goto found;
+
+ y = TREE_OPERAND (y, 0);
+ }
+ while (y && TREE_CODE (y) == COMPONENT_REF);
+
+ x = TREE_OPERAND (x, 0);
+ }
+ while (x && TREE_CODE (x) == COMPONENT_REF);
+ /* Never found a common type. */
+ return false;
+
+ found:
+ /* If we're left with accessing different fields of a structure,
+ then no overlap. */
+ if (TREE_CODE (typex) == RECORD_TYPE
+ && fieldx != fieldy)
+ return true;
+
+ /* The comparison on the current field failed. If we're accessing
+ a very nested structure, look at the next outer level. */
+ x = TREE_OPERAND (x, 0);
+ y = TREE_OPERAND (y, 0);
+ }
+ while (x && y
+ && TREE_CODE (x) == COMPONENT_REF
+ && TREE_CODE (y) == COMPONENT_REF);
+
+ return false;
+}
+
+/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
+
+static tree
+decl_for_component_ref (tree x)
+{
+ do
+ {
+ x = TREE_OPERAND (x, 0);
+ }
+ while (x && TREE_CODE (x) == COMPONENT_REF);
+
+ return x && DECL_P (x) ? x : NULL_TREE;
+}
+
+/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
+ offset of the field reference. */
+
+static rtx
+adjust_offset_for_component_ref (tree x, rtx offset)
+{
+ HOST_WIDE_INT ioffset;
+
+ if (! offset)
+ return NULL_RTX;
+
+ ioffset = INTVAL (offset);
+ do
+ {
+ tree offset = component_ref_field_offset (x);
+ tree field = TREE_OPERAND (x, 1);
+
+ if (! host_integerp (offset, 1))
+ return NULL_RTX;
+ ioffset += (tree_low_cst (offset, 1)
+ + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
+ / BITS_PER_UNIT));
+
+ x = TREE_OPERAND (x, 0);
+ }
+ while (x && TREE_CODE (x) == COMPONENT_REF);
+
+ return GEN_INT (ioffset);
+}
+
+/* Return nonzero if we can determine the exprs corresponding to memrefs
+ X and Y and they do not overlap.
+ If LOOP_VARIANT is set, skip offset-based disambiguation */
+
+int
+nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
+{
+ tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
+ rtx rtlx, rtly;
+ rtx basex, basey;
+ rtx moffsetx, moffsety;
+ HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
+
+ /* Unless both have exprs, we can't tell anything. */
+ if (exprx == 0 || expry == 0)
+ return 0;
+
+ /* For spill-slot accesses make sure we have valid offsets. */
+ if ((exprx == get_spill_slot_decl (false)
+ && ! MEM_OFFSET (x))
+ || (expry == get_spill_slot_decl (false)
+ && ! MEM_OFFSET (y)))
+ return 0;
+
+ /* If both are field references, we may be able to determine something. */
+ if (TREE_CODE (exprx) == COMPONENT_REF
+ && TREE_CODE (expry) == COMPONENT_REF
+ && nonoverlapping_component_refs_p (exprx, expry))
+ return 1;
+
+
+ /* If the field reference test failed, look at the DECLs involved. */
+ moffsetx = MEM_OFFSET (x);
+ if (TREE_CODE (exprx) == COMPONENT_REF)
+ {
+ tree t = decl_for_component_ref (exprx);
+ if (! t)
+ return 0;
+ moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
+ exprx = t;
+ }
+
+ moffsety = MEM_OFFSET (y);
+ if (TREE_CODE (expry) == COMPONENT_REF)
+ {
+ tree t = decl_for_component_ref (expry);
+ if (! t)
+ return 0;
+ moffsety = adjust_offset_for_component_ref (expry, moffsety);
+ expry = t;
+ }
+
+ if (! DECL_P (exprx) || ! DECL_P (expry))
+ return 0;
+
+ /* With invalid code we can end up storing into the constant pool.
+ Bail out to avoid ICEing when creating RTL for this.
+ See gfortran.dg/lto/20091028-2_0.f90. */
+ if (TREE_CODE (exprx) == CONST_DECL
+ || TREE_CODE (expry) == CONST_DECL)
+ return 1;
+
+ rtlx = DECL_RTL (exprx);
+ rtly = DECL_RTL (expry);
+
+ /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
+ can't overlap unless they are the same because we never reuse that part
+ of the stack frame used for locals for spilled pseudos. */
+ if ((!MEM_P (rtlx) || !MEM_P (rtly))
+ && ! rtx_equal_p (rtlx, rtly))
+ return 1;
+
+ /* If we have MEMs refering to different address spaces (which can
+ potentially overlap), we cannot easily tell from the addresses
+ whether the references overlap. */
+ if (MEM_P (rtlx) && MEM_P (rtly)
+ && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
+ return 0;
+
+ /* Get the base and offsets of both decls. If either is a register, we
+ know both are and are the same, so use that as the base. The only
+ we can avoid overlap is if we can deduce that they are nonoverlapping
+ pieces of that decl, which is very rare. */
+ basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
+ if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
+ offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
+
+ basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
+ if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
+ offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
+
+ /* If the bases are different, we know they do not overlap if both
+ are constants or if one is a constant and the other a pointer into the
+ stack frame. Otherwise a different base means we can't tell if they
+ overlap or not. */
+ if (! rtx_equal_p (basex, basey))
+ return ((CONSTANT_P (basex) && CONSTANT_P (basey))
+ || (CONSTANT_P (basex) && REG_P (basey)
+ && REGNO_PTR_FRAME_P (REGNO (basey)))
+ || (CONSTANT_P (basey) && REG_P (basex)
+ && REGNO_PTR_FRAME_P (REGNO (basex))));
+
+ /* Offset based disambiguation not appropriate for loop invariant */
+ if (loop_invariant)
+ return 0;
+
+ sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
+ : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
+ : -1);
+ sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
+ : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
+ -1);
+
+ /* If we have an offset for either memref, it can update the values computed
+ above. */
+ if (moffsetx)
+ offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
+ if (moffsety)
+ offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
+
+ /* If a memref has both a size and an offset, we can use the smaller size.
+ We can't do this if the offset isn't known because we must view this
+ memref as being anywhere inside the DECL's MEM. */
+ if (MEM_SIZE (x) && moffsetx)
+ sizex = INTVAL (MEM_SIZE (x));
+ if (MEM_SIZE (y) && moffsety)
+ sizey = INTVAL (MEM_SIZE (y));
+
+ /* Put the values of the memref with the lower offset in X's values. */
+ if (offsetx > offsety)
+ {
+ tem = offsetx, offsetx = offsety, offsety = tem;
+ tem = sizex, sizex = sizey, sizey = tem;
+ }
+
+ /* If we don't know the size of the lower-offset value, we can't tell
+ if they conflict. Otherwise, we do the test. */
+ return sizex >= 0 && offsety >= offsetx + sizex;
+}
+
+/* Helper for true_dependence and canon_true_dependence.
+ Checks for true dependence: X is read after store in MEM takes place.
+
+ VARIES is the function that should be used as rtx_varies function.
+
+ If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
+ NULL_RTX, and the canonical addresses of MEM and X are both computed
+ here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
+
+ If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
+
+ Returns 1 if there is a true dependence, 0 otherwise. */
+
+static int
+true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
+ const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool),
+ bool mem_canonicalized)
+{
+ rtx base;
+ int ret;
+
+ gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
+ : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
+
+ if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
+ return 1;
+
+ /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
+ This is used in epilogue deallocation functions, and in cselib. */
+ if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
+ return 1;
+ if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
+ return 1;
+ if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
+ || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
+ return 1;
+
+ /* Read-only memory is by definition never modified, and therefore can't
+ conflict with anything. We don't expect to find read-only set on MEM,
+ but stupid user tricks can produce them, so don't die. */
+ if (MEM_READONLY_P (x))
+ return 0;
+
+ /* If we have MEMs refering to different address spaces (which can
+ potentially overlap), we cannot easily tell from the addresses
+ whether the references overlap. */
+ if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
+ return 1;
+
+ if (! mem_addr)
+ {
+ mem_addr = XEXP (mem, 0);
+ if (mem_mode == VOIDmode)
+ mem_mode = GET_MODE (mem);
+ }
+
+ if (! x_addr)
+ {
+ x_addr = XEXP (x, 0);
+ if (!((GET_CODE (x_addr) == VALUE
+ && GET_CODE (mem_addr) != VALUE
+ && reg_mentioned_p (x_addr, mem_addr))
+ || (GET_CODE (x_addr) != VALUE
+ && GET_CODE (mem_addr) == VALUE
+ && reg_mentioned_p (mem_addr, x_addr))))
+ {
+ x_addr = get_addr (x_addr);
+ if (! mem_canonicalized)
+ mem_addr = get_addr (mem_addr);
+ }
+ }
+
+ base = find_base_term (x_addr);
+ if (base && (GET_CODE (base) == LABEL_REF
+ || (GET_CODE (base) == SYMBOL_REF
+ && CONSTANT_POOL_ADDRESS_P (base))))
+ return 0;
+
+ if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
+ return 0;
+
+ x_addr = canon_rtx (x_addr);
+ if (!mem_canonicalized)
+ mem_addr = canon_rtx (mem_addr);
+
+ if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
+ SIZE_FOR_MODE (x), x_addr, 0)) != -1)
+ return ret;
+
+ if (DIFFERENT_ALIAS_SETS_P (x, mem))
+ return 0;
+
+ if (nonoverlapping_memrefs_p (mem, x, false))
+ return 0;
+
+ if (aliases_everything_p (x))
+ return 1;
+
+ /* We cannot use aliases_everything_p to test MEM, since we must look
+ at MEM_ADDR, rather than XEXP (mem, 0). */
+ if (GET_CODE (mem_addr) == AND)
+ return 1;
+
+ /* ??? In true_dependence we also allow BLKmode to alias anything. Why
+ don't we do this in anti_dependence and output_dependence? */
+ if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
+ return 1;
+
+ if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
+ return 0;
+
+ return rtx_refs_may_alias_p (x, mem, true);
+}
+
+/* True dependence: X is read after store in MEM takes place. */
+
+int
+true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
+ bool (*varies) (const_rtx, bool))
+{
+ return true_dependence_1 (mem, mem_mode, NULL_RTX,
+ x, NULL_RTX, varies,
+ /*mem_canonicalized=*/false);
+}
+
+/* Canonical true dependence: X is read after store in MEM takes place.
+ Variant of true_dependence which assumes MEM has already been
+ canonicalized (hence we no longer do that here).
+ The mem_addr argument has been added, since true_dependence_1 computed
+ this value prior to canonicalizing. */
+
+int
+canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
+ const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool))
+{
+ return true_dependence_1 (mem, mem_mode, mem_addr,
+ x, x_addr, varies,
+ /*mem_canonicalized=*/true);
+}
+
+/* Returns nonzero if a write to X might alias a previous read from
+ (or, if WRITEP is nonzero, a write to) MEM. */
+
+static int
+write_dependence_p (const_rtx mem, const_rtx x, int writep)
+{
+ rtx x_addr, mem_addr;
+ const_rtx fixed_scalar;
+ rtx base;
+ int ret;
+
+ if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
+ return 1;
+
+ /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
+ This is used in epilogue deallocation functions. */
+ if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
+ return 1;
+ if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
+ return 1;
+ if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
+ || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
+ return 1;
+
+ /* A read from read-only memory can't conflict with read-write memory. */
+ if (!writep && MEM_READONLY_P (mem))
+ return 0;
+
+ /* If we have MEMs refering to different address spaces (which can
+ potentially overlap), we cannot easily tell from the addresses
+ whether the references overlap. */
+ if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
+ return 1;
+
+ x_addr = XEXP (x, 0);
+ mem_addr = XEXP (mem, 0);
+ if (!((GET_CODE (x_addr) == VALUE
+ && GET_CODE (mem_addr) != VALUE
+ && reg_mentioned_p (x_addr, mem_addr))
+ || (GET_CODE (x_addr) != VALUE
+ && GET_CODE (mem_addr) == VALUE
+ && reg_mentioned_p (mem_addr, x_addr))))
+ {
+ x_addr = get_addr (x_addr);
+ mem_addr = get_addr (mem_addr);
+ }
+
+ if (! writep)
+ {
+ base = find_base_term (mem_addr);
+ if (base && (GET_CODE (base) == LABEL_REF
+ || (GET_CODE (base) == SYMBOL_REF
+ && CONSTANT_POOL_ADDRESS_P (base))))
+ return 0;
+ }
+
+ if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
+ GET_MODE (mem)))
+ return 0;
+
+ x_addr = canon_rtx (x_addr);
+ mem_addr = canon_rtx (mem_addr);
+
+ if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
+ SIZE_FOR_MODE (x), x_addr, 0)) != -1)
+ return ret;
+
+ if (nonoverlapping_memrefs_p (x, mem, false))
+ return 0;
+
+ fixed_scalar
+ = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
+ rtx_addr_varies_p);
+
+ if ((fixed_scalar == mem && !aliases_everything_p (x))
+ || (fixed_scalar == x && !aliases_everything_p (mem)))
+ return 0;
+
+ return rtx_refs_may_alias_p (x, mem, false);
+}
+
+/* Anti dependence: X is written after read in MEM takes place. */
+
+int
+anti_dependence (const_rtx mem, const_rtx x)
+{
+ return write_dependence_p (mem, x, /*writep=*/0);
+}
+
+/* Output dependence: X is written after store in MEM takes place. */
+
+int
+output_dependence (const_rtx mem, const_rtx x)
+{
+ return write_dependence_p (mem, x, /*writep=*/1);
+}
+
+
+
+/* Check whether X may be aliased with MEM. Don't do offset-based
+ memory disambiguation & TBAA. */
+int
+may_alias_p (const_rtx mem, const_rtx x)
+{
+ rtx x_addr, mem_addr;
+
+ if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
+ return 1;
+
+ /* ??? In true_dependence we also allow BLKmode to alias anything. */
+ if (GET_MODE (mem) == BLKmode || GET_MODE (x) == BLKmode)
+ return 1;
+
+ if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
+ || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
+ return 1;
+
+ /* Read-only memory is by definition never modified, and therefore can't
+ conflict with anything. We don't expect to find read-only set on MEM,
+ but stupid user tricks can produce them, so don't die. */
+ if (MEM_READONLY_P (x))
+ return 0;
+
+ /* If we have MEMs refering to different address spaces (which can
+ potentially overlap), we cannot easily tell from the addresses
+ whether the references overlap. */
+ if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
+ return 1;
+
+ x_addr = XEXP (x, 0);
+ mem_addr = XEXP (mem, 0);
+ if (!((GET_CODE (x_addr) == VALUE
+ && GET_CODE (mem_addr) != VALUE
+ && reg_mentioned_p (x_addr, mem_addr))
+ || (GET_CODE (x_addr) != VALUE
+ && GET_CODE (mem_addr) == VALUE
+ && reg_mentioned_p (mem_addr, x_addr))))
+ {
+ x_addr = get_addr (x_addr);
+ mem_addr = get_addr (mem_addr);
+ }
+
+ if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr)))
+ return 0;
+
+ x_addr = canon_rtx (x_addr);
+ mem_addr = canon_rtx (mem_addr);
+
+ if (nonoverlapping_memrefs_p (mem, x, true))
+ return 0;
+
+ if (aliases_everything_p (x))
+ return 1;
+
+ /* We cannot use aliases_everything_p to test MEM, since we must look
+ at MEM_ADDR, rather than XEXP (mem, 0). */
+ if (GET_CODE (mem_addr) == AND)
+ return 1;
+
+ if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
+ rtx_addr_varies_p))
+ return 0;
+
+ /* TBAA not valid for loop_invarint */
+ return rtx_refs_may_alias_p (x, mem, false);
+}
+
+void
+init_alias_target (void)
+{
+ int i;
+
+ memset (static_reg_base_value, 0, sizeof static_reg_base_value);
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ /* Check whether this register can hold an incoming pointer
+ argument. FUNCTION_ARG_REGNO_P tests outgoing register
+ numbers, so translate if necessary due to register windows. */
+ if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
+ && HARD_REGNO_MODE_OK (i, Pmode))
+ static_reg_base_value[i]
+ = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
+
+ static_reg_base_value[STACK_POINTER_REGNUM]
+ = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
+ static_reg_base_value[ARG_POINTER_REGNUM]
+ = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
+ static_reg_base_value[FRAME_POINTER_REGNUM]
+ = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
+#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
+ static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
+ = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
+#endif
+}
+
+/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
+ to be memory reference. */
+static bool memory_modified;
+static void
+memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
+{
+ if (MEM_P (x))
+ {
+ if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
+ memory_modified = true;
+ }
+}
+
+
+/* Return true when INSN possibly modify memory contents of MEM
+ (i.e. address can be modified). */
+bool
+memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
+{
+ if (!INSN_P (insn))
+ return false;
+ memory_modified = false;
+ note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
+ return memory_modified;
+}
+
+/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
+ array. */
+
+void
+init_alias_analysis (void)
+{
+ unsigned int maxreg = max_reg_num ();
+ int changed, pass;
+ int i;
+ unsigned int ui;
+ rtx insn;
+
+ timevar_push (TV_ALIAS_ANALYSIS);
+
+ reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
+ reg_known_value = ggc_alloc_cleared_vec_rtx (reg_known_value_size);
+ reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
+
+ /* If we have memory allocated from the previous run, use it. */
+ if (old_reg_base_value)
+ reg_base_value = old_reg_base_value;
+
+ if (reg_base_value)
+ VEC_truncate (rtx, reg_base_value, 0);
+
+ VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
+
+ new_reg_base_value = XNEWVEC (rtx, maxreg);
+ reg_seen = XNEWVEC (char, maxreg);
+
+ /* The basic idea is that each pass through this loop will use the
+ "constant" information from the previous pass to propagate alias
+ information through another level of assignments.
+
+ This could get expensive if the assignment chains are long. Maybe
+ we should throttle the number of iterations, possibly based on
+ the optimization level or flag_expensive_optimizations.
+
+ We could propagate more information in the first pass by making use
+ of DF_REG_DEF_COUNT to determine immediately that the alias information
+ for a pseudo is "constant".
+
+ A program with an uninitialized variable can cause an infinite loop
+ here. Instead of doing a full dataflow analysis to detect such problems
+ we just cap the number of iterations for the loop.
+
+ The state of the arrays for the set chain in question does not matter
+ since the program has undefined behavior. */
+
+ pass = 0;
+ do
+ {
+ /* Assume nothing will change this iteration of the loop. */
+ changed = 0;
+
+ /* We want to assign the same IDs each iteration of this loop, so
+ start counting from zero each iteration of the loop. */
+ unique_id = 0;
+
+ /* We're at the start of the function each iteration through the
+ loop, so we're copying arguments. */
+ copying_arguments = true;
+
+ /* Wipe the potential alias information clean for this pass. */
+ memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
+
+ /* Wipe the reg_seen array clean. */
+ memset (reg_seen, 0, maxreg);
+
+ /* Mark all hard registers which may contain an address.
+ The stack, frame and argument pointers may contain an address.
+ An argument register which can hold a Pmode value may contain
+ an address even if it is not in BASE_REGS.
+
+ The address expression is VOIDmode for an argument and
+ Pmode for other registers. */
+
+ memcpy (new_reg_base_value, static_reg_base_value,
+ FIRST_PSEUDO_REGISTER * sizeof (rtx));
+
+ /* Walk the insns adding values to the new_reg_base_value array. */
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ {
+ if (INSN_P (insn))
+ {
+ rtx note, set;
+
+#if defined (HAVE_prologue) || defined (HAVE_epilogue)
+ /* The prologue/epilogue insns are not threaded onto the
+ insn chain until after reload has completed. Thus,
+ there is no sense wasting time checking if INSN is in
+ the prologue/epilogue until after reload has completed. */
+ if (reload_completed
+ && prologue_epilogue_contains (insn))
+ continue;
+#endif
+
+ /* If this insn has a noalias note, process it, Otherwise,
+ scan for sets. A simple set will have no side effects
+ which could change the base value of any other register. */
+
+ if (GET_CODE (PATTERN (insn)) == SET
+ && REG_NOTES (insn) != 0
+ && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
+ record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
+ else
+ note_stores (PATTERN (insn), record_set, NULL);
+
+ set = single_set (insn);
+
+ if (set != 0
+ && REG_P (SET_DEST (set))
+ && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
+ {
+ unsigned int regno = REGNO (SET_DEST (set));
+ rtx src = SET_SRC (set);
+ rtx t;
+
+ note = find_reg_equal_equiv_note (insn);
+ if (note && REG_NOTE_KIND (note) == REG_EQUAL
+ && DF_REG_DEF_COUNT (regno) != 1)
+ note = NULL_RTX;
+
+ if (note != NULL_RTX
+ && GET_CODE (XEXP (note, 0)) != EXPR_LIST
+ && ! rtx_varies_p (XEXP (note, 0), 1)
+ && ! reg_overlap_mentioned_p (SET_DEST (set),
+ XEXP (note, 0)))
+ {
+ set_reg_known_value (regno, XEXP (note, 0));
+ set_reg_known_equiv_p (regno,
+ REG_NOTE_KIND (note) == REG_EQUIV);
+ }
+ else if (DF_REG_DEF_COUNT (regno) == 1
+ && GET_CODE (src) == PLUS
+ && REG_P (XEXP (src, 0))
+ && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
+ && CONST_INT_P (XEXP (src, 1)))
+ {
+ t = plus_constant (t, INTVAL (XEXP (src, 1)));
+ set_reg_known_value (regno, t);
+ set_reg_known_equiv_p (regno, 0);
+ }
+ else if (DF_REG_DEF_COUNT (regno) == 1
+ && ! rtx_varies_p (src, 1))
+ {
+ set_reg_known_value (regno, src);
+ set_reg_known_equiv_p (regno, 0);
+ }
+ }
+ }
+ else if (NOTE_P (insn)
+ && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
+ copying_arguments = false;
+ }
+
+ /* Now propagate values from new_reg_base_value to reg_base_value. */
+ gcc_assert (maxreg == (unsigned int) max_reg_num ());
+
+ for (ui = 0; ui < maxreg; ui++)
+ {
+ if (new_reg_base_value[ui]
+ && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
+ && ! rtx_equal_p (new_reg_base_value[ui],
+ VEC_index (rtx, reg_base_value, ui)))
+ {
+ VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
+ changed = 1;
+ }
+ }
+ }
+ while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
+
+ /* Fill in the remaining entries. */
+ for (i = 0; i < (int)reg_known_value_size; i++)
+ if (reg_known_value[i] == 0)
+ reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
+
+ /* Clean up. */
+ free (new_reg_base_value);
+ new_reg_base_value = 0;
+ free (reg_seen);
+ reg_seen = 0;
+ timevar_pop (TV_ALIAS_ANALYSIS);
+}
+
+/* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
+ Special API for var-tracking pass purposes. */
+
+void
+vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
+{
+ VEC_replace (rtx, reg_base_value, REGNO (reg1), REG_BASE_VALUE (reg2));
+}
+
+void
+end_alias_analysis (void)
+{
+ old_reg_base_value = reg_base_value;
+ ggc_free (reg_known_value);
+ reg_known_value = 0;
+ reg_known_value_size = 0;
+ free (reg_known_equiv_p);
+ reg_known_equiv_p = 0;
+}
+
+#include "gt-alias.h"