diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/c-typeck.c | |
download | cbb-gcc-4.6.4-upstream.tar.bz2 cbb-gcc-4.6.4-upstream.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'gcc/c-typeck.c')
-rw-r--r-- | gcc/c-typeck.c | 10726 |
1 files changed, 10726 insertions, 0 deletions
diff --git a/gcc/c-typeck.c b/gcc/c-typeck.c new file mode 100644 index 000000000..ac37751ac --- /dev/null +++ b/gcc/c-typeck.c @@ -0,0 +1,10726 @@ +/* Build expressions with type checking for C compiler. + Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, + 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 + Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + + +/* This file is part of the C front end. + It contains routines to build C expressions given their operands, + including computing the types of the result, C-specific error checks, + and some optimization. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "tree.h" +#include "langhooks.h" +#include "c-tree.h" +#include "c-lang.h" +#include "flags.h" +#include "output.h" +#include "intl.h" +#include "target.h" +#include "tree-iterator.h" +#include "bitmap.h" +#include "gimple.h" +#include "c-family/c-objc.h" + +/* Possible cases of implicit bad conversions. Used to select + diagnostic messages in convert_for_assignment. */ +enum impl_conv { + ic_argpass, + ic_assign, + ic_init, + ic_return +}; + +/* The level of nesting inside "__alignof__". */ +int in_alignof; + +/* The level of nesting inside "sizeof". */ +int in_sizeof; + +/* The level of nesting inside "typeof". */ +int in_typeof; + +/* Nonzero if we've already printed a "missing braces around initializer" + message within this initializer. */ +static int missing_braces_mentioned; + +static int require_constant_value; +static int require_constant_elements; + +static bool null_pointer_constant_p (const_tree); +static tree qualify_type (tree, tree); +static int tagged_types_tu_compatible_p (const_tree, const_tree, bool *, + bool *); +static int comp_target_types (location_t, tree, tree); +static int function_types_compatible_p (const_tree, const_tree, bool *, + bool *); +static int type_lists_compatible_p (const_tree, const_tree, bool *, bool *); +static tree lookup_field (tree, tree); +static int convert_arguments (tree, VEC(tree,gc) *, VEC(tree,gc) *, tree, + tree); +static tree pointer_diff (location_t, tree, tree); +static tree convert_for_assignment (location_t, tree, tree, tree, + enum impl_conv, bool, tree, tree, int); +static tree valid_compound_expr_initializer (tree, tree); +static void push_string (const char *); +static void push_member_name (tree); +static int spelling_length (void); +static char *print_spelling (char *); +static void warning_init (int, const char *); +static tree digest_init (location_t, tree, tree, tree, bool, bool, int); +static void output_init_element (tree, tree, bool, tree, tree, int, bool, + struct obstack *); +static void output_pending_init_elements (int, struct obstack *); +static int set_designator (int, struct obstack *); +static void push_range_stack (tree, struct obstack *); +static void add_pending_init (tree, tree, tree, bool, struct obstack *); +static void set_nonincremental_init (struct obstack *); +static void set_nonincremental_init_from_string (tree, struct obstack *); +static tree find_init_member (tree, struct obstack *); +static void readonly_warning (tree, enum lvalue_use); +static int lvalue_or_else (location_t, const_tree, enum lvalue_use); +static void record_maybe_used_decl (tree); +static int comptypes_internal (const_tree, const_tree, bool *, bool *); + +/* Return true if EXP is a null pointer constant, false otherwise. */ + +static bool +null_pointer_constant_p (const_tree expr) +{ + /* This should really operate on c_expr structures, but they aren't + yet available everywhere required. */ + tree type = TREE_TYPE (expr); + return (TREE_CODE (expr) == INTEGER_CST + && !TREE_OVERFLOW (expr) + && integer_zerop (expr) + && (INTEGRAL_TYPE_P (type) + || (TREE_CODE (type) == POINTER_TYPE + && VOID_TYPE_P (TREE_TYPE (type)) + && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED))); +} + +/* EXPR may appear in an unevaluated part of an integer constant + expression, but not in an evaluated part. Wrap it in a + C_MAYBE_CONST_EXPR, or mark it with TREE_OVERFLOW if it is just an + INTEGER_CST and we cannot create a C_MAYBE_CONST_EXPR. */ + +static tree +note_integer_operands (tree expr) +{ + tree ret; + if (TREE_CODE (expr) == INTEGER_CST && in_late_binary_op) + { + ret = copy_node (expr); + TREE_OVERFLOW (ret) = 1; + } + else + { + ret = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (expr), NULL_TREE, expr); + C_MAYBE_CONST_EXPR_INT_OPERANDS (ret) = 1; + } + return ret; +} + +/* Having checked whether EXPR may appear in an unevaluated part of an + integer constant expression and found that it may, remove any + C_MAYBE_CONST_EXPR noting this fact and return the resulting + expression. */ + +static inline tree +remove_c_maybe_const_expr (tree expr) +{ + if (TREE_CODE (expr) == C_MAYBE_CONST_EXPR) + return C_MAYBE_CONST_EXPR_EXPR (expr); + else + return expr; +} + +/* This is a cache to hold if two types are compatible or not. */ + +struct tagged_tu_seen_cache { + const struct tagged_tu_seen_cache * next; + const_tree t1; + const_tree t2; + /* The return value of tagged_types_tu_compatible_p if we had seen + these two types already. */ + int val; +}; + +static const struct tagged_tu_seen_cache * tagged_tu_seen_base; +static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *); + +/* Do `exp = require_complete_type (exp);' to make sure exp + does not have an incomplete type. (That includes void types.) */ + +tree +require_complete_type (tree value) +{ + tree type = TREE_TYPE (value); + + if (value == error_mark_node || type == error_mark_node) + return error_mark_node; + + /* First, detect a valid value with a complete type. */ + if (COMPLETE_TYPE_P (type)) + return value; + + c_incomplete_type_error (value, type); + return error_mark_node; +} + +/* Print an error message for invalid use of an incomplete type. + VALUE is the expression that was used (or 0 if that isn't known) + and TYPE is the type that was invalid. */ + +void +c_incomplete_type_error (const_tree value, const_tree type) +{ + const char *type_code_string; + + /* Avoid duplicate error message. */ + if (TREE_CODE (type) == ERROR_MARK) + return; + + if (value != 0 && (TREE_CODE (value) == VAR_DECL + || TREE_CODE (value) == PARM_DECL)) + error ("%qD has an incomplete type", value); + else + { + retry: + /* We must print an error message. Be clever about what it says. */ + + switch (TREE_CODE (type)) + { + case RECORD_TYPE: + type_code_string = "struct"; + break; + + case UNION_TYPE: + type_code_string = "union"; + break; + + case ENUMERAL_TYPE: + type_code_string = "enum"; + break; + + case VOID_TYPE: + error ("invalid use of void expression"); + return; + + case ARRAY_TYPE: + if (TYPE_DOMAIN (type)) + { + if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL) + { + error ("invalid use of flexible array member"); + return; + } + type = TREE_TYPE (type); + goto retry; + } + error ("invalid use of array with unspecified bounds"); + return; + + default: + gcc_unreachable (); + } + + if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE) + error ("invalid use of undefined type %<%s %E%>", + type_code_string, TYPE_NAME (type)); + else + /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */ + error ("invalid use of incomplete typedef %qD", TYPE_NAME (type)); + } +} + +/* Given a type, apply default promotions wrt unnamed function + arguments and return the new type. */ + +tree +c_type_promotes_to (tree type) +{ + if (TYPE_MAIN_VARIANT (type) == float_type_node) + return double_type_node; + + if (c_promoting_integer_type_p (type)) + { + /* Preserve unsignedness if not really getting any wider. */ + if (TYPE_UNSIGNED (type) + && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))) + return unsigned_type_node; + return integer_type_node; + } + + return type; +} + +/* Return true if between two named address spaces, whether there is a superset + named address space that encompasses both address spaces. If there is a + superset, return which address space is the superset. */ + +static bool +addr_space_superset (addr_space_t as1, addr_space_t as2, addr_space_t *common) +{ + if (as1 == as2) + { + *common = as1; + return true; + } + else if (targetm.addr_space.subset_p (as1, as2)) + { + *common = as2; + return true; + } + else if (targetm.addr_space.subset_p (as2, as1)) + { + *common = as1; + return true; + } + else + return false; +} + +/* Return a variant of TYPE which has all the type qualifiers of LIKE + as well as those of TYPE. */ + +static tree +qualify_type (tree type, tree like) +{ + addr_space_t as_type = TYPE_ADDR_SPACE (type); + addr_space_t as_like = TYPE_ADDR_SPACE (like); + addr_space_t as_common; + + /* If the two named address spaces are different, determine the common + superset address space. If there isn't one, raise an error. */ + if (!addr_space_superset (as_type, as_like, &as_common)) + { + as_common = as_type; + error ("%qT and %qT are in disjoint named address spaces", + type, like); + } + + return c_build_qualified_type (type, + TYPE_QUALS_NO_ADDR_SPACE (type) + | TYPE_QUALS_NO_ADDR_SPACE (like) + | ENCODE_QUAL_ADDR_SPACE (as_common)); +} + +/* Return true iff the given tree T is a variable length array. */ + +bool +c_vla_type_p (const_tree t) +{ + if (TREE_CODE (t) == ARRAY_TYPE + && C_TYPE_VARIABLE_SIZE (t)) + return true; + return false; +} + +/* Return the composite type of two compatible types. + + We assume that comptypes has already been done and returned + nonzero; if that isn't so, this may crash. In particular, we + assume that qualifiers match. */ + +tree +composite_type (tree t1, tree t2) +{ + enum tree_code code1; + enum tree_code code2; + tree attributes; + + /* Save time if the two types are the same. */ + + if (t1 == t2) return t1; + + /* If one type is nonsense, use the other. */ + if (t1 == error_mark_node) + return t2; + if (t2 == error_mark_node) + return t1; + + code1 = TREE_CODE (t1); + code2 = TREE_CODE (t2); + + /* Merge the attributes. */ + attributes = targetm.merge_type_attributes (t1, t2); + + /* If one is an enumerated type and the other is the compatible + integer type, the composite type might be either of the two + (DR#013 question 3). For consistency, use the enumerated type as + the composite type. */ + + if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE) + return t1; + if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE) + return t2; + + gcc_assert (code1 == code2); + + switch (code1) + { + case POINTER_TYPE: + /* For two pointers, do this recursively on the target type. */ + { + tree pointed_to_1 = TREE_TYPE (t1); + tree pointed_to_2 = TREE_TYPE (t2); + tree target = composite_type (pointed_to_1, pointed_to_2); + t1 = build_pointer_type (target); + t1 = build_type_attribute_variant (t1, attributes); + return qualify_type (t1, t2); + } + + case ARRAY_TYPE: + { + tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2)); + int quals; + tree unqual_elt; + tree d1 = TYPE_DOMAIN (t1); + tree d2 = TYPE_DOMAIN (t2); + bool d1_variable, d2_variable; + bool d1_zero, d2_zero; + bool t1_complete, t2_complete; + + /* We should not have any type quals on arrays at all. */ + gcc_assert (!TYPE_QUALS_NO_ADDR_SPACE (t1) + && !TYPE_QUALS_NO_ADDR_SPACE (t2)); + + t1_complete = COMPLETE_TYPE_P (t1); + t2_complete = COMPLETE_TYPE_P (t2); + + d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1); + d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2); + + d1_variable = (!d1_zero + && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST + || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST)); + d2_variable = (!d2_zero + && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST + || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST)); + d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1)); + d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2)); + + /* Save space: see if the result is identical to one of the args. */ + if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1) + && (d2_variable || d2_zero || !d1_variable)) + return build_type_attribute_variant (t1, attributes); + if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2) + && (d1_variable || d1_zero || !d2_variable)) + return build_type_attribute_variant (t2, attributes); + + if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1)) + return build_type_attribute_variant (t1, attributes); + if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1)) + return build_type_attribute_variant (t2, attributes); + + /* Merge the element types, and have a size if either arg has + one. We may have qualifiers on the element types. To set + up TYPE_MAIN_VARIANT correctly, we need to form the + composite of the unqualified types and add the qualifiers + back at the end. */ + quals = TYPE_QUALS (strip_array_types (elt)); + unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED); + t1 = build_array_type (unqual_elt, + TYPE_DOMAIN ((TYPE_DOMAIN (t1) + && (d2_variable + || d2_zero + || !d1_variable)) + ? t1 + : t2)); + /* Ensure a composite type involving a zero-length array type + is a zero-length type not an incomplete type. */ + if (d1_zero && d2_zero + && (t1_complete || t2_complete) + && !COMPLETE_TYPE_P (t1)) + { + TYPE_SIZE (t1) = bitsize_zero_node; + TYPE_SIZE_UNIT (t1) = size_zero_node; + } + t1 = c_build_qualified_type (t1, quals); + return build_type_attribute_variant (t1, attributes); + } + + case ENUMERAL_TYPE: + case RECORD_TYPE: + case UNION_TYPE: + if (attributes != NULL) + { + /* Try harder not to create a new aggregate type. */ + if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes)) + return t1; + if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes)) + return t2; + } + return build_type_attribute_variant (t1, attributes); + + case FUNCTION_TYPE: + /* Function types: prefer the one that specified arg types. + If both do, merge the arg types. Also merge the return types. */ + { + tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2)); + tree p1 = TYPE_ARG_TYPES (t1); + tree p2 = TYPE_ARG_TYPES (t2); + int len; + tree newargs, n; + int i; + + /* Save space: see if the result is identical to one of the args. */ + if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2)) + return build_type_attribute_variant (t1, attributes); + if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1)) + return build_type_attribute_variant (t2, attributes); + + /* Simple way if one arg fails to specify argument types. */ + if (TYPE_ARG_TYPES (t1) == 0) + { + t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2)); + t1 = build_type_attribute_variant (t1, attributes); + return qualify_type (t1, t2); + } + if (TYPE_ARG_TYPES (t2) == 0) + { + t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1)); + t1 = build_type_attribute_variant (t1, attributes); + return qualify_type (t1, t2); + } + + /* If both args specify argument types, we must merge the two + lists, argument by argument. */ + /* Tell global_bindings_p to return false so that variable_size + doesn't die on VLAs in parameter types. */ + c_override_global_bindings_to_false = true; + + len = list_length (p1); + newargs = 0; + + for (i = 0; i < len; i++) + newargs = tree_cons (NULL_TREE, NULL_TREE, newargs); + + n = newargs; + + for (; p1; + p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n)) + { + /* A null type means arg type is not specified. + Take whatever the other function type has. */ + if (TREE_VALUE (p1) == 0) + { + TREE_VALUE (n) = TREE_VALUE (p2); + goto parm_done; + } + if (TREE_VALUE (p2) == 0) + { + TREE_VALUE (n) = TREE_VALUE (p1); + goto parm_done; + } + + /* Given wait (union {union wait *u; int *i} *) + and wait (union wait *), + prefer union wait * as type of parm. */ + if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE + && TREE_VALUE (p1) != TREE_VALUE (p2)) + { + tree memb; + tree mv2 = TREE_VALUE (p2); + if (mv2 && mv2 != error_mark_node + && TREE_CODE (mv2) != ARRAY_TYPE) + mv2 = TYPE_MAIN_VARIANT (mv2); + for (memb = TYPE_FIELDS (TREE_VALUE (p1)); + memb; memb = DECL_CHAIN (memb)) + { + tree mv3 = TREE_TYPE (memb); + if (mv3 && mv3 != error_mark_node + && TREE_CODE (mv3) != ARRAY_TYPE) + mv3 = TYPE_MAIN_VARIANT (mv3); + if (comptypes (mv3, mv2)) + { + TREE_VALUE (n) = composite_type (TREE_TYPE (memb), + TREE_VALUE (p2)); + pedwarn (input_location, OPT_pedantic, + "function types not truly compatible in ISO C"); + goto parm_done; + } + } + } + if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE + && TREE_VALUE (p2) != TREE_VALUE (p1)) + { + tree memb; + tree mv1 = TREE_VALUE (p1); + if (mv1 && mv1 != error_mark_node + && TREE_CODE (mv1) != ARRAY_TYPE) + mv1 = TYPE_MAIN_VARIANT (mv1); + for (memb = TYPE_FIELDS (TREE_VALUE (p2)); + memb; memb = DECL_CHAIN (memb)) + { + tree mv3 = TREE_TYPE (memb); + if (mv3 && mv3 != error_mark_node + && TREE_CODE (mv3) != ARRAY_TYPE) + mv3 = TYPE_MAIN_VARIANT (mv3); + if (comptypes (mv3, mv1)) + { + TREE_VALUE (n) = composite_type (TREE_TYPE (memb), + TREE_VALUE (p1)); + pedwarn (input_location, OPT_pedantic, + "function types not truly compatible in ISO C"); + goto parm_done; + } + } + } + TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2)); + parm_done: ; + } + + c_override_global_bindings_to_false = false; + t1 = build_function_type (valtype, newargs); + t1 = qualify_type (t1, t2); + /* ... falls through ... */ + } + + default: + return build_type_attribute_variant (t1, attributes); + } + +} + +/* Return the type of a conditional expression between pointers to + possibly differently qualified versions of compatible types. + + We assume that comp_target_types has already been done and returned + nonzero; if that isn't so, this may crash. */ + +static tree +common_pointer_type (tree t1, tree t2) +{ + tree attributes; + tree pointed_to_1, mv1; + tree pointed_to_2, mv2; + tree target; + unsigned target_quals; + addr_space_t as1, as2, as_common; + int quals1, quals2; + + /* Save time if the two types are the same. */ + + if (t1 == t2) return t1; + + /* If one type is nonsense, use the other. */ + if (t1 == error_mark_node) + return t2; + if (t2 == error_mark_node) + return t1; + + gcc_assert (TREE_CODE (t1) == POINTER_TYPE + && TREE_CODE (t2) == POINTER_TYPE); + + /* Merge the attributes. */ + attributes = targetm.merge_type_attributes (t1, t2); + + /* Find the composite type of the target types, and combine the + qualifiers of the two types' targets. Do not lose qualifiers on + array element types by taking the TYPE_MAIN_VARIANT. */ + mv1 = pointed_to_1 = TREE_TYPE (t1); + mv2 = pointed_to_2 = TREE_TYPE (t2); + if (TREE_CODE (mv1) != ARRAY_TYPE) + mv1 = TYPE_MAIN_VARIANT (pointed_to_1); + if (TREE_CODE (mv2) != ARRAY_TYPE) + mv2 = TYPE_MAIN_VARIANT (pointed_to_2); + target = composite_type (mv1, mv2); + + /* For function types do not merge const qualifiers, but drop them + if used inconsistently. The middle-end uses these to mark const + and noreturn functions. */ + quals1 = TYPE_QUALS_NO_ADDR_SPACE (pointed_to_1); + quals2 = TYPE_QUALS_NO_ADDR_SPACE (pointed_to_2); + + if (TREE_CODE (pointed_to_1) == FUNCTION_TYPE) + target_quals = (quals1 & quals2); + else + target_quals = (quals1 | quals2); + + /* If the two named address spaces are different, determine the common + superset address space. This is guaranteed to exist due to the + assumption that comp_target_type returned non-zero. */ + as1 = TYPE_ADDR_SPACE (pointed_to_1); + as2 = TYPE_ADDR_SPACE (pointed_to_2); + if (!addr_space_superset (as1, as2, &as_common)) + gcc_unreachable (); + + target_quals |= ENCODE_QUAL_ADDR_SPACE (as_common); + + t1 = build_pointer_type (c_build_qualified_type (target, target_quals)); + return build_type_attribute_variant (t1, attributes); +} + +/* Return the common type for two arithmetic types under the usual + arithmetic conversions. The default conversions have already been + applied, and enumerated types converted to their compatible integer + types. The resulting type is unqualified and has no attributes. + + This is the type for the result of most arithmetic operations + if the operands have the given two types. */ + +static tree +c_common_type (tree t1, tree t2) +{ + enum tree_code code1; + enum tree_code code2; + + /* If one type is nonsense, use the other. */ + if (t1 == error_mark_node) + return t2; + if (t2 == error_mark_node) + return t1; + + if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED) + t1 = TYPE_MAIN_VARIANT (t1); + + if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED) + t2 = TYPE_MAIN_VARIANT (t2); + + if (TYPE_ATTRIBUTES (t1) != NULL_TREE) + t1 = build_type_attribute_variant (t1, NULL_TREE); + + if (TYPE_ATTRIBUTES (t2) != NULL_TREE) + t2 = build_type_attribute_variant (t2, NULL_TREE); + + /* Save time if the two types are the same. */ + + if (t1 == t2) return t1; + + code1 = TREE_CODE (t1); + code2 = TREE_CODE (t2); + + gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE + || code1 == FIXED_POINT_TYPE || code1 == REAL_TYPE + || code1 == INTEGER_TYPE); + gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE + || code2 == FIXED_POINT_TYPE || code2 == REAL_TYPE + || code2 == INTEGER_TYPE); + + /* When one operand is a decimal float type, the other operand cannot be + a generic float type or a complex type. We also disallow vector types + here. */ + if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2)) + && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2))) + { + if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE) + { + error ("can%'t mix operands of decimal float and vector types"); + return error_mark_node; + } + if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE) + { + error ("can%'t mix operands of decimal float and complex types"); + return error_mark_node; + } + if (code1 == REAL_TYPE && code2 == REAL_TYPE) + { + error ("can%'t mix operands of decimal float and other float types"); + return error_mark_node; + } + } + + /* If one type is a vector type, return that type. (How the usual + arithmetic conversions apply to the vector types extension is not + precisely specified.) */ + if (code1 == VECTOR_TYPE) + return t1; + + if (code2 == VECTOR_TYPE) + return t2; + + /* If one type is complex, form the common type of the non-complex + components, then make that complex. Use T1 or T2 if it is the + required type. */ + if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE) + { + tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1; + tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2; + tree subtype = c_common_type (subtype1, subtype2); + + if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype) + return t1; + else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype) + return t2; + else + return build_complex_type (subtype); + } + + /* If only one is real, use it as the result. */ + + if (code1 == REAL_TYPE && code2 != REAL_TYPE) + return t1; + + if (code2 == REAL_TYPE && code1 != REAL_TYPE) + return t2; + + /* If both are real and either are decimal floating point types, use + the decimal floating point type with the greater precision. */ + + if (code1 == REAL_TYPE && code2 == REAL_TYPE) + { + if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node + || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node) + return dfloat128_type_node; + else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node + || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node) + return dfloat64_type_node; + else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node + || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node) + return dfloat32_type_node; + } + + /* Deal with fixed-point types. */ + if (code1 == FIXED_POINT_TYPE || code2 == FIXED_POINT_TYPE) + { + unsigned int unsignedp = 0, satp = 0; + enum machine_mode m1, m2; + unsigned int fbit1, ibit1, fbit2, ibit2, max_fbit, max_ibit; + + m1 = TYPE_MODE (t1); + m2 = TYPE_MODE (t2); + + /* If one input type is saturating, the result type is saturating. */ + if (TYPE_SATURATING (t1) || TYPE_SATURATING (t2)) + satp = 1; + + /* If both fixed-point types are unsigned, the result type is unsigned. + When mixing fixed-point and integer types, follow the sign of the + fixed-point type. + Otherwise, the result type is signed. */ + if ((TYPE_UNSIGNED (t1) && TYPE_UNSIGNED (t2) + && code1 == FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE) + || (code1 == FIXED_POINT_TYPE && code2 != FIXED_POINT_TYPE + && TYPE_UNSIGNED (t1)) + || (code1 != FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE + && TYPE_UNSIGNED (t2))) + unsignedp = 1; + + /* The result type is signed. */ + if (unsignedp == 0) + { + /* If the input type is unsigned, we need to convert to the + signed type. */ + if (code1 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t1)) + { + enum mode_class mclass = (enum mode_class) 0; + if (GET_MODE_CLASS (m1) == MODE_UFRACT) + mclass = MODE_FRACT; + else if (GET_MODE_CLASS (m1) == MODE_UACCUM) + mclass = MODE_ACCUM; + else + gcc_unreachable (); + m1 = mode_for_size (GET_MODE_PRECISION (m1), mclass, 0); + } + if (code2 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t2)) + { + enum mode_class mclass = (enum mode_class) 0; + if (GET_MODE_CLASS (m2) == MODE_UFRACT) + mclass = MODE_FRACT; + else if (GET_MODE_CLASS (m2) == MODE_UACCUM) + mclass = MODE_ACCUM; + else + gcc_unreachable (); + m2 = mode_for_size (GET_MODE_PRECISION (m2), mclass, 0); + } + } + + if (code1 == FIXED_POINT_TYPE) + { + fbit1 = GET_MODE_FBIT (m1); + ibit1 = GET_MODE_IBIT (m1); + } + else + { + fbit1 = 0; + /* Signed integers need to subtract one sign bit. */ + ibit1 = TYPE_PRECISION (t1) - (!TYPE_UNSIGNED (t1)); + } + + if (code2 == FIXED_POINT_TYPE) + { + fbit2 = GET_MODE_FBIT (m2); + ibit2 = GET_MODE_IBIT (m2); + } + else + { + fbit2 = 0; + /* Signed integers need to subtract one sign bit. */ + ibit2 = TYPE_PRECISION (t2) - (!TYPE_UNSIGNED (t2)); + } + + max_ibit = ibit1 >= ibit2 ? ibit1 : ibit2; + max_fbit = fbit1 >= fbit2 ? fbit1 : fbit2; + return c_common_fixed_point_type_for_size (max_ibit, max_fbit, unsignedp, + satp); + } + + /* Both real or both integers; use the one with greater precision. */ + + if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2)) + return t1; + else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1)) + return t2; + + /* Same precision. Prefer long longs to longs to ints when the + same precision, following the C99 rules on integer type rank + (which are equivalent to the C90 rules for C90 types). */ + + if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node + || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node) + return long_long_unsigned_type_node; + + if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node + || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node) + { + if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2)) + return long_long_unsigned_type_node; + else + return long_long_integer_type_node; + } + + if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node + || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node) + return long_unsigned_type_node; + + if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node + || TYPE_MAIN_VARIANT (t2) == long_integer_type_node) + { + /* But preserve unsignedness from the other type, + since long cannot hold all the values of an unsigned int. */ + if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2)) + return long_unsigned_type_node; + else + return long_integer_type_node; + } + + /* Likewise, prefer long double to double even if same size. */ + if (TYPE_MAIN_VARIANT (t1) == long_double_type_node + || TYPE_MAIN_VARIANT (t2) == long_double_type_node) + return long_double_type_node; + + /* Otherwise prefer the unsigned one. */ + + if (TYPE_UNSIGNED (t1)) + return t1; + else + return t2; +} + +/* Wrapper around c_common_type that is used by c-common.c and other + front end optimizations that remove promotions. ENUMERAL_TYPEs + are allowed here and are converted to their compatible integer types. + BOOLEAN_TYPEs are allowed here and return either boolean_type_node or + preferably a non-Boolean type as the common type. */ +tree +common_type (tree t1, tree t2) +{ + if (TREE_CODE (t1) == ENUMERAL_TYPE) + t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1); + if (TREE_CODE (t2) == ENUMERAL_TYPE) + t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1); + + /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */ + if (TREE_CODE (t1) == BOOLEAN_TYPE + && TREE_CODE (t2) == BOOLEAN_TYPE) + return boolean_type_node; + + /* If either type is BOOLEAN_TYPE, then return the other. */ + if (TREE_CODE (t1) == BOOLEAN_TYPE) + return t2; + if (TREE_CODE (t2) == BOOLEAN_TYPE) + return t1; + + return c_common_type (t1, t2); +} + +/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment + or various other operations. Return 2 if they are compatible + but a warning may be needed if you use them together. */ + +int +comptypes (tree type1, tree type2) +{ + const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base; + int val; + + val = comptypes_internal (type1, type2, NULL, NULL); + free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1); + + return val; +} + +/* Like comptypes, but if it returns non-zero because enum and int are + compatible, it sets *ENUM_AND_INT_P to true. */ + +static int +comptypes_check_enum_int (tree type1, tree type2, bool *enum_and_int_p) +{ + const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base; + int val; + + val = comptypes_internal (type1, type2, enum_and_int_p, NULL); + free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1); + + return val; +} + +/* Like comptypes, but if it returns nonzero for different types, it + sets *DIFFERENT_TYPES_P to true. */ + +int +comptypes_check_different_types (tree type1, tree type2, + bool *different_types_p) +{ + const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base; + int val; + + val = comptypes_internal (type1, type2, NULL, different_types_p); + free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1); + + return val; +} + +/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment + or various other operations. Return 2 if they are compatible + but a warning may be needed if you use them together. If + ENUM_AND_INT_P is not NULL, and one type is an enum and the other a + compatible integer type, then this sets *ENUM_AND_INT_P to true; + *ENUM_AND_INT_P is never set to false. If DIFFERENT_TYPES_P is not + NULL, and the types are compatible but different enough not to be + permitted in C1X typedef redeclarations, then this sets + *DIFFERENT_TYPES_P to true; *DIFFERENT_TYPES_P is never set to + false, but may or may not be set if the types are incompatible. + This differs from comptypes, in that we don't free the seen + types. */ + +static int +comptypes_internal (const_tree type1, const_tree type2, bool *enum_and_int_p, + bool *different_types_p) +{ + const_tree t1 = type1; + const_tree t2 = type2; + int attrval, val; + + /* Suppress errors caused by previously reported errors. */ + + if (t1 == t2 || !t1 || !t2 + || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK) + return 1; + + /* Enumerated types are compatible with integer types, but this is + not transitive: two enumerated types in the same translation unit + are compatible with each other only if they are the same type. */ + + if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE) + { + t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1)); + if (TREE_CODE (t2) != VOID_TYPE) + { + if (enum_and_int_p != NULL) + *enum_and_int_p = true; + if (different_types_p != NULL) + *different_types_p = true; + } + } + else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE) + { + t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2)); + if (TREE_CODE (t1) != VOID_TYPE) + { + if (enum_and_int_p != NULL) + *enum_and_int_p = true; + if (different_types_p != NULL) + *different_types_p = true; + } + } + + if (t1 == t2) + return 1; + + /* Different classes of types can't be compatible. */ + + if (TREE_CODE (t1) != TREE_CODE (t2)) + return 0; + + /* Qualifiers must match. C99 6.7.3p9 */ + + if (TYPE_QUALS (t1) != TYPE_QUALS (t2)) + return 0; + + /* Allow for two different type nodes which have essentially the same + definition. Note that we already checked for equality of the type + qualifiers (just above). */ + + if (TREE_CODE (t1) != ARRAY_TYPE + && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2)) + return 1; + + /* 1 if no need for warning yet, 2 if warning cause has been seen. */ + if (!(attrval = targetm.comp_type_attributes (t1, t2))) + return 0; + + /* 1 if no need for warning yet, 2 if warning cause has been seen. */ + val = 0; + + switch (TREE_CODE (t1)) + { + case POINTER_TYPE: + /* Do not remove mode or aliasing information. */ + if (TYPE_MODE (t1) != TYPE_MODE (t2) + || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2)) + break; + val = (TREE_TYPE (t1) == TREE_TYPE (t2) + ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2), + enum_and_int_p, different_types_p)); + break; + + case FUNCTION_TYPE: + val = function_types_compatible_p (t1, t2, enum_and_int_p, + different_types_p); + break; + + case ARRAY_TYPE: + { + tree d1 = TYPE_DOMAIN (t1); + tree d2 = TYPE_DOMAIN (t2); + bool d1_variable, d2_variable; + bool d1_zero, d2_zero; + val = 1; + + /* Target types must match incl. qualifiers. */ + if (TREE_TYPE (t1) != TREE_TYPE (t2) + && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2), + enum_and_int_p, + different_types_p))) + return 0; + + if (different_types_p != NULL + && (d1 == 0) != (d2 == 0)) + *different_types_p = true; + /* Sizes must match unless one is missing or variable. */ + if (d1 == 0 || d2 == 0 || d1 == d2) + break; + + d1_zero = !TYPE_MAX_VALUE (d1); + d2_zero = !TYPE_MAX_VALUE (d2); + + d1_variable = (!d1_zero + && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST + || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST)); + d2_variable = (!d2_zero + && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST + || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST)); + d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1)); + d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2)); + + if (different_types_p != NULL + && d1_variable != d2_variable) + *different_types_p = true; + if (d1_variable || d2_variable) + break; + if (d1_zero && d2_zero) + break; + if (d1_zero || d2_zero + || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2)) + || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2))) + val = 0; + + break; + } + + case ENUMERAL_TYPE: + case RECORD_TYPE: + case UNION_TYPE: + if (val != 1 && !same_translation_unit_p (t1, t2)) + { + tree a1 = TYPE_ATTRIBUTES (t1); + tree a2 = TYPE_ATTRIBUTES (t2); + + if (! attribute_list_contained (a1, a2) + && ! attribute_list_contained (a2, a1)) + break; + + if (attrval != 2) + return tagged_types_tu_compatible_p (t1, t2, enum_and_int_p, + different_types_p); + val = tagged_types_tu_compatible_p (t1, t2, enum_and_int_p, + different_types_p); + } + break; + + case VECTOR_TYPE: + val = (TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2) + && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2), + enum_and_int_p, different_types_p)); + break; + + default: + break; + } + return attrval == 2 && val == 1 ? 2 : val; +} + +/* Return 1 if TTL and TTR are pointers to types that are equivalent, ignoring + their qualifiers, except for named address spaces. If the pointers point to + different named addresses, then we must determine if one address space is a + subset of the other. */ + +static int +comp_target_types (location_t location, tree ttl, tree ttr) +{ + int val; + tree mvl = TREE_TYPE (ttl); + tree mvr = TREE_TYPE (ttr); + addr_space_t asl = TYPE_ADDR_SPACE (mvl); + addr_space_t asr = TYPE_ADDR_SPACE (mvr); + addr_space_t as_common; + bool enum_and_int_p; + + /* Fail if pointers point to incompatible address spaces. */ + if (!addr_space_superset (asl, asr, &as_common)) + return 0; + + /* Do not lose qualifiers on element types of array types that are + pointer targets by taking their TYPE_MAIN_VARIANT. */ + if (TREE_CODE (mvl) != ARRAY_TYPE) + mvl = TYPE_MAIN_VARIANT (mvl); + if (TREE_CODE (mvr) != ARRAY_TYPE) + mvr = TYPE_MAIN_VARIANT (mvr); + enum_and_int_p = false; + val = comptypes_check_enum_int (mvl, mvr, &enum_and_int_p); + + if (val == 2) + pedwarn (location, OPT_pedantic, "types are not quite compatible"); + + if (val == 1 && enum_and_int_p && warn_cxx_compat) + warning_at (location, OPT_Wc___compat, + "pointer target types incompatible in C++"); + + return val; +} + +/* Subroutines of `comptypes'. */ + +/* Determine whether two trees derive from the same translation unit. + If the CONTEXT chain ends in a null, that tree's context is still + being parsed, so if two trees have context chains ending in null, + they're in the same translation unit. */ +int +same_translation_unit_p (const_tree t1, const_tree t2) +{ + while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL) + switch (TREE_CODE_CLASS (TREE_CODE (t1))) + { + case tcc_declaration: + t1 = DECL_CONTEXT (t1); break; + case tcc_type: + t1 = TYPE_CONTEXT (t1); break; + case tcc_exceptional: + t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */ + default: gcc_unreachable (); + } + + while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL) + switch (TREE_CODE_CLASS (TREE_CODE (t2))) + { + case tcc_declaration: + t2 = DECL_CONTEXT (t2); break; + case tcc_type: + t2 = TYPE_CONTEXT (t2); break; + case tcc_exceptional: + t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */ + default: gcc_unreachable (); + } + + return t1 == t2; +} + +/* Allocate the seen two types, assuming that they are compatible. */ + +static struct tagged_tu_seen_cache * +alloc_tagged_tu_seen_cache (const_tree t1, const_tree t2) +{ + struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache); + tu->next = tagged_tu_seen_base; + tu->t1 = t1; + tu->t2 = t2; + + tagged_tu_seen_base = tu; + + /* The C standard says that two structures in different translation + units are compatible with each other only if the types of their + fields are compatible (among other things). We assume that they + are compatible until proven otherwise when building the cache. + An example where this can occur is: + struct a + { + struct a *next; + }; + If we are comparing this against a similar struct in another TU, + and did not assume they were compatible, we end up with an infinite + loop. */ + tu->val = 1; + return tu; +} + +/* Free the seen types until we get to TU_TIL. */ + +static void +free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til) +{ + const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base; + while (tu != tu_til) + { + const struct tagged_tu_seen_cache *const tu1 + = (const struct tagged_tu_seen_cache *) tu; + tu = tu1->next; + free (CONST_CAST (struct tagged_tu_seen_cache *, tu1)); + } + tagged_tu_seen_base = tu_til; +} + +/* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are + compatible. If the two types are not the same (which has been + checked earlier), this can only happen when multiple translation + units are being compiled. See C99 6.2.7 paragraph 1 for the exact + rules. ENUM_AND_INT_P and DIFFERENT_TYPES_P are as in + comptypes_internal. */ + +static int +tagged_types_tu_compatible_p (const_tree t1, const_tree t2, + bool *enum_and_int_p, bool *different_types_p) +{ + tree s1, s2; + bool needs_warning = false; + + /* We have to verify that the tags of the types are the same. This + is harder than it looks because this may be a typedef, so we have + to go look at the original type. It may even be a typedef of a + typedef... + In the case of compiler-created builtin structs the TYPE_DECL + may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */ + while (TYPE_NAME (t1) + && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL + && DECL_ORIGINAL_TYPE (TYPE_NAME (t1))) + t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1)); + + while (TYPE_NAME (t2) + && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL + && DECL_ORIGINAL_TYPE (TYPE_NAME (t2))) + t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2)); + + /* C90 didn't have the requirement that the two tags be the same. */ + if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2)) + return 0; + + /* C90 didn't say what happened if one or both of the types were + incomplete; we choose to follow C99 rules here, which is that they + are compatible. */ + if (TYPE_SIZE (t1) == NULL + || TYPE_SIZE (t2) == NULL) + return 1; + + { + const struct tagged_tu_seen_cache * tts_i; + for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next) + if (tts_i->t1 == t1 && tts_i->t2 == t2) + return tts_i->val; + } + + switch (TREE_CODE (t1)) + { + case ENUMERAL_TYPE: + { + struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2); + /* Speed up the case where the type values are in the same order. */ + tree tv1 = TYPE_VALUES (t1); + tree tv2 = TYPE_VALUES (t2); + + if (tv1 == tv2) + { + return 1; + } + + for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2)) + { + if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2)) + break; + if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1) + { + tu->val = 0; + return 0; + } + } + + if (tv1 == NULL_TREE && tv2 == NULL_TREE) + { + return 1; + } + if (tv1 == NULL_TREE || tv2 == NULL_TREE) + { + tu->val = 0; + return 0; + } + + if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2))) + { + tu->val = 0; + return 0; + } + + for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1)) + { + s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2)); + if (s2 == NULL + || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1) + { + tu->val = 0; + return 0; + } + } + return 1; + } + + case UNION_TYPE: + { + struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2); + if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2))) + { + tu->val = 0; + return 0; + } + + /* Speed up the common case where the fields are in the same order. */ + for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2; + s1 = DECL_CHAIN (s1), s2 = DECL_CHAIN (s2)) + { + int result; + + if (DECL_NAME (s1) != DECL_NAME (s2)) + break; + result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2), + enum_and_int_p, different_types_p); + + if (result != 1 && !DECL_NAME (s1)) + break; + if (result == 0) + { + tu->val = 0; + return 0; + } + if (result == 2) + needs_warning = true; + + if (TREE_CODE (s1) == FIELD_DECL + && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1), + DECL_FIELD_BIT_OFFSET (s2)) != 1) + { + tu->val = 0; + return 0; + } + } + if (!s1 && !s2) + { + tu->val = needs_warning ? 2 : 1; + return tu->val; + } + + for (s1 = TYPE_FIELDS (t1); s1; s1 = DECL_CHAIN (s1)) + { + bool ok = false; + + for (s2 = TYPE_FIELDS (t2); s2; s2 = DECL_CHAIN (s2)) + if (DECL_NAME (s1) == DECL_NAME (s2)) + { + int result; + + result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2), + enum_and_int_p, + different_types_p); + + if (result != 1 && !DECL_NAME (s1)) + continue; + if (result == 0) + { + tu->val = 0; + return 0; + } + if (result == 2) + needs_warning = true; + + if (TREE_CODE (s1) == FIELD_DECL + && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1), + DECL_FIELD_BIT_OFFSET (s2)) != 1) + break; + + ok = true; + break; + } + if (!ok) + { + tu->val = 0; + return 0; + } + } + tu->val = needs_warning ? 2 : 10; + return tu->val; + } + + case RECORD_TYPE: + { + struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2); + + for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); + s1 && s2; + s1 = DECL_CHAIN (s1), s2 = DECL_CHAIN (s2)) + { + int result; + if (TREE_CODE (s1) != TREE_CODE (s2) + || DECL_NAME (s1) != DECL_NAME (s2)) + break; + result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2), + enum_and_int_p, different_types_p); + if (result == 0) + break; + if (result == 2) + needs_warning = true; + + if (TREE_CODE (s1) == FIELD_DECL + && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1), + DECL_FIELD_BIT_OFFSET (s2)) != 1) + break; + } + if (s1 && s2) + tu->val = 0; + else + tu->val = needs_warning ? 2 : 1; + return tu->val; + } + + default: + gcc_unreachable (); + } +} + +/* Return 1 if two function types F1 and F2 are compatible. + If either type specifies no argument types, + the other must specify a fixed number of self-promoting arg types. + Otherwise, if one type specifies only the number of arguments, + the other must specify that number of self-promoting arg types. + Otherwise, the argument types must match. + ENUM_AND_INT_P and DIFFERENT_TYPES_P are as in comptypes_internal. */ + +static int +function_types_compatible_p (const_tree f1, const_tree f2, + bool *enum_and_int_p, bool *different_types_p) +{ + tree args1, args2; + /* 1 if no need for warning yet, 2 if warning cause has been seen. */ + int val = 1; + int val1; + tree ret1, ret2; + + ret1 = TREE_TYPE (f1); + ret2 = TREE_TYPE (f2); + + /* 'volatile' qualifiers on a function's return type used to mean + the function is noreturn. */ + if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2)) + pedwarn (input_location, 0, "function return types not compatible due to %<volatile%>"); + if (TYPE_VOLATILE (ret1)) + ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1), + TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE); + if (TYPE_VOLATILE (ret2)) + ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2), + TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE); + val = comptypes_internal (ret1, ret2, enum_and_int_p, different_types_p); + if (val == 0) + return 0; + + args1 = TYPE_ARG_TYPES (f1); + args2 = TYPE_ARG_TYPES (f2); + + if (different_types_p != NULL + && (args1 == 0) != (args2 == 0)) + *different_types_p = true; + + /* An unspecified parmlist matches any specified parmlist + whose argument types don't need default promotions. */ + + if (args1 == 0) + { + if (!self_promoting_args_p (args2)) + return 0; + /* If one of these types comes from a non-prototype fn definition, + compare that with the other type's arglist. + If they don't match, ask for a warning (but no error). */ + if (TYPE_ACTUAL_ARG_TYPES (f1) + && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1), + enum_and_int_p, different_types_p)) + val = 2; + return val; + } + if (args2 == 0) + { + if (!self_promoting_args_p (args1)) + return 0; + if (TYPE_ACTUAL_ARG_TYPES (f2) + && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2), + enum_and_int_p, different_types_p)) + val = 2; + return val; + } + + /* Both types have argument lists: compare them and propagate results. */ + val1 = type_lists_compatible_p (args1, args2, enum_and_int_p, + different_types_p); + return val1 != 1 ? val1 : val; +} + +/* Check two lists of types for compatibility, returning 0 for + incompatible, 1 for compatible, or 2 for compatible with + warning. ENUM_AND_INT_P and DIFFERENT_TYPES_P are as in + comptypes_internal. */ + +static int +type_lists_compatible_p (const_tree args1, const_tree args2, + bool *enum_and_int_p, bool *different_types_p) +{ + /* 1 if no need for warning yet, 2 if warning cause has been seen. */ + int val = 1; + int newval = 0; + + while (1) + { + tree a1, mv1, a2, mv2; + if (args1 == 0 && args2 == 0) + return val; + /* If one list is shorter than the other, + they fail to match. */ + if (args1 == 0 || args2 == 0) + return 0; + mv1 = a1 = TREE_VALUE (args1); + mv2 = a2 = TREE_VALUE (args2); + if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE) + mv1 = TYPE_MAIN_VARIANT (mv1); + if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE) + mv2 = TYPE_MAIN_VARIANT (mv2); + /* A null pointer instead of a type + means there is supposed to be an argument + but nothing is specified about what type it has. + So match anything that self-promotes. */ + if (different_types_p != NULL + && (a1 == 0) != (a2 == 0)) + *different_types_p = true; + if (a1 == 0) + { + if (c_type_promotes_to (a2) != a2) + return 0; + } + else if (a2 == 0) + { + if (c_type_promotes_to (a1) != a1) + return 0; + } + /* If one of the lists has an error marker, ignore this arg. */ + else if (TREE_CODE (a1) == ERROR_MARK + || TREE_CODE (a2) == ERROR_MARK) + ; + else if (!(newval = comptypes_internal (mv1, mv2, enum_and_int_p, + different_types_p))) + { + if (different_types_p != NULL) + *different_types_p = true; + /* Allow wait (union {union wait *u; int *i} *) + and wait (union wait *) to be compatible. */ + if (TREE_CODE (a1) == UNION_TYPE + && (TYPE_NAME (a1) == 0 + || TYPE_TRANSPARENT_AGGR (a1)) + && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST + && tree_int_cst_equal (TYPE_SIZE (a1), + TYPE_SIZE (a2))) + { + tree memb; + for (memb = TYPE_FIELDS (a1); + memb; memb = DECL_CHAIN (memb)) + { + tree mv3 = TREE_TYPE (memb); + if (mv3 && mv3 != error_mark_node + && TREE_CODE (mv3) != ARRAY_TYPE) + mv3 = TYPE_MAIN_VARIANT (mv3); + if (comptypes_internal (mv3, mv2, enum_and_int_p, + different_types_p)) + break; + } + if (memb == 0) + return 0; + } + else if (TREE_CODE (a2) == UNION_TYPE + && (TYPE_NAME (a2) == 0 + || TYPE_TRANSPARENT_AGGR (a2)) + && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST + && tree_int_cst_equal (TYPE_SIZE (a2), + TYPE_SIZE (a1))) + { + tree memb; + for (memb = TYPE_FIELDS (a2); + memb; memb = DECL_CHAIN (memb)) + { + tree mv3 = TREE_TYPE (memb); + if (mv3 && mv3 != error_mark_node + && TREE_CODE (mv3) != ARRAY_TYPE) + mv3 = TYPE_MAIN_VARIANT (mv3); + if (comptypes_internal (mv3, mv1, enum_and_int_p, + different_types_p)) + break; + } + if (memb == 0) + return 0; + } + else + return 0; + } + + /* comptypes said ok, but record if it said to warn. */ + if (newval > val) + val = newval; + + args1 = TREE_CHAIN (args1); + args2 = TREE_CHAIN (args2); + } +} + +/* Compute the size to increment a pointer by. */ + +static tree +c_size_in_bytes (const_tree type) +{ + enum tree_code code = TREE_CODE (type); + + if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK) + return size_one_node; + + if (!COMPLETE_OR_VOID_TYPE_P (type)) + { + error ("arithmetic on pointer to an incomplete type"); + return size_one_node; + } + + /* Convert in case a char is more than one unit. */ + return size_binop_loc (input_location, CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type), + size_int (TYPE_PRECISION (char_type_node) + / BITS_PER_UNIT)); +} + +/* Return either DECL or its known constant value (if it has one). */ + +tree +decl_constant_value (tree decl) +{ + if (/* Don't change a variable array bound or initial value to a constant + in a place where a variable is invalid. Note that DECL_INITIAL + isn't valid for a PARM_DECL. */ + current_function_decl != 0 + && TREE_CODE (decl) != PARM_DECL + && !TREE_THIS_VOLATILE (decl) + && TREE_READONLY (decl) + && DECL_INITIAL (decl) != 0 + && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK + /* This is invalid if initial value is not constant. + If it has either a function call, a memory reference, + or a variable, then re-evaluating it could give different results. */ + && TREE_CONSTANT (DECL_INITIAL (decl)) + /* Check for cases where this is sub-optimal, even though valid. */ + && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR) + return DECL_INITIAL (decl); + return decl; +} + +/* Convert the array expression EXP to a pointer. */ +static tree +array_to_pointer_conversion (location_t loc, tree exp) +{ + tree orig_exp = exp; + tree type = TREE_TYPE (exp); + tree adr; + tree restype = TREE_TYPE (type); + tree ptrtype; + + gcc_assert (TREE_CODE (type) == ARRAY_TYPE); + + STRIP_TYPE_NOPS (exp); + + if (TREE_NO_WARNING (orig_exp)) + TREE_NO_WARNING (exp) = 1; + + ptrtype = build_pointer_type (restype); + + if (TREE_CODE (exp) == INDIRECT_REF) + return convert (ptrtype, TREE_OPERAND (exp, 0)); + + adr = build_unary_op (loc, ADDR_EXPR, exp, 1); + return convert (ptrtype, adr); +} + +/* Convert the function expression EXP to a pointer. */ +static tree +function_to_pointer_conversion (location_t loc, tree exp) +{ + tree orig_exp = exp; + + gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE); + + STRIP_TYPE_NOPS (exp); + + if (TREE_NO_WARNING (orig_exp)) + TREE_NO_WARNING (exp) = 1; + + return build_unary_op (loc, ADDR_EXPR, exp, 0); +} + +/* Mark EXP as read, not just set, for set but not used -Wunused + warning purposes. */ + +void +mark_exp_read (tree exp) +{ + switch (TREE_CODE (exp)) + { + case VAR_DECL: + case PARM_DECL: + DECL_READ_P (exp) = 1; + break; + case ARRAY_REF: + case COMPONENT_REF: + case MODIFY_EXPR: + case REALPART_EXPR: + case IMAGPART_EXPR: + CASE_CONVERT: + case ADDR_EXPR: + mark_exp_read (TREE_OPERAND (exp, 0)); + break; + case COMPOUND_EXPR: + case C_MAYBE_CONST_EXPR: + mark_exp_read (TREE_OPERAND (exp, 1)); + break; + default: + break; + } +} + +/* Perform the default conversion of arrays and functions to pointers. + Return the result of converting EXP. For any other expression, just + return EXP. + + LOC is the location of the expression. */ + +struct c_expr +default_function_array_conversion (location_t loc, struct c_expr exp) +{ + tree orig_exp = exp.value; + tree type = TREE_TYPE (exp.value); + enum tree_code code = TREE_CODE (type); + + switch (code) + { + case ARRAY_TYPE: + { + bool not_lvalue = false; + bool lvalue_array_p; + + while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR + || CONVERT_EXPR_P (exp.value)) + && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type) + { + if (TREE_CODE (exp.value) == NON_LVALUE_EXPR) + not_lvalue = true; + exp.value = TREE_OPERAND (exp.value, 0); + } + + if (TREE_NO_WARNING (orig_exp)) + TREE_NO_WARNING (exp.value) = 1; + + lvalue_array_p = !not_lvalue && lvalue_p (exp.value); + if (!flag_isoc99 && !lvalue_array_p) + { + /* Before C99, non-lvalue arrays do not decay to pointers. + Normally, using such an array would be invalid; but it can + be used correctly inside sizeof or as a statement expression. + Thus, do not give an error here; an error will result later. */ + return exp; + } + + exp.value = array_to_pointer_conversion (loc, exp.value); + } + break; + case FUNCTION_TYPE: + exp.value = function_to_pointer_conversion (loc, exp.value); + break; + default: + break; + } + + return exp; +} + +struct c_expr +default_function_array_read_conversion (location_t loc, struct c_expr exp) +{ + mark_exp_read (exp.value); + return default_function_array_conversion (loc, exp); +} + +/* EXP is an expression of integer type. Apply the integer promotions + to it and return the promoted value. */ + +tree +perform_integral_promotions (tree exp) +{ + tree type = TREE_TYPE (exp); + enum tree_code code = TREE_CODE (type); + + gcc_assert (INTEGRAL_TYPE_P (type)); + + /* Normally convert enums to int, + but convert wide enums to something wider. */ + if (code == ENUMERAL_TYPE) + { + type = c_common_type_for_size (MAX (TYPE_PRECISION (type), + TYPE_PRECISION (integer_type_node)), + ((TYPE_PRECISION (type) + >= TYPE_PRECISION (integer_type_node)) + && TYPE_UNSIGNED (type))); + + return convert (type, exp); + } + + /* ??? This should no longer be needed now bit-fields have their + proper types. */ + if (TREE_CODE (exp) == COMPONENT_REF + && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1)) + /* If it's thinner than an int, promote it like a + c_promoting_integer_type_p, otherwise leave it alone. */ + && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)), + TYPE_PRECISION (integer_type_node))) + return convert (integer_type_node, exp); + + if (c_promoting_integer_type_p (type)) + { + /* Preserve unsignedness if not really getting any wider. */ + if (TYPE_UNSIGNED (type) + && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)) + return convert (unsigned_type_node, exp); + + return convert (integer_type_node, exp); + } + + return exp; +} + + +/* Perform default promotions for C data used in expressions. + Enumeral types or short or char are converted to int. + In addition, manifest constants symbols are replaced by their values. */ + +tree +default_conversion (tree exp) +{ + tree orig_exp; + tree type = TREE_TYPE (exp); + enum tree_code code = TREE_CODE (type); + tree promoted_type; + + mark_exp_read (exp); + + /* Functions and arrays have been converted during parsing. */ + gcc_assert (code != FUNCTION_TYPE); + if (code == ARRAY_TYPE) + return exp; + + /* Constants can be used directly unless they're not loadable. */ + if (TREE_CODE (exp) == CONST_DECL) + exp = DECL_INITIAL (exp); + + /* Strip no-op conversions. */ + orig_exp = exp; + STRIP_TYPE_NOPS (exp); + + if (TREE_NO_WARNING (orig_exp)) + TREE_NO_WARNING (exp) = 1; + + if (code == VOID_TYPE) + { + error ("void value not ignored as it ought to be"); + return error_mark_node; + } + + exp = require_complete_type (exp); + if (exp == error_mark_node) + return error_mark_node; + + promoted_type = targetm.promoted_type (type); + if (promoted_type) + return convert (promoted_type, exp); + + if (INTEGRAL_TYPE_P (type)) + return perform_integral_promotions (exp); + + return exp; +} + +/* Look up COMPONENT in a structure or union TYPE. + + If the component name is not found, returns NULL_TREE. Otherwise, + the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL + stepping down the chain to the component, which is in the last + TREE_VALUE of the list. Normally the list is of length one, but if + the component is embedded within (nested) anonymous structures or + unions, the list steps down the chain to the component. */ + +static tree +lookup_field (tree type, tree component) +{ + tree field; + + /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers + to the field elements. Use a binary search on this array to quickly + find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC + will always be set for structures which have many elements. */ + + if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s) + { + int bot, top, half; + tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0]; + + field = TYPE_FIELDS (type); + bot = 0; + top = TYPE_LANG_SPECIFIC (type)->s->len; + while (top - bot > 1) + { + half = (top - bot + 1) >> 1; + field = field_array[bot+half]; + + if (DECL_NAME (field) == NULL_TREE) + { + /* Step through all anon unions in linear fashion. */ + while (DECL_NAME (field_array[bot]) == NULL_TREE) + { + field = field_array[bot++]; + if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE + || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE) + { + tree anon = lookup_field (TREE_TYPE (field), component); + + if (anon) + return tree_cons (NULL_TREE, field, anon); + + /* The Plan 9 compiler permits referring + directly to an anonymous struct/union field + using a typedef name. */ + if (flag_plan9_extensions + && TYPE_NAME (TREE_TYPE (field)) != NULL_TREE + && (TREE_CODE (TYPE_NAME (TREE_TYPE (field))) + == TYPE_DECL) + && (DECL_NAME (TYPE_NAME (TREE_TYPE (field))) + == component)) + break; + } + } + + /* Entire record is only anon unions. */ + if (bot > top) + return NULL_TREE; + + /* Restart the binary search, with new lower bound. */ + continue; + } + + if (DECL_NAME (field) == component) + break; + if (DECL_NAME (field) < component) + bot += half; + else + top = bot + half; + } + + if (DECL_NAME (field_array[bot]) == component) + field = field_array[bot]; + else if (DECL_NAME (field) != component) + return NULL_TREE; + } + else + { + for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + { + if (DECL_NAME (field) == NULL_TREE + && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE + || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)) + { + tree anon = lookup_field (TREE_TYPE (field), component); + + if (anon) + return tree_cons (NULL_TREE, field, anon); + + /* The Plan 9 compiler permits referring directly to an + anonymous struct/union field using a typedef + name. */ + if (flag_plan9_extensions + && TYPE_NAME (TREE_TYPE (field)) != NULL_TREE + && TREE_CODE (TYPE_NAME (TREE_TYPE (field))) == TYPE_DECL + && (DECL_NAME (TYPE_NAME (TREE_TYPE (field))) + == component)) + break; + } + + if (DECL_NAME (field) == component) + break; + } + + if (field == NULL_TREE) + return NULL_TREE; + } + + return tree_cons (NULL_TREE, field, NULL_TREE); +} + +/* Make an expression to refer to the COMPONENT field of structure or + union value DATUM. COMPONENT is an IDENTIFIER_NODE. LOC is the + location of the COMPONENT_REF. */ + +tree +build_component_ref (location_t loc, tree datum, tree component) +{ + tree type = TREE_TYPE (datum); + enum tree_code code = TREE_CODE (type); + tree field = NULL; + tree ref; + bool datum_lvalue = lvalue_p (datum); + + if (!objc_is_public (datum, component)) + return error_mark_node; + + /* Detect Objective-C property syntax object.property. */ + if (c_dialect_objc () + && (ref = objc_maybe_build_component_ref (datum, component))) + return ref; + + /* See if there is a field or component with name COMPONENT. */ + + if (code == RECORD_TYPE || code == UNION_TYPE) + { + if (!COMPLETE_TYPE_P (type)) + { + c_incomplete_type_error (NULL_TREE, type); + return error_mark_node; + } + + field = lookup_field (type, component); + + if (!field) + { + error_at (loc, "%qT has no member named %qE", type, component); + return error_mark_node; + } + + /* Chain the COMPONENT_REFs if necessary down to the FIELD. + This might be better solved in future the way the C++ front + end does it - by giving the anonymous entities each a + separate name and type, and then have build_component_ref + recursively call itself. We can't do that here. */ + do + { + tree subdatum = TREE_VALUE (field); + int quals; + tree subtype; + bool use_datum_quals; + + if (TREE_TYPE (subdatum) == error_mark_node) + return error_mark_node; + + /* If this is an rvalue, it does not have qualifiers in C + standard terms and we must avoid propagating such + qualifiers down to a non-lvalue array that is then + converted to a pointer. */ + use_datum_quals = (datum_lvalue + || TREE_CODE (TREE_TYPE (subdatum)) != ARRAY_TYPE); + + quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum))); + if (use_datum_quals) + quals |= TYPE_QUALS (TREE_TYPE (datum)); + subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals); + + ref = build3 (COMPONENT_REF, subtype, datum, subdatum, + NULL_TREE); + SET_EXPR_LOCATION (ref, loc); + if (TREE_READONLY (subdatum) + || (use_datum_quals && TREE_READONLY (datum))) + TREE_READONLY (ref) = 1; + if (TREE_THIS_VOLATILE (subdatum) + || (use_datum_quals && TREE_THIS_VOLATILE (datum))) + TREE_THIS_VOLATILE (ref) = 1; + + if (TREE_DEPRECATED (subdatum)) + warn_deprecated_use (subdatum, NULL_TREE); + + datum = ref; + + field = TREE_CHAIN (field); + } + while (field); + + return ref; + } + else if (code != ERROR_MARK) + error_at (loc, + "request for member %qE in something not a structure or union", + component); + + return error_mark_node; +} + +/* Given an expression PTR for a pointer, return an expression + for the value pointed to. + ERRORSTRING is the name of the operator to appear in error messages. + + LOC is the location to use for the generated tree. */ + +tree +build_indirect_ref (location_t loc, tree ptr, ref_operator errstring) +{ + tree pointer = default_conversion (ptr); + tree type = TREE_TYPE (pointer); + tree ref; + + if (TREE_CODE (type) == POINTER_TYPE) + { + if (CONVERT_EXPR_P (pointer) + || TREE_CODE (pointer) == VIEW_CONVERT_EXPR) + { + /* If a warning is issued, mark it to avoid duplicates from + the backend. This only needs to be done at + warn_strict_aliasing > 2. */ + if (warn_strict_aliasing > 2) + if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (pointer, 0)), + type, TREE_OPERAND (pointer, 0))) + TREE_NO_WARNING (pointer) = 1; + } + + if (TREE_CODE (pointer) == ADDR_EXPR + && (TREE_TYPE (TREE_OPERAND (pointer, 0)) + == TREE_TYPE (type))) + { + ref = TREE_OPERAND (pointer, 0); + protected_set_expr_location (ref, loc); + return ref; + } + else + { + tree t = TREE_TYPE (type); + + ref = build1 (INDIRECT_REF, t, pointer); + + if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE) + { + error_at (loc, "dereferencing pointer to incomplete type"); + return error_mark_node; + } + if (VOID_TYPE_P (t) && c_inhibit_evaluation_warnings == 0) + warning_at (loc, 0, "dereferencing %<void *%> pointer"); + + /* We *must* set TREE_READONLY when dereferencing a pointer to const, + so that we get the proper error message if the result is used + to assign to. Also, &* is supposed to be a no-op. + And ANSI C seems to specify that the type of the result + should be the const type. */ + /* A de-reference of a pointer to const is not a const. It is valid + to change it via some other pointer. */ + TREE_READONLY (ref) = TYPE_READONLY (t); + TREE_SIDE_EFFECTS (ref) + = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer); + TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t); + protected_set_expr_location (ref, loc); + return ref; + } + } + else if (TREE_CODE (pointer) != ERROR_MARK) + invalid_indirection_error (loc, type, errstring); + + return error_mark_node; +} + +/* This handles expressions of the form "a[i]", which denotes + an array reference. + + This is logically equivalent in C to *(a+i), but we may do it differently. + If A is a variable or a member, we generate a primitive ARRAY_REF. + This avoids forcing the array out of registers, and can work on + arrays that are not lvalues (for example, members of structures returned + by functions). + + For vector types, allow vector[i] but not i[vector], and create + *(((type*)&vectortype) + i) for the expression. + + LOC is the location to use for the returned expression. */ + +tree +build_array_ref (location_t loc, tree array, tree index) +{ + tree ret; + bool swapped = false; + if (TREE_TYPE (array) == error_mark_node + || TREE_TYPE (index) == error_mark_node) + return error_mark_node; + + if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE + && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE + /* Allow vector[index] but not index[vector]. */ + && TREE_CODE (TREE_TYPE (array)) != VECTOR_TYPE) + { + tree temp; + if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE + && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE) + { + error_at (loc, + "subscripted value is neither array nor pointer nor vector"); + + return error_mark_node; + } + temp = array; + array = index; + index = temp; + swapped = true; + } + + if (!INTEGRAL_TYPE_P (TREE_TYPE (index))) + { + error_at (loc, "array subscript is not an integer"); + return error_mark_node; + } + + if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE) + { + error_at (loc, "subscripted value is pointer to function"); + return error_mark_node; + } + + /* ??? Existing practice has been to warn only when the char + index is syntactically the index, not for char[array]. */ + if (!swapped) + warn_array_subscript_with_type_char (index); + + /* Apply default promotions *after* noticing character types. */ + index = default_conversion (index); + + gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE); + + /* For vector[index], convert the vector to a + pointer of the underlying type. */ + if (TREE_CODE (TREE_TYPE (array)) == VECTOR_TYPE) + { + tree type = TREE_TYPE (array); + tree type1; + + if (TREE_CODE (index) == INTEGER_CST) + if (!host_integerp (index, 1) + || ((unsigned HOST_WIDE_INT) tree_low_cst (index, 1) + >= TYPE_VECTOR_SUBPARTS (TREE_TYPE (array)))) + warning_at (loc, OPT_Warray_bounds, "index value is out of bound"); + + c_common_mark_addressable_vec (array); + type = build_qualified_type (TREE_TYPE (type), TYPE_QUALS (type)); + type = build_pointer_type (type); + type1 = build_pointer_type (TREE_TYPE (array)); + array = build1 (ADDR_EXPR, type1, array); + array = convert (type, array); + } + + if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE) + { + tree rval, type; + + /* An array that is indexed by a non-constant + cannot be stored in a register; we must be able to do + address arithmetic on its address. + Likewise an array of elements of variable size. */ + if (TREE_CODE (index) != INTEGER_CST + || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array))) + && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST)) + { + if (!c_mark_addressable (array)) + return error_mark_node; + } + /* An array that is indexed by a constant value which is not within + the array bounds cannot be stored in a register either; because we + would get a crash in store_bit_field/extract_bit_field when trying + to access a non-existent part of the register. */ + if (TREE_CODE (index) == INTEGER_CST + && TYPE_DOMAIN (TREE_TYPE (array)) + && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array)))) + { + if (!c_mark_addressable (array)) + return error_mark_node; + } + + if (pedantic) + { + tree foo = array; + while (TREE_CODE (foo) == COMPONENT_REF) + foo = TREE_OPERAND (foo, 0); + if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo)) + pedwarn (loc, OPT_pedantic, + "ISO C forbids subscripting %<register%> array"); + else if (!flag_isoc99 && !lvalue_p (foo)) + pedwarn (loc, OPT_pedantic, + "ISO C90 forbids subscripting non-lvalue array"); + } + + type = TREE_TYPE (TREE_TYPE (array)); + rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE); + /* Array ref is const/volatile if the array elements are + or if the array is. */ + TREE_READONLY (rval) + |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array))) + | TREE_READONLY (array)); + TREE_SIDE_EFFECTS (rval) + |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array))) + | TREE_SIDE_EFFECTS (array)); + TREE_THIS_VOLATILE (rval) + |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array))) + /* This was added by rms on 16 Nov 91. + It fixes vol struct foo *a; a->elts[1] + in an inline function. + Hope it doesn't break something else. */ + | TREE_THIS_VOLATILE (array)); + ret = require_complete_type (rval); + protected_set_expr_location (ret, loc); + return ret; + } + else + { + tree ar = default_conversion (array); + + if (ar == error_mark_node) + return ar; + + gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE); + gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE); + + return build_indirect_ref + (loc, build_binary_op (loc, PLUS_EXPR, ar, index, 0), + RO_ARRAY_INDEXING); + } +} + +/* Build an external reference to identifier ID. FUN indicates + whether this will be used for a function call. LOC is the source + location of the identifier. This sets *TYPE to the type of the + identifier, which is not the same as the type of the returned value + for CONST_DECLs defined as enum constants. If the type of the + identifier is not available, *TYPE is set to NULL. */ +tree +build_external_ref (location_t loc, tree id, int fun, tree *type) +{ + tree ref; + tree decl = lookup_name (id); + + /* In Objective-C, an instance variable (ivar) may be preferred to + whatever lookup_name() found. */ + decl = objc_lookup_ivar (decl, id); + + *type = NULL; + if (decl && decl != error_mark_node) + { + ref = decl; + *type = TREE_TYPE (ref); + } + else if (fun) + /* Implicit function declaration. */ + ref = implicitly_declare (loc, id); + else if (decl == error_mark_node) + /* Don't complain about something that's already been + complained about. */ + return error_mark_node; + else + { + undeclared_variable (loc, id); + return error_mark_node; + } + + if (TREE_TYPE (ref) == error_mark_node) + return error_mark_node; + + if (TREE_DEPRECATED (ref)) + warn_deprecated_use (ref, NULL_TREE); + + /* Recursive call does not count as usage. */ + if (ref != current_function_decl) + { + TREE_USED (ref) = 1; + } + + if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof) + { + if (!in_sizeof && !in_typeof) + C_DECL_USED (ref) = 1; + else if (DECL_INITIAL (ref) == 0 + && DECL_EXTERNAL (ref) + && !TREE_PUBLIC (ref)) + record_maybe_used_decl (ref); + } + + if (TREE_CODE (ref) == CONST_DECL) + { + used_types_insert (TREE_TYPE (ref)); + + if (warn_cxx_compat + && TREE_CODE (TREE_TYPE (ref)) == ENUMERAL_TYPE + && C_TYPE_DEFINED_IN_STRUCT (TREE_TYPE (ref))) + { + warning_at (loc, OPT_Wc___compat, + ("enum constant defined in struct or union " + "is not visible in C++")); + inform (DECL_SOURCE_LOCATION (ref), "enum constant defined here"); + } + + ref = DECL_INITIAL (ref); + TREE_CONSTANT (ref) = 1; + } + else if (current_function_decl != 0 + && !DECL_FILE_SCOPE_P (current_function_decl) + && (TREE_CODE (ref) == VAR_DECL + || TREE_CODE (ref) == PARM_DECL + || TREE_CODE (ref) == FUNCTION_DECL)) + { + tree context = decl_function_context (ref); + + if (context != 0 && context != current_function_decl) + DECL_NONLOCAL (ref) = 1; + } + /* C99 6.7.4p3: An inline definition of a function with external + linkage ... shall not contain a reference to an identifier with + internal linkage. */ + else if (current_function_decl != 0 + && DECL_DECLARED_INLINE_P (current_function_decl) + && DECL_EXTERNAL (current_function_decl) + && VAR_OR_FUNCTION_DECL_P (ref) + && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref)) + && ! TREE_PUBLIC (ref) + && DECL_CONTEXT (ref) != current_function_decl) + record_inline_static (loc, current_function_decl, ref, + csi_internal); + + return ref; +} + +/* Record details of decls possibly used inside sizeof or typeof. */ +struct maybe_used_decl +{ + /* The decl. */ + tree decl; + /* The level seen at (in_sizeof + in_typeof). */ + int level; + /* The next one at this level or above, or NULL. */ + struct maybe_used_decl *next; +}; + +static struct maybe_used_decl *maybe_used_decls; + +/* Record that DECL, an undefined static function reference seen + inside sizeof or typeof, might be used if the operand of sizeof is + a VLA type or the operand of typeof is a variably modified + type. */ + +static void +record_maybe_used_decl (tree decl) +{ + struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl); + t->decl = decl; + t->level = in_sizeof + in_typeof; + t->next = maybe_used_decls; + maybe_used_decls = t; +} + +/* Pop the stack of decls possibly used inside sizeof or typeof. If + USED is false, just discard them. If it is true, mark them used + (if no longer inside sizeof or typeof) or move them to the next + level up (if still inside sizeof or typeof). */ + +void +pop_maybe_used (bool used) +{ + struct maybe_used_decl *p = maybe_used_decls; + int cur_level = in_sizeof + in_typeof; + while (p && p->level > cur_level) + { + if (used) + { + if (cur_level == 0) + C_DECL_USED (p->decl) = 1; + else + p->level = cur_level; + } + p = p->next; + } + if (!used || cur_level == 0) + maybe_used_decls = p; +} + +/* Return the result of sizeof applied to EXPR. */ + +struct c_expr +c_expr_sizeof_expr (location_t loc, struct c_expr expr) +{ + struct c_expr ret; + if (expr.value == error_mark_node) + { + ret.value = error_mark_node; + ret.original_code = ERROR_MARK; + ret.original_type = NULL; + pop_maybe_used (false); + } + else + { + bool expr_const_operands = true; + tree folded_expr = c_fully_fold (expr.value, require_constant_value, + &expr_const_operands); + ret.value = c_sizeof (loc, TREE_TYPE (folded_expr)); + ret.original_code = ERROR_MARK; + ret.original_type = NULL; + if (c_vla_type_p (TREE_TYPE (folded_expr))) + { + /* sizeof is evaluated when given a vla (C99 6.5.3.4p2). */ + ret.value = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (ret.value), + folded_expr, ret.value); + C_MAYBE_CONST_EXPR_NON_CONST (ret.value) = !expr_const_operands; + SET_EXPR_LOCATION (ret.value, loc); + } + pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (folded_expr))); + } + return ret; +} + +/* Return the result of sizeof applied to T, a structure for the type + name passed to sizeof (rather than the type itself). LOC is the + location of the original expression. */ + +struct c_expr +c_expr_sizeof_type (location_t loc, struct c_type_name *t) +{ + tree type; + struct c_expr ret; + tree type_expr = NULL_TREE; + bool type_expr_const = true; + type = groktypename (t, &type_expr, &type_expr_const); + ret.value = c_sizeof (loc, type); + ret.original_code = ERROR_MARK; + ret.original_type = NULL; + if ((type_expr || TREE_CODE (ret.value) == INTEGER_CST) + && c_vla_type_p (type)) + { + /* If the type is a [*] array, it is a VLA but is represented as + having a size of zero. In such a case we must ensure that + the result of sizeof does not get folded to a constant by + c_fully_fold, because if the size is evaluated the result is + not constant and so constraints on zero or negative size + arrays must not be applied when this sizeof call is inside + another array declarator. */ + if (!type_expr) + type_expr = integer_zero_node; + ret.value = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (ret.value), + type_expr, ret.value); + C_MAYBE_CONST_EXPR_NON_CONST (ret.value) = !type_expr_const; + } + pop_maybe_used (type != error_mark_node + ? C_TYPE_VARIABLE_SIZE (type) : false); + return ret; +} + +/* Build a function call to function FUNCTION with parameters PARAMS. + The function call is at LOC. + PARAMS is a list--a chain of TREE_LIST nodes--in which the + TREE_VALUE of each node is a parameter-expression. + FUNCTION's data type may be a function type or a pointer-to-function. */ + +tree +build_function_call (location_t loc, tree function, tree params) +{ + VEC(tree,gc) *vec; + tree ret; + + vec = VEC_alloc (tree, gc, list_length (params)); + for (; params; params = TREE_CHAIN (params)) + VEC_quick_push (tree, vec, TREE_VALUE (params)); + ret = build_function_call_vec (loc, function, vec, NULL); + VEC_free (tree, gc, vec); + return ret; +} + +/* Build a function call to function FUNCTION with parameters PARAMS. + ORIGTYPES, if not NULL, is a vector of types; each element is + either NULL or the original type of the corresponding element in + PARAMS. The original type may differ from TREE_TYPE of the + parameter for enums. FUNCTION's data type may be a function type + or pointer-to-function. This function changes the elements of + PARAMS. */ + +tree +build_function_call_vec (location_t loc, tree function, VEC(tree,gc) *params, + VEC(tree,gc) *origtypes) +{ + tree fntype, fundecl = 0; + tree name = NULL_TREE, result; + tree tem; + int nargs; + tree *argarray; + + + /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */ + STRIP_TYPE_NOPS (function); + + /* Convert anything with function type to a pointer-to-function. */ + if (TREE_CODE (function) == FUNCTION_DECL) + { + /* Implement type-directed function overloading for builtins. + resolve_overloaded_builtin and targetm.resolve_overloaded_builtin + handle all the type checking. The result is a complete expression + that implements this function call. */ + tem = resolve_overloaded_builtin (loc, function, params); + if (tem) + return tem; + + name = DECL_NAME (function); + fundecl = function; + } + if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE) + function = function_to_pointer_conversion (loc, function); + + /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF + expressions, like those used for ObjC messenger dispatches. */ + if (!VEC_empty (tree, params)) + function = objc_rewrite_function_call (function, + VEC_index (tree, params, 0)); + + function = c_fully_fold (function, false, NULL); + + fntype = TREE_TYPE (function); + + if (TREE_CODE (fntype) == ERROR_MARK) + return error_mark_node; + + if (!(TREE_CODE (fntype) == POINTER_TYPE + && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE)) + { + error_at (loc, "called object %qE is not a function", function); + return error_mark_node; + } + + if (fundecl && TREE_THIS_VOLATILE (fundecl)) + current_function_returns_abnormally = 1; + + /* fntype now gets the type of function pointed to. */ + fntype = TREE_TYPE (fntype); + + /* Convert the parameters to the types declared in the + function prototype, or apply default promotions. */ + + nargs = convert_arguments (TYPE_ARG_TYPES (fntype), params, origtypes, + function, fundecl); + if (nargs < 0) + return error_mark_node; + + /* Check that the function is called through a compatible prototype. + If it is not, replace the call by a trap, wrapped up in a compound + expression if necessary. This has the nice side-effect to prevent + the tree-inliner from generating invalid assignment trees which may + blow up in the RTL expander later. */ + if (CONVERT_EXPR_P (function) + && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR + && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL + && !comptypes (fntype, TREE_TYPE (tem))) + { + tree return_type = TREE_TYPE (fntype); + tree trap = build_function_call (loc, built_in_decls[BUILT_IN_TRAP], + NULL_TREE); + int i; + + /* This situation leads to run-time undefined behavior. We can't, + therefore, simply error unless we can prove that all possible + executions of the program must execute the code. */ + if (warning_at (loc, 0, "function called through a non-compatible type")) + /* We can, however, treat "undefined" any way we please. + Call abort to encourage the user to fix the program. */ + inform (loc, "if this code is reached, the program will abort"); + /* Before the abort, allow the function arguments to exit or + call longjmp. */ + for (i = 0; i < nargs; i++) + trap = build2 (COMPOUND_EXPR, void_type_node, + VEC_index (tree, params, i), trap); + + if (VOID_TYPE_P (return_type)) + { + if (TYPE_QUALS (return_type) != TYPE_UNQUALIFIED) + pedwarn (loc, 0, + "function with qualified void return type called"); + return trap; + } + else + { + tree rhs; + + if (AGGREGATE_TYPE_P (return_type)) + rhs = build_compound_literal (loc, return_type, + build_constructor (return_type, 0), + false); + else + rhs = build_zero_cst (return_type); + + return require_complete_type (build2 (COMPOUND_EXPR, return_type, + trap, rhs)); + } + } + + argarray = VEC_address (tree, params); + + /* Check that arguments to builtin functions match the expectations. */ + if (fundecl + && DECL_BUILT_IN (fundecl) + && DECL_BUILT_IN_CLASS (fundecl) == BUILT_IN_NORMAL + && !check_builtin_function_arguments (fundecl, nargs, argarray)) + return error_mark_node; + + /* Check that the arguments to the function are valid. */ + check_function_arguments (TYPE_ATTRIBUTES (fntype), nargs, argarray, + TYPE_ARG_TYPES (fntype)); + + if (name != NULL_TREE + && !strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10)) + { + if (require_constant_value) + result = + fold_build_call_array_initializer_loc (loc, TREE_TYPE (fntype), + function, nargs, argarray); + else + result = fold_build_call_array_loc (loc, TREE_TYPE (fntype), + function, nargs, argarray); + if (TREE_CODE (result) == NOP_EXPR + && TREE_CODE (TREE_OPERAND (result, 0)) == INTEGER_CST) + STRIP_TYPE_NOPS (result); + } + else + result = build_call_array_loc (loc, TREE_TYPE (fntype), + function, nargs, argarray); + + if (VOID_TYPE_P (TREE_TYPE (result))) + { + if (TYPE_QUALS (TREE_TYPE (result)) != TYPE_UNQUALIFIED) + pedwarn (loc, 0, + "function with qualified void return type called"); + return result; + } + return require_complete_type (result); +} + +/* Convert the argument expressions in the vector VALUES + to the types in the list TYPELIST. + + If TYPELIST is exhausted, or when an element has NULL as its type, + perform the default conversions. + + ORIGTYPES is the original types of the expressions in VALUES. This + holds the type of enum values which have been converted to integral + types. It may be NULL. + + FUNCTION is a tree for the called function. It is used only for + error messages, where it is formatted with %qE. + + This is also where warnings about wrong number of args are generated. + + Returns the actual number of arguments processed (which may be less + than the length of VALUES in some error situations), or -1 on + failure. */ + +static int +convert_arguments (tree typelist, VEC(tree,gc) *values, + VEC(tree,gc) *origtypes, tree function, tree fundecl) +{ + tree typetail, val; + unsigned int parmnum; + bool error_args = false; + const bool type_generic = fundecl + && lookup_attribute ("type generic", TYPE_ATTRIBUTES(TREE_TYPE (fundecl))); + bool type_generic_remove_excess_precision = false; + tree selector; + + /* Change pointer to function to the function itself for + diagnostics. */ + if (TREE_CODE (function) == ADDR_EXPR + && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL) + function = TREE_OPERAND (function, 0); + + /* Handle an ObjC selector specially for diagnostics. */ + selector = objc_message_selector (); + + /* For type-generic built-in functions, determine whether excess + precision should be removed (classification) or not + (comparison). */ + if (type_generic + && DECL_BUILT_IN (fundecl) + && DECL_BUILT_IN_CLASS (fundecl) == BUILT_IN_NORMAL) + { + switch (DECL_FUNCTION_CODE (fundecl)) + { + case BUILT_IN_ISFINITE: + case BUILT_IN_ISINF: + case BUILT_IN_ISINF_SIGN: + case BUILT_IN_ISNAN: + case BUILT_IN_ISNORMAL: + case BUILT_IN_FPCLASSIFY: + type_generic_remove_excess_precision = true; + break; + + default: + type_generic_remove_excess_precision = false; + break; + } + } + + /* Scan the given expressions and types, producing individual + converted arguments. */ + + for (typetail = typelist, parmnum = 0; + VEC_iterate (tree, values, parmnum, val); + ++parmnum) + { + tree type = typetail ? TREE_VALUE (typetail) : 0; + tree valtype = TREE_TYPE (val); + tree rname = function; + int argnum = parmnum + 1; + const char *invalid_func_diag; + bool excess_precision = false; + bool npc; + tree parmval; + + if (type == void_type_node) + { + if (selector) + error_at (input_location, + "too many arguments to method %qE", selector); + else + error_at (input_location, + "too many arguments to function %qE", function); + + if (fundecl && !DECL_BUILT_IN (fundecl)) + inform (DECL_SOURCE_LOCATION (fundecl), "declared here"); + return parmnum; + } + + if (selector && argnum > 2) + { + rname = selector; + argnum -= 2; + } + + npc = null_pointer_constant_p (val); + + /* If there is excess precision and a prototype, convert once to + the required type rather than converting via the semantic + type. Likewise without a prototype a float value represented + as long double should be converted once to double. But for + type-generic classification functions excess precision must + be removed here. */ + if (TREE_CODE (val) == EXCESS_PRECISION_EXPR + && (type || !type_generic || !type_generic_remove_excess_precision)) + { + val = TREE_OPERAND (val, 0); + excess_precision = true; + } + val = c_fully_fold (val, false, NULL); + STRIP_TYPE_NOPS (val); + + val = require_complete_type (val); + + if (type != 0) + { + /* Formal parm type is specified by a function prototype. */ + + if (type == error_mark_node || !COMPLETE_TYPE_P (type)) + { + error ("type of formal parameter %d is incomplete", parmnum + 1); + parmval = val; + } + else + { + tree origtype; + + /* Optionally warn about conversions that + differ from the default conversions. */ + if (warn_traditional_conversion || warn_traditional) + { + unsigned int formal_prec = TYPE_PRECISION (type); + + if (INTEGRAL_TYPE_P (type) + && TREE_CODE (valtype) == REAL_TYPE) + warning (0, "passing argument %d of %qE as integer " + "rather than floating due to prototype", + argnum, rname); + if (INTEGRAL_TYPE_P (type) + && TREE_CODE (valtype) == COMPLEX_TYPE) + warning (0, "passing argument %d of %qE as integer " + "rather than complex due to prototype", + argnum, rname); + else if (TREE_CODE (type) == COMPLEX_TYPE + && TREE_CODE (valtype) == REAL_TYPE) + warning (0, "passing argument %d of %qE as complex " + "rather than floating due to prototype", + argnum, rname); + else if (TREE_CODE (type) == REAL_TYPE + && INTEGRAL_TYPE_P (valtype)) + warning (0, "passing argument %d of %qE as floating " + "rather than integer due to prototype", + argnum, rname); + else if (TREE_CODE (type) == COMPLEX_TYPE + && INTEGRAL_TYPE_P (valtype)) + warning (0, "passing argument %d of %qE as complex " + "rather than integer due to prototype", + argnum, rname); + else if (TREE_CODE (type) == REAL_TYPE + && TREE_CODE (valtype) == COMPLEX_TYPE) + warning (0, "passing argument %d of %qE as floating " + "rather than complex due to prototype", + argnum, rname); + /* ??? At some point, messages should be written about + conversions between complex types, but that's too messy + to do now. */ + else if (TREE_CODE (type) == REAL_TYPE + && TREE_CODE (valtype) == REAL_TYPE) + { + /* Warn if any argument is passed as `float', + since without a prototype it would be `double'. */ + if (formal_prec == TYPE_PRECISION (float_type_node) + && type != dfloat32_type_node) + warning (0, "passing argument %d of %qE as %<float%> " + "rather than %<double%> due to prototype", + argnum, rname); + + /* Warn if mismatch between argument and prototype + for decimal float types. Warn of conversions with + binary float types and of precision narrowing due to + prototype. */ + else if (type != valtype + && (type == dfloat32_type_node + || type == dfloat64_type_node + || type == dfloat128_type_node + || valtype == dfloat32_type_node + || valtype == dfloat64_type_node + || valtype == dfloat128_type_node) + && (formal_prec + <= TYPE_PRECISION (valtype) + || (type == dfloat128_type_node + && (valtype + != dfloat64_type_node + && (valtype + != dfloat32_type_node))) + || (type == dfloat64_type_node + && (valtype + != dfloat32_type_node)))) + warning (0, "passing argument %d of %qE as %qT " + "rather than %qT due to prototype", + argnum, rname, type, valtype); + + } + /* Detect integer changing in width or signedness. + These warnings are only activated with + -Wtraditional-conversion, not with -Wtraditional. */ + else if (warn_traditional_conversion && INTEGRAL_TYPE_P (type) + && INTEGRAL_TYPE_P (valtype)) + { + tree would_have_been = default_conversion (val); + tree type1 = TREE_TYPE (would_have_been); + + if (TREE_CODE (type) == ENUMERAL_TYPE + && (TYPE_MAIN_VARIANT (type) + == TYPE_MAIN_VARIANT (valtype))) + /* No warning if function asks for enum + and the actual arg is that enum type. */ + ; + else if (formal_prec != TYPE_PRECISION (type1)) + warning (OPT_Wtraditional_conversion, + "passing argument %d of %qE " + "with different width due to prototype", + argnum, rname); + else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1)) + ; + /* Don't complain if the formal parameter type + is an enum, because we can't tell now whether + the value was an enum--even the same enum. */ + else if (TREE_CODE (type) == ENUMERAL_TYPE) + ; + else if (TREE_CODE (val) == INTEGER_CST + && int_fits_type_p (val, type)) + /* Change in signedness doesn't matter + if a constant value is unaffected. */ + ; + /* If the value is extended from a narrower + unsigned type, it doesn't matter whether we + pass it as signed or unsigned; the value + certainly is the same either way. */ + else if (TYPE_PRECISION (valtype) < TYPE_PRECISION (type) + && TYPE_UNSIGNED (valtype)) + ; + else if (TYPE_UNSIGNED (type)) + warning (OPT_Wtraditional_conversion, + "passing argument %d of %qE " + "as unsigned due to prototype", + argnum, rname); + else + warning (OPT_Wtraditional_conversion, + "passing argument %d of %qE " + "as signed due to prototype", argnum, rname); + } + } + + /* Possibly restore an EXCESS_PRECISION_EXPR for the + sake of better warnings from convert_and_check. */ + if (excess_precision) + val = build1 (EXCESS_PRECISION_EXPR, valtype, val); + origtype = (origtypes == NULL + ? NULL_TREE + : VEC_index (tree, origtypes, parmnum)); + parmval = convert_for_assignment (input_location, type, val, + origtype, ic_argpass, npc, + fundecl, function, + parmnum + 1); + + if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0) + && INTEGRAL_TYPE_P (type) + && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node))) + parmval = default_conversion (parmval); + } + } + else if (TREE_CODE (valtype) == REAL_TYPE + && (TYPE_PRECISION (valtype) + < TYPE_PRECISION (double_type_node)) + && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (valtype))) + { + if (type_generic) + parmval = val; + else + { + /* Convert `float' to `double'. */ + if (warn_double_promotion && !c_inhibit_evaluation_warnings) + warning (OPT_Wdouble_promotion, + "implicit conversion from %qT to %qT when passing " + "argument to function", + valtype, double_type_node); + parmval = convert (double_type_node, val); + } + } + else if (excess_precision && !type_generic) + /* A "double" argument with excess precision being passed + without a prototype or in variable arguments. */ + parmval = convert (valtype, val); + else if ((invalid_func_diag = + targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val))) + { + error (invalid_func_diag); + return -1; + } + else + /* Convert `short' and `char' to full-size `int'. */ + parmval = default_conversion (val); + + VEC_replace (tree, values, parmnum, parmval); + if (parmval == error_mark_node) + error_args = true; + + if (typetail) + typetail = TREE_CHAIN (typetail); + } + + gcc_assert (parmnum == VEC_length (tree, values)); + + if (typetail != 0 && TREE_VALUE (typetail) != void_type_node) + { + error_at (input_location, + "too few arguments to function %qE", function); + if (fundecl && !DECL_BUILT_IN (fundecl)) + inform (DECL_SOURCE_LOCATION (fundecl), "declared here"); + return -1; + } + + return error_args ? -1 : (int) parmnum; +} + +/* This is the entry point used by the parser to build unary operators + in the input. CODE, a tree_code, specifies the unary operator, and + ARG is the operand. For unary plus, the C parser currently uses + CONVERT_EXPR for code. + + LOC is the location to use for the tree generated. +*/ + +struct c_expr +parser_build_unary_op (location_t loc, enum tree_code code, struct c_expr arg) +{ + struct c_expr result; + + result.value = build_unary_op (loc, code, arg.value, 0); + result.original_code = code; + result.original_type = NULL; + + if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value)) + overflow_warning (loc, result.value); + + return result; +} + +/* This is the entry point used by the parser to build binary operators + in the input. CODE, a tree_code, specifies the binary operator, and + ARG1 and ARG2 are the operands. In addition to constructing the + expression, we check for operands that were written with other binary + operators in a way that is likely to confuse the user. + + LOCATION is the location of the binary operator. */ + +struct c_expr +parser_build_binary_op (location_t location, enum tree_code code, + struct c_expr arg1, struct c_expr arg2) +{ + struct c_expr result; + + enum tree_code code1 = arg1.original_code; + enum tree_code code2 = arg2.original_code; + tree type1 = (arg1.original_type + ? arg1.original_type + : TREE_TYPE (arg1.value)); + tree type2 = (arg2.original_type + ? arg2.original_type + : TREE_TYPE (arg2.value)); + + result.value = build_binary_op (location, code, + arg1.value, arg2.value, 1); + result.original_code = code; + result.original_type = NULL; + + if (TREE_CODE (result.value) == ERROR_MARK) + return result; + + if (location != UNKNOWN_LOCATION) + protected_set_expr_location (result.value, location); + + /* Check for cases such as x+y<<z which users are likely + to misinterpret. */ + if (warn_parentheses) + warn_about_parentheses (code, code1, arg1.value, code2, arg2.value); + + if (warn_logical_op) + warn_logical_operator (input_location, code, TREE_TYPE (result.value), + code1, arg1.value, code2, arg2.value); + + /* Warn about comparisons against string literals, with the exception + of testing for equality or inequality of a string literal with NULL. */ + if (code == EQ_EXPR || code == NE_EXPR) + { + if ((code1 == STRING_CST && !integer_zerop (arg2.value)) + || (code2 == STRING_CST && !integer_zerop (arg1.value))) + warning_at (location, OPT_Waddress, + "comparison with string literal results in unspecified behavior"); + } + else if (TREE_CODE_CLASS (code) == tcc_comparison + && (code1 == STRING_CST || code2 == STRING_CST)) + warning_at (location, OPT_Waddress, + "comparison with string literal results in unspecified behavior"); + + if (TREE_OVERFLOW_P (result.value) + && !TREE_OVERFLOW_P (arg1.value) + && !TREE_OVERFLOW_P (arg2.value)) + overflow_warning (location, result.value); + + /* Warn about comparisons of different enum types. */ + if (warn_enum_compare + && TREE_CODE_CLASS (code) == tcc_comparison + && TREE_CODE (type1) == ENUMERAL_TYPE + && TREE_CODE (type2) == ENUMERAL_TYPE + && TYPE_MAIN_VARIANT (type1) != TYPE_MAIN_VARIANT (type2)) + warning_at (location, OPT_Wenum_compare, + "comparison between %qT and %qT", + type1, type2); + + return result; +} + +/* Return a tree for the difference of pointers OP0 and OP1. + The resulting tree has type int. */ + +static tree +pointer_diff (location_t loc, tree op0, tree op1) +{ + tree restype = ptrdiff_type_node; + tree result, inttype; + + addr_space_t as0 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (op0))); + addr_space_t as1 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (op1))); + tree target_type = TREE_TYPE (TREE_TYPE (op0)); + tree con0, con1, lit0, lit1; + tree orig_op1 = op1; + + /* If the operands point into different address spaces, we need to + explicitly convert them to pointers into the common address space + before we can subtract the numerical address values. */ + if (as0 != as1) + { + addr_space_t as_common; + tree common_type; + + /* Determine the common superset address space. This is guaranteed + to exist because the caller verified that comp_target_types + returned non-zero. */ + if (!addr_space_superset (as0, as1, &as_common)) + gcc_unreachable (); + + common_type = common_pointer_type (TREE_TYPE (op0), TREE_TYPE (op1)); + op0 = convert (common_type, op0); + op1 = convert (common_type, op1); + } + + /* Determine integer type to perform computations in. This will usually + be the same as the result type (ptrdiff_t), but may need to be a wider + type if pointers for the address space are wider than ptrdiff_t. */ + if (TYPE_PRECISION (restype) < TYPE_PRECISION (TREE_TYPE (op0))) + inttype = lang_hooks.types.type_for_size + (TYPE_PRECISION (TREE_TYPE (op0)), 0); + else + inttype = restype; + + + if (TREE_CODE (target_type) == VOID_TYPE) + pedwarn (loc, pedantic ? OPT_pedantic : OPT_Wpointer_arith, + "pointer of type %<void *%> used in subtraction"); + if (TREE_CODE (target_type) == FUNCTION_TYPE) + pedwarn (loc, pedantic ? OPT_pedantic : OPT_Wpointer_arith, + "pointer to a function used in subtraction"); + + /* If the conversion to ptrdiff_type does anything like widening or + converting a partial to an integral mode, we get a convert_expression + that is in the way to do any simplifications. + (fold-const.c doesn't know that the extra bits won't be needed. + split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a + different mode in place.) + So first try to find a common term here 'by hand'; we want to cover + at least the cases that occur in legal static initializers. */ + if (CONVERT_EXPR_P (op0) + && (TYPE_PRECISION (TREE_TYPE (op0)) + == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0))))) + con0 = TREE_OPERAND (op0, 0); + else + con0 = op0; + if (CONVERT_EXPR_P (op1) + && (TYPE_PRECISION (TREE_TYPE (op1)) + == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0))))) + con1 = TREE_OPERAND (op1, 0); + else + con1 = op1; + + if (TREE_CODE (con0) == PLUS_EXPR) + { + lit0 = TREE_OPERAND (con0, 1); + con0 = TREE_OPERAND (con0, 0); + } + else + lit0 = integer_zero_node; + + if (TREE_CODE (con1) == PLUS_EXPR) + { + lit1 = TREE_OPERAND (con1, 1); + con1 = TREE_OPERAND (con1, 0); + } + else + lit1 = integer_zero_node; + + if (operand_equal_p (con0, con1, 0)) + { + op0 = lit0; + op1 = lit1; + } + + + /* First do the subtraction as integers; + then drop through to build the divide operator. + Do not do default conversions on the minus operator + in case restype is a short type. */ + + op0 = build_binary_op (loc, + MINUS_EXPR, convert (inttype, op0), + convert (inttype, op1), 0); + /* This generates an error if op1 is pointer to incomplete type. */ + if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1)))) + error_at (loc, "arithmetic on pointer to an incomplete type"); + + /* This generates an error if op0 is pointer to incomplete type. */ + op1 = c_size_in_bytes (target_type); + + /* Divide by the size, in easiest possible way. */ + result = fold_build2_loc (loc, EXACT_DIV_EXPR, inttype, + op0, convert (inttype, op1)); + + /* Convert to final result type if necessary. */ + return convert (restype, result); +} + +/* Construct and perhaps optimize a tree representation + for a unary operation. CODE, a tree_code, specifies the operation + and XARG is the operand. + For any CODE other than ADDR_EXPR, FLAG nonzero suppresses + the default promotions (such as from short to int). + For ADDR_EXPR, the default promotions are not applied; FLAG nonzero + allows non-lvalues; this is only used to handle conversion of non-lvalue + arrays to pointers in C99. + + LOCATION is the location of the operator. */ + +tree +build_unary_op (location_t location, + enum tree_code code, tree xarg, int flag) +{ + /* No default_conversion here. It causes trouble for ADDR_EXPR. */ + tree arg = xarg; + tree argtype = 0; + enum tree_code typecode; + tree val; + tree ret = error_mark_node; + tree eptype = NULL_TREE; + int noconvert = flag; + const char *invalid_op_diag; + bool int_operands; + + int_operands = EXPR_INT_CONST_OPERANDS (xarg); + if (int_operands) + arg = remove_c_maybe_const_expr (arg); + + if (code != ADDR_EXPR) + arg = require_complete_type (arg); + + typecode = TREE_CODE (TREE_TYPE (arg)); + if (typecode == ERROR_MARK) + return error_mark_node; + if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE) + typecode = INTEGER_TYPE; + + if ((invalid_op_diag + = targetm.invalid_unary_op (code, TREE_TYPE (xarg)))) + { + error_at (location, invalid_op_diag); + return error_mark_node; + } + + if (TREE_CODE (arg) == EXCESS_PRECISION_EXPR) + { + eptype = TREE_TYPE (arg); + arg = TREE_OPERAND (arg, 0); + } + + switch (code) + { + case CONVERT_EXPR: + /* This is used for unary plus, because a CONVERT_EXPR + is enough to prevent anybody from looking inside for + associativity, but won't generate any code. */ + if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE + || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE + || typecode == VECTOR_TYPE)) + { + error_at (location, "wrong type argument to unary plus"); + return error_mark_node; + } + else if (!noconvert) + arg = default_conversion (arg); + arg = non_lvalue_loc (location, arg); + break; + + case NEGATE_EXPR: + if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE + || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE + || typecode == VECTOR_TYPE)) + { + error_at (location, "wrong type argument to unary minus"); + return error_mark_node; + } + else if (!noconvert) + arg = default_conversion (arg); + break; + + case BIT_NOT_EXPR: + /* ~ works on integer types and non float vectors. */ + if (typecode == INTEGER_TYPE + || (typecode == VECTOR_TYPE + && !VECTOR_FLOAT_TYPE_P (TREE_TYPE (arg)))) + { + if (!noconvert) + arg = default_conversion (arg); + } + else if (typecode == COMPLEX_TYPE) + { + code = CONJ_EXPR; + pedwarn (location, OPT_pedantic, + "ISO C does not support %<~%> for complex conjugation"); + if (!noconvert) + arg = default_conversion (arg); + } + else + { + error_at (location, "wrong type argument to bit-complement"); + return error_mark_node; + } + break; + + case ABS_EXPR: + if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE)) + { + error_at (location, "wrong type argument to abs"); + return error_mark_node; + } + else if (!noconvert) + arg = default_conversion (arg); + break; + + case CONJ_EXPR: + /* Conjugating a real value is a no-op, but allow it anyway. */ + if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE + || typecode == COMPLEX_TYPE)) + { + error_at (location, "wrong type argument to conjugation"); + return error_mark_node; + } + else if (!noconvert) + arg = default_conversion (arg); + break; + + case TRUTH_NOT_EXPR: + if (typecode != INTEGER_TYPE && typecode != FIXED_POINT_TYPE + && typecode != REAL_TYPE && typecode != POINTER_TYPE + && typecode != COMPLEX_TYPE) + { + error_at (location, + "wrong type argument to unary exclamation mark"); + return error_mark_node; + } + if (int_operands) + { + arg = c_objc_common_truthvalue_conversion (location, xarg); + arg = remove_c_maybe_const_expr (arg); + } + else + arg = c_objc_common_truthvalue_conversion (location, arg); + ret = invert_truthvalue_loc (location, arg); + /* If the TRUTH_NOT_EXPR has been folded, reset the location. */ + if (EXPR_P (ret) && EXPR_HAS_LOCATION (ret)) + location = EXPR_LOCATION (ret); + goto return_build_unary_op; + + case REALPART_EXPR: + case IMAGPART_EXPR: + ret = build_real_imag_expr (location, code, arg); + if (ret == error_mark_node) + return error_mark_node; + if (eptype && TREE_CODE (eptype) == COMPLEX_TYPE) + eptype = TREE_TYPE (eptype); + goto return_build_unary_op; + + case PREINCREMENT_EXPR: + case POSTINCREMENT_EXPR: + case PREDECREMENT_EXPR: + case POSTDECREMENT_EXPR: + + if (TREE_CODE (arg) == C_MAYBE_CONST_EXPR) + { + tree inner = build_unary_op (location, code, + C_MAYBE_CONST_EXPR_EXPR (arg), flag); + if (inner == error_mark_node) + return error_mark_node; + ret = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (inner), + C_MAYBE_CONST_EXPR_PRE (arg), inner); + gcc_assert (!C_MAYBE_CONST_EXPR_INT_OPERANDS (arg)); + C_MAYBE_CONST_EXPR_NON_CONST (ret) = 1; + goto return_build_unary_op; + } + + /* Complain about anything that is not a true lvalue. In + Objective-C, skip this check for property_refs. */ + if (!objc_is_property_ref (arg) + && !lvalue_or_else (location, + arg, ((code == PREINCREMENT_EXPR + || code == POSTINCREMENT_EXPR) + ? lv_increment + : lv_decrement))) + return error_mark_node; + + if (warn_cxx_compat && TREE_CODE (TREE_TYPE (arg)) == ENUMERAL_TYPE) + { + if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR) + warning_at (location, OPT_Wc___compat, + "increment of enumeration value is invalid in C++"); + else + warning_at (location, OPT_Wc___compat, + "decrement of enumeration value is invalid in C++"); + } + + /* Ensure the argument is fully folded inside any SAVE_EXPR. */ + arg = c_fully_fold (arg, false, NULL); + + /* Increment or decrement the real part of the value, + and don't change the imaginary part. */ + if (typecode == COMPLEX_TYPE) + { + tree real, imag; + + pedwarn (location, OPT_pedantic, + "ISO C does not support %<++%> and %<--%> on complex types"); + + arg = stabilize_reference (arg); + real = build_unary_op (EXPR_LOCATION (arg), REALPART_EXPR, arg, 1); + imag = build_unary_op (EXPR_LOCATION (arg), IMAGPART_EXPR, arg, 1); + real = build_unary_op (EXPR_LOCATION (arg), code, real, 1); + if (real == error_mark_node || imag == error_mark_node) + return error_mark_node; + ret = build2 (COMPLEX_EXPR, TREE_TYPE (arg), + real, imag); + goto return_build_unary_op; + } + + /* Report invalid types. */ + + if (typecode != POINTER_TYPE && typecode != FIXED_POINT_TYPE + && typecode != INTEGER_TYPE && typecode != REAL_TYPE) + { + if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR) + error_at (location, "wrong type argument to increment"); + else + error_at (location, "wrong type argument to decrement"); + + return error_mark_node; + } + + { + tree inc; + + argtype = TREE_TYPE (arg); + + /* Compute the increment. */ + + if (typecode == POINTER_TYPE) + { + /* If pointer target is an undefined struct, + we just cannot know how to do the arithmetic. */ + if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (argtype))) + { + if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR) + error_at (location, + "increment of pointer to unknown structure"); + else + error_at (location, + "decrement of pointer to unknown structure"); + } + else if (TREE_CODE (TREE_TYPE (argtype)) == FUNCTION_TYPE + || TREE_CODE (TREE_TYPE (argtype)) == VOID_TYPE) + { + if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR) + pedwarn (location, pedantic ? OPT_pedantic : OPT_Wpointer_arith, + "wrong type argument to increment"); + else + pedwarn (location, pedantic ? OPT_pedantic : OPT_Wpointer_arith, + "wrong type argument to decrement"); + } + + inc = c_size_in_bytes (TREE_TYPE (argtype)); + inc = fold_convert_loc (location, sizetype, inc); + } + else if (FRACT_MODE_P (TYPE_MODE (argtype))) + { + /* For signed fract types, we invert ++ to -- or + -- to ++, and change inc from 1 to -1, because + it is not possible to represent 1 in signed fract constants. + For unsigned fract types, the result always overflows and + we get an undefined (original) or the maximum value. */ + if (code == PREINCREMENT_EXPR) + code = PREDECREMENT_EXPR; + else if (code == PREDECREMENT_EXPR) + code = PREINCREMENT_EXPR; + else if (code == POSTINCREMENT_EXPR) + code = POSTDECREMENT_EXPR; + else /* code == POSTDECREMENT_EXPR */ + code = POSTINCREMENT_EXPR; + + inc = integer_minus_one_node; + inc = convert (argtype, inc); + } + else + { + inc = integer_one_node; + inc = convert (argtype, inc); + } + + /* If 'arg' is an Objective-C PROPERTY_REF expression, then we + need to ask Objective-C to build the increment or decrement + expression for it. */ + if (objc_is_property_ref (arg)) + return objc_build_incr_expr_for_property_ref (location, code, + arg, inc); + + /* Report a read-only lvalue. */ + if (TYPE_READONLY (argtype)) + { + readonly_error (arg, + ((code == PREINCREMENT_EXPR + || code == POSTINCREMENT_EXPR) + ? lv_increment : lv_decrement)); + return error_mark_node; + } + else if (TREE_READONLY (arg)) + readonly_warning (arg, + ((code == PREINCREMENT_EXPR + || code == POSTINCREMENT_EXPR) + ? lv_increment : lv_decrement)); + + if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE) + val = boolean_increment (code, arg); + else + val = build2 (code, TREE_TYPE (arg), arg, inc); + TREE_SIDE_EFFECTS (val) = 1; + if (TREE_CODE (val) != code) + TREE_NO_WARNING (val) = 1; + ret = val; + goto return_build_unary_op; + } + + case ADDR_EXPR: + /* Note that this operation never does default_conversion. */ + + /* The operand of unary '&' must be an lvalue (which excludes + expressions of type void), or, in C99, the result of a [] or + unary '*' operator. */ + if (VOID_TYPE_P (TREE_TYPE (arg)) + && TYPE_QUALS (TREE_TYPE (arg)) == TYPE_UNQUALIFIED + && (TREE_CODE (arg) != INDIRECT_REF + || !flag_isoc99)) + pedwarn (location, 0, "taking address of expression of type %<void%>"); + + /* Let &* cancel out to simplify resulting code. */ + if (TREE_CODE (arg) == INDIRECT_REF) + { + /* Don't let this be an lvalue. */ + if (lvalue_p (TREE_OPERAND (arg, 0))) + return non_lvalue_loc (location, TREE_OPERAND (arg, 0)); + ret = TREE_OPERAND (arg, 0); + goto return_build_unary_op; + } + + /* For &x[y], return x+y */ + if (TREE_CODE (arg) == ARRAY_REF) + { + tree op0 = TREE_OPERAND (arg, 0); + if (!c_mark_addressable (op0)) + return error_mark_node; + return build_binary_op (location, PLUS_EXPR, + (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE + ? array_to_pointer_conversion (location, + op0) + : op0), + TREE_OPERAND (arg, 1), 1); + } + + /* Anything not already handled and not a true memory reference + or a non-lvalue array is an error. */ + else if (typecode != FUNCTION_TYPE && !flag + && !lvalue_or_else (location, arg, lv_addressof)) + return error_mark_node; + + /* Move address operations inside C_MAYBE_CONST_EXPR to simplify + folding later. */ + if (TREE_CODE (arg) == C_MAYBE_CONST_EXPR) + { + tree inner = build_unary_op (location, code, + C_MAYBE_CONST_EXPR_EXPR (arg), flag); + ret = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (inner), + C_MAYBE_CONST_EXPR_PRE (arg), inner); + gcc_assert (!C_MAYBE_CONST_EXPR_INT_OPERANDS (arg)); + C_MAYBE_CONST_EXPR_NON_CONST (ret) + = C_MAYBE_CONST_EXPR_NON_CONST (arg); + goto return_build_unary_op; + } + + /* Ordinary case; arg is a COMPONENT_REF or a decl. */ + argtype = TREE_TYPE (arg); + + /* If the lvalue is const or volatile, merge that into the type + to which the address will point. This should only be needed + for function types. */ + if ((DECL_P (arg) || REFERENCE_CLASS_P (arg)) + && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg))) + { + int orig_quals = TYPE_QUALS (strip_array_types (argtype)); + int quals = orig_quals; + + if (TREE_READONLY (arg)) + quals |= TYPE_QUAL_CONST; + if (TREE_THIS_VOLATILE (arg)) + quals |= TYPE_QUAL_VOLATILE; + + gcc_assert (quals == orig_quals + || TREE_CODE (argtype) == FUNCTION_TYPE); + + argtype = c_build_qualified_type (argtype, quals); + } + + if (!c_mark_addressable (arg)) + return error_mark_node; + + gcc_assert (TREE_CODE (arg) != COMPONENT_REF + || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1))); + + argtype = build_pointer_type (argtype); + + /* ??? Cope with user tricks that amount to offsetof. Delete this + when we have proper support for integer constant expressions. */ + val = get_base_address (arg); + if (val && TREE_CODE (val) == INDIRECT_REF + && TREE_CONSTANT (TREE_OPERAND (val, 0))) + { + ret = fold_convert_loc (location, argtype, fold_offsetof_1 (arg)); + goto return_build_unary_op; + } + + val = build1 (ADDR_EXPR, argtype, arg); + + ret = val; + goto return_build_unary_op; + + default: + gcc_unreachable (); + } + + if (argtype == 0) + argtype = TREE_TYPE (arg); + if (TREE_CODE (arg) == INTEGER_CST) + ret = (require_constant_value + ? fold_build1_initializer_loc (location, code, argtype, arg) + : fold_build1_loc (location, code, argtype, arg)); + else + ret = build1 (code, argtype, arg); + return_build_unary_op: + gcc_assert (ret != error_mark_node); + if (TREE_CODE (ret) == INTEGER_CST && !TREE_OVERFLOW (ret) + && !(TREE_CODE (xarg) == INTEGER_CST && !TREE_OVERFLOW (xarg))) + ret = build1 (NOP_EXPR, TREE_TYPE (ret), ret); + else if (TREE_CODE (ret) != INTEGER_CST && int_operands) + ret = note_integer_operands (ret); + if (eptype) + ret = build1 (EXCESS_PRECISION_EXPR, eptype, ret); + protected_set_expr_location (ret, location); + return ret; +} + +/* Return nonzero if REF is an lvalue valid for this language. + Lvalues can be assigned, unless their type has TYPE_READONLY. + Lvalues can have their address taken, unless they have C_DECL_REGISTER. */ + +bool +lvalue_p (const_tree ref) +{ + const enum tree_code code = TREE_CODE (ref); + + switch (code) + { + case REALPART_EXPR: + case IMAGPART_EXPR: + case COMPONENT_REF: + return lvalue_p (TREE_OPERAND (ref, 0)); + + case C_MAYBE_CONST_EXPR: + return lvalue_p (TREE_OPERAND (ref, 1)); + + case COMPOUND_LITERAL_EXPR: + case STRING_CST: + return 1; + + case INDIRECT_REF: + case ARRAY_REF: + case VAR_DECL: + case PARM_DECL: + case RESULT_DECL: + case ERROR_MARK: + return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE + && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE); + + case BIND_EXPR: + return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE; + + default: + return 0; + } +} + +/* Give a warning for storing in something that is read-only in GCC + terms but not const in ISO C terms. */ + +static void +readonly_warning (tree arg, enum lvalue_use use) +{ + switch (use) + { + case lv_assign: + warning (0, "assignment of read-only location %qE", arg); + break; + case lv_increment: + warning (0, "increment of read-only location %qE", arg); + break; + case lv_decrement: + warning (0, "decrement of read-only location %qE", arg); + break; + default: + gcc_unreachable (); + } + return; +} + + +/* Return nonzero if REF is an lvalue valid for this language; + otherwise, print an error message and return zero. USE says + how the lvalue is being used and so selects the error message. + LOCATION is the location at which any error should be reported. */ + +static int +lvalue_or_else (location_t loc, const_tree ref, enum lvalue_use use) +{ + int win = lvalue_p (ref); + + if (!win) + lvalue_error (loc, use); + + return win; +} + +/* Mark EXP saying that we need to be able to take the + address of it; it should not be allocated in a register. + Returns true if successful. */ + +bool +c_mark_addressable (tree exp) +{ + tree x = exp; + + while (1) + switch (TREE_CODE (x)) + { + case COMPONENT_REF: + if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1))) + { + error + ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1)); + return false; + } + + /* ... fall through ... */ + + case ADDR_EXPR: + case ARRAY_REF: + case REALPART_EXPR: + case IMAGPART_EXPR: + x = TREE_OPERAND (x, 0); + break; + + case COMPOUND_LITERAL_EXPR: + case CONSTRUCTOR: + TREE_ADDRESSABLE (x) = 1; + return true; + + case VAR_DECL: + case CONST_DECL: + case PARM_DECL: + case RESULT_DECL: + if (C_DECL_REGISTER (x) + && DECL_NONLOCAL (x)) + { + if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x)) + { + error + ("global register variable %qD used in nested function", x); + return false; + } + pedwarn (input_location, 0, "register variable %qD used in nested function", x); + } + else if (C_DECL_REGISTER (x)) + { + if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x)) + error ("address of global register variable %qD requested", x); + else + error ("address of register variable %qD requested", x); + return false; + } + + /* drops in */ + case FUNCTION_DECL: + TREE_ADDRESSABLE (x) = 1; + /* drops out */ + default: + return true; + } +} + +/* Convert EXPR to TYPE, warning about conversion problems with + constants. SEMANTIC_TYPE is the type this conversion would use + without excess precision. If SEMANTIC_TYPE is NULL, this function + is equivalent to convert_and_check. This function is a wrapper that + handles conversions that may be different than + the usual ones because of excess precision. */ + +static tree +ep_convert_and_check (tree type, tree expr, tree semantic_type) +{ + if (TREE_TYPE (expr) == type) + return expr; + + if (!semantic_type) + return convert_and_check (type, expr); + + if (TREE_CODE (TREE_TYPE (expr)) == INTEGER_TYPE + && TREE_TYPE (expr) != semantic_type) + { + /* For integers, we need to check the real conversion, not + the conversion to the excess precision type. */ + expr = convert_and_check (semantic_type, expr); + } + /* Result type is the excess precision type, which should be + large enough, so do not check. */ + return convert (type, expr); +} + +/* Build and return a conditional expression IFEXP ? OP1 : OP2. If + IFEXP_BCP then the condition is a call to __builtin_constant_p, and + if folded to an integer constant then the unselected half may + contain arbitrary operations not normally permitted in constant + expressions. Set the location of the expression to LOC. */ + +tree +build_conditional_expr (location_t colon_loc, tree ifexp, bool ifexp_bcp, + tree op1, tree op1_original_type, tree op2, + tree op2_original_type) +{ + tree type1; + tree type2; + enum tree_code code1; + enum tree_code code2; + tree result_type = NULL; + tree semantic_result_type = NULL; + tree orig_op1 = op1, orig_op2 = op2; + bool int_const, op1_int_operands, op2_int_operands, int_operands; + bool ifexp_int_operands; + tree ret; + + op1_int_operands = EXPR_INT_CONST_OPERANDS (orig_op1); + if (op1_int_operands) + op1 = remove_c_maybe_const_expr (op1); + op2_int_operands = EXPR_INT_CONST_OPERANDS (orig_op2); + if (op2_int_operands) + op2 = remove_c_maybe_const_expr (op2); + ifexp_int_operands = EXPR_INT_CONST_OPERANDS (ifexp); + if (ifexp_int_operands) + ifexp = remove_c_maybe_const_expr (ifexp); + + /* Promote both alternatives. */ + + if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE) + op1 = default_conversion (op1); + if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE) + op2 = default_conversion (op2); + + if (TREE_CODE (ifexp) == ERROR_MARK + || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK + || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK) + return error_mark_node; + + type1 = TREE_TYPE (op1); + code1 = TREE_CODE (type1); + type2 = TREE_TYPE (op2); + code2 = TREE_CODE (type2); + + /* C90 does not permit non-lvalue arrays in conditional expressions. + In C99 they will be pointers by now. */ + if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE) + { + error_at (colon_loc, "non-lvalue array in conditional expression"); + return error_mark_node; + } + + if ((TREE_CODE (op1) == EXCESS_PRECISION_EXPR + || TREE_CODE (op2) == EXCESS_PRECISION_EXPR) + && (code1 == INTEGER_TYPE || code1 == REAL_TYPE + || code1 == COMPLEX_TYPE) + && (code2 == INTEGER_TYPE || code2 == REAL_TYPE + || code2 == COMPLEX_TYPE)) + { + semantic_result_type = c_common_type (type1, type2); + if (TREE_CODE (op1) == EXCESS_PRECISION_EXPR) + { + op1 = TREE_OPERAND (op1, 0); + type1 = TREE_TYPE (op1); + gcc_assert (TREE_CODE (type1) == code1); + } + if (TREE_CODE (op2) == EXCESS_PRECISION_EXPR) + { + op2 = TREE_OPERAND (op2, 0); + type2 = TREE_TYPE (op2); + gcc_assert (TREE_CODE (type2) == code2); + } + } + + if (warn_cxx_compat) + { + tree t1 = op1_original_type ? op1_original_type : TREE_TYPE (orig_op1); + tree t2 = op2_original_type ? op2_original_type : TREE_TYPE (orig_op2); + + if (TREE_CODE (t1) == ENUMERAL_TYPE + && TREE_CODE (t2) == ENUMERAL_TYPE + && TYPE_MAIN_VARIANT (t1) != TYPE_MAIN_VARIANT (t2)) + warning_at (colon_loc, OPT_Wc___compat, + ("different enum types in conditional is " + "invalid in C++: %qT vs %qT"), + t1, t2); + } + + /* Quickly detect the usual case where op1 and op2 have the same type + after promotion. */ + if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2)) + { + if (type1 == type2) + result_type = type1; + else + result_type = TYPE_MAIN_VARIANT (type1); + } + else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE + || code1 == COMPLEX_TYPE) + && (code2 == INTEGER_TYPE || code2 == REAL_TYPE + || code2 == COMPLEX_TYPE)) + { + result_type = c_common_type (type1, type2); + do_warn_double_promotion (result_type, type1, type2, + "implicit conversion from %qT to %qT to " + "match other result of conditional", + colon_loc); + + /* If -Wsign-compare, warn here if type1 and type2 have + different signedness. We'll promote the signed to unsigned + and later code won't know it used to be different. + Do this check on the original types, so that explicit casts + will be considered, but default promotions won't. */ + if (c_inhibit_evaluation_warnings == 0) + { + int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1)); + int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2)); + + if (unsigned_op1 ^ unsigned_op2) + { + bool ovf; + + /* Do not warn if the result type is signed, since the + signed type will only be chosen if it can represent + all the values of the unsigned type. */ + if (!TYPE_UNSIGNED (result_type)) + /* OK */; + else + { + bool op1_maybe_const = true; + bool op2_maybe_const = true; + + /* Do not warn if the signed quantity is an + unsuffixed integer literal (or some static + constant expression involving such literals) and + it is non-negative. This warning requires the + operands to be folded for best results, so do + that folding in this case even without + warn_sign_compare to avoid warning options + possibly affecting code generation. */ + c_inhibit_evaluation_warnings + += (ifexp == truthvalue_false_node); + op1 = c_fully_fold (op1, require_constant_value, + &op1_maybe_const); + c_inhibit_evaluation_warnings + -= (ifexp == truthvalue_false_node); + + c_inhibit_evaluation_warnings + += (ifexp == truthvalue_true_node); + op2 = c_fully_fold (op2, require_constant_value, + &op2_maybe_const); + c_inhibit_evaluation_warnings + -= (ifexp == truthvalue_true_node); + + if (warn_sign_compare) + { + if ((unsigned_op2 + && tree_expr_nonnegative_warnv_p (op1, &ovf)) + || (unsigned_op1 + && tree_expr_nonnegative_warnv_p (op2, &ovf))) + /* OK */; + else + warning_at (colon_loc, OPT_Wsign_compare, + ("signed and unsigned type in " + "conditional expression")); + } + if (!op1_maybe_const || TREE_CODE (op1) != INTEGER_CST) + op1 = c_wrap_maybe_const (op1, !op1_maybe_const); + if (!op2_maybe_const || TREE_CODE (op2) != INTEGER_CST) + op2 = c_wrap_maybe_const (op2, !op2_maybe_const); + } + } + } + } + else if (code1 == VOID_TYPE || code2 == VOID_TYPE) + { + if (code1 != VOID_TYPE || code2 != VOID_TYPE) + pedwarn (colon_loc, OPT_pedantic, + "ISO C forbids conditional expr with only one void side"); + result_type = void_type_node; + } + else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE) + { + addr_space_t as1 = TYPE_ADDR_SPACE (TREE_TYPE (type1)); + addr_space_t as2 = TYPE_ADDR_SPACE (TREE_TYPE (type2)); + addr_space_t as_common; + + if (comp_target_types (colon_loc, type1, type2)) + result_type = common_pointer_type (type1, type2); + else if (null_pointer_constant_p (orig_op1)) + result_type = type2; + else if (null_pointer_constant_p (orig_op2)) + result_type = type1; + else if (!addr_space_superset (as1, as2, &as_common)) + { + error_at (colon_loc, "pointers to disjoint address spaces " + "used in conditional expression"); + return error_mark_node; + } + else if (VOID_TYPE_P (TREE_TYPE (type1))) + { + if (TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE) + pedwarn (colon_loc, OPT_pedantic, + "ISO C forbids conditional expr between " + "%<void *%> and function pointer"); + result_type = build_pointer_type (qualify_type (TREE_TYPE (type1), + TREE_TYPE (type2))); + } + else if (VOID_TYPE_P (TREE_TYPE (type2))) + { + if (TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE) + pedwarn (colon_loc, OPT_pedantic, + "ISO C forbids conditional expr between " + "%<void *%> and function pointer"); + result_type = build_pointer_type (qualify_type (TREE_TYPE (type2), + TREE_TYPE (type1))); + } + /* Objective-C pointer comparisons are a bit more lenient. */ + else if (objc_have_common_type (type1, type2, -3, NULL_TREE)) + result_type = objc_common_type (type1, type2); + else + { + int qual = ENCODE_QUAL_ADDR_SPACE (as_common); + + pedwarn (colon_loc, 0, + "pointer type mismatch in conditional expression"); + result_type = build_pointer_type + (build_qualified_type (void_type_node, qual)); + } + } + else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE) + { + if (!null_pointer_constant_p (orig_op2)) + pedwarn (colon_loc, 0, + "pointer/integer type mismatch in conditional expression"); + else + { + op2 = null_pointer_node; + } + result_type = type1; + } + else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE) + { + if (!null_pointer_constant_p (orig_op1)) + pedwarn (colon_loc, 0, + "pointer/integer type mismatch in conditional expression"); + else + { + op1 = null_pointer_node; + } + result_type = type2; + } + + if (!result_type) + { + if (flag_cond_mismatch) + result_type = void_type_node; + else + { + error_at (colon_loc, "type mismatch in conditional expression"); + return error_mark_node; + } + } + + /* Merge const and volatile flags of the incoming types. */ + result_type + = build_type_variant (result_type, + TYPE_READONLY (type1) || TYPE_READONLY (type2), + TYPE_VOLATILE (type1) || TYPE_VOLATILE (type2)); + + op1 = ep_convert_and_check (result_type, op1, semantic_result_type); + op2 = ep_convert_and_check (result_type, op2, semantic_result_type); + + if (ifexp_bcp && ifexp == truthvalue_true_node) + { + op2_int_operands = true; + op1 = c_fully_fold (op1, require_constant_value, NULL); + } + if (ifexp_bcp && ifexp == truthvalue_false_node) + { + op1_int_operands = true; + op2 = c_fully_fold (op2, require_constant_value, NULL); + } + int_const = int_operands = (ifexp_int_operands + && op1_int_operands + && op2_int_operands); + if (int_operands) + { + int_const = ((ifexp == truthvalue_true_node + && TREE_CODE (orig_op1) == INTEGER_CST + && !TREE_OVERFLOW (orig_op1)) + || (ifexp == truthvalue_false_node + && TREE_CODE (orig_op2) == INTEGER_CST + && !TREE_OVERFLOW (orig_op2))); + } + if (int_const || (ifexp_bcp && TREE_CODE (ifexp) == INTEGER_CST)) + ret = fold_build3_loc (colon_loc, COND_EXPR, result_type, ifexp, op1, op2); + else + { + if (int_operands) + { + op1 = remove_c_maybe_const_expr (op1); + op2 = remove_c_maybe_const_expr (op2); + } + ret = build3 (COND_EXPR, result_type, ifexp, op1, op2); + if (int_operands) + ret = note_integer_operands (ret); + } + if (semantic_result_type) + ret = build1 (EXCESS_PRECISION_EXPR, semantic_result_type, ret); + + protected_set_expr_location (ret, colon_loc); + return ret; +} + +/* Return a compound expression that performs two expressions and + returns the value of the second of them. + + LOC is the location of the COMPOUND_EXPR. */ + +tree +build_compound_expr (location_t loc, tree expr1, tree expr2) +{ + bool expr1_int_operands, expr2_int_operands; + tree eptype = NULL_TREE; + tree ret; + + expr1_int_operands = EXPR_INT_CONST_OPERANDS (expr1); + if (expr1_int_operands) + expr1 = remove_c_maybe_const_expr (expr1); + expr2_int_operands = EXPR_INT_CONST_OPERANDS (expr2); + if (expr2_int_operands) + expr2 = remove_c_maybe_const_expr (expr2); + + if (TREE_CODE (expr1) == EXCESS_PRECISION_EXPR) + expr1 = TREE_OPERAND (expr1, 0); + if (TREE_CODE (expr2) == EXCESS_PRECISION_EXPR) + { + eptype = TREE_TYPE (expr2); + expr2 = TREE_OPERAND (expr2, 0); + } + + if (!TREE_SIDE_EFFECTS (expr1)) + { + /* The left-hand operand of a comma expression is like an expression + statement: with -Wunused, we should warn if it doesn't have + any side-effects, unless it was explicitly cast to (void). */ + if (warn_unused_value) + { + if (VOID_TYPE_P (TREE_TYPE (expr1)) + && CONVERT_EXPR_P (expr1)) + ; /* (void) a, b */ + else if (VOID_TYPE_P (TREE_TYPE (expr1)) + && TREE_CODE (expr1) == COMPOUND_EXPR + && CONVERT_EXPR_P (TREE_OPERAND (expr1, 1))) + ; /* (void) a, (void) b, c */ + else + warning_at (loc, OPT_Wunused_value, + "left-hand operand of comma expression has no effect"); + } + } + + /* With -Wunused, we should also warn if the left-hand operand does have + side-effects, but computes a value which is not used. For example, in + `foo() + bar(), baz()' the result of the `+' operator is not used, + so we should issue a warning. */ + else if (warn_unused_value) + warn_if_unused_value (expr1, loc); + + if (expr2 == error_mark_node) + return error_mark_node; + + ret = build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2); + + if (flag_isoc99 + && expr1_int_operands + && expr2_int_operands) + ret = note_integer_operands (ret); + + if (eptype) + ret = build1 (EXCESS_PRECISION_EXPR, eptype, ret); + + protected_set_expr_location (ret, loc); + return ret; +} + +/* Issue -Wcast-qual warnings when appropriate. TYPE is the type to + which we are casting. OTYPE is the type of the expression being + cast. Both TYPE and OTYPE are pointer types. LOC is the location + of the cast. -Wcast-qual appeared on the command line. Named + address space qualifiers are not handled here, because they result + in different warnings. */ + +static void +handle_warn_cast_qual (location_t loc, tree type, tree otype) +{ + tree in_type = type; + tree in_otype = otype; + int added = 0; + int discarded = 0; + bool is_const; + + /* Check that the qualifiers on IN_TYPE are a superset of the + qualifiers of IN_OTYPE. The outermost level of POINTER_TYPE + nodes is uninteresting and we stop as soon as we hit a + non-POINTER_TYPE node on either type. */ + do + { + in_otype = TREE_TYPE (in_otype); + in_type = TREE_TYPE (in_type); + + /* GNU C allows cv-qualified function types. 'const' means the + function is very pure, 'volatile' means it can't return. We + need to warn when such qualifiers are added, not when they're + taken away. */ + if (TREE_CODE (in_otype) == FUNCTION_TYPE + && TREE_CODE (in_type) == FUNCTION_TYPE) + added |= (TYPE_QUALS_NO_ADDR_SPACE (in_type) + & ~TYPE_QUALS_NO_ADDR_SPACE (in_otype)); + else + discarded |= (TYPE_QUALS_NO_ADDR_SPACE (in_otype) + & ~TYPE_QUALS_NO_ADDR_SPACE (in_type)); + } + while (TREE_CODE (in_type) == POINTER_TYPE + && TREE_CODE (in_otype) == POINTER_TYPE); + + if (added) + warning_at (loc, OPT_Wcast_qual, + "cast adds %q#v qualifier to function type", added); + + if (discarded) + /* There are qualifiers present in IN_OTYPE that are not present + in IN_TYPE. */ + warning_at (loc, OPT_Wcast_qual, + "cast discards %q#v qualifier from pointer target type", + discarded); + + if (added || discarded) + return; + + /* A cast from **T to const **T is unsafe, because it can cause a + const value to be changed with no additional warning. We only + issue this warning if T is the same on both sides, and we only + issue the warning if there are the same number of pointers on + both sides, as otherwise the cast is clearly unsafe anyhow. A + cast is unsafe when a qualifier is added at one level and const + is not present at all outer levels. + + To issue this warning, we check at each level whether the cast + adds new qualifiers not already seen. We don't need to special + case function types, as they won't have the same + TYPE_MAIN_VARIANT. */ + + if (TYPE_MAIN_VARIANT (in_type) != TYPE_MAIN_VARIANT (in_otype)) + return; + if (TREE_CODE (TREE_TYPE (type)) != POINTER_TYPE) + return; + + in_type = type; + in_otype = otype; + is_const = TYPE_READONLY (TREE_TYPE (in_type)); + do + { + in_type = TREE_TYPE (in_type); + in_otype = TREE_TYPE (in_otype); + if ((TYPE_QUALS (in_type) &~ TYPE_QUALS (in_otype)) != 0 + && !is_const) + { + warning_at (loc, OPT_Wcast_qual, + "to be safe all intermediate pointers in cast from " + "%qT to %qT must be %<const%> qualified", + otype, type); + break; + } + if (is_const) + is_const = TYPE_READONLY (in_type); + } + while (TREE_CODE (in_type) == POINTER_TYPE); +} + +/* Build an expression representing a cast to type TYPE of expression EXPR. + LOC is the location of the cast-- typically the open paren of the cast. */ + +tree +build_c_cast (location_t loc, tree type, tree expr) +{ + tree value; + + if (TREE_CODE (expr) == EXCESS_PRECISION_EXPR) + expr = TREE_OPERAND (expr, 0); + + value = expr; + + if (type == error_mark_node || expr == error_mark_node) + return error_mark_node; + + /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing + only in <protocol> qualifications. But when constructing cast expressions, + the protocols do matter and must be kept around. */ + if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr))) + return build1 (NOP_EXPR, type, expr); + + type = TYPE_MAIN_VARIANT (type); + + if (TREE_CODE (type) == ARRAY_TYPE) + { + error_at (loc, "cast specifies array type"); + return error_mark_node; + } + + if (TREE_CODE (type) == FUNCTION_TYPE) + { + error_at (loc, "cast specifies function type"); + return error_mark_node; + } + + if (!VOID_TYPE_P (type)) + { + value = require_complete_type (value); + if (value == error_mark_node) + return error_mark_node; + } + + if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value))) + { + if (TREE_CODE (type) == RECORD_TYPE + || TREE_CODE (type) == UNION_TYPE) + pedwarn (loc, OPT_pedantic, + "ISO C forbids casting nonscalar to the same type"); + } + else if (TREE_CODE (type) == UNION_TYPE) + { + tree field; + + for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + if (TREE_TYPE (field) != error_mark_node + && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)), + TYPE_MAIN_VARIANT (TREE_TYPE (value)))) + break; + + if (field) + { + tree t; + bool maybe_const = true; + + pedwarn (loc, OPT_pedantic, "ISO C forbids casts to union type"); + t = c_fully_fold (value, false, &maybe_const); + t = build_constructor_single (type, field, t); + if (!maybe_const) + t = c_wrap_maybe_const (t, true); + t = digest_init (loc, type, t, + NULL_TREE, false, true, 0); + TREE_CONSTANT (t) = TREE_CONSTANT (value); + return t; + } + error_at (loc, "cast to union type from type not present in union"); + return error_mark_node; + } + else + { + tree otype, ovalue; + + if (type == void_type_node) + { + tree t = build1 (CONVERT_EXPR, type, value); + SET_EXPR_LOCATION (t, loc); + return t; + } + + otype = TREE_TYPE (value); + + /* Optionally warn about potentially worrisome casts. */ + if (warn_cast_qual + && TREE_CODE (type) == POINTER_TYPE + && TREE_CODE (otype) == POINTER_TYPE) + handle_warn_cast_qual (loc, type, otype); + + /* Warn about conversions between pointers to disjoint + address spaces. */ + if (TREE_CODE (type) == POINTER_TYPE + && TREE_CODE (otype) == POINTER_TYPE + && !null_pointer_constant_p (value)) + { + addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type)); + addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (otype)); + addr_space_t as_common; + + if (!addr_space_superset (as_to, as_from, &as_common)) + { + if (ADDR_SPACE_GENERIC_P (as_from)) + warning_at (loc, 0, "cast to %s address space pointer " + "from disjoint generic address space pointer", + c_addr_space_name (as_to)); + + else if (ADDR_SPACE_GENERIC_P (as_to)) + warning_at (loc, 0, "cast to generic address space pointer " + "from disjoint %s address space pointer", + c_addr_space_name (as_from)); + + else + warning_at (loc, 0, "cast to %s address space pointer " + "from disjoint %s address space pointer", + c_addr_space_name (as_to), + c_addr_space_name (as_from)); + } + } + + /* Warn about possible alignment problems. */ + if (STRICT_ALIGNMENT + && TREE_CODE (type) == POINTER_TYPE + && TREE_CODE (otype) == POINTER_TYPE + && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE + && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE + /* Don't warn about opaque types, where the actual alignment + restriction is unknown. */ + && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE + || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE) + && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode) + && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype))) + warning_at (loc, OPT_Wcast_align, + "cast increases required alignment of target type"); + + if (TREE_CODE (type) == INTEGER_TYPE + && TREE_CODE (otype) == POINTER_TYPE + && TYPE_PRECISION (type) != TYPE_PRECISION (otype)) + /* Unlike conversion of integers to pointers, where the + warning is disabled for converting constants because + of cases such as SIG_*, warn about converting constant + pointers to integers. In some cases it may cause unwanted + sign extension, and a warning is appropriate. */ + warning_at (loc, OPT_Wpointer_to_int_cast, + "cast from pointer to integer of different size"); + + if (TREE_CODE (value) == CALL_EXPR + && TREE_CODE (type) != TREE_CODE (otype)) + warning_at (loc, OPT_Wbad_function_cast, + "cast from function call of type %qT " + "to non-matching type %qT", otype, type); + + if (TREE_CODE (type) == POINTER_TYPE + && TREE_CODE (otype) == INTEGER_TYPE + && TYPE_PRECISION (type) != TYPE_PRECISION (otype) + /* Don't warn about converting any constant. */ + && !TREE_CONSTANT (value)) + warning_at (loc, + OPT_Wint_to_pointer_cast, "cast to pointer from integer " + "of different size"); + + if (warn_strict_aliasing <= 2) + strict_aliasing_warning (otype, type, expr); + + /* If pedantic, warn for conversions between function and object + pointer types, except for converting a null pointer constant + to function pointer type. */ + if (pedantic + && TREE_CODE (type) == POINTER_TYPE + && TREE_CODE (otype) == POINTER_TYPE + && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE + && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE) + pedwarn (loc, OPT_pedantic, "ISO C forbids " + "conversion of function pointer to object pointer type"); + + if (pedantic + && TREE_CODE (type) == POINTER_TYPE + && TREE_CODE (otype) == POINTER_TYPE + && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE + && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE + && !null_pointer_constant_p (value)) + pedwarn (loc, OPT_pedantic, "ISO C forbids " + "conversion of object pointer to function pointer type"); + + ovalue = value; + value = convert (type, value); + + /* Ignore any integer overflow caused by the cast. */ + if (TREE_CODE (value) == INTEGER_CST && !FLOAT_TYPE_P (otype)) + { + if (CONSTANT_CLASS_P (ovalue) && TREE_OVERFLOW (ovalue)) + { + if (!TREE_OVERFLOW (value)) + { + /* Avoid clobbering a shared constant. */ + value = copy_node (value); + TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue); + } + } + else if (TREE_OVERFLOW (value)) + /* Reset VALUE's overflow flags, ensuring constant sharing. */ + value = build_int_cst_wide (TREE_TYPE (value), + TREE_INT_CST_LOW (value), + TREE_INT_CST_HIGH (value)); + } + } + + /* Don't let a cast be an lvalue. */ + if (value == expr) + value = non_lvalue_loc (loc, value); + + /* Don't allow the results of casting to floating-point or complex + types be confused with actual constants, or casts involving + integer and pointer types other than direct integer-to-integer + and integer-to-pointer be confused with integer constant + expressions and null pointer constants. */ + if (TREE_CODE (value) == REAL_CST + || TREE_CODE (value) == COMPLEX_CST + || (TREE_CODE (value) == INTEGER_CST + && !((TREE_CODE (expr) == INTEGER_CST + && INTEGRAL_TYPE_P (TREE_TYPE (expr))) + || TREE_CODE (expr) == REAL_CST + || TREE_CODE (expr) == COMPLEX_CST))) + value = build1 (NOP_EXPR, type, value); + + if (CAN_HAVE_LOCATION_P (value)) + SET_EXPR_LOCATION (value, loc); + return value; +} + +/* Interpret a cast of expression EXPR to type TYPE. LOC is the + location of the open paren of the cast, or the position of the cast + expr. */ +tree +c_cast_expr (location_t loc, struct c_type_name *type_name, tree expr) +{ + tree type; + tree type_expr = NULL_TREE; + bool type_expr_const = true; + tree ret; + int saved_wsp = warn_strict_prototypes; + + /* This avoids warnings about unprototyped casts on + integers. E.g. "#define SIG_DFL (void(*)())0". */ + if (TREE_CODE (expr) == INTEGER_CST) + warn_strict_prototypes = 0; + type = groktypename (type_name, &type_expr, &type_expr_const); + warn_strict_prototypes = saved_wsp; + + ret = build_c_cast (loc, type, expr); + if (type_expr) + { + bool inner_expr_const = true; + ret = c_fully_fold (ret, require_constant_value, &inner_expr_const); + ret = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (ret), type_expr, ret); + C_MAYBE_CONST_EXPR_NON_CONST (ret) = !(type_expr_const + && inner_expr_const); + SET_EXPR_LOCATION (ret, loc); + } + + if (CAN_HAVE_LOCATION_P (ret) && !EXPR_HAS_LOCATION (ret)) + SET_EXPR_LOCATION (ret, loc); + + /* C++ does not permits types to be defined in a cast, but it + allows references to incomplete types. */ + if (warn_cxx_compat && type_name->specs->typespec_kind == ctsk_tagdef) + warning_at (loc, OPT_Wc___compat, + "defining a type in a cast is invalid in C++"); + + return ret; +} + +/* Build an assignment expression of lvalue LHS from value RHS. + If LHS_ORIGTYPE is not NULL, it is the original type of LHS, which + may differ from TREE_TYPE (LHS) for an enum bitfield. + MODIFYCODE is the code for a binary operator that we use + to combine the old value of LHS with RHS to get the new value. + Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. + If RHS_ORIGTYPE is not NULL_TREE, it is the original type of RHS, + which may differ from TREE_TYPE (RHS) for an enum value. + + LOCATION is the location of the MODIFYCODE operator. + RHS_LOC is the location of the RHS. */ + +tree +build_modify_expr (location_t location, tree lhs, tree lhs_origtype, + enum tree_code modifycode, + location_t rhs_loc, tree rhs, tree rhs_origtype) +{ + tree result; + tree newrhs; + tree rhs_semantic_type = NULL_TREE; + tree lhstype = TREE_TYPE (lhs); + tree olhstype = lhstype; + bool npc; + + /* Types that aren't fully specified cannot be used in assignments. */ + lhs = require_complete_type (lhs); + + /* Avoid duplicate error messages from operands that had errors. */ + if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK) + return error_mark_node; + + /* For ObjC properties, defer this check. */ + if (!objc_is_property_ref (lhs) && !lvalue_or_else (location, lhs, lv_assign)) + return error_mark_node; + + if (TREE_CODE (rhs) == EXCESS_PRECISION_EXPR) + { + rhs_semantic_type = TREE_TYPE (rhs); + rhs = TREE_OPERAND (rhs, 0); + } + + newrhs = rhs; + + if (TREE_CODE (lhs) == C_MAYBE_CONST_EXPR) + { + tree inner = build_modify_expr (location, C_MAYBE_CONST_EXPR_EXPR (lhs), + lhs_origtype, modifycode, rhs_loc, rhs, + rhs_origtype); + if (inner == error_mark_node) + return error_mark_node; + result = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (inner), + C_MAYBE_CONST_EXPR_PRE (lhs), inner); + gcc_assert (!C_MAYBE_CONST_EXPR_INT_OPERANDS (lhs)); + C_MAYBE_CONST_EXPR_NON_CONST (result) = 1; + protected_set_expr_location (result, location); + return result; + } + + /* If a binary op has been requested, combine the old LHS value with the RHS + producing the value we should actually store into the LHS. */ + + if (modifycode != NOP_EXPR) + { + lhs = c_fully_fold (lhs, false, NULL); + lhs = stabilize_reference (lhs); + newrhs = build_binary_op (location, + modifycode, lhs, rhs, 1); + + /* The original type of the right hand side is no longer + meaningful. */ + rhs_origtype = NULL_TREE; + } + + if (c_dialect_objc ()) + { + /* Check if we are modifying an Objective-C property reference; + if so, we need to generate setter calls. */ + result = objc_maybe_build_modify_expr (lhs, newrhs); + if (result) + return result; + + /* Else, do the check that we postponed for Objective-C. */ + if (!lvalue_or_else (location, lhs, lv_assign)) + return error_mark_node; + } + + /* Give an error for storing in something that is 'const'. */ + + if (TYPE_READONLY (lhstype) + || ((TREE_CODE (lhstype) == RECORD_TYPE + || TREE_CODE (lhstype) == UNION_TYPE) + && C_TYPE_FIELDS_READONLY (lhstype))) + { + readonly_error (lhs, lv_assign); + return error_mark_node; + } + else if (TREE_READONLY (lhs)) + readonly_warning (lhs, lv_assign); + + /* If storing into a structure or union member, + it has probably been given type `int'. + Compute the type that would go with + the actual amount of storage the member occupies. */ + + if (TREE_CODE (lhs) == COMPONENT_REF + && (TREE_CODE (lhstype) == INTEGER_TYPE + || TREE_CODE (lhstype) == BOOLEAN_TYPE + || TREE_CODE (lhstype) == REAL_TYPE + || TREE_CODE (lhstype) == ENUMERAL_TYPE)) + lhstype = TREE_TYPE (get_unwidened (lhs, 0)); + + /* If storing in a field that is in actuality a short or narrower than one, + we must store in the field in its actual type. */ + + if (lhstype != TREE_TYPE (lhs)) + { + lhs = copy_node (lhs); + TREE_TYPE (lhs) = lhstype; + } + + /* Issue -Wc++-compat warnings about an assignment to an enum type + when LHS does not have its original type. This happens for, + e.g., an enum bitfield in a struct. */ + if (warn_cxx_compat + && lhs_origtype != NULL_TREE + && lhs_origtype != lhstype + && TREE_CODE (lhs_origtype) == ENUMERAL_TYPE) + { + tree checktype = (rhs_origtype != NULL_TREE + ? rhs_origtype + : TREE_TYPE (rhs)); + if (checktype != error_mark_node + && TYPE_MAIN_VARIANT (checktype) != TYPE_MAIN_VARIANT (lhs_origtype)) + warning_at (location, OPT_Wc___compat, + "enum conversion in assignment is invalid in C++"); + } + + /* Convert new value to destination type. Fold it first, then + restore any excess precision information, for the sake of + conversion warnings. */ + + npc = null_pointer_constant_p (newrhs); + newrhs = c_fully_fold (newrhs, false, NULL); + if (rhs_semantic_type) + newrhs = build1 (EXCESS_PRECISION_EXPR, rhs_semantic_type, newrhs); + newrhs = convert_for_assignment (location, lhstype, newrhs, rhs_origtype, + ic_assign, npc, NULL_TREE, NULL_TREE, 0); + if (TREE_CODE (newrhs) == ERROR_MARK) + return error_mark_node; + + /* Emit ObjC write barrier, if necessary. */ + if (c_dialect_objc () && flag_objc_gc) + { + result = objc_generate_write_barrier (lhs, modifycode, newrhs); + if (result) + { + protected_set_expr_location (result, location); + return result; + } + } + + /* Scan operands. */ + + result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs); + TREE_SIDE_EFFECTS (result) = 1; + protected_set_expr_location (result, location); + + /* If we got the LHS in a different type for storing in, + convert the result back to the nominal type of LHS + so that the value we return always has the same type + as the LHS argument. */ + + if (olhstype == TREE_TYPE (result)) + return result; + + result = convert_for_assignment (location, olhstype, result, rhs_origtype, + ic_assign, false, NULL_TREE, NULL_TREE, 0); + protected_set_expr_location (result, location); + return result; +} + +/* Return whether STRUCT_TYPE has an anonymous field with type TYPE. + This is used to implement -fplan9-extensions. */ + +static bool +find_anonymous_field_with_type (tree struct_type, tree type) +{ + tree field; + bool found; + + gcc_assert (TREE_CODE (struct_type) == RECORD_TYPE + || TREE_CODE (struct_type) == UNION_TYPE); + found = false; + for (field = TYPE_FIELDS (struct_type); + field != NULL_TREE; + field = TREE_CHAIN (field)) + { + if (DECL_NAME (field) == NULL + && comptypes (type, TYPE_MAIN_VARIANT (TREE_TYPE (field)))) + { + if (found) + return false; + found = true; + } + else if (DECL_NAME (field) == NULL + && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE + || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE) + && find_anonymous_field_with_type (TREE_TYPE (field), type)) + { + if (found) + return false; + found = true; + } + } + return found; +} + +/* RHS is an expression whose type is pointer to struct. If there is + an anonymous field in RHS with type TYPE, then return a pointer to + that field in RHS. This is used with -fplan9-extensions. This + returns NULL if no conversion could be found. */ + +static tree +convert_to_anonymous_field (location_t location, tree type, tree rhs) +{ + tree rhs_struct_type, lhs_main_type; + tree field, found_field; + bool found_sub_field; + tree ret; + + gcc_assert (POINTER_TYPE_P (TREE_TYPE (rhs))); + rhs_struct_type = TREE_TYPE (TREE_TYPE (rhs)); + gcc_assert (TREE_CODE (rhs_struct_type) == RECORD_TYPE + || TREE_CODE (rhs_struct_type) == UNION_TYPE); + + gcc_assert (POINTER_TYPE_P (type)); + lhs_main_type = TYPE_MAIN_VARIANT (TREE_TYPE (type)); + + found_field = NULL_TREE; + found_sub_field = false; + for (field = TYPE_FIELDS (rhs_struct_type); + field != NULL_TREE; + field = TREE_CHAIN (field)) + { + if (DECL_NAME (field) != NULL_TREE + || (TREE_CODE (TREE_TYPE (field)) != RECORD_TYPE + && TREE_CODE (TREE_TYPE (field)) != UNION_TYPE)) + continue; + if (comptypes (lhs_main_type, TYPE_MAIN_VARIANT (TREE_TYPE (field)))) + { + if (found_field != NULL_TREE) + return NULL_TREE; + found_field = field; + } + else if (find_anonymous_field_with_type (TREE_TYPE (field), + lhs_main_type)) + { + if (found_field != NULL_TREE) + return NULL_TREE; + found_field = field; + found_sub_field = true; + } + } + + if (found_field == NULL_TREE) + return NULL_TREE; + + ret = fold_build3_loc (location, COMPONENT_REF, TREE_TYPE (found_field), + build_fold_indirect_ref (rhs), found_field, + NULL_TREE); + ret = build_fold_addr_expr_loc (location, ret); + + if (found_sub_field) + { + ret = convert_to_anonymous_field (location, type, ret); + gcc_assert (ret != NULL_TREE); + } + + return ret; +} + +/* Convert value RHS to type TYPE as preparation for an assignment to + an lvalue of type TYPE. If ORIGTYPE is not NULL_TREE, it is the + original type of RHS; this differs from TREE_TYPE (RHS) for enum + types. NULL_POINTER_CONSTANT says whether RHS was a null pointer + constant before any folding. + The real work of conversion is done by `convert'. + The purpose of this function is to generate error messages + for assignments that are not allowed in C. + ERRTYPE says whether it is argument passing, assignment, + initialization or return. + + LOCATION is the location of the RHS. + FUNCTION is a tree for the function being called. + PARMNUM is the number of the argument, for printing in error messages. */ + +static tree +convert_for_assignment (location_t location, tree type, tree rhs, + tree origtype, enum impl_conv errtype, + bool null_pointer_constant, tree fundecl, + tree function, int parmnum) +{ + enum tree_code codel = TREE_CODE (type); + tree orig_rhs = rhs; + tree rhstype; + enum tree_code coder; + tree rname = NULL_TREE; + bool objc_ok = false; + + if (errtype == ic_argpass) + { + tree selector; + /* Change pointer to function to the function itself for + diagnostics. */ + if (TREE_CODE (function) == ADDR_EXPR + && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL) + function = TREE_OPERAND (function, 0); + + /* Handle an ObjC selector specially for diagnostics. */ + selector = objc_message_selector (); + rname = function; + if (selector && parmnum > 2) + { + rname = selector; + parmnum -= 2; + } + } + + /* This macro is used to emit diagnostics to ensure that all format + strings are complete sentences, visible to gettext and checked at + compile time. */ +#define WARN_FOR_ASSIGNMENT(LOCATION, OPT, AR, AS, IN, RE) \ + do { \ + switch (errtype) \ + { \ + case ic_argpass: \ + if (pedwarn (LOCATION, OPT, AR, parmnum, rname)) \ + inform ((fundecl && !DECL_IS_BUILTIN (fundecl)) \ + ? DECL_SOURCE_LOCATION (fundecl) : LOCATION, \ + "expected %qT but argument is of type %qT", \ + type, rhstype); \ + break; \ + case ic_assign: \ + pedwarn (LOCATION, OPT, AS); \ + break; \ + case ic_init: \ + pedwarn_init (LOCATION, OPT, IN); \ + break; \ + case ic_return: \ + pedwarn (LOCATION, OPT, RE); \ + break; \ + default: \ + gcc_unreachable (); \ + } \ + } while (0) + + /* This macro is used to emit diagnostics to ensure that all format + strings are complete sentences, visible to gettext and checked at + compile time. It is the same as WARN_FOR_ASSIGNMENT but with an + extra parameter to enumerate qualifiers. */ + +#define WARN_FOR_QUALIFIERS(LOCATION, OPT, AR, AS, IN, RE, QUALS) \ + do { \ + switch (errtype) \ + { \ + case ic_argpass: \ + if (pedwarn (LOCATION, OPT, AR, parmnum, rname, QUALS)) \ + inform ((fundecl && !DECL_IS_BUILTIN (fundecl)) \ + ? DECL_SOURCE_LOCATION (fundecl) : LOCATION, \ + "expected %qT but argument is of type %qT", \ + type, rhstype); \ + break; \ + case ic_assign: \ + pedwarn (LOCATION, OPT, AS, QUALS); \ + break; \ + case ic_init: \ + pedwarn (LOCATION, OPT, IN, QUALS); \ + break; \ + case ic_return: \ + pedwarn (LOCATION, OPT, RE, QUALS); \ + break; \ + default: \ + gcc_unreachable (); \ + } \ + } while (0) + + if (TREE_CODE (rhs) == EXCESS_PRECISION_EXPR) + rhs = TREE_OPERAND (rhs, 0); + + rhstype = TREE_TYPE (rhs); + coder = TREE_CODE (rhstype); + + if (coder == ERROR_MARK) + return error_mark_node; + + if (c_dialect_objc ()) + { + int parmno; + + switch (errtype) + { + case ic_return: + parmno = 0; + break; + + case ic_assign: + parmno = -1; + break; + + case ic_init: + parmno = -2; + break; + + default: + parmno = parmnum; + break; + } + + objc_ok = objc_compare_types (type, rhstype, parmno, rname); + } + + if (warn_cxx_compat) + { + tree checktype = origtype != NULL_TREE ? origtype : rhstype; + if (checktype != error_mark_node + && TREE_CODE (type) == ENUMERAL_TYPE + && TYPE_MAIN_VARIANT (checktype) != TYPE_MAIN_VARIANT (type)) + { + WARN_FOR_ASSIGNMENT (input_location, OPT_Wc___compat, + G_("enum conversion when passing argument " + "%d of %qE is invalid in C++"), + G_("enum conversion in assignment is " + "invalid in C++"), + G_("enum conversion in initialization is " + "invalid in C++"), + G_("enum conversion in return is " + "invalid in C++")); + } + } + + if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype)) + return rhs; + + if (coder == VOID_TYPE) + { + /* Except for passing an argument to an unprototyped function, + this is a constraint violation. When passing an argument to + an unprototyped function, it is compile-time undefined; + making it a constraint in that case was rejected in + DR#252. */ + error_at (location, "void value not ignored as it ought to be"); + return error_mark_node; + } + rhs = require_complete_type (rhs); + if (rhs == error_mark_node) + return error_mark_node; + /* A type converts to a reference to it. + This code doesn't fully support references, it's just for the + special case of va_start and va_copy. */ + if (codel == REFERENCE_TYPE + && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1) + { + if (!lvalue_p (rhs)) + { + error_at (location, "cannot pass rvalue to reference parameter"); + return error_mark_node; + } + if (!c_mark_addressable (rhs)) + return error_mark_node; + rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs); + SET_EXPR_LOCATION (rhs, location); + + /* We already know that these two types are compatible, but they + may not be exactly identical. In fact, `TREE_TYPE (type)' is + likely to be __builtin_va_list and `TREE_TYPE (rhs)' is + likely to be va_list, a typedef to __builtin_va_list, which + is different enough that it will cause problems later. */ + if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type)) + { + rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs); + SET_EXPR_LOCATION (rhs, location); + } + + rhs = build1 (NOP_EXPR, type, rhs); + SET_EXPR_LOCATION (rhs, location); + return rhs; + } + /* Some types can interconvert without explicit casts. */ + else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE + && vector_types_convertible_p (type, TREE_TYPE (rhs), true)) + return convert (type, rhs); + /* Arithmetic types all interconvert, and enum is treated like int. */ + else if ((codel == INTEGER_TYPE || codel == REAL_TYPE + || codel == FIXED_POINT_TYPE + || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE + || codel == BOOLEAN_TYPE) + && (coder == INTEGER_TYPE || coder == REAL_TYPE + || coder == FIXED_POINT_TYPE + || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE + || coder == BOOLEAN_TYPE)) + { + tree ret; + bool save = in_late_binary_op; + if (codel == BOOLEAN_TYPE || codel == COMPLEX_TYPE) + in_late_binary_op = true; + ret = convert_and_check (type, orig_rhs); + if (codel == BOOLEAN_TYPE || codel == COMPLEX_TYPE) + in_late_binary_op = save; + return ret; + } + + /* Aggregates in different TUs might need conversion. */ + if ((codel == RECORD_TYPE || codel == UNION_TYPE) + && codel == coder + && comptypes (type, rhstype)) + return convert_and_check (type, rhs); + + /* Conversion to a transparent union or record from its member types. + This applies only to function arguments. */ + if (((codel == UNION_TYPE || codel == RECORD_TYPE) + && TYPE_TRANSPARENT_AGGR (type)) + && errtype == ic_argpass) + { + tree memb, marginal_memb = NULL_TREE; + + for (memb = TYPE_FIELDS (type); memb ; memb = DECL_CHAIN (memb)) + { + tree memb_type = TREE_TYPE (memb); + + if (comptypes (TYPE_MAIN_VARIANT (memb_type), + TYPE_MAIN_VARIANT (rhstype))) + break; + + if (TREE_CODE (memb_type) != POINTER_TYPE) + continue; + + if (coder == POINTER_TYPE) + { + tree ttl = TREE_TYPE (memb_type); + tree ttr = TREE_TYPE (rhstype); + + /* Any non-function converts to a [const][volatile] void * + and vice versa; otherwise, targets must be the same. + Meanwhile, the lhs target must have all the qualifiers of + the rhs. */ + if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr) + || comp_target_types (location, memb_type, rhstype)) + { + /* If this type won't generate any warnings, use it. */ + if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr) + || ((TREE_CODE (ttr) == FUNCTION_TYPE + && TREE_CODE (ttl) == FUNCTION_TYPE) + ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr)) + == TYPE_QUALS (ttr)) + : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr)) + == TYPE_QUALS (ttl)))) + break; + + /* Keep looking for a better type, but remember this one. */ + if (!marginal_memb) + marginal_memb = memb; + } + } + + /* Can convert integer zero to any pointer type. */ + if (null_pointer_constant) + { + rhs = null_pointer_node; + break; + } + } + + if (memb || marginal_memb) + { + if (!memb) + { + /* We have only a marginally acceptable member type; + it needs a warning. */ + tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb)); + tree ttr = TREE_TYPE (rhstype); + + /* Const and volatile mean something different for function + types, so the usual warnings are not appropriate. */ + if (TREE_CODE (ttr) == FUNCTION_TYPE + && TREE_CODE (ttl) == FUNCTION_TYPE) + { + /* Because const and volatile on functions are + restrictions that say the function will not do + certain things, it is okay to use a const or volatile + function where an ordinary one is wanted, but not + vice-versa. */ + if (TYPE_QUALS_NO_ADDR_SPACE (ttl) + & ~TYPE_QUALS_NO_ADDR_SPACE (ttr)) + WARN_FOR_QUALIFIERS (location, 0, + G_("passing argument %d of %qE " + "makes %q#v qualified function " + "pointer from unqualified"), + G_("assignment makes %q#v qualified " + "function pointer from " + "unqualified"), + G_("initialization makes %q#v qualified " + "function pointer from " + "unqualified"), + G_("return makes %q#v qualified function " + "pointer from unqualified"), + TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr)); + } + else if (TYPE_QUALS_NO_ADDR_SPACE (ttr) + & ~TYPE_QUALS_NO_ADDR_SPACE (ttl)) + WARN_FOR_QUALIFIERS (location, 0, + G_("passing argument %d of %qE discards " + "%qv qualifier from pointer target type"), + G_("assignment discards %qv qualifier " + "from pointer target type"), + G_("initialization discards %qv qualifier " + "from pointer target type"), + G_("return discards %qv qualifier from " + "pointer target type"), + TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl)); + + memb = marginal_memb; + } + + if (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)) + pedwarn (location, OPT_pedantic, + "ISO C prohibits argument conversion to union type"); + + rhs = fold_convert_loc (location, TREE_TYPE (memb), rhs); + return build_constructor_single (type, memb, rhs); + } + } + + /* Conversions among pointers */ + else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE) + && (coder == codel)) + { + tree ttl = TREE_TYPE (type); + tree ttr = TREE_TYPE (rhstype); + tree mvl = ttl; + tree mvr = ttr; + bool is_opaque_pointer; + int target_cmp = 0; /* Cache comp_target_types () result. */ + addr_space_t asl; + addr_space_t asr; + + if (TREE_CODE (mvl) != ARRAY_TYPE) + mvl = TYPE_MAIN_VARIANT (mvl); + if (TREE_CODE (mvr) != ARRAY_TYPE) + mvr = TYPE_MAIN_VARIANT (mvr); + /* Opaque pointers are treated like void pointers. */ + is_opaque_pointer = vector_targets_convertible_p (ttl, ttr); + + /* The Plan 9 compiler permits a pointer to a struct to be + automatically converted into a pointer to an anonymous field + within the struct. */ + if (flag_plan9_extensions + && (TREE_CODE (mvl) == RECORD_TYPE || TREE_CODE(mvl) == UNION_TYPE) + && (TREE_CODE (mvr) == RECORD_TYPE || TREE_CODE(mvr) == UNION_TYPE) + && mvl != mvr) + { + tree new_rhs = convert_to_anonymous_field (location, type, rhs); + if (new_rhs != NULL_TREE) + { + rhs = new_rhs; + rhstype = TREE_TYPE (rhs); + coder = TREE_CODE (rhstype); + ttr = TREE_TYPE (rhstype); + mvr = TYPE_MAIN_VARIANT (ttr); + } + } + + /* C++ does not allow the implicit conversion void* -> T*. However, + for the purpose of reducing the number of false positives, we + tolerate the special case of + + int *p = NULL; + + where NULL is typically defined in C to be '(void *) 0'. */ + if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl)) + warning_at (location, OPT_Wc___compat, + "request for implicit conversion " + "from %qT to %qT not permitted in C++", rhstype, type); + + /* See if the pointers point to incompatible address spaces. */ + asl = TYPE_ADDR_SPACE (ttl); + asr = TYPE_ADDR_SPACE (ttr); + if (!null_pointer_constant_p (rhs) + && asr != asl && !targetm.addr_space.subset_p (asr, asl)) + { + switch (errtype) + { + case ic_argpass: + error_at (location, "passing argument %d of %qE from pointer to " + "non-enclosed address space", parmnum, rname); + break; + case ic_assign: + error_at (location, "assignment from pointer to " + "non-enclosed address space"); + break; + case ic_init: + error_at (location, "initialization from pointer to " + "non-enclosed address space"); + break; + case ic_return: + error_at (location, "return from pointer to " + "non-enclosed address space"); + break; + default: + gcc_unreachable (); + } + return error_mark_node; + } + + /* Check if the right-hand side has a format attribute but the + left-hand side doesn't. */ + if (warn_missing_format_attribute + && check_missing_format_attribute (type, rhstype)) + { + switch (errtype) + { + case ic_argpass: + warning_at (location, OPT_Wmissing_format_attribute, + "argument %d of %qE might be " + "a candidate for a format attribute", + parmnum, rname); + break; + case ic_assign: + warning_at (location, OPT_Wmissing_format_attribute, + "assignment left-hand side might be " + "a candidate for a format attribute"); + break; + case ic_init: + warning_at (location, OPT_Wmissing_format_attribute, + "initialization left-hand side might be " + "a candidate for a format attribute"); + break; + case ic_return: + warning_at (location, OPT_Wmissing_format_attribute, + "return type might be " + "a candidate for a format attribute"); + break; + default: + gcc_unreachable (); + } + } + + /* Any non-function converts to a [const][volatile] void * + and vice versa; otherwise, targets must be the same. + Meanwhile, the lhs target must have all the qualifiers of the rhs. */ + if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr) + || (target_cmp = comp_target_types (location, type, rhstype)) + || is_opaque_pointer + || (c_common_unsigned_type (mvl) + == c_common_unsigned_type (mvr))) + { + if (pedantic + && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE) + || + (VOID_TYPE_P (ttr) + && !null_pointer_constant + && TREE_CODE (ttl) == FUNCTION_TYPE))) + WARN_FOR_ASSIGNMENT (location, OPT_pedantic, + G_("ISO C forbids passing argument %d of " + "%qE between function pointer " + "and %<void *%>"), + G_("ISO C forbids assignment between " + "function pointer and %<void *%>"), + G_("ISO C forbids initialization between " + "function pointer and %<void *%>"), + G_("ISO C forbids return between function " + "pointer and %<void *%>")); + /* Const and volatile mean something different for function types, + so the usual warnings are not appropriate. */ + else if (TREE_CODE (ttr) != FUNCTION_TYPE + && TREE_CODE (ttl) != FUNCTION_TYPE) + { + if (TYPE_QUALS_NO_ADDR_SPACE (ttr) + & ~TYPE_QUALS_NO_ADDR_SPACE (ttl)) + { + WARN_FOR_QUALIFIERS (location, 0, + G_("passing argument %d of %qE discards " + "%qv qualifier from pointer target type"), + G_("assignment discards %qv qualifier " + "from pointer target type"), + G_("initialization discards %qv qualifier " + "from pointer target type"), + G_("return discards %qv qualifier from " + "pointer target type"), + TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl)); + } + /* If this is not a case of ignoring a mismatch in signedness, + no warning. */ + else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr) + || target_cmp) + ; + /* If there is a mismatch, do warn. */ + else if (warn_pointer_sign) + WARN_FOR_ASSIGNMENT (location, OPT_Wpointer_sign, + G_("pointer targets in passing argument " + "%d of %qE differ in signedness"), + G_("pointer targets in assignment " + "differ in signedness"), + G_("pointer targets in initialization " + "differ in signedness"), + G_("pointer targets in return differ " + "in signedness")); + } + else if (TREE_CODE (ttl) == FUNCTION_TYPE + && TREE_CODE (ttr) == FUNCTION_TYPE) + { + /* Because const and volatile on functions are restrictions + that say the function will not do certain things, + it is okay to use a const or volatile function + where an ordinary one is wanted, but not vice-versa. */ + if (TYPE_QUALS_NO_ADDR_SPACE (ttl) + & ~TYPE_QUALS_NO_ADDR_SPACE (ttr)) + WARN_FOR_QUALIFIERS (location, 0, + G_("passing argument %d of %qE makes " + "%q#v qualified function pointer " + "from unqualified"), + G_("assignment makes %q#v qualified function " + "pointer from unqualified"), + G_("initialization makes %q#v qualified " + "function pointer from unqualified"), + G_("return makes %q#v qualified function " + "pointer from unqualified"), + TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr)); + } + } + else + /* Avoid warning about the volatile ObjC EH puts on decls. */ + if (!objc_ok) + WARN_FOR_ASSIGNMENT (location, 0, + G_("passing argument %d of %qE from " + "incompatible pointer type"), + G_("assignment from incompatible pointer type"), + G_("initialization from incompatible " + "pointer type"), + G_("return from incompatible pointer type")); + + return convert (type, rhs); + } + else if (codel == POINTER_TYPE && coder == ARRAY_TYPE) + { + /* ??? This should not be an error when inlining calls to + unprototyped functions. */ + error_at (location, "invalid use of non-lvalue array"); + return error_mark_node; + } + else if (codel == POINTER_TYPE && coder == INTEGER_TYPE) + { + /* An explicit constant 0 can convert to a pointer, + or one that results from arithmetic, even including + a cast to integer type. */ + if (!null_pointer_constant) + WARN_FOR_ASSIGNMENT (location, 0, + G_("passing argument %d of %qE makes " + "pointer from integer without a cast"), + G_("assignment makes pointer from integer " + "without a cast"), + G_("initialization makes pointer from " + "integer without a cast"), + G_("return makes pointer from integer " + "without a cast")); + + return convert (type, rhs); + } + else if (codel == INTEGER_TYPE && coder == POINTER_TYPE) + { + WARN_FOR_ASSIGNMENT (location, 0, + G_("passing argument %d of %qE makes integer " + "from pointer without a cast"), + G_("assignment makes integer from pointer " + "without a cast"), + G_("initialization makes integer from pointer " + "without a cast"), + G_("return makes integer from pointer " + "without a cast")); + return convert (type, rhs); + } + else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE) + { + tree ret; + bool save = in_late_binary_op; + in_late_binary_op = true; + ret = convert (type, rhs); + in_late_binary_op = save; + return ret; + } + + switch (errtype) + { + case ic_argpass: + error_at (location, "incompatible type for argument %d of %qE", parmnum, rname); + inform ((fundecl && !DECL_IS_BUILTIN (fundecl)) + ? DECL_SOURCE_LOCATION (fundecl) : input_location, + "expected %qT but argument is of type %qT", type, rhstype); + break; + case ic_assign: + error_at (location, "incompatible types when assigning to type %qT from " + "type %qT", type, rhstype); + break; + case ic_init: + error_at (location, + "incompatible types when initializing type %qT using type %qT", + type, rhstype); + break; + case ic_return: + error_at (location, + "incompatible types when returning type %qT but %qT was " + "expected", rhstype, type); + break; + default: + gcc_unreachable (); + } + + return error_mark_node; +} + +/* If VALUE is a compound expr all of whose expressions are constant, then + return its value. Otherwise, return error_mark_node. + + This is for handling COMPOUND_EXPRs as initializer elements + which is allowed with a warning when -pedantic is specified. */ + +static tree +valid_compound_expr_initializer (tree value, tree endtype) +{ + if (TREE_CODE (value) == COMPOUND_EXPR) + { + if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype) + == error_mark_node) + return error_mark_node; + return valid_compound_expr_initializer (TREE_OPERAND (value, 1), + endtype); + } + else if (!initializer_constant_valid_p (value, endtype)) + return error_mark_node; + else + return value; +} + +/* Perform appropriate conversions on the initial value of a variable, + store it in the declaration DECL, + and print any error messages that are appropriate. + If ORIGTYPE is not NULL_TREE, it is the original type of INIT. + If the init is invalid, store an ERROR_MARK. + + INIT_LOC is the location of the initial value. */ + +void +store_init_value (location_t init_loc, tree decl, tree init, tree origtype) +{ + tree value, type; + bool npc = false; + + /* If variable's type was invalidly declared, just ignore it. */ + + type = TREE_TYPE (decl); + if (TREE_CODE (type) == ERROR_MARK) + return; + + /* Digest the specified initializer into an expression. */ + + if (init) + npc = null_pointer_constant_p (init); + value = digest_init (init_loc, type, init, origtype, npc, + true, TREE_STATIC (decl)); + + /* Store the expression if valid; else report error. */ + + if (!in_system_header + && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl)) + warning (OPT_Wtraditional, "traditional C rejects automatic " + "aggregate initialization"); + + DECL_INITIAL (decl) = value; + + /* ANSI wants warnings about out-of-range constant initializers. */ + STRIP_TYPE_NOPS (value); + if (TREE_STATIC (decl)) + constant_expression_warning (value); + + /* Check if we need to set array size from compound literal size. */ + if (TREE_CODE (type) == ARRAY_TYPE + && TYPE_DOMAIN (type) == 0 + && value != error_mark_node) + { + tree inside_init = init; + + STRIP_TYPE_NOPS (inside_init); + inside_init = fold (inside_init); + + if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR) + { + tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init); + + if (TYPE_DOMAIN (TREE_TYPE (cldecl))) + { + /* For int foo[] = (int [3]){1}; we need to set array size + now since later on array initializer will be just the + brace enclosed list of the compound literal. */ + tree etype = strip_array_types (TREE_TYPE (decl)); + type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type)); + TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl)); + layout_type (type); + layout_decl (cldecl, 0); + TREE_TYPE (decl) + = c_build_qualified_type (type, TYPE_QUALS (etype)); + } + } + } +} + +/* Methods for storing and printing names for error messages. */ + +/* Implement a spelling stack that allows components of a name to be pushed + and popped. Each element on the stack is this structure. */ + +struct spelling +{ + int kind; + union + { + unsigned HOST_WIDE_INT i; + const char *s; + } u; +}; + +#define SPELLING_STRING 1 +#define SPELLING_MEMBER 2 +#define SPELLING_BOUNDS 3 + +static struct spelling *spelling; /* Next stack element (unused). */ +static struct spelling *spelling_base; /* Spelling stack base. */ +static int spelling_size; /* Size of the spelling stack. */ + +/* Macros to save and restore the spelling stack around push_... functions. + Alternative to SAVE_SPELLING_STACK. */ + +#define SPELLING_DEPTH() (spelling - spelling_base) +#define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH)) + +/* Push an element on the spelling stack with type KIND and assign VALUE + to MEMBER. */ + +#define PUSH_SPELLING(KIND, VALUE, MEMBER) \ +{ \ + int depth = SPELLING_DEPTH (); \ + \ + if (depth >= spelling_size) \ + { \ + spelling_size += 10; \ + spelling_base = XRESIZEVEC (struct spelling, spelling_base, \ + spelling_size); \ + RESTORE_SPELLING_DEPTH (depth); \ + } \ + \ + spelling->kind = (KIND); \ + spelling->MEMBER = (VALUE); \ + spelling++; \ +} + +/* Push STRING on the stack. Printed literally. */ + +static void +push_string (const char *string) +{ + PUSH_SPELLING (SPELLING_STRING, string, u.s); +} + +/* Push a member name on the stack. Printed as '.' STRING. */ + +static void +push_member_name (tree decl) +{ + const char *const string + = (DECL_NAME (decl) + ? identifier_to_locale (IDENTIFIER_POINTER (DECL_NAME (decl))) + : _("<anonymous>")); + PUSH_SPELLING (SPELLING_MEMBER, string, u.s); +} + +/* Push an array bounds on the stack. Printed as [BOUNDS]. */ + +static void +push_array_bounds (unsigned HOST_WIDE_INT bounds) +{ + PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i); +} + +/* Compute the maximum size in bytes of the printed spelling. */ + +static int +spelling_length (void) +{ + int size = 0; + struct spelling *p; + + for (p = spelling_base; p < spelling; p++) + { + if (p->kind == SPELLING_BOUNDS) + size += 25; + else + size += strlen (p->u.s) + 1; + } + + return size; +} + +/* Print the spelling to BUFFER and return it. */ + +static char * +print_spelling (char *buffer) +{ + char *d = buffer; + struct spelling *p; + + for (p = spelling_base; p < spelling; p++) + if (p->kind == SPELLING_BOUNDS) + { + sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i); + d += strlen (d); + } + else + { + const char *s; + if (p->kind == SPELLING_MEMBER) + *d++ = '.'; + for (s = p->u.s; (*d = *s++); d++) + ; + } + *d++ = '\0'; + return buffer; +} + +/* Issue an error message for a bad initializer component. + GMSGID identifies the message. + The component name is taken from the spelling stack. */ + +void +error_init (const char *gmsgid) +{ + char *ofwhat; + + /* The gmsgid may be a format string with %< and %>. */ + error (gmsgid); + ofwhat = print_spelling ((char *) alloca (spelling_length () + 1)); + if (*ofwhat) + error ("(near initialization for %qs)", ofwhat); +} + +/* Issue a pedantic warning for a bad initializer component. OPT is + the option OPT_* (from options.h) controlling this warning or 0 if + it is unconditionally given. GMSGID identifies the message. The + component name is taken from the spelling stack. */ + +void +pedwarn_init (location_t location, int opt, const char *gmsgid) +{ + char *ofwhat; + + /* The gmsgid may be a format string with %< and %>. */ + pedwarn (location, opt, gmsgid); + ofwhat = print_spelling ((char *) alloca (spelling_length () + 1)); + if (*ofwhat) + pedwarn (location, opt, "(near initialization for %qs)", ofwhat); +} + +/* Issue a warning for a bad initializer component. + + OPT is the OPT_W* value corresponding to the warning option that + controls this warning. GMSGID identifies the message. The + component name is taken from the spelling stack. */ + +static void +warning_init (int opt, const char *gmsgid) +{ + char *ofwhat; + + /* The gmsgid may be a format string with %< and %>. */ + warning (opt, gmsgid); + ofwhat = print_spelling ((char *) alloca (spelling_length () + 1)); + if (*ofwhat) + warning (opt, "(near initialization for %qs)", ofwhat); +} + +/* If TYPE is an array type and EXPR is a parenthesized string + constant, warn if pedantic that EXPR is being used to initialize an + object of type TYPE. */ + +void +maybe_warn_string_init (tree type, struct c_expr expr) +{ + if (pedantic + && TREE_CODE (type) == ARRAY_TYPE + && TREE_CODE (expr.value) == STRING_CST + && expr.original_code != STRING_CST) + pedwarn_init (input_location, OPT_pedantic, + "array initialized from parenthesized string constant"); +} + +/* Digest the parser output INIT as an initializer for type TYPE. + Return a C expression of type TYPE to represent the initial value. + + If ORIGTYPE is not NULL_TREE, it is the original type of INIT. + + NULL_POINTER_CONSTANT is true if INIT is a null pointer constant. + + If INIT is a string constant, STRICT_STRING is true if it is + unparenthesized or we should not warn here for it being parenthesized. + For other types of INIT, STRICT_STRING is not used. + + INIT_LOC is the location of the INIT. + + REQUIRE_CONSTANT requests an error if non-constant initializers or + elements are seen. */ + +static tree +digest_init (location_t init_loc, tree type, tree init, tree origtype, + bool null_pointer_constant, bool strict_string, + int require_constant) +{ + enum tree_code code = TREE_CODE (type); + tree inside_init = init; + tree semantic_type = NULL_TREE; + bool maybe_const = true; + + if (type == error_mark_node + || !init + || init == error_mark_node + || TREE_TYPE (init) == error_mark_node) + return error_mark_node; + + STRIP_TYPE_NOPS (inside_init); + + if (TREE_CODE (inside_init) == EXCESS_PRECISION_EXPR) + { + semantic_type = TREE_TYPE (inside_init); + inside_init = TREE_OPERAND (inside_init, 0); + } + inside_init = c_fully_fold (inside_init, require_constant, &maybe_const); + inside_init = decl_constant_value_for_optimization (inside_init); + + /* Initialization of an array of chars from a string constant + optionally enclosed in braces. */ + + if (code == ARRAY_TYPE && inside_init + && TREE_CODE (inside_init) == STRING_CST) + { + tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type)); + /* Note that an array could be both an array of character type + and an array of wchar_t if wchar_t is signed char or unsigned + char. */ + bool char_array = (typ1 == char_type_node + || typ1 == signed_char_type_node + || typ1 == unsigned_char_type_node); + bool wchar_array = !!comptypes (typ1, wchar_type_node); + bool char16_array = !!comptypes (typ1, char16_type_node); + bool char32_array = !!comptypes (typ1, char32_type_node); + + if (char_array || wchar_array || char16_array || char32_array) + { + struct c_expr expr; + tree typ2 = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init))); + expr.value = inside_init; + expr.original_code = (strict_string ? STRING_CST : ERROR_MARK); + expr.original_type = NULL; + maybe_warn_string_init (type, expr); + + if (TYPE_DOMAIN (type) && !TYPE_MAX_VALUE (TYPE_DOMAIN (type))) + pedwarn_init (init_loc, OPT_pedantic, + "initialization of a flexible array member"); + + if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)), + TYPE_MAIN_VARIANT (type))) + return inside_init; + + if (char_array) + { + if (typ2 != char_type_node) + { + error_init ("char-array initialized from wide string"); + return error_mark_node; + } + } + else + { + if (typ2 == char_type_node) + { + error_init ("wide character array initialized from non-wide " + "string"); + return error_mark_node; + } + else if (!comptypes(typ1, typ2)) + { + error_init ("wide character array initialized from " + "incompatible wide string"); + return error_mark_node; + } + } + + TREE_TYPE (inside_init) = type; + if (TYPE_DOMAIN (type) != 0 + && TYPE_SIZE (type) != 0 + && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST) + { + unsigned HOST_WIDE_INT len = TREE_STRING_LENGTH (inside_init); + + /* Subtract the size of a single (possibly wide) character + because it's ok to ignore the terminating null char + that is counted in the length of the constant. */ + if (0 > compare_tree_int (TYPE_SIZE_UNIT (type), + (len + - (TYPE_PRECISION (typ1) + / BITS_PER_UNIT)))) + pedwarn_init (init_loc, 0, + ("initializer-string for array of chars " + "is too long")); + else if (warn_cxx_compat + && 0 > compare_tree_int (TYPE_SIZE_UNIT (type), len)) + warning_at (init_loc, OPT_Wc___compat, + ("initializer-string for array chars " + "is too long for C++")); + } + + return inside_init; + } + else if (INTEGRAL_TYPE_P (typ1)) + { + error_init ("array of inappropriate type initialized " + "from string constant"); + return error_mark_node; + } + } + + /* Build a VECTOR_CST from a *constant* vector constructor. If the + vector constructor is not constant (e.g. {1,2,3,foo()}) then punt + below and handle as a constructor. */ + if (code == VECTOR_TYPE + && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE + && vector_types_convertible_p (TREE_TYPE (inside_init), type, true) + && TREE_CONSTANT (inside_init)) + { + if (TREE_CODE (inside_init) == VECTOR_CST + && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)), + TYPE_MAIN_VARIANT (type))) + return inside_init; + + if (TREE_CODE (inside_init) == CONSTRUCTOR) + { + unsigned HOST_WIDE_INT ix; + tree value; + bool constant_p = true; + + /* Iterate through elements and check if all constructor + elements are *_CSTs. */ + FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value) + if (!CONSTANT_CLASS_P (value)) + { + constant_p = false; + break; + } + + if (constant_p) + return build_vector_from_ctor (type, + CONSTRUCTOR_ELTS (inside_init)); + } + } + + if (warn_sequence_point) + verify_sequence_points (inside_init); + + /* Any type can be initialized + from an expression of the same type, optionally with braces. */ + + if (inside_init && TREE_TYPE (inside_init) != 0 + && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)), + TYPE_MAIN_VARIANT (type)) + || (code == ARRAY_TYPE + && comptypes (TREE_TYPE (inside_init), type)) + || (code == VECTOR_TYPE + && comptypes (TREE_TYPE (inside_init), type)) + || (code == POINTER_TYPE + && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE + && comptypes (TREE_TYPE (TREE_TYPE (inside_init)), + TREE_TYPE (type))))) + { + if (code == POINTER_TYPE) + { + if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE) + { + if (TREE_CODE (inside_init) == STRING_CST + || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR) + inside_init = array_to_pointer_conversion + (init_loc, inside_init); + else + { + error_init ("invalid use of non-lvalue array"); + return error_mark_node; + } + } + } + + if (code == VECTOR_TYPE) + /* Although the types are compatible, we may require a + conversion. */ + inside_init = convert (type, inside_init); + + if (require_constant + && (code == VECTOR_TYPE || !flag_isoc99) + && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR) + { + /* As an extension, allow initializing objects with static storage + duration with compound literals (which are then treated just as + the brace enclosed list they contain). Also allow this for + vectors, as we can only assign them with compound literals. */ + tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init); + inside_init = DECL_INITIAL (decl); + } + + if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST + && TREE_CODE (inside_init) != CONSTRUCTOR) + { + error_init ("array initialized from non-constant array expression"); + return error_mark_node; + } + + /* Compound expressions can only occur here if -pedantic or + -pedantic-errors is specified. In the later case, we always want + an error. In the former case, we simply want a warning. */ + if (require_constant && pedantic + && TREE_CODE (inside_init) == COMPOUND_EXPR) + { + inside_init + = valid_compound_expr_initializer (inside_init, + TREE_TYPE (inside_init)); + if (inside_init == error_mark_node) + error_init ("initializer element is not constant"); + else + pedwarn_init (init_loc, OPT_pedantic, + "initializer element is not constant"); + if (flag_pedantic_errors) + inside_init = error_mark_node; + } + else if (require_constant + && !initializer_constant_valid_p (inside_init, + TREE_TYPE (inside_init))) + { + error_init ("initializer element is not constant"); + inside_init = error_mark_node; + } + else if (require_constant && !maybe_const) + pedwarn_init (init_loc, 0, + "initializer element is not a constant expression"); + + /* Added to enable additional -Wmissing-format-attribute warnings. */ + if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE) + inside_init = convert_for_assignment (init_loc, type, inside_init, + origtype, + ic_init, null_pointer_constant, + NULL_TREE, NULL_TREE, 0); + return inside_init; + } + + /* Handle scalar types, including conversions. */ + + if (code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE + || code == POINTER_TYPE || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE + || code == COMPLEX_TYPE || code == VECTOR_TYPE) + { + if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE + && (TREE_CODE (init) == STRING_CST + || TREE_CODE (init) == COMPOUND_LITERAL_EXPR)) + inside_init = init = array_to_pointer_conversion (init_loc, init); + if (semantic_type) + inside_init = build1 (EXCESS_PRECISION_EXPR, semantic_type, + inside_init); + inside_init + = convert_for_assignment (init_loc, type, inside_init, origtype, + ic_init, null_pointer_constant, + NULL_TREE, NULL_TREE, 0); + + /* Check to see if we have already given an error message. */ + if (inside_init == error_mark_node) + ; + else if (require_constant && !TREE_CONSTANT (inside_init)) + { + error_init ("initializer element is not constant"); + inside_init = error_mark_node; + } + else if (require_constant + && !initializer_constant_valid_p (inside_init, + TREE_TYPE (inside_init))) + { + error_init ("initializer element is not computable at load time"); + inside_init = error_mark_node; + } + else if (require_constant && !maybe_const) + pedwarn_init (init_loc, 0, + "initializer element is not a constant expression"); + + return inside_init; + } + + /* Come here only for records and arrays. */ + + if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) + { + error_init ("variable-sized object may not be initialized"); + return error_mark_node; + } + + error_init ("invalid initializer"); + return error_mark_node; +} + +/* Handle initializers that use braces. */ + +/* Type of object we are accumulating a constructor for. + This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */ +static tree constructor_type; + +/* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields + left to fill. */ +static tree constructor_fields; + +/* For an ARRAY_TYPE, this is the specified index + at which to store the next element we get. */ +static tree constructor_index; + +/* For an ARRAY_TYPE, this is the maximum index. */ +static tree constructor_max_index; + +/* For a RECORD_TYPE, this is the first field not yet written out. */ +static tree constructor_unfilled_fields; + +/* For an ARRAY_TYPE, this is the index of the first element + not yet written out. */ +static tree constructor_unfilled_index; + +/* In a RECORD_TYPE, the byte index of the next consecutive field. + This is so we can generate gaps between fields, when appropriate. */ +static tree constructor_bit_index; + +/* If we are saving up the elements rather than allocating them, + this is the list of elements so far (in reverse order, + most recent first). */ +static VEC(constructor_elt,gc) *constructor_elements; + +/* 1 if constructor should be incrementally stored into a constructor chain, + 0 if all the elements should be kept in AVL tree. */ +static int constructor_incremental; + +/* 1 if so far this constructor's elements are all compile-time constants. */ +static int constructor_constant; + +/* 1 if so far this constructor's elements are all valid address constants. */ +static int constructor_simple; + +/* 1 if this constructor has an element that cannot be part of a + constant expression. */ +static int constructor_nonconst; + +/* 1 if this constructor is erroneous so far. */ +static int constructor_erroneous; + +/* Structure for managing pending initializer elements, organized as an + AVL tree. */ + +struct init_node +{ + struct init_node *left, *right; + struct init_node *parent; + int balance; + tree purpose; + tree value; + tree origtype; +}; + +/* Tree of pending elements at this constructor level. + These are elements encountered out of order + which belong at places we haven't reached yet in actually + writing the output. + Will never hold tree nodes across GC runs. */ +static struct init_node *constructor_pending_elts; + +/* The SPELLING_DEPTH of this constructor. */ +static int constructor_depth; + +/* DECL node for which an initializer is being read. + 0 means we are reading a constructor expression + such as (struct foo) {...}. */ +static tree constructor_decl; + +/* Nonzero if this is an initializer for a top-level decl. */ +static int constructor_top_level; + +/* Nonzero if there were any member designators in this initializer. */ +static int constructor_designated; + +/* Nesting depth of designator list. */ +static int designator_depth; + +/* Nonzero if there were diagnosed errors in this designator list. */ +static int designator_erroneous; + + +/* This stack has a level for each implicit or explicit level of + structuring in the initializer, including the outermost one. It + saves the values of most of the variables above. */ + +struct constructor_range_stack; + +struct constructor_stack +{ + struct constructor_stack *next; + tree type; + tree fields; + tree index; + tree max_index; + tree unfilled_index; + tree unfilled_fields; + tree bit_index; + VEC(constructor_elt,gc) *elements; + struct init_node *pending_elts; + int offset; + int depth; + /* If value nonzero, this value should replace the entire + constructor at this level. */ + struct c_expr replacement_value; + struct constructor_range_stack *range_stack; + char constant; + char simple; + char nonconst; + char implicit; + char erroneous; + char outer; + char incremental; + char designated; +}; + +static struct constructor_stack *constructor_stack; + +/* This stack represents designators from some range designator up to + the last designator in the list. */ + +struct constructor_range_stack +{ + struct constructor_range_stack *next, *prev; + struct constructor_stack *stack; + tree range_start; + tree index; + tree range_end; + tree fields; +}; + +static struct constructor_range_stack *constructor_range_stack; + +/* This stack records separate initializers that are nested. + Nested initializers can't happen in ANSI C, but GNU C allows them + in cases like { ... (struct foo) { ... } ... }. */ + +struct initializer_stack +{ + struct initializer_stack *next; + tree decl; + struct constructor_stack *constructor_stack; + struct constructor_range_stack *constructor_range_stack; + VEC(constructor_elt,gc) *elements; + struct spelling *spelling; + struct spelling *spelling_base; + int spelling_size; + char top_level; + char require_constant_value; + char require_constant_elements; +}; + +static struct initializer_stack *initializer_stack; + +/* Prepare to parse and output the initializer for variable DECL. */ + +void +start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level) +{ + const char *locus; + struct initializer_stack *p = XNEW (struct initializer_stack); + + p->decl = constructor_decl; + p->require_constant_value = require_constant_value; + p->require_constant_elements = require_constant_elements; + p->constructor_stack = constructor_stack; + p->constructor_range_stack = constructor_range_stack; + p->elements = constructor_elements; + p->spelling = spelling; + p->spelling_base = spelling_base; + p->spelling_size = spelling_size; + p->top_level = constructor_top_level; + p->next = initializer_stack; + initializer_stack = p; + + constructor_decl = decl; + constructor_designated = 0; + constructor_top_level = top_level; + + if (decl != 0 && decl != error_mark_node) + { + require_constant_value = TREE_STATIC (decl); + require_constant_elements + = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99)) + /* For a scalar, you can always use any value to initialize, + even within braces. */ + && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE + || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE + || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE + || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE)); + locus = identifier_to_locale (IDENTIFIER_POINTER (DECL_NAME (decl))); + } + else + { + require_constant_value = 0; + require_constant_elements = 0; + locus = _("(anonymous)"); + } + + constructor_stack = 0; + constructor_range_stack = 0; + + missing_braces_mentioned = 0; + + spelling_base = 0; + spelling_size = 0; + RESTORE_SPELLING_DEPTH (0); + + if (locus) + push_string (locus); +} + +void +finish_init (void) +{ + struct initializer_stack *p = initializer_stack; + + /* Free the whole constructor stack of this initializer. */ + while (constructor_stack) + { + struct constructor_stack *q = constructor_stack; + constructor_stack = q->next; + free (q); + } + + gcc_assert (!constructor_range_stack); + + /* Pop back to the data of the outer initializer (if any). */ + free (spelling_base); + + constructor_decl = p->decl; + require_constant_value = p->require_constant_value; + require_constant_elements = p->require_constant_elements; + constructor_stack = p->constructor_stack; + constructor_range_stack = p->constructor_range_stack; + constructor_elements = p->elements; + spelling = p->spelling; + spelling_base = p->spelling_base; + spelling_size = p->spelling_size; + constructor_top_level = p->top_level; + initializer_stack = p->next; + free (p); +} + +/* Call here when we see the initializer is surrounded by braces. + This is instead of a call to push_init_level; + it is matched by a call to pop_init_level. + + TYPE is the type to initialize, for a constructor expression. + For an initializer for a decl, TYPE is zero. */ + +void +really_start_incremental_init (tree type) +{ + struct constructor_stack *p = XNEW (struct constructor_stack); + + if (type == 0) + type = TREE_TYPE (constructor_decl); + + if (TREE_CODE (type) == VECTOR_TYPE + && TYPE_VECTOR_OPAQUE (type)) + error ("opaque vector types cannot be initialized"); + + p->type = constructor_type; + p->fields = constructor_fields; + p->index = constructor_index; + p->max_index = constructor_max_index; + p->unfilled_index = constructor_unfilled_index; + p->unfilled_fields = constructor_unfilled_fields; + p->bit_index = constructor_bit_index; + p->elements = constructor_elements; + p->constant = constructor_constant; + p->simple = constructor_simple; + p->nonconst = constructor_nonconst; + p->erroneous = constructor_erroneous; + p->pending_elts = constructor_pending_elts; + p->depth = constructor_depth; + p->replacement_value.value = 0; + p->replacement_value.original_code = ERROR_MARK; + p->replacement_value.original_type = NULL; + p->implicit = 0; + p->range_stack = 0; + p->outer = 0; + p->incremental = constructor_incremental; + p->designated = constructor_designated; + p->next = 0; + constructor_stack = p; + + constructor_constant = 1; + constructor_simple = 1; + constructor_nonconst = 0; + constructor_depth = SPELLING_DEPTH (); + constructor_elements = 0; + constructor_pending_elts = 0; + constructor_type = type; + constructor_incremental = 1; + constructor_designated = 0; + designator_depth = 0; + designator_erroneous = 0; + + if (TREE_CODE (constructor_type) == RECORD_TYPE + || TREE_CODE (constructor_type) == UNION_TYPE) + { + constructor_fields = TYPE_FIELDS (constructor_type); + /* Skip any nameless bit fields at the beginning. */ + while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields) + && DECL_NAME (constructor_fields) == 0) + constructor_fields = DECL_CHAIN (constructor_fields); + + constructor_unfilled_fields = constructor_fields; + constructor_bit_index = bitsize_zero_node; + } + else if (TREE_CODE (constructor_type) == ARRAY_TYPE) + { + if (TYPE_DOMAIN (constructor_type)) + { + constructor_max_index + = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)); + + /* Detect non-empty initializations of zero-length arrays. */ + if (constructor_max_index == NULL_TREE + && TYPE_SIZE (constructor_type)) + constructor_max_index = integer_minus_one_node; + + /* constructor_max_index needs to be an INTEGER_CST. Attempts + to initialize VLAs will cause a proper error; avoid tree + checking errors as well by setting a safe value. */ + if (constructor_max_index + && TREE_CODE (constructor_max_index) != INTEGER_CST) + constructor_max_index = integer_minus_one_node; + + constructor_index + = convert (bitsizetype, + TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type))); + } + else + { + constructor_index = bitsize_zero_node; + constructor_max_index = NULL_TREE; + } + + constructor_unfilled_index = constructor_index; + } + else if (TREE_CODE (constructor_type) == VECTOR_TYPE) + { + /* Vectors are like simple fixed-size arrays. */ + constructor_max_index = + build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1); + constructor_index = bitsize_zero_node; + constructor_unfilled_index = constructor_index; + } + else + { + /* Handle the case of int x = {5}; */ + constructor_fields = constructor_type; + constructor_unfilled_fields = constructor_type; + } +} + +/* Push down into a subobject, for initialization. + If this is for an explicit set of braces, IMPLICIT is 0. + If it is because the next element belongs at a lower level, + IMPLICIT is 1 (or 2 if the push is because of designator list). */ + +void +push_init_level (int implicit, struct obstack * braced_init_obstack) +{ + struct constructor_stack *p; + tree value = NULL_TREE; + + /* If we've exhausted any levels that didn't have braces, + pop them now. If implicit == 1, this will have been done in + process_init_element; do not repeat it here because in the case + of excess initializers for an empty aggregate this leads to an + infinite cycle of popping a level and immediately recreating + it. */ + if (implicit != 1) + { + while (constructor_stack->implicit) + { + if ((TREE_CODE (constructor_type) == RECORD_TYPE + || TREE_CODE (constructor_type) == UNION_TYPE) + && constructor_fields == 0) + process_init_element (pop_init_level (1, braced_init_obstack), + true, braced_init_obstack); + else if (TREE_CODE (constructor_type) == ARRAY_TYPE + && constructor_max_index + && tree_int_cst_lt (constructor_max_index, + constructor_index)) + process_init_element (pop_init_level (1, braced_init_obstack), + true, braced_init_obstack); + else + break; + } + } + + /* Unless this is an explicit brace, we need to preserve previous + content if any. */ + if (implicit) + { + if ((TREE_CODE (constructor_type) == RECORD_TYPE + || TREE_CODE (constructor_type) == UNION_TYPE) + && constructor_fields) + value = find_init_member (constructor_fields, braced_init_obstack); + else if (TREE_CODE (constructor_type) == ARRAY_TYPE) + value = find_init_member (constructor_index, braced_init_obstack); + } + + p = XNEW (struct constructor_stack); + p->type = constructor_type; + p->fields = constructor_fields; + p->index = constructor_index; + p->max_index = constructor_max_index; + p->unfilled_index = constructor_unfilled_index; + p->unfilled_fields = constructor_unfilled_fields; + p->bit_index = constructor_bit_index; + p->elements = constructor_elements; + p->constant = constructor_constant; + p->simple = constructor_simple; + p->nonconst = constructor_nonconst; + p->erroneous = constructor_erroneous; + p->pending_elts = constructor_pending_elts; + p->depth = constructor_depth; + p->replacement_value.value = 0; + p->replacement_value.original_code = ERROR_MARK; + p->replacement_value.original_type = NULL; + p->implicit = implicit; + p->outer = 0; + p->incremental = constructor_incremental; + p->designated = constructor_designated; + p->next = constructor_stack; + p->range_stack = 0; + constructor_stack = p; + + constructor_constant = 1; + constructor_simple = 1; + constructor_nonconst = 0; + constructor_depth = SPELLING_DEPTH (); + constructor_elements = 0; + constructor_incremental = 1; + constructor_designated = 0; + constructor_pending_elts = 0; + if (!implicit) + { + p->range_stack = constructor_range_stack; + constructor_range_stack = 0; + designator_depth = 0; + designator_erroneous = 0; + } + + /* Don't die if an entire brace-pair level is superfluous + in the containing level. */ + if (constructor_type == 0) + ; + else if (TREE_CODE (constructor_type) == RECORD_TYPE + || TREE_CODE (constructor_type) == UNION_TYPE) + { + /* Don't die if there are extra init elts at the end. */ + if (constructor_fields == 0) + constructor_type = 0; + else + { + constructor_type = TREE_TYPE (constructor_fields); + push_member_name (constructor_fields); + constructor_depth++; + } + } + else if (TREE_CODE (constructor_type) == ARRAY_TYPE) + { + constructor_type = TREE_TYPE (constructor_type); + push_array_bounds (tree_low_cst (constructor_index, 1)); + constructor_depth++; + } + + if (constructor_type == 0) + { + error_init ("extra brace group at end of initializer"); + constructor_fields = 0; + constructor_unfilled_fields = 0; + return; + } + + if (value && TREE_CODE (value) == CONSTRUCTOR) + { + constructor_constant = TREE_CONSTANT (value); + constructor_simple = TREE_STATIC (value); + constructor_nonconst = CONSTRUCTOR_NON_CONST (value); + constructor_elements = CONSTRUCTOR_ELTS (value); + if (!VEC_empty (constructor_elt, constructor_elements) + && (TREE_CODE (constructor_type) == RECORD_TYPE + || TREE_CODE (constructor_type) == ARRAY_TYPE)) + set_nonincremental_init (braced_init_obstack); + } + + if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned) + { + missing_braces_mentioned = 1; + warning_init (OPT_Wmissing_braces, "missing braces around initializer"); + } + + if (TREE_CODE (constructor_type) == RECORD_TYPE + || TREE_CODE (constructor_type) == UNION_TYPE) + { + constructor_fields = TYPE_FIELDS (constructor_type); + /* Skip any nameless bit fields at the beginning. */ + while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields) + && DECL_NAME (constructor_fields) == 0) + constructor_fields = DECL_CHAIN (constructor_fields); + + constructor_unfilled_fields = constructor_fields; + constructor_bit_index = bitsize_zero_node; + } + else if (TREE_CODE (constructor_type) == VECTOR_TYPE) + { + /* Vectors are like simple fixed-size arrays. */ + constructor_max_index = + build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1); + constructor_index = convert (bitsizetype, integer_zero_node); + constructor_unfilled_index = constructor_index; + } + else if (TREE_CODE (constructor_type) == ARRAY_TYPE) + { + if (TYPE_DOMAIN (constructor_type)) + { + constructor_max_index + = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)); + + /* Detect non-empty initializations of zero-length arrays. */ + if (constructor_max_index == NULL_TREE + && TYPE_SIZE (constructor_type)) + constructor_max_index = integer_minus_one_node; + + /* constructor_max_index needs to be an INTEGER_CST. Attempts + to initialize VLAs will cause a proper error; avoid tree + checking errors as well by setting a safe value. */ + if (constructor_max_index + && TREE_CODE (constructor_max_index) != INTEGER_CST) + constructor_max_index = integer_minus_one_node; + + constructor_index + = convert (bitsizetype, + TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type))); + } + else + constructor_index = bitsize_zero_node; + + constructor_unfilled_index = constructor_index; + if (value && TREE_CODE (value) == STRING_CST) + { + /* We need to split the char/wchar array into individual + characters, so that we don't have to special case it + everywhere. */ + set_nonincremental_init_from_string (value, braced_init_obstack); + } + } + else + { + if (constructor_type != error_mark_node) + warning_init (0, "braces around scalar initializer"); + constructor_fields = constructor_type; + constructor_unfilled_fields = constructor_type; + } +} + +/* At the end of an implicit or explicit brace level, + finish up that level of constructor. If a single expression + with redundant braces initialized that level, return the + c_expr structure for that expression. Otherwise, the original_code + element is set to ERROR_MARK. + If we were outputting the elements as they are read, return 0 as the value + from inner levels (process_init_element ignores that), + but return error_mark_node as the value from the outermost level + (that's what we want to put in DECL_INITIAL). + Otherwise, return a CONSTRUCTOR expression as the value. */ + +struct c_expr +pop_init_level (int implicit, struct obstack * braced_init_obstack) +{ + struct constructor_stack *p; + struct c_expr ret; + ret.value = 0; + ret.original_code = ERROR_MARK; + ret.original_type = NULL; + + if (implicit == 0) + { + /* When we come to an explicit close brace, + pop any inner levels that didn't have explicit braces. */ + while (constructor_stack->implicit) + { + process_init_element (pop_init_level (1, braced_init_obstack), + true, braced_init_obstack); + } + gcc_assert (!constructor_range_stack); + } + + /* Now output all pending elements. */ + constructor_incremental = 1; + output_pending_init_elements (1, braced_init_obstack); + + p = constructor_stack; + + /* Error for initializing a flexible array member, or a zero-length + array member in an inappropriate context. */ + if (constructor_type && constructor_fields + && TREE_CODE (constructor_type) == ARRAY_TYPE + && TYPE_DOMAIN (constructor_type) + && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type))) + { + /* Silently discard empty initializations. The parser will + already have pedwarned for empty brackets. */ + if (integer_zerop (constructor_unfilled_index)) + constructor_type = NULL_TREE; + else + { + gcc_assert (!TYPE_SIZE (constructor_type)); + + if (constructor_depth > 2) + error_init ("initialization of flexible array member in a nested context"); + else + pedwarn_init (input_location, OPT_pedantic, + "initialization of a flexible array member"); + + /* We have already issued an error message for the existence + of a flexible array member not at the end of the structure. + Discard the initializer so that we do not die later. */ + if (DECL_CHAIN (constructor_fields) != NULL_TREE) + constructor_type = NULL_TREE; + } + } + + /* Warn when some struct elements are implicitly initialized to zero. */ + if (warn_missing_field_initializers + && constructor_type + && TREE_CODE (constructor_type) == RECORD_TYPE + && constructor_unfilled_fields) + { + /* Do not warn for flexible array members or zero-length arrays. */ + while (constructor_unfilled_fields + && (!DECL_SIZE (constructor_unfilled_fields) + || integer_zerop (DECL_SIZE (constructor_unfilled_fields)))) + constructor_unfilled_fields = DECL_CHAIN (constructor_unfilled_fields); + + /* Do not warn if this level of the initializer uses member + designators; it is likely to be deliberate. */ + if (constructor_unfilled_fields && !constructor_designated) + { + push_member_name (constructor_unfilled_fields); + warning_init (OPT_Wmissing_field_initializers, + "missing initializer"); + RESTORE_SPELLING_DEPTH (constructor_depth); + } + } + + /* Pad out the end of the structure. */ + if (p->replacement_value.value) + /* If this closes a superfluous brace pair, + just pass out the element between them. */ + ret = p->replacement_value; + else if (constructor_type == 0) + ; + else if (TREE_CODE (constructor_type) != RECORD_TYPE + && TREE_CODE (constructor_type) != UNION_TYPE + && TREE_CODE (constructor_type) != ARRAY_TYPE + && TREE_CODE (constructor_type) != VECTOR_TYPE) + { + /* A nonincremental scalar initializer--just return + the element, after verifying there is just one. */ + if (VEC_empty (constructor_elt,constructor_elements)) + { + if (!constructor_erroneous) + error_init ("empty scalar initializer"); + ret.value = error_mark_node; + } + else if (VEC_length (constructor_elt,constructor_elements) != 1) + { + error_init ("extra elements in scalar initializer"); + ret.value = VEC_index (constructor_elt,constructor_elements,0)->value; + } + else + ret.value = VEC_index (constructor_elt,constructor_elements,0)->value; + } + else + { + if (constructor_erroneous) + ret.value = error_mark_node; + else + { + ret.value = build_constructor (constructor_type, + constructor_elements); + if (constructor_constant) + TREE_CONSTANT (ret.value) = 1; + if (constructor_constant && constructor_simple) + TREE_STATIC (ret.value) = 1; + if (constructor_nonconst) + CONSTRUCTOR_NON_CONST (ret.value) = 1; + } + } + + if (ret.value && TREE_CODE (ret.value) != CONSTRUCTOR) + { + if (constructor_nonconst) + ret.original_code = C_MAYBE_CONST_EXPR; + else if (ret.original_code == C_MAYBE_CONST_EXPR) + ret.original_code = ERROR_MARK; + } + + constructor_type = p->type; + constructor_fields = p->fields; + constructor_index = p->index; + constructor_max_index = p->max_index; + constructor_unfilled_index = p->unfilled_index; + constructor_unfilled_fields = p->unfilled_fields; + constructor_bit_index = p->bit_index; + constructor_elements = p->elements; + constructor_constant = p->constant; + constructor_simple = p->simple; + constructor_nonconst = p->nonconst; + constructor_erroneous = p->erroneous; + constructor_incremental = p->incremental; + constructor_designated = p->designated; + constructor_pending_elts = p->pending_elts; + constructor_depth = p->depth; + if (!p->implicit) + constructor_range_stack = p->range_stack; + RESTORE_SPELLING_DEPTH (constructor_depth); + + constructor_stack = p->next; + free (p); + + if (ret.value == 0 && constructor_stack == 0) + ret.value = error_mark_node; + return ret; +} + +/* Common handling for both array range and field name designators. + ARRAY argument is nonzero for array ranges. Returns zero for success. */ + +static int +set_designator (int array, struct obstack * braced_init_obstack) +{ + tree subtype; + enum tree_code subcode; + + /* Don't die if an entire brace-pair level is superfluous + in the containing level. */ + if (constructor_type == 0) + return 1; + + /* If there were errors in this designator list already, bail out + silently. */ + if (designator_erroneous) + return 1; + + if (!designator_depth) + { + gcc_assert (!constructor_range_stack); + + /* Designator list starts at the level of closest explicit + braces. */ + while (constructor_stack->implicit) + { + process_init_element (pop_init_level (1, braced_init_obstack), + true, braced_init_obstack); + } + constructor_designated = 1; + return 0; + } + + switch (TREE_CODE (constructor_type)) + { + case RECORD_TYPE: + case UNION_TYPE: + subtype = TREE_TYPE (constructor_fields); + if (subtype != error_mark_node) + subtype = TYPE_MAIN_VARIANT (subtype); + break; + case ARRAY_TYPE: + subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type)); + break; + default: + gcc_unreachable (); + } + + subcode = TREE_CODE (subtype); + if (array && subcode != ARRAY_TYPE) + { + error_init ("array index in non-array initializer"); + return 1; + } + else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE) + { + error_init ("field name not in record or union initializer"); + return 1; + } + + constructor_designated = 1; + push_init_level (2, braced_init_obstack); + return 0; +} + +/* If there are range designators in designator list, push a new designator + to constructor_range_stack. RANGE_END is end of such stack range or + NULL_TREE if there is no range designator at this level. */ + +static void +push_range_stack (tree range_end, struct obstack * braced_init_obstack) +{ + struct constructor_range_stack *p; + + p = (struct constructor_range_stack *) + obstack_alloc (braced_init_obstack, + sizeof (struct constructor_range_stack)); + p->prev = constructor_range_stack; + p->next = 0; + p->fields = constructor_fields; + p->range_start = constructor_index; + p->index = constructor_index; + p->stack = constructor_stack; + p->range_end = range_end; + if (constructor_range_stack) + constructor_range_stack->next = p; + constructor_range_stack = p; +} + +/* Within an array initializer, specify the next index to be initialized. + FIRST is that index. If LAST is nonzero, then initialize a range + of indices, running from FIRST through LAST. */ + +void +set_init_index (tree first, tree last, + struct obstack * braced_init_obstack) +{ + if (set_designator (1, braced_init_obstack)) + return; + + designator_erroneous = 1; + + if (!INTEGRAL_TYPE_P (TREE_TYPE (first)) + || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last)))) + { + error_init ("array index in initializer not of integer type"); + return; + } + + if (TREE_CODE (first) != INTEGER_CST) + { + first = c_fully_fold (first, false, NULL); + if (TREE_CODE (first) == INTEGER_CST) + pedwarn_init (input_location, OPT_pedantic, + "array index in initializer is not " + "an integer constant expression"); + } + + if (last && TREE_CODE (last) != INTEGER_CST) + { + last = c_fully_fold (last, false, NULL); + if (TREE_CODE (last) == INTEGER_CST) + pedwarn_init (input_location, OPT_pedantic, + "array index in initializer is not " + "an integer constant expression"); + } + + if (TREE_CODE (first) != INTEGER_CST) + error_init ("nonconstant array index in initializer"); + else if (last != 0 && TREE_CODE (last) != INTEGER_CST) + error_init ("nonconstant array index in initializer"); + else if (TREE_CODE (constructor_type) != ARRAY_TYPE) + error_init ("array index in non-array initializer"); + else if (tree_int_cst_sgn (first) == -1) + error_init ("array index in initializer exceeds array bounds"); + else if (constructor_max_index + && tree_int_cst_lt (constructor_max_index, first)) + error_init ("array index in initializer exceeds array bounds"); + else + { + constant_expression_warning (first); + if (last) + constant_expression_warning (last); + constructor_index = convert (bitsizetype, first); + + if (last) + { + if (tree_int_cst_equal (first, last)) + last = 0; + else if (tree_int_cst_lt (last, first)) + { + error_init ("empty index range in initializer"); + last = 0; + } + else + { + last = convert (bitsizetype, last); + if (constructor_max_index != 0 + && tree_int_cst_lt (constructor_max_index, last)) + { + error_init ("array index range in initializer exceeds array bounds"); + last = 0; + } + } + } + + designator_depth++; + designator_erroneous = 0; + if (constructor_range_stack || last) + push_range_stack (last, braced_init_obstack); + } +} + +/* Within a struct initializer, specify the next field to be initialized. */ + +void +set_init_label (tree fieldname, struct obstack * braced_init_obstack) +{ + tree field; + + if (set_designator (0, braced_init_obstack)) + return; + + designator_erroneous = 1; + + if (TREE_CODE (constructor_type) != RECORD_TYPE + && TREE_CODE (constructor_type) != UNION_TYPE) + { + error_init ("field name not in record or union initializer"); + return; + } + + field = lookup_field (constructor_type, fieldname); + + if (field == 0) + error ("unknown field %qE specified in initializer", fieldname); + else + do + { + constructor_fields = TREE_VALUE (field); + designator_depth++; + designator_erroneous = 0; + if (constructor_range_stack) + push_range_stack (NULL_TREE, braced_init_obstack); + field = TREE_CHAIN (field); + if (field) + { + if (set_designator (0, braced_init_obstack)) + return; + } + } + while (field != NULL_TREE); +} + +/* Add a new initializer to the tree of pending initializers. PURPOSE + identifies the initializer, either array index or field in a structure. + VALUE is the value of that index or field. If ORIGTYPE is not + NULL_TREE, it is the original type of VALUE. + + IMPLICIT is true if value comes from pop_init_level (1), + the new initializer has been merged with the existing one + and thus no warnings should be emitted about overriding an + existing initializer. */ + +static void +add_pending_init (tree purpose, tree value, tree origtype, bool implicit, + struct obstack * braced_init_obstack) +{ + struct init_node *p, **q, *r; + + q = &constructor_pending_elts; + p = 0; + + if (TREE_CODE (constructor_type) == ARRAY_TYPE) + { + while (*q != 0) + { + p = *q; + if (tree_int_cst_lt (purpose, p->purpose)) + q = &p->left; + else if (tree_int_cst_lt (p->purpose, purpose)) + q = &p->right; + else + { + if (!implicit) + { + if (TREE_SIDE_EFFECTS (p->value)) + warning_init (0, "initialized field with side-effects overwritten"); + else if (warn_override_init) + warning_init (OPT_Woverride_init, "initialized field overwritten"); + } + p->value = value; + p->origtype = origtype; + return; + } + } + } + else + { + tree bitpos; + + bitpos = bit_position (purpose); + while (*q != NULL) + { + p = *q; + if (tree_int_cst_lt (bitpos, bit_position (p->purpose))) + q = &p->left; + else if (p->purpose != purpose) + q = &p->right; + else + { + if (!implicit) + { + if (TREE_SIDE_EFFECTS (p->value)) + warning_init (0, "initialized field with side-effects overwritten"); + else if (warn_override_init) + warning_init (OPT_Woverride_init, "initialized field overwritten"); + } + p->value = value; + p->origtype = origtype; + return; + } + } + } + + r = (struct init_node *) obstack_alloc (braced_init_obstack, + sizeof (struct init_node)); + r->purpose = purpose; + r->value = value; + r->origtype = origtype; + + *q = r; + r->parent = p; + r->left = 0; + r->right = 0; + r->balance = 0; + + while (p) + { + struct init_node *s; + + if (r == p->left) + { + if (p->balance == 0) + p->balance = -1; + else if (p->balance < 0) + { + if (r->balance < 0) + { + /* L rotation. */ + p->left = r->right; + if (p->left) + p->left->parent = p; + r->right = p; + + p->balance = 0; + r->balance = 0; + + s = p->parent; + p->parent = r; + r->parent = s; + if (s) + { + if (s->left == p) + s->left = r; + else + s->right = r; + } + else + constructor_pending_elts = r; + } + else + { + /* LR rotation. */ + struct init_node *t = r->right; + + r->right = t->left; + if (r->right) + r->right->parent = r; + t->left = r; + + p->left = t->right; + if (p->left) + p->left->parent = p; + t->right = p; + + p->balance = t->balance < 0; + r->balance = -(t->balance > 0); + t->balance = 0; + + s = p->parent; + p->parent = t; + r->parent = t; + t->parent = s; + if (s) + { + if (s->left == p) + s->left = t; + else + s->right = t; + } + else + constructor_pending_elts = t; + } + break; + } + else + { + /* p->balance == +1; growth of left side balances the node. */ + p->balance = 0; + break; + } + } + else /* r == p->right */ + { + if (p->balance == 0) + /* Growth propagation from right side. */ + p->balance++; + else if (p->balance > 0) + { + if (r->balance > 0) + { + /* R rotation. */ + p->right = r->left; + if (p->right) + p->right->parent = p; + r->left = p; + + p->balance = 0; + r->balance = 0; + + s = p->parent; + p->parent = r; + r->parent = s; + if (s) + { + if (s->left == p) + s->left = r; + else + s->right = r; + } + else + constructor_pending_elts = r; + } + else /* r->balance == -1 */ + { + /* RL rotation */ + struct init_node *t = r->left; + + r->left = t->right; + if (r->left) + r->left->parent = r; + t->right = r; + + p->right = t->left; + if (p->right) + p->right->parent = p; + t->left = p; + + r->balance = (t->balance < 0); + p->balance = -(t->balance > 0); + t->balance = 0; + + s = p->parent; + p->parent = t; + r->parent = t; + t->parent = s; + if (s) + { + if (s->left == p) + s->left = t; + else + s->right = t; + } + else + constructor_pending_elts = t; + } + break; + } + else + { + /* p->balance == -1; growth of right side balances the node. */ + p->balance = 0; + break; + } + } + + r = p; + p = p->parent; + } +} + +/* Build AVL tree from a sorted chain. */ + +static void +set_nonincremental_init (struct obstack * braced_init_obstack) +{ + unsigned HOST_WIDE_INT ix; + tree index, value; + + if (TREE_CODE (constructor_type) != RECORD_TYPE + && TREE_CODE (constructor_type) != ARRAY_TYPE) + return; + + FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value) + { + add_pending_init (index, value, NULL_TREE, false, + braced_init_obstack); + } + constructor_elements = 0; + if (TREE_CODE (constructor_type) == RECORD_TYPE) + { + constructor_unfilled_fields = TYPE_FIELDS (constructor_type); + /* Skip any nameless bit fields at the beginning. */ + while (constructor_unfilled_fields != 0 + && DECL_C_BIT_FIELD (constructor_unfilled_fields) + && DECL_NAME (constructor_unfilled_fields) == 0) + constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields); + + } + else if (TREE_CODE (constructor_type) == ARRAY_TYPE) + { + if (TYPE_DOMAIN (constructor_type)) + constructor_unfilled_index + = convert (bitsizetype, + TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type))); + else + constructor_unfilled_index = bitsize_zero_node; + } + constructor_incremental = 0; +} + +/* Build AVL tree from a string constant. */ + +static void +set_nonincremental_init_from_string (tree str, + struct obstack * braced_init_obstack) +{ + tree value, purpose, type; + HOST_WIDE_INT val[2]; + const char *p, *end; + int byte, wchar_bytes, charwidth, bitpos; + + gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE); + + wchar_bytes = TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str))) / BITS_PER_UNIT; + charwidth = TYPE_PRECISION (char_type_node); + type = TREE_TYPE (constructor_type); + p = TREE_STRING_POINTER (str); + end = p + TREE_STRING_LENGTH (str); + + for (purpose = bitsize_zero_node; + p < end && !tree_int_cst_lt (constructor_max_index, purpose); + purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node)) + { + if (wchar_bytes == 1) + { + val[1] = (unsigned char) *p++; + val[0] = 0; + } + else + { + val[0] = 0; + val[1] = 0; + for (byte = 0; byte < wchar_bytes; byte++) + { + if (BYTES_BIG_ENDIAN) + bitpos = (wchar_bytes - byte - 1) * charwidth; + else + bitpos = byte * charwidth; + val[bitpos < HOST_BITS_PER_WIDE_INT] + |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++)) + << (bitpos % HOST_BITS_PER_WIDE_INT); + } + } + + if (!TYPE_UNSIGNED (type)) + { + bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR; + if (bitpos < HOST_BITS_PER_WIDE_INT) + { + if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1))) + { + val[1] |= ((HOST_WIDE_INT) -1) << bitpos; + val[0] = -1; + } + } + else if (bitpos == HOST_BITS_PER_WIDE_INT) + { + if (val[1] < 0) + val[0] = -1; + } + else if (val[0] & (((HOST_WIDE_INT) 1) + << (bitpos - 1 - HOST_BITS_PER_WIDE_INT))) + val[0] |= ((HOST_WIDE_INT) -1) + << (bitpos - HOST_BITS_PER_WIDE_INT); + } + + value = build_int_cst_wide (type, val[1], val[0]); + add_pending_init (purpose, value, NULL_TREE, false, + braced_init_obstack); + } + + constructor_incremental = 0; +} + +/* Return value of FIELD in pending initializer or zero if the field was + not initialized yet. */ + +static tree +find_init_member (tree field, struct obstack * braced_init_obstack) +{ + struct init_node *p; + + if (TREE_CODE (constructor_type) == ARRAY_TYPE) + { + if (constructor_incremental + && tree_int_cst_lt (field, constructor_unfilled_index)) + set_nonincremental_init (braced_init_obstack); + + p = constructor_pending_elts; + while (p) + { + if (tree_int_cst_lt (field, p->purpose)) + p = p->left; + else if (tree_int_cst_lt (p->purpose, field)) + p = p->right; + else + return p->value; + } + } + else if (TREE_CODE (constructor_type) == RECORD_TYPE) + { + tree bitpos = bit_position (field); + + if (constructor_incremental + && (!constructor_unfilled_fields + || tree_int_cst_lt (bitpos, + bit_position (constructor_unfilled_fields)))) + set_nonincremental_init (braced_init_obstack); + + p = constructor_pending_elts; + while (p) + { + if (field == p->purpose) + return p->value; + else if (tree_int_cst_lt (bitpos, bit_position (p->purpose))) + p = p->left; + else + p = p->right; + } + } + else if (TREE_CODE (constructor_type) == UNION_TYPE) + { + if (!VEC_empty (constructor_elt, constructor_elements) + && (VEC_last (constructor_elt, constructor_elements)->index + == field)) + return VEC_last (constructor_elt, constructor_elements)->value; + } + return 0; +} + +/* "Output" the next constructor element. + At top level, really output it to assembler code now. + Otherwise, collect it in a list from which we will make a CONSTRUCTOR. + If ORIGTYPE is not NULL_TREE, it is the original type of VALUE. + TYPE is the data type that the containing data type wants here. + FIELD is the field (a FIELD_DECL) or the index that this element fills. + If VALUE is a string constant, STRICT_STRING is true if it is + unparenthesized or we should not warn here for it being parenthesized. + For other types of VALUE, STRICT_STRING is not used. + + PENDING if non-nil means output pending elements that belong + right after this element. (PENDING is normally 1; + it is 0 while outputting pending elements, to avoid recursion.) + + IMPLICIT is true if value comes from pop_init_level (1), + the new initializer has been merged with the existing one + and thus no warnings should be emitted about overriding an + existing initializer. */ + +static void +output_init_element (tree value, tree origtype, bool strict_string, tree type, + tree field, int pending, bool implicit, + struct obstack * braced_init_obstack) +{ + tree semantic_type = NULL_TREE; + constructor_elt *celt; + bool maybe_const = true; + bool npc; + + if (type == error_mark_node || value == error_mark_node) + { + constructor_erroneous = 1; + return; + } + if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE + && (TREE_CODE (value) == STRING_CST + || TREE_CODE (value) == COMPOUND_LITERAL_EXPR) + && !(TREE_CODE (value) == STRING_CST + && TREE_CODE (type) == ARRAY_TYPE + && INTEGRAL_TYPE_P (TREE_TYPE (type))) + && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)), + TYPE_MAIN_VARIANT (type))) + value = array_to_pointer_conversion (input_location, value); + + if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR + && require_constant_value && !flag_isoc99 && pending) + { + /* As an extension, allow initializing objects with static storage + duration with compound literals (which are then treated just as + the brace enclosed list they contain). */ + tree decl = COMPOUND_LITERAL_EXPR_DECL (value); + value = DECL_INITIAL (decl); + } + + npc = null_pointer_constant_p (value); + if (TREE_CODE (value) == EXCESS_PRECISION_EXPR) + { + semantic_type = TREE_TYPE (value); + value = TREE_OPERAND (value, 0); + } + value = c_fully_fold (value, require_constant_value, &maybe_const); + + if (value == error_mark_node) + constructor_erroneous = 1; + else if (!TREE_CONSTANT (value)) + constructor_constant = 0; + else if (!initializer_constant_valid_p (value, TREE_TYPE (value)) + || ((TREE_CODE (constructor_type) == RECORD_TYPE + || TREE_CODE (constructor_type) == UNION_TYPE) + && DECL_C_BIT_FIELD (field) + && TREE_CODE (value) != INTEGER_CST)) + constructor_simple = 0; + if (!maybe_const) + constructor_nonconst = 1; + + if (!initializer_constant_valid_p (value, TREE_TYPE (value))) + { + if (require_constant_value) + { + error_init ("initializer element is not constant"); + value = error_mark_node; + } + else if (require_constant_elements) + pedwarn (input_location, 0, + "initializer element is not computable at load time"); + } + else if (!maybe_const + && (require_constant_value || require_constant_elements)) + pedwarn_init (input_location, 0, + "initializer element is not a constant expression"); + + /* Issue -Wc++-compat warnings about initializing a bitfield with + enum type. */ + if (warn_cxx_compat + && field != NULL_TREE + && TREE_CODE (field) == FIELD_DECL + && DECL_BIT_FIELD_TYPE (field) != NULL_TREE + && (TYPE_MAIN_VARIANT (DECL_BIT_FIELD_TYPE (field)) + != TYPE_MAIN_VARIANT (type)) + && TREE_CODE (DECL_BIT_FIELD_TYPE (field)) == ENUMERAL_TYPE) + { + tree checktype = origtype != NULL_TREE ? origtype : TREE_TYPE (value); + if (checktype != error_mark_node + && (TYPE_MAIN_VARIANT (checktype) + != TYPE_MAIN_VARIANT (DECL_BIT_FIELD_TYPE (field)))) + warning_init (OPT_Wc___compat, + "enum conversion in initialization is invalid in C++"); + } + + /* If this field is empty (and not at the end of structure), + don't do anything other than checking the initializer. */ + if (field + && (TREE_TYPE (field) == error_mark_node + || (COMPLETE_TYPE_P (TREE_TYPE (field)) + && integer_zerop (TYPE_SIZE (TREE_TYPE (field))) + && (TREE_CODE (constructor_type) == ARRAY_TYPE + || DECL_CHAIN (field))))) + return; + + if (semantic_type) + value = build1 (EXCESS_PRECISION_EXPR, semantic_type, value); + value = digest_init (input_location, type, value, origtype, npc, + strict_string, require_constant_value); + if (value == error_mark_node) + { + constructor_erroneous = 1; + return; + } + if (require_constant_value || require_constant_elements) + constant_expression_warning (value); + + /* If this element doesn't come next in sequence, + put it on constructor_pending_elts. */ + if (TREE_CODE (constructor_type) == ARRAY_TYPE + && (!constructor_incremental + || !tree_int_cst_equal (field, constructor_unfilled_index))) + { + if (constructor_incremental + && tree_int_cst_lt (field, constructor_unfilled_index)) + set_nonincremental_init (braced_init_obstack); + + add_pending_init (field, value, origtype, implicit, + braced_init_obstack); + return; + } + else if (TREE_CODE (constructor_type) == RECORD_TYPE + && (!constructor_incremental + || field != constructor_unfilled_fields)) + { + /* We do this for records but not for unions. In a union, + no matter which field is specified, it can be initialized + right away since it starts at the beginning of the union. */ + if (constructor_incremental) + { + if (!constructor_unfilled_fields) + set_nonincremental_init (braced_init_obstack); + else + { + tree bitpos, unfillpos; + + bitpos = bit_position (field); + unfillpos = bit_position (constructor_unfilled_fields); + + if (tree_int_cst_lt (bitpos, unfillpos)) + set_nonincremental_init (braced_init_obstack); + } + } + + add_pending_init (field, value, origtype, implicit, + braced_init_obstack); + return; + } + else if (TREE_CODE (constructor_type) == UNION_TYPE + && !VEC_empty (constructor_elt, constructor_elements)) + { + if (!implicit) + { + if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt, + constructor_elements)->value)) + warning_init (0, + "initialized field with side-effects overwritten"); + else if (warn_override_init) + warning_init (OPT_Woverride_init, "initialized field overwritten"); + } + + /* We can have just one union field set. */ + constructor_elements = 0; + } + + /* Otherwise, output this element either to + constructor_elements or to the assembler file. */ + + celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL); + celt->index = field; + celt->value = value; + + /* Advance the variable that indicates sequential elements output. */ + if (TREE_CODE (constructor_type) == ARRAY_TYPE) + constructor_unfilled_index + = size_binop_loc (input_location, PLUS_EXPR, constructor_unfilled_index, + bitsize_one_node); + else if (TREE_CODE (constructor_type) == RECORD_TYPE) + { + constructor_unfilled_fields + = DECL_CHAIN (constructor_unfilled_fields); + + /* Skip any nameless bit fields. */ + while (constructor_unfilled_fields != 0 + && DECL_C_BIT_FIELD (constructor_unfilled_fields) + && DECL_NAME (constructor_unfilled_fields) == 0) + constructor_unfilled_fields = + DECL_CHAIN (constructor_unfilled_fields); + } + else if (TREE_CODE (constructor_type) == UNION_TYPE) + constructor_unfilled_fields = 0; + + /* Now output any pending elements which have become next. */ + if (pending) + output_pending_init_elements (0, braced_init_obstack); +} + +/* Output any pending elements which have become next. + As we output elements, constructor_unfilled_{fields,index} + advances, which may cause other elements to become next; + if so, they too are output. + + If ALL is 0, we return when there are + no more pending elements to output now. + + If ALL is 1, we output space as necessary so that + we can output all the pending elements. */ +static void +output_pending_init_elements (int all, struct obstack * braced_init_obstack) +{ + struct init_node *elt = constructor_pending_elts; + tree next; + + retry: + + /* Look through the whole pending tree. + If we find an element that should be output now, + output it. Otherwise, set NEXT to the element + that comes first among those still pending. */ + + next = 0; + while (elt) + { + if (TREE_CODE (constructor_type) == ARRAY_TYPE) + { + if (tree_int_cst_equal (elt->purpose, + constructor_unfilled_index)) + output_init_element (elt->value, elt->origtype, true, + TREE_TYPE (constructor_type), + constructor_unfilled_index, 0, false, + braced_init_obstack); + else if (tree_int_cst_lt (constructor_unfilled_index, + elt->purpose)) + { + /* Advance to the next smaller node. */ + if (elt->left) + elt = elt->left; + else + { + /* We have reached the smallest node bigger than the + current unfilled index. Fill the space first. */ + next = elt->purpose; + break; + } + } + else + { + /* Advance to the next bigger node. */ + if (elt->right) + elt = elt->right; + else + { + /* We have reached the biggest node in a subtree. Find + the parent of it, which is the next bigger node. */ + while (elt->parent && elt->parent->right == elt) + elt = elt->parent; + elt = elt->parent; + if (elt && tree_int_cst_lt (constructor_unfilled_index, + elt->purpose)) + { + next = elt->purpose; + break; + } + } + } + } + else if (TREE_CODE (constructor_type) == RECORD_TYPE + || TREE_CODE (constructor_type) == UNION_TYPE) + { + tree ctor_unfilled_bitpos, elt_bitpos; + + /* If the current record is complete we are done. */ + if (constructor_unfilled_fields == 0) + break; + + ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields); + elt_bitpos = bit_position (elt->purpose); + /* We can't compare fields here because there might be empty + fields in between. */ + if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos)) + { + constructor_unfilled_fields = elt->purpose; + output_init_element (elt->value, elt->origtype, true, + TREE_TYPE (elt->purpose), + elt->purpose, 0, false, + braced_init_obstack); + } + else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos)) + { + /* Advance to the next smaller node. */ + if (elt->left) + elt = elt->left; + else + { + /* We have reached the smallest node bigger than the + current unfilled field. Fill the space first. */ + next = elt->purpose; + break; + } + } + else + { + /* Advance to the next bigger node. */ + if (elt->right) + elt = elt->right; + else + { + /* We have reached the biggest node in a subtree. Find + the parent of it, which is the next bigger node. */ + while (elt->parent && elt->parent->right == elt) + elt = elt->parent; + elt = elt->parent; + if (elt + && (tree_int_cst_lt (ctor_unfilled_bitpos, + bit_position (elt->purpose)))) + { + next = elt->purpose; + break; + } + } + } + } + } + + /* Ordinarily return, but not if we want to output all + and there are elements left. */ + if (!(all && next != 0)) + return; + + /* If it's not incremental, just skip over the gap, so that after + jumping to retry we will output the next successive element. */ + if (TREE_CODE (constructor_type) == RECORD_TYPE + || TREE_CODE (constructor_type) == UNION_TYPE) + constructor_unfilled_fields = next; + else if (TREE_CODE (constructor_type) == ARRAY_TYPE) + constructor_unfilled_index = next; + + /* ELT now points to the node in the pending tree with the next + initializer to output. */ + goto retry; +} + +/* Add one non-braced element to the current constructor level. + This adjusts the current position within the constructor's type. + This may also start or terminate implicit levels + to handle a partly-braced initializer. + + Once this has found the correct level for the new element, + it calls output_init_element. + + IMPLICIT is true if value comes from pop_init_level (1), + the new initializer has been merged with the existing one + and thus no warnings should be emitted about overriding an + existing initializer. */ + +void +process_init_element (struct c_expr value, bool implicit, + struct obstack * braced_init_obstack) +{ + tree orig_value = value.value; + int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST; + bool strict_string = value.original_code == STRING_CST; + + designator_depth = 0; + designator_erroneous = 0; + + /* Handle superfluous braces around string cst as in + char x[] = {"foo"}; */ + if (string_flag + && constructor_type + && TREE_CODE (constructor_type) == ARRAY_TYPE + && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type)) + && integer_zerop (constructor_unfilled_index)) + { + if (constructor_stack->replacement_value.value) + error_init ("excess elements in char array initializer"); + constructor_stack->replacement_value = value; + return; + } + + if (constructor_stack->replacement_value.value != 0) + { + error_init ("excess elements in struct initializer"); + return; + } + + /* Ignore elements of a brace group if it is entirely superfluous + and has already been diagnosed. */ + if (constructor_type == 0) + return; + + /* If we've exhausted any levels that didn't have braces, + pop them now. */ + while (constructor_stack->implicit) + { + if ((TREE_CODE (constructor_type) == RECORD_TYPE + || TREE_CODE (constructor_type) == UNION_TYPE) + && constructor_fields == 0) + process_init_element (pop_init_level (1, braced_init_obstack), + true, braced_init_obstack); + else if ((TREE_CODE (constructor_type) == ARRAY_TYPE + || TREE_CODE (constructor_type) == VECTOR_TYPE) + && (constructor_max_index == 0 + || tree_int_cst_lt (constructor_max_index, + constructor_index))) + process_init_element (pop_init_level (1, braced_init_obstack), + true, braced_init_obstack); + else + break; + } + + /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */ + if (constructor_range_stack) + { + /* If value is a compound literal and we'll be just using its + content, don't put it into a SAVE_EXPR. */ + if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR + || !require_constant_value + || flag_isoc99) + { + tree semantic_type = NULL_TREE; + if (TREE_CODE (value.value) == EXCESS_PRECISION_EXPR) + { + semantic_type = TREE_TYPE (value.value); + value.value = TREE_OPERAND (value.value, 0); + } + value.value = c_save_expr (value.value); + if (semantic_type) + value.value = build1 (EXCESS_PRECISION_EXPR, semantic_type, + value.value); + } + } + + while (1) + { + if (TREE_CODE (constructor_type) == RECORD_TYPE) + { + tree fieldtype; + enum tree_code fieldcode; + + if (constructor_fields == 0) + { + pedwarn_init (input_location, 0, + "excess elements in struct initializer"); + break; + } + + fieldtype = TREE_TYPE (constructor_fields); + if (fieldtype != error_mark_node) + fieldtype = TYPE_MAIN_VARIANT (fieldtype); + fieldcode = TREE_CODE (fieldtype); + + /* Error for non-static initialization of a flexible array member. */ + if (fieldcode == ARRAY_TYPE + && !require_constant_value + && TYPE_SIZE (fieldtype) == NULL_TREE + && DECL_CHAIN (constructor_fields) == NULL_TREE) + { + error_init ("non-static initialization of a flexible array member"); + break; + } + + /* Accept a string constant to initialize a subarray. */ + if (value.value != 0 + && fieldcode == ARRAY_TYPE + && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype)) + && string_flag) + value.value = orig_value; + /* Otherwise, if we have come to a subaggregate, + and we don't have an element of its type, push into it. */ + else if (value.value != 0 + && value.value != error_mark_node + && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype + && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE + || fieldcode == UNION_TYPE || fieldcode == VECTOR_TYPE)) + { + push_init_level (1, braced_init_obstack); + continue; + } + + if (value.value) + { + push_member_name (constructor_fields); + output_init_element (value.value, value.original_type, + strict_string, fieldtype, + constructor_fields, 1, implicit, + braced_init_obstack); + RESTORE_SPELLING_DEPTH (constructor_depth); + } + else + /* Do the bookkeeping for an element that was + directly output as a constructor. */ + { + /* For a record, keep track of end position of last field. */ + if (DECL_SIZE (constructor_fields)) + constructor_bit_index + = size_binop_loc (input_location, PLUS_EXPR, + bit_position (constructor_fields), + DECL_SIZE (constructor_fields)); + + /* If the current field was the first one not yet written out, + it isn't now, so update. */ + if (constructor_unfilled_fields == constructor_fields) + { + constructor_unfilled_fields = DECL_CHAIN (constructor_fields); + /* Skip any nameless bit fields. */ + while (constructor_unfilled_fields != 0 + && DECL_C_BIT_FIELD (constructor_unfilled_fields) + && DECL_NAME (constructor_unfilled_fields) == 0) + constructor_unfilled_fields = + DECL_CHAIN (constructor_unfilled_fields); + } + } + + constructor_fields = DECL_CHAIN (constructor_fields); + /* Skip any nameless bit fields at the beginning. */ + while (constructor_fields != 0 + && DECL_C_BIT_FIELD (constructor_fields) + && DECL_NAME (constructor_fields) == 0) + constructor_fields = DECL_CHAIN (constructor_fields); + } + else if (TREE_CODE (constructor_type) == UNION_TYPE) + { + tree fieldtype; + enum tree_code fieldcode; + + if (constructor_fields == 0) + { + pedwarn_init (input_location, 0, + "excess elements in union initializer"); + break; + } + + fieldtype = TREE_TYPE (constructor_fields); + if (fieldtype != error_mark_node) + fieldtype = TYPE_MAIN_VARIANT (fieldtype); + fieldcode = TREE_CODE (fieldtype); + + /* Warn that traditional C rejects initialization of unions. + We skip the warning if the value is zero. This is done + under the assumption that the zero initializer in user + code appears conditioned on e.g. __STDC__ to avoid + "missing initializer" warnings and relies on default + initialization to zero in the traditional C case. + We also skip the warning if the initializer is designated, + again on the assumption that this must be conditional on + __STDC__ anyway (and we've already complained about the + member-designator already). */ + if (!in_system_header && !constructor_designated + && !(value.value && (integer_zerop (value.value) + || real_zerop (value.value)))) + warning (OPT_Wtraditional, "traditional C rejects initialization " + "of unions"); + + /* Accept a string constant to initialize a subarray. */ + if (value.value != 0 + && fieldcode == ARRAY_TYPE + && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype)) + && string_flag) + value.value = orig_value; + /* Otherwise, if we have come to a subaggregate, + and we don't have an element of its type, push into it. */ + else if (value.value != 0 + && value.value != error_mark_node + && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype + && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE + || fieldcode == UNION_TYPE || fieldcode == VECTOR_TYPE)) + { + push_init_level (1, braced_init_obstack); + continue; + } + + if (value.value) + { + push_member_name (constructor_fields); + output_init_element (value.value, value.original_type, + strict_string, fieldtype, + constructor_fields, 1, implicit, + braced_init_obstack); + RESTORE_SPELLING_DEPTH (constructor_depth); + } + else + /* Do the bookkeeping for an element that was + directly output as a constructor. */ + { + constructor_bit_index = DECL_SIZE (constructor_fields); + constructor_unfilled_fields = DECL_CHAIN (constructor_fields); + } + + constructor_fields = 0; + } + else if (TREE_CODE (constructor_type) == ARRAY_TYPE) + { + tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type)); + enum tree_code eltcode = TREE_CODE (elttype); + + /* Accept a string constant to initialize a subarray. */ + if (value.value != 0 + && eltcode == ARRAY_TYPE + && INTEGRAL_TYPE_P (TREE_TYPE (elttype)) + && string_flag) + value.value = orig_value; + /* Otherwise, if we have come to a subaggregate, + and we don't have an element of its type, push into it. */ + else if (value.value != 0 + && value.value != error_mark_node + && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype + && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE + || eltcode == UNION_TYPE || eltcode == VECTOR_TYPE)) + { + push_init_level (1, braced_init_obstack); + continue; + } + + if (constructor_max_index != 0 + && (tree_int_cst_lt (constructor_max_index, constructor_index) + || integer_all_onesp (constructor_max_index))) + { + pedwarn_init (input_location, 0, + "excess elements in array initializer"); + break; + } + + /* Now output the actual element. */ + if (value.value) + { + push_array_bounds (tree_low_cst (constructor_index, 1)); + output_init_element (value.value, value.original_type, + strict_string, elttype, + constructor_index, 1, implicit, + braced_init_obstack); + RESTORE_SPELLING_DEPTH (constructor_depth); + } + + constructor_index + = size_binop_loc (input_location, PLUS_EXPR, + constructor_index, bitsize_one_node); + + if (!value.value) + /* If we are doing the bookkeeping for an element that was + directly output as a constructor, we must update + constructor_unfilled_index. */ + constructor_unfilled_index = constructor_index; + } + else if (TREE_CODE (constructor_type) == VECTOR_TYPE) + { + tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type)); + + /* Do a basic check of initializer size. Note that vectors + always have a fixed size derived from their type. */ + if (tree_int_cst_lt (constructor_max_index, constructor_index)) + { + pedwarn_init (input_location, 0, + "excess elements in vector initializer"); + break; + } + + /* Now output the actual element. */ + if (value.value) + { + if (TREE_CODE (value.value) == VECTOR_CST) + elttype = TYPE_MAIN_VARIANT (constructor_type); + output_init_element (value.value, value.original_type, + strict_string, elttype, + constructor_index, 1, implicit, + braced_init_obstack); + } + + constructor_index + = size_binop_loc (input_location, + PLUS_EXPR, constructor_index, bitsize_one_node); + + if (!value.value) + /* If we are doing the bookkeeping for an element that was + directly output as a constructor, we must update + constructor_unfilled_index. */ + constructor_unfilled_index = constructor_index; + } + + /* Handle the sole element allowed in a braced initializer + for a scalar variable. */ + else if (constructor_type != error_mark_node + && constructor_fields == 0) + { + pedwarn_init (input_location, 0, + "excess elements in scalar initializer"); + break; + } + else + { + if (value.value) + output_init_element (value.value, value.original_type, + strict_string, constructor_type, + NULL_TREE, 1, implicit, + braced_init_obstack); + constructor_fields = 0; + } + + /* Handle range initializers either at this level or anywhere higher + in the designator stack. */ + if (constructor_range_stack) + { + struct constructor_range_stack *p, *range_stack; + int finish = 0; + + range_stack = constructor_range_stack; + constructor_range_stack = 0; + while (constructor_stack != range_stack->stack) + { + gcc_assert (constructor_stack->implicit); + process_init_element (pop_init_level (1, + braced_init_obstack), + true, braced_init_obstack); + } + for (p = range_stack; + !p->range_end || tree_int_cst_equal (p->index, p->range_end); + p = p->prev) + { + gcc_assert (constructor_stack->implicit); + process_init_element (pop_init_level (1, braced_init_obstack), + true, braced_init_obstack); + } + + p->index = size_binop_loc (input_location, + PLUS_EXPR, p->index, bitsize_one_node); + if (tree_int_cst_equal (p->index, p->range_end) && !p->prev) + finish = 1; + + while (1) + { + constructor_index = p->index; + constructor_fields = p->fields; + if (finish && p->range_end && p->index == p->range_start) + { + finish = 0; + p->prev = 0; + } + p = p->next; + if (!p) + break; + push_init_level (2, braced_init_obstack); + p->stack = constructor_stack; + if (p->range_end && tree_int_cst_equal (p->index, p->range_end)) + p->index = p->range_start; + } + + if (!finish) + constructor_range_stack = range_stack; + continue; + } + + break; + } + + constructor_range_stack = 0; +} + +/* Build a complete asm-statement, whose components are a CV_QUALIFIER + (guaranteed to be 'volatile' or null) and ARGS (represented using + an ASM_EXPR node). */ +tree +build_asm_stmt (tree cv_qualifier, tree args) +{ + if (!ASM_VOLATILE_P (args) && cv_qualifier) + ASM_VOLATILE_P (args) = 1; + return add_stmt (args); +} + +/* Build an asm-expr, whose components are a STRING, some OUTPUTS, + some INPUTS, and some CLOBBERS. The latter three may be NULL. + SIMPLE indicates whether there was anything at all after the + string in the asm expression -- asm("blah") and asm("blah" : ) + are subtly different. We use a ASM_EXPR node to represent this. */ +tree +build_asm_expr (location_t loc, tree string, tree outputs, tree inputs, + tree clobbers, tree labels, bool simple) +{ + tree tail; + tree args; + int i; + const char *constraint; + const char **oconstraints; + bool allows_mem, allows_reg, is_inout; + int ninputs, noutputs; + + ninputs = list_length (inputs); + noutputs = list_length (outputs); + oconstraints = (const char **) alloca (noutputs * sizeof (const char *)); + + string = resolve_asm_operand_names (string, outputs, inputs, labels); + + /* Remove output conversions that change the type but not the mode. */ + for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail)) + { + tree output = TREE_VALUE (tail); + + /* ??? Really, this should not be here. Users should be using a + proper lvalue, dammit. But there's a long history of using casts + in the output operands. In cases like longlong.h, this becomes a + primitive form of typechecking -- if the cast can be removed, then + the output operand had a type of the proper width; otherwise we'll + get an error. Gross, but ... */ + STRIP_NOPS (output); + + if (!lvalue_or_else (loc, output, lv_asm)) + output = error_mark_node; + + if (output != error_mark_node + && (TREE_READONLY (output) + || TYPE_READONLY (TREE_TYPE (output)) + || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE + || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE) + && C_TYPE_FIELDS_READONLY (TREE_TYPE (output))))) + readonly_error (output, lv_asm); + + constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail))); + oconstraints[i] = constraint; + + if (parse_output_constraint (&constraint, i, ninputs, noutputs, + &allows_mem, &allows_reg, &is_inout)) + { + /* If the operand is going to end up in memory, + mark it addressable. */ + if (!allows_reg && !c_mark_addressable (output)) + output = error_mark_node; + } + else + output = error_mark_node; + + TREE_VALUE (tail) = output; + } + + for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail)) + { + tree input; + + constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail))); + input = TREE_VALUE (tail); + + if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0, + oconstraints, &allows_mem, &allows_reg)) + { + /* If the operand is going to end up in memory, + mark it addressable. */ + if (!allows_reg && allows_mem) + { + /* Strip the nops as we allow this case. FIXME, this really + should be rejected or made deprecated. */ + STRIP_NOPS (input); + if (!c_mark_addressable (input)) + input = error_mark_node; + } + } + else + input = error_mark_node; + + TREE_VALUE (tail) = input; + } + + /* ASMs with labels cannot have outputs. This should have been + enforced by the parser. */ + gcc_assert (outputs == NULL || labels == NULL); + + args = build_stmt (loc, ASM_EXPR, string, outputs, inputs, clobbers, labels); + + /* asm statements without outputs, including simple ones, are treated + as volatile. */ + ASM_INPUT_P (args) = simple; + ASM_VOLATILE_P (args) = (noutputs == 0); + + return args; +} + +/* Generate a goto statement to LABEL. LOC is the location of the + GOTO. */ + +tree +c_finish_goto_label (location_t loc, tree label) +{ + tree decl = lookup_label_for_goto (loc, label); + if (!decl) + return NULL_TREE; + TREE_USED (decl) = 1; + { + tree t = build1 (GOTO_EXPR, void_type_node, decl); + SET_EXPR_LOCATION (t, loc); + return add_stmt (t); + } +} + +/* Generate a computed goto statement to EXPR. LOC is the location of + the GOTO. */ + +tree +c_finish_goto_ptr (location_t loc, tree expr) +{ + tree t; + pedwarn (loc, OPT_pedantic, "ISO C forbids %<goto *expr;%>"); + expr = c_fully_fold (expr, false, NULL); + expr = convert (ptr_type_node, expr); + t = build1 (GOTO_EXPR, void_type_node, expr); + SET_EXPR_LOCATION (t, loc); + return add_stmt (t); +} + +/* Generate a C `return' statement. RETVAL is the expression for what + to return, or a null pointer for `return;' with no value. LOC is + the location of the return statement. If ORIGTYPE is not NULL_TREE, it + is the original type of RETVAL. */ + +tree +c_finish_return (location_t loc, tree retval, tree origtype) +{ + tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt; + bool no_warning = false; + bool npc = false; + + if (TREE_THIS_VOLATILE (current_function_decl)) + warning_at (loc, 0, + "function declared %<noreturn%> has a %<return%> statement"); + + if (retval) + { + tree semantic_type = NULL_TREE; + npc = null_pointer_constant_p (retval); + if (TREE_CODE (retval) == EXCESS_PRECISION_EXPR) + { + semantic_type = TREE_TYPE (retval); + retval = TREE_OPERAND (retval, 0); + } + retval = c_fully_fold (retval, false, NULL); + if (semantic_type) + retval = build1 (EXCESS_PRECISION_EXPR, semantic_type, retval); + } + + if (!retval) + { + current_function_returns_null = 1; + if ((warn_return_type || flag_isoc99) + && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE) + { + pedwarn_c99 (loc, flag_isoc99 ? 0 : OPT_Wreturn_type, + "%<return%> with no value, in " + "function returning non-void"); + no_warning = true; + } + } + else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE) + { + current_function_returns_null = 1; + if (TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE) + pedwarn (loc, 0, + "%<return%> with a value, in function returning void"); + else + pedwarn (loc, OPT_pedantic, "ISO C forbids " + "%<return%> with expression, in function returning void"); + } + else + { + tree t = convert_for_assignment (loc, valtype, retval, origtype, + ic_return, + npc, NULL_TREE, NULL_TREE, 0); + tree res = DECL_RESULT (current_function_decl); + tree inner; + + current_function_returns_value = 1; + if (t == error_mark_node) + return NULL_TREE; + + inner = t = convert (TREE_TYPE (res), t); + + /* Strip any conversions, additions, and subtractions, and see if + we are returning the address of a local variable. Warn if so. */ + while (1) + { + switch (TREE_CODE (inner)) + { + CASE_CONVERT: + case NON_LVALUE_EXPR: + case PLUS_EXPR: + case POINTER_PLUS_EXPR: + inner = TREE_OPERAND (inner, 0); + continue; + + case MINUS_EXPR: + /* If the second operand of the MINUS_EXPR has a pointer + type (or is converted from it), this may be valid, so + don't give a warning. */ + { + tree op1 = TREE_OPERAND (inner, 1); + + while (!POINTER_TYPE_P (TREE_TYPE (op1)) + && (CONVERT_EXPR_P (op1) + || TREE_CODE (op1) == NON_LVALUE_EXPR)) + op1 = TREE_OPERAND (op1, 0); + + if (POINTER_TYPE_P (TREE_TYPE (op1))) + break; + + inner = TREE_OPERAND (inner, 0); + continue; + } + + case ADDR_EXPR: + inner = TREE_OPERAND (inner, 0); + + while (REFERENCE_CLASS_P (inner) + && TREE_CODE (inner) != INDIRECT_REF) + inner = TREE_OPERAND (inner, 0); + + if (DECL_P (inner) + && !DECL_EXTERNAL (inner) + && !TREE_STATIC (inner) + && DECL_CONTEXT (inner) == current_function_decl) + warning_at (loc, + 0, "function returns address of local variable"); + break; + + default: + break; + } + + break; + } + + retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t); + SET_EXPR_LOCATION (retval, loc); + + if (warn_sequence_point) + verify_sequence_points (retval); + } + + ret_stmt = build_stmt (loc, RETURN_EXPR, retval); + TREE_NO_WARNING (ret_stmt) |= no_warning; + return add_stmt (ret_stmt); +} + +struct c_switch { + /* The SWITCH_EXPR being built. */ + tree switch_expr; + + /* The original type of the testing expression, i.e. before the + default conversion is applied. */ + tree orig_type; + + /* A splay-tree mapping the low element of a case range to the high + element, or NULL_TREE if there is no high element. Used to + determine whether or not a new case label duplicates an old case + label. We need a tree, rather than simply a hash table, because + of the GNU case range extension. */ + splay_tree cases; + + /* The bindings at the point of the switch. This is used for + warnings crossing decls when branching to a case label. */ + struct c_spot_bindings *bindings; + + /* The next node on the stack. */ + struct c_switch *next; +}; + +/* A stack of the currently active switch statements. The innermost + switch statement is on the top of the stack. There is no need to + mark the stack for garbage collection because it is only active + during the processing of the body of a function, and we never + collect at that point. */ + +struct c_switch *c_switch_stack; + +/* Start a C switch statement, testing expression EXP. Return the new + SWITCH_EXPR. SWITCH_LOC is the location of the `switch'. + SWITCH_COND_LOC is the location of the switch's condition. */ + +tree +c_start_case (location_t switch_loc, + location_t switch_cond_loc, + tree exp) +{ + tree orig_type = error_mark_node; + struct c_switch *cs; + + if (exp != error_mark_node) + { + orig_type = TREE_TYPE (exp); + + if (!INTEGRAL_TYPE_P (orig_type)) + { + if (orig_type != error_mark_node) + { + error_at (switch_cond_loc, "switch quantity not an integer"); + orig_type = error_mark_node; + } + exp = integer_zero_node; + } + else + { + tree type = TYPE_MAIN_VARIANT (orig_type); + + if (!in_system_header + && (type == long_integer_type_node + || type == long_unsigned_type_node)) + warning_at (switch_cond_loc, + OPT_Wtraditional, "%<long%> switch expression not " + "converted to %<int%> in ISO C"); + + exp = c_fully_fold (exp, false, NULL); + exp = default_conversion (exp); + + if (warn_sequence_point) + verify_sequence_points (exp); + } + } + + /* Add this new SWITCH_EXPR to the stack. */ + cs = XNEW (struct c_switch); + cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE); + SET_EXPR_LOCATION (cs->switch_expr, switch_loc); + cs->orig_type = orig_type; + cs->cases = splay_tree_new (case_compare, NULL, NULL); + cs->bindings = c_get_switch_bindings (); + cs->next = c_switch_stack; + c_switch_stack = cs; + + return add_stmt (cs->switch_expr); +} + +/* Process a case label at location LOC. */ + +tree +do_case (location_t loc, tree low_value, tree high_value) +{ + tree label = NULL_TREE; + + if (low_value && TREE_CODE (low_value) != INTEGER_CST) + { + low_value = c_fully_fold (low_value, false, NULL); + if (TREE_CODE (low_value) == INTEGER_CST) + pedwarn (input_location, OPT_pedantic, + "case label is not an integer constant expression"); + } + + if (high_value && TREE_CODE (high_value) != INTEGER_CST) + { + high_value = c_fully_fold (high_value, false, NULL); + if (TREE_CODE (high_value) == INTEGER_CST) + pedwarn (input_location, OPT_pedantic, + "case label is not an integer constant expression"); + } + + if (c_switch_stack == NULL) + { + if (low_value) + error_at (loc, "case label not within a switch statement"); + else + error_at (loc, "%<default%> label not within a switch statement"); + return NULL_TREE; + } + + if (c_check_switch_jump_warnings (c_switch_stack->bindings, + EXPR_LOCATION (c_switch_stack->switch_expr), + loc)) + return NULL_TREE; + + label = c_add_case_label (loc, c_switch_stack->cases, + SWITCH_COND (c_switch_stack->switch_expr), + c_switch_stack->orig_type, + low_value, high_value); + if (label == error_mark_node) + label = NULL_TREE; + return label; +} + +/* Finish the switch statement. */ + +void +c_finish_case (tree body) +{ + struct c_switch *cs = c_switch_stack; + location_t switch_location; + + SWITCH_BODY (cs->switch_expr) = body; + + /* Emit warnings as needed. */ + switch_location = EXPR_LOCATION (cs->switch_expr); + c_do_switch_warnings (cs->cases, switch_location, + TREE_TYPE (cs->switch_expr), + SWITCH_COND (cs->switch_expr)); + + /* Pop the stack. */ + c_switch_stack = cs->next; + splay_tree_delete (cs->cases); + c_release_switch_bindings (cs->bindings); + XDELETE (cs); +} + +/* Emit an if statement. IF_LOCUS is the location of the 'if'. COND, + THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK + may be null. NESTED_IF is true if THEN_BLOCK contains another IF + statement, and was not surrounded with parenthesis. */ + +void +c_finish_if_stmt (location_t if_locus, tree cond, tree then_block, + tree else_block, bool nested_if) +{ + tree stmt; + + /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */ + if (warn_parentheses && nested_if && else_block == NULL) + { + tree inner_if = then_block; + + /* We know from the grammar productions that there is an IF nested + within THEN_BLOCK. Due to labels and c99 conditional declarations, + it might not be exactly THEN_BLOCK, but should be the last + non-container statement within. */ + while (1) + switch (TREE_CODE (inner_if)) + { + case COND_EXPR: + goto found; + case BIND_EXPR: + inner_if = BIND_EXPR_BODY (inner_if); + break; + case STATEMENT_LIST: + inner_if = expr_last (then_block); + break; + case TRY_FINALLY_EXPR: + case TRY_CATCH_EXPR: + inner_if = TREE_OPERAND (inner_if, 0); + break; + default: + gcc_unreachable (); + } + found: + + if (COND_EXPR_ELSE (inner_if)) + warning_at (if_locus, OPT_Wparentheses, + "suggest explicit braces to avoid ambiguous %<else%>"); + } + + stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block); + SET_EXPR_LOCATION (stmt, if_locus); + add_stmt (stmt); +} + +/* Emit a general-purpose loop construct. START_LOCUS is the location of + the beginning of the loop. COND is the loop condition. COND_IS_FIRST + is false for DO loops. INCR is the FOR increment expression. BODY is + the statement controlled by the loop. BLAB is the break label. CLAB is + the continue label. Everything is allowed to be NULL. */ + +void +c_finish_loop (location_t start_locus, tree cond, tree incr, tree body, + tree blab, tree clab, bool cond_is_first) +{ + tree entry = NULL, exit = NULL, t; + + /* If the condition is zero don't generate a loop construct. */ + if (cond && integer_zerop (cond)) + { + if (cond_is_first) + { + t = build_and_jump (&blab); + SET_EXPR_LOCATION (t, start_locus); + add_stmt (t); + } + } + else + { + tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE); + + /* If we have an exit condition, then we build an IF with gotos either + out of the loop, or to the top of it. If there's no exit condition, + then we just build a jump back to the top. */ + exit = build_and_jump (&LABEL_EXPR_LABEL (top)); + + if (cond && !integer_nonzerop (cond)) + { + /* Canonicalize the loop condition to the end. This means + generating a branch to the loop condition. Reuse the + continue label, if possible. */ + if (cond_is_first) + { + if (incr || !clab) + { + entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE); + t = build_and_jump (&LABEL_EXPR_LABEL (entry)); + } + else + t = build1 (GOTO_EXPR, void_type_node, clab); + SET_EXPR_LOCATION (t, start_locus); + add_stmt (t); + } + + t = build_and_jump (&blab); + if (cond_is_first) + exit = fold_build3_loc (start_locus, + COND_EXPR, void_type_node, cond, exit, t); + else + exit = fold_build3_loc (input_location, + COND_EXPR, void_type_node, cond, exit, t); + } + + add_stmt (top); + } + + if (body) + add_stmt (body); + if (clab) + add_stmt (build1 (LABEL_EXPR, void_type_node, clab)); + if (incr) + add_stmt (incr); + if (entry) + add_stmt (entry); + if (exit) + add_stmt (exit); + if (blab) + add_stmt (build1 (LABEL_EXPR, void_type_node, blab)); +} + +tree +c_finish_bc_stmt (location_t loc, tree *label_p, bool is_break) +{ + bool skip; + tree label = *label_p; + + /* In switch statements break is sometimes stylistically used after + a return statement. This can lead to spurious warnings about + control reaching the end of a non-void function when it is + inlined. Note that we are calling block_may_fallthru with + language specific tree nodes; this works because + block_may_fallthru returns true when given something it does not + understand. */ + skip = !block_may_fallthru (cur_stmt_list); + + if (!label) + { + if (!skip) + *label_p = label = create_artificial_label (loc); + } + else if (TREE_CODE (label) == LABEL_DECL) + ; + else switch (TREE_INT_CST_LOW (label)) + { + case 0: + if (is_break) + error_at (loc, "break statement not within loop or switch"); + else + error_at (loc, "continue statement not within a loop"); + return NULL_TREE; + + case 1: + gcc_assert (is_break); + error_at (loc, "break statement used with OpenMP for loop"); + return NULL_TREE; + + default: + gcc_unreachable (); + } + + if (skip) + return NULL_TREE; + + if (!is_break) + add_stmt (build_predict_expr (PRED_CONTINUE, NOT_TAKEN)); + + return add_stmt (build1 (GOTO_EXPR, void_type_node, label)); +} + +/* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */ + +static void +emit_side_effect_warnings (location_t loc, tree expr) +{ + if (expr == error_mark_node) + ; + else if (!TREE_SIDE_EFFECTS (expr)) + { + if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr)) + warning_at (loc, OPT_Wunused_value, "statement with no effect"); + } + else + warn_if_unused_value (expr, loc); +} + +/* Process an expression as if it were a complete statement. Emit + diagnostics, but do not call ADD_STMT. LOC is the location of the + statement. */ + +tree +c_process_expr_stmt (location_t loc, tree expr) +{ + tree exprv; + + if (!expr) + return NULL_TREE; + + expr = c_fully_fold (expr, false, NULL); + + if (warn_sequence_point) + verify_sequence_points (expr); + + if (TREE_TYPE (expr) != error_mark_node + && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr)) + && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE) + error_at (loc, "expression statement has incomplete type"); + + /* If we're not processing a statement expression, warn about unused values. + Warnings for statement expressions will be emitted later, once we figure + out which is the result. */ + if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list) + && warn_unused_value) + emit_side_effect_warnings (loc, expr); + + exprv = expr; + while (TREE_CODE (exprv) == COMPOUND_EXPR) + exprv = TREE_OPERAND (exprv, 1); + while (CONVERT_EXPR_P (exprv)) + exprv = TREE_OPERAND (exprv, 0); + if (DECL_P (exprv) + || handled_component_p (exprv) + || TREE_CODE (exprv) == ADDR_EXPR) + mark_exp_read (exprv); + + /* If the expression is not of a type to which we cannot assign a line + number, wrap the thing in a no-op NOP_EXPR. */ + if (DECL_P (expr) || CONSTANT_CLASS_P (expr)) + { + expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr); + SET_EXPR_LOCATION (expr, loc); + } + + return expr; +} + +/* Emit an expression as a statement. LOC is the location of the + expression. */ + +tree +c_finish_expr_stmt (location_t loc, tree expr) +{ + if (expr) + return add_stmt (c_process_expr_stmt (loc, expr)); + else + return NULL; +} + +/* Do the opposite and emit a statement as an expression. To begin, + create a new binding level and return it. */ + +tree +c_begin_stmt_expr (void) +{ + tree ret; + + /* We must force a BLOCK for this level so that, if it is not expanded + later, there is a way to turn off the entire subtree of blocks that + are contained in it. */ + keep_next_level (); + ret = c_begin_compound_stmt (true); + + c_bindings_start_stmt_expr (c_switch_stack == NULL + ? NULL + : c_switch_stack->bindings); + + /* Mark the current statement list as belonging to a statement list. */ + STATEMENT_LIST_STMT_EXPR (ret) = 1; + + return ret; +} + +/* LOC is the location of the compound statement to which this body + belongs. */ + +tree +c_finish_stmt_expr (location_t loc, tree body) +{ + tree last, type, tmp, val; + tree *last_p; + + body = c_end_compound_stmt (loc, body, true); + + c_bindings_end_stmt_expr (c_switch_stack == NULL + ? NULL + : c_switch_stack->bindings); + + /* Locate the last statement in BODY. See c_end_compound_stmt + about always returning a BIND_EXPR. */ + last_p = &BIND_EXPR_BODY (body); + last = BIND_EXPR_BODY (body); + + continue_searching: + if (TREE_CODE (last) == STATEMENT_LIST) + { + tree_stmt_iterator i; + + /* This can happen with degenerate cases like ({ }). No value. */ + if (!TREE_SIDE_EFFECTS (last)) + return body; + + /* If we're supposed to generate side effects warnings, process + all of the statements except the last. */ + if (warn_unused_value) + { + for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i)) + { + location_t tloc; + tree t = tsi_stmt (i); + + tloc = EXPR_HAS_LOCATION (t) ? EXPR_LOCATION (t) : loc; + emit_side_effect_warnings (tloc, t); + } + } + else + i = tsi_last (last); + last_p = tsi_stmt_ptr (i); + last = *last_p; + } + + /* If the end of the list is exception related, then the list was split + by a call to push_cleanup. Continue searching. */ + if (TREE_CODE (last) == TRY_FINALLY_EXPR + || TREE_CODE (last) == TRY_CATCH_EXPR) + { + last_p = &TREE_OPERAND (last, 0); + last = *last_p; + goto continue_searching; + } + + if (last == error_mark_node) + return last; + + /* In the case that the BIND_EXPR is not necessary, return the + expression out from inside it. */ + if (last == BIND_EXPR_BODY (body) + && BIND_EXPR_VARS (body) == NULL) + { + /* Even if this looks constant, do not allow it in a constant + expression. */ + last = c_wrap_maybe_const (last, true); + /* Do not warn if the return value of a statement expression is + unused. */ + TREE_NO_WARNING (last) = 1; + return last; + } + + /* Extract the type of said expression. */ + type = TREE_TYPE (last); + + /* If we're not returning a value at all, then the BIND_EXPR that + we already have is a fine expression to return. */ + if (!type || VOID_TYPE_P (type)) + return body; + + /* Now that we've located the expression containing the value, it seems + silly to make voidify_wrapper_expr repeat the process. Create a + temporary of the appropriate type and stick it in a TARGET_EXPR. */ + tmp = create_tmp_var_raw (type, NULL); + + /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids + tree_expr_nonnegative_p giving up immediately. */ + val = last; + if (TREE_CODE (val) == NOP_EXPR + && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0))) + val = TREE_OPERAND (val, 0); + + *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val); + SET_EXPR_LOCATION (*last_p, EXPR_LOCATION (last)); + + { + tree t = build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE); + SET_EXPR_LOCATION (t, loc); + return t; + } +} + +/* Begin and end compound statements. This is as simple as pushing + and popping new statement lists from the tree. */ + +tree +c_begin_compound_stmt (bool do_scope) +{ + tree stmt = push_stmt_list (); + if (do_scope) + push_scope (); + return stmt; +} + +/* End a compound statement. STMT is the statement. LOC is the + location of the compound statement-- this is usually the location + of the opening brace. */ + +tree +c_end_compound_stmt (location_t loc, tree stmt, bool do_scope) +{ + tree block = NULL; + + if (do_scope) + { + if (c_dialect_objc ()) + objc_clear_super_receiver (); + block = pop_scope (); + } + + stmt = pop_stmt_list (stmt); + stmt = c_build_bind_expr (loc, block, stmt); + + /* If this compound statement is nested immediately inside a statement + expression, then force a BIND_EXPR to be created. Otherwise we'll + do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular, + STATEMENT_LISTs merge, and thus we can lose track of what statement + was really last. */ + if (cur_stmt_list + && STATEMENT_LIST_STMT_EXPR (cur_stmt_list) + && TREE_CODE (stmt) != BIND_EXPR) + { + stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL); + TREE_SIDE_EFFECTS (stmt) = 1; + SET_EXPR_LOCATION (stmt, loc); + } + + return stmt; +} + +/* Queue a cleanup. CLEANUP is an expression/statement to be executed + when the current scope is exited. EH_ONLY is true when this is not + meant to apply to normal control flow transfer. */ + +void +push_cleanup (tree decl, tree cleanup, bool eh_only) +{ + enum tree_code code; + tree stmt, list; + bool stmt_expr; + + code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR; + stmt = build_stmt (DECL_SOURCE_LOCATION (decl), code, NULL, cleanup); + add_stmt (stmt); + stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list); + list = push_stmt_list (); + TREE_OPERAND (stmt, 0) = list; + STATEMENT_LIST_STMT_EXPR (list) = stmt_expr; +} + +/* Build a binary-operation expression without default conversions. + CODE is the kind of expression to build. + LOCATION is the operator's location. + This function differs from `build' in several ways: + the data type of the result is computed and recorded in it, + warnings are generated if arg data types are invalid, + special handling for addition and subtraction of pointers is known, + and some optimization is done (operations on narrow ints + are done in the narrower type when that gives the same result). + Constant folding is also done before the result is returned. + + Note that the operands will never have enumeral types, or function + or array types, because either they will have the default conversions + performed or they have both just been converted to some other type in which + the arithmetic is to be done. */ + +tree +build_binary_op (location_t location, enum tree_code code, + tree orig_op0, tree orig_op1, int convert_p) +{ + tree type0, type1, orig_type0, orig_type1; + tree eptype; + enum tree_code code0, code1; + tree op0, op1; + tree ret = error_mark_node; + const char *invalid_op_diag; + bool op0_int_operands, op1_int_operands; + bool int_const, int_const_or_overflow, int_operands; + + /* Expression code to give to the expression when it is built. + Normally this is CODE, which is what the caller asked for, + but in some special cases we change it. */ + enum tree_code resultcode = code; + + /* Data type in which the computation is to be performed. + In the simplest cases this is the common type of the arguments. */ + tree result_type = NULL; + + /* When the computation is in excess precision, the type of the + final EXCESS_PRECISION_EXPR. */ + tree semantic_result_type = NULL; + + /* Nonzero means operands have already been type-converted + in whatever way is necessary. + Zero means they need to be converted to RESULT_TYPE. */ + int converted = 0; + + /* Nonzero means create the expression with this type, rather than + RESULT_TYPE. */ + tree build_type = 0; + + /* Nonzero means after finally constructing the expression + convert it to this type. */ + tree final_type = 0; + + /* Nonzero if this is an operation like MIN or MAX which can + safely be computed in short if both args are promoted shorts. + Also implies COMMON. + -1 indicates a bitwise operation; this makes a difference + in the exact conditions for when it is safe to do the operation + in a narrower mode. */ + int shorten = 0; + + /* Nonzero if this is a comparison operation; + if both args are promoted shorts, compare the original shorts. + Also implies COMMON. */ + int short_compare = 0; + + /* Nonzero if this is a right-shift operation, which can be computed on the + original short and then promoted if the operand is a promoted short. */ + int short_shift = 0; + + /* Nonzero means set RESULT_TYPE to the common type of the args. */ + int common = 0; + + /* True means types are compatible as far as ObjC is concerned. */ + bool objc_ok; + + /* True means this is an arithmetic operation that may need excess + precision. */ + bool may_need_excess_precision; + + /* True means this is a boolean operation that converts both its + operands to truth-values. */ + bool boolean_op = false; + + if (location == UNKNOWN_LOCATION) + location = input_location; + + op0 = orig_op0; + op1 = orig_op1; + + op0_int_operands = EXPR_INT_CONST_OPERANDS (orig_op0); + if (op0_int_operands) + op0 = remove_c_maybe_const_expr (op0); + op1_int_operands = EXPR_INT_CONST_OPERANDS (orig_op1); + if (op1_int_operands) + op1 = remove_c_maybe_const_expr (op1); + int_operands = (op0_int_operands && op1_int_operands); + if (int_operands) + { + int_const_or_overflow = (TREE_CODE (orig_op0) == INTEGER_CST + && TREE_CODE (orig_op1) == INTEGER_CST); + int_const = (int_const_or_overflow + && !TREE_OVERFLOW (orig_op0) + && !TREE_OVERFLOW (orig_op1)); + } + else + int_const = int_const_or_overflow = false; + + if (convert_p) + { + op0 = default_conversion (op0); + op1 = default_conversion (op1); + } + + orig_type0 = type0 = TREE_TYPE (op0); + orig_type1 = type1 = TREE_TYPE (op1); + + /* The expression codes of the data types of the arguments tell us + whether the arguments are integers, floating, pointers, etc. */ + code0 = TREE_CODE (type0); + code1 = TREE_CODE (type1); + + /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */ + STRIP_TYPE_NOPS (op0); + STRIP_TYPE_NOPS (op1); + + /* If an error was already reported for one of the arguments, + avoid reporting another error. */ + + if (code0 == ERROR_MARK || code1 == ERROR_MARK) + return error_mark_node; + + if ((invalid_op_diag + = targetm.invalid_binary_op (code, type0, type1))) + { + error_at (location, invalid_op_diag); + return error_mark_node; + } + + switch (code) + { + case PLUS_EXPR: + case MINUS_EXPR: + case MULT_EXPR: + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case EXACT_DIV_EXPR: + may_need_excess_precision = true; + break; + default: + may_need_excess_precision = false; + break; + } + if (TREE_CODE (op0) == EXCESS_PRECISION_EXPR) + { + op0 = TREE_OPERAND (op0, 0); + type0 = TREE_TYPE (op0); + } + else if (may_need_excess_precision + && (eptype = excess_precision_type (type0)) != NULL_TREE) + { + type0 = eptype; + op0 = convert (eptype, op0); + } + if (TREE_CODE (op1) == EXCESS_PRECISION_EXPR) + { + op1 = TREE_OPERAND (op1, 0); + type1 = TREE_TYPE (op1); + } + else if (may_need_excess_precision + && (eptype = excess_precision_type (type1)) != NULL_TREE) + { + type1 = eptype; + op1 = convert (eptype, op1); + } + + objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE); + + switch (code) + { + case PLUS_EXPR: + /* Handle the pointer + int case. */ + if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE) + { + ret = pointer_int_sum (location, PLUS_EXPR, op0, op1); + goto return_build_binary_op; + } + else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE) + { + ret = pointer_int_sum (location, PLUS_EXPR, op1, op0); + goto return_build_binary_op; + } + else + common = 1; + break; + + case MINUS_EXPR: + /* Subtraction of two similar pointers. + We must subtract them as integers, then divide by object size. */ + if (code0 == POINTER_TYPE && code1 == POINTER_TYPE + && comp_target_types (location, type0, type1)) + { + ret = pointer_diff (location, op0, op1); + goto return_build_binary_op; + } + /* Handle pointer minus int. Just like pointer plus int. */ + else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE) + { + ret = pointer_int_sum (location, MINUS_EXPR, op0, op1); + goto return_build_binary_op; + } + else + common = 1; + break; + + case MULT_EXPR: + common = 1; + break; + + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case EXACT_DIV_EXPR: + warn_for_div_by_zero (location, op1); + + if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE + || code0 == FIXED_POINT_TYPE + || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE) + && (code1 == INTEGER_TYPE || code1 == REAL_TYPE + || code1 == FIXED_POINT_TYPE + || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)) + { + enum tree_code tcode0 = code0, tcode1 = code1; + + if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE) + tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0))); + if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE) + tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1))); + + if (!((tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE) + || (tcode0 == FIXED_POINT_TYPE && tcode1 == FIXED_POINT_TYPE))) + resultcode = RDIV_EXPR; + else + /* Although it would be tempting to shorten always here, that + loses on some targets, since the modulo instruction is + undefined if the quotient can't be represented in the + computation mode. We shorten only if unsigned or if + dividing by something we know != -1. */ + shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0)) + || (TREE_CODE (op1) == INTEGER_CST + && !integer_all_onesp (op1))); + common = 1; + } + break; + + case BIT_AND_EXPR: + case BIT_IOR_EXPR: + case BIT_XOR_EXPR: + if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE) + shorten = -1; + /* Allow vector types which are not floating point types. */ + else if (code0 == VECTOR_TYPE + && code1 == VECTOR_TYPE + && !VECTOR_FLOAT_TYPE_P (type0) + && !VECTOR_FLOAT_TYPE_P (type1)) + common = 1; + break; + + case TRUNC_MOD_EXPR: + case FLOOR_MOD_EXPR: + warn_for_div_by_zero (location, op1); + + if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE + && TREE_CODE (TREE_TYPE (type0)) == INTEGER_TYPE + && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE) + common = 1; + else if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE) + { + /* Although it would be tempting to shorten always here, that loses + on some targets, since the modulo instruction is undefined if the + quotient can't be represented in the computation mode. We shorten + only if unsigned or if dividing by something we know != -1. */ + shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0)) + || (TREE_CODE (op1) == INTEGER_CST + && !integer_all_onesp (op1))); + common = 1; + } + break; + + case TRUTH_ANDIF_EXPR: + case TRUTH_ORIF_EXPR: + case TRUTH_AND_EXPR: + case TRUTH_OR_EXPR: + case TRUTH_XOR_EXPR: + if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE + || code0 == REAL_TYPE || code0 == COMPLEX_TYPE + || code0 == FIXED_POINT_TYPE) + && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE + || code1 == REAL_TYPE || code1 == COMPLEX_TYPE + || code1 == FIXED_POINT_TYPE)) + { + /* Result of these operations is always an int, + but that does not mean the operands should be + converted to ints! */ + result_type = integer_type_node; + if (op0_int_operands) + { + op0 = c_objc_common_truthvalue_conversion (location, orig_op0); + op0 = remove_c_maybe_const_expr (op0); + } + else + op0 = c_objc_common_truthvalue_conversion (location, op0); + if (op1_int_operands) + { + op1 = c_objc_common_truthvalue_conversion (location, orig_op1); + op1 = remove_c_maybe_const_expr (op1); + } + else + op1 = c_objc_common_truthvalue_conversion (location, op1); + converted = 1; + boolean_op = true; + } + if (code == TRUTH_ANDIF_EXPR) + { + int_const_or_overflow = (int_operands + && TREE_CODE (orig_op0) == INTEGER_CST + && (op0 == truthvalue_false_node + || TREE_CODE (orig_op1) == INTEGER_CST)); + int_const = (int_const_or_overflow + && !TREE_OVERFLOW (orig_op0) + && (op0 == truthvalue_false_node + || !TREE_OVERFLOW (orig_op1))); + } + else if (code == TRUTH_ORIF_EXPR) + { + int_const_or_overflow = (int_operands + && TREE_CODE (orig_op0) == INTEGER_CST + && (op0 == truthvalue_true_node + || TREE_CODE (orig_op1) == INTEGER_CST)); + int_const = (int_const_or_overflow + && !TREE_OVERFLOW (orig_op0) + && (op0 == truthvalue_true_node + || !TREE_OVERFLOW (orig_op1))); + } + break; + + /* Shift operations: result has same type as first operand; + always convert second operand to int. + Also set SHORT_SHIFT if shifting rightward. */ + + case RSHIFT_EXPR: + if (code0 == VECTOR_TYPE && code1 == INTEGER_TYPE + && TREE_CODE (TREE_TYPE (type0)) == INTEGER_TYPE) + { + result_type = type0; + converted = 1; + } + else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE + && TREE_CODE (TREE_TYPE (type0)) == INTEGER_TYPE + && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE + && TYPE_VECTOR_SUBPARTS (type0) == TYPE_VECTOR_SUBPARTS (type1)) + { + result_type = type0; + converted = 1; + } + else if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE) + && code1 == INTEGER_TYPE) + { + if (TREE_CODE (op1) == INTEGER_CST) + { + if (tree_int_cst_sgn (op1) < 0) + { + int_const = false; + if (c_inhibit_evaluation_warnings == 0) + warning (0, "right shift count is negative"); + } + else + { + if (!integer_zerop (op1)) + short_shift = 1; + + if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0) + { + int_const = false; + if (c_inhibit_evaluation_warnings == 0) + warning (0, "right shift count >= width of type"); + } + } + } + + /* Use the type of the value to be shifted. */ + result_type = type0; + /* Convert the non vector shift-count to an integer, regardless + of size of value being shifted. */ + if (TREE_CODE (TREE_TYPE (op1)) != VECTOR_TYPE + && TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node) + op1 = convert (integer_type_node, op1); + /* Avoid converting op1 to result_type later. */ + converted = 1; + } + break; + + case LSHIFT_EXPR: + if (code0 == VECTOR_TYPE && code1 == INTEGER_TYPE + && TREE_CODE (TREE_TYPE (type0)) == INTEGER_TYPE) + { + result_type = type0; + converted = 1; + } + else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE + && TREE_CODE (TREE_TYPE (type0)) == INTEGER_TYPE + && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE + && TYPE_VECTOR_SUBPARTS (type0) == TYPE_VECTOR_SUBPARTS (type1)) + { + result_type = type0; + converted = 1; + } + else if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE) + && code1 == INTEGER_TYPE) + { + if (TREE_CODE (op1) == INTEGER_CST) + { + if (tree_int_cst_sgn (op1) < 0) + { + int_const = false; + if (c_inhibit_evaluation_warnings == 0) + warning (0, "left shift count is negative"); + } + + else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0) + { + int_const = false; + if (c_inhibit_evaluation_warnings == 0) + warning (0, "left shift count >= width of type"); + } + } + + /* Use the type of the value to be shifted. */ + result_type = type0; + /* Convert the non vector shift-count to an integer, regardless + of size of value being shifted. */ + if (TREE_CODE (TREE_TYPE (op1)) != VECTOR_TYPE + && TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node) + op1 = convert (integer_type_node, op1); + /* Avoid converting op1 to result_type later. */ + converted = 1; + } + break; + + case EQ_EXPR: + case NE_EXPR: + if (FLOAT_TYPE_P (type0) || FLOAT_TYPE_P (type1)) + warning_at (location, + OPT_Wfloat_equal, + "comparing floating point with == or != is unsafe"); + /* Result of comparison is always int, + but don't convert the args to int! */ + build_type = integer_type_node; + if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE + || code0 == FIXED_POINT_TYPE || code0 == COMPLEX_TYPE) + && (code1 == INTEGER_TYPE || code1 == REAL_TYPE + || code1 == FIXED_POINT_TYPE || code1 == COMPLEX_TYPE)) + short_compare = 1; + else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1)) + { + if (TREE_CODE (op0) == ADDR_EXPR + && decl_with_nonnull_addr_p (TREE_OPERAND (op0, 0))) + { + if (code == EQ_EXPR) + warning_at (location, + OPT_Waddress, + "the comparison will always evaluate as %<false%> " + "for the address of %qD will never be NULL", + TREE_OPERAND (op0, 0)); + else + warning_at (location, + OPT_Waddress, + "the comparison will always evaluate as %<true%> " + "for the address of %qD will never be NULL", + TREE_OPERAND (op0, 0)); + } + result_type = type0; + } + else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0)) + { + if (TREE_CODE (op1) == ADDR_EXPR + && decl_with_nonnull_addr_p (TREE_OPERAND (op1, 0))) + { + if (code == EQ_EXPR) + warning_at (location, + OPT_Waddress, + "the comparison will always evaluate as %<false%> " + "for the address of %qD will never be NULL", + TREE_OPERAND (op1, 0)); + else + warning_at (location, + OPT_Waddress, + "the comparison will always evaluate as %<true%> " + "for the address of %qD will never be NULL", + TREE_OPERAND (op1, 0)); + } + result_type = type1; + } + else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE) + { + tree tt0 = TREE_TYPE (type0); + tree tt1 = TREE_TYPE (type1); + addr_space_t as0 = TYPE_ADDR_SPACE (tt0); + addr_space_t as1 = TYPE_ADDR_SPACE (tt1); + addr_space_t as_common = ADDR_SPACE_GENERIC; + + /* Anything compares with void *. void * compares with anything. + Otherwise, the targets must be compatible + and both must be object or both incomplete. */ + if (comp_target_types (location, type0, type1)) + result_type = common_pointer_type (type0, type1); + else if (!addr_space_superset (as0, as1, &as_common)) + { + error_at (location, "comparison of pointers to " + "disjoint address spaces"); + return error_mark_node; + } + else if (VOID_TYPE_P (tt0)) + { + if (pedantic && TREE_CODE (tt1) == FUNCTION_TYPE) + pedwarn (location, OPT_pedantic, "ISO C forbids " + "comparison of %<void *%> with function pointer"); + } + else if (VOID_TYPE_P (tt1)) + { + if (pedantic && TREE_CODE (tt0) == FUNCTION_TYPE) + pedwarn (location, OPT_pedantic, "ISO C forbids " + "comparison of %<void *%> with function pointer"); + } + else + /* Avoid warning about the volatile ObjC EH puts on decls. */ + if (!objc_ok) + pedwarn (location, 0, + "comparison of distinct pointer types lacks a cast"); + + if (result_type == NULL_TREE) + { + int qual = ENCODE_QUAL_ADDR_SPACE (as_common); + result_type = build_pointer_type + (build_qualified_type (void_type_node, qual)); + } + } + else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE) + { + result_type = type0; + pedwarn (location, 0, "comparison between pointer and integer"); + } + else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE) + { + result_type = type1; + pedwarn (location, 0, "comparison between pointer and integer"); + } + break; + + case LE_EXPR: + case GE_EXPR: + case LT_EXPR: + case GT_EXPR: + build_type = integer_type_node; + if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE + || code0 == FIXED_POINT_TYPE) + && (code1 == INTEGER_TYPE || code1 == REAL_TYPE + || code1 == FIXED_POINT_TYPE)) + short_compare = 1; + else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE) + { + addr_space_t as0 = TYPE_ADDR_SPACE (TREE_TYPE (type0)); + addr_space_t as1 = TYPE_ADDR_SPACE (TREE_TYPE (type1)); + addr_space_t as_common; + + if (comp_target_types (location, type0, type1)) + { + result_type = common_pointer_type (type0, type1); + if (!COMPLETE_TYPE_P (TREE_TYPE (type0)) + != !COMPLETE_TYPE_P (TREE_TYPE (type1))) + pedwarn (location, 0, + "comparison of complete and incomplete pointers"); + else if (TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE) + pedwarn (location, OPT_pedantic, "ISO C forbids " + "ordered comparisons of pointers to functions"); + else if (null_pointer_constant_p (orig_op0) + || null_pointer_constant_p (orig_op1)) + warning_at (location, OPT_Wextra, + "ordered comparison of pointer with null pointer"); + + } + else if (!addr_space_superset (as0, as1, &as_common)) + { + error_at (location, "comparison of pointers to " + "disjoint address spaces"); + return error_mark_node; + } + else + { + int qual = ENCODE_QUAL_ADDR_SPACE (as_common); + result_type = build_pointer_type + (build_qualified_type (void_type_node, qual)); + pedwarn (location, 0, + "comparison of distinct pointer types lacks a cast"); + } + } + else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1)) + { + result_type = type0; + if (pedantic) + pedwarn (location, OPT_pedantic, + "ordered comparison of pointer with integer zero"); + else if (extra_warnings) + warning_at (location, OPT_Wextra, + "ordered comparison of pointer with integer zero"); + } + else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0)) + { + result_type = type1; + if (pedantic) + pedwarn (location, OPT_pedantic, + "ordered comparison of pointer with integer zero"); + else if (extra_warnings) + warning_at (location, OPT_Wextra, + "ordered comparison of pointer with integer zero"); + } + else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE) + { + result_type = type0; + pedwarn (location, 0, "comparison between pointer and integer"); + } + else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE) + { + result_type = type1; + pedwarn (location, 0, "comparison between pointer and integer"); + } + break; + + default: + gcc_unreachable (); + } + + if (code0 == ERROR_MARK || code1 == ERROR_MARK) + return error_mark_node; + + if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE + && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1)) + || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0), + TREE_TYPE (type1)))) + { + binary_op_error (location, code, type0, type1); + return error_mark_node; + } + + if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE + || code0 == FIXED_POINT_TYPE || code0 == VECTOR_TYPE) + && + (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE + || code1 == FIXED_POINT_TYPE || code1 == VECTOR_TYPE)) + { + bool first_complex = (code0 == COMPLEX_TYPE); + bool second_complex = (code1 == COMPLEX_TYPE); + int none_complex = (!first_complex && !second_complex); + + if (shorten || common || short_compare) + { + result_type = c_common_type (type0, type1); + do_warn_double_promotion (result_type, type0, type1, + "implicit conversion from %qT to %qT " + "to match other operand of binary " + "expression", + location); + if (result_type == error_mark_node) + return error_mark_node; + } + + if (first_complex != second_complex + && (code == PLUS_EXPR + || code == MINUS_EXPR + || code == MULT_EXPR + || (code == TRUNC_DIV_EXPR && first_complex)) + && TREE_CODE (TREE_TYPE (result_type)) == REAL_TYPE + && flag_signed_zeros) + { + /* An operation on mixed real/complex operands must be + handled specially, but the language-independent code can + more easily optimize the plain complex arithmetic if + -fno-signed-zeros. */ + tree real_type = TREE_TYPE (result_type); + tree real, imag; + if (type0 != orig_type0 || type1 != orig_type1) + { + gcc_assert (may_need_excess_precision && common); + semantic_result_type = c_common_type (orig_type0, orig_type1); + } + if (first_complex) + { + if (TREE_TYPE (op0) != result_type) + op0 = convert_and_check (result_type, op0); + if (TREE_TYPE (op1) != real_type) + op1 = convert_and_check (real_type, op1); + } + else + { + if (TREE_TYPE (op0) != real_type) + op0 = convert_and_check (real_type, op0); + if (TREE_TYPE (op1) != result_type) + op1 = convert_and_check (result_type, op1); + } + if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK) + return error_mark_node; + if (first_complex) + { + op0 = c_save_expr (op0); + real = build_unary_op (EXPR_LOCATION (orig_op0), REALPART_EXPR, + op0, 1); + imag = build_unary_op (EXPR_LOCATION (orig_op0), IMAGPART_EXPR, + op0, 1); + switch (code) + { + case MULT_EXPR: + case TRUNC_DIV_EXPR: + op1 = c_save_expr (op1); + imag = build2 (resultcode, real_type, imag, op1); + /* Fall through. */ + case PLUS_EXPR: + case MINUS_EXPR: + real = build2 (resultcode, real_type, real, op1); + break; + default: + gcc_unreachable(); + } + } + else + { + op1 = c_save_expr (op1); + real = build_unary_op (EXPR_LOCATION (orig_op1), REALPART_EXPR, + op1, 1); + imag = build_unary_op (EXPR_LOCATION (orig_op1), IMAGPART_EXPR, + op1, 1); + switch (code) + { + case MULT_EXPR: + op0 = c_save_expr (op0); + imag = build2 (resultcode, real_type, op0, imag); + /* Fall through. */ + case PLUS_EXPR: + real = build2 (resultcode, real_type, op0, real); + break; + case MINUS_EXPR: + real = build2 (resultcode, real_type, op0, real); + imag = build1 (NEGATE_EXPR, real_type, imag); + break; + default: + gcc_unreachable(); + } + } + ret = build2 (COMPLEX_EXPR, result_type, real, imag); + goto return_build_binary_op; + } + + /* For certain operations (which identify themselves by shorten != 0) + if both args were extended from the same smaller type, + do the arithmetic in that type and then extend. + + shorten !=0 and !=1 indicates a bitwise operation. + For them, this optimization is safe only if + both args are zero-extended or both are sign-extended. + Otherwise, we might change the result. + Eg, (short)-1 | (unsigned short)-1 is (int)-1 + but calculated in (unsigned short) it would be (unsigned short)-1. */ + + if (shorten && none_complex) + { + final_type = result_type; + result_type = shorten_binary_op (result_type, op0, op1, + shorten == -1); + } + + /* Shifts can be shortened if shifting right. */ + + if (short_shift) + { + int unsigned_arg; + tree arg0 = get_narrower (op0, &unsigned_arg); + + final_type = result_type; + + if (arg0 == op0 && final_type == TREE_TYPE (op0)) + unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0)); + + if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type) + && tree_int_cst_sgn (op1) > 0 + /* We can shorten only if the shift count is less than the + number of bits in the smaller type size. */ + && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0 + /* We cannot drop an unsigned shift after sign-extension. */ + && (!TYPE_UNSIGNED (final_type) || unsigned_arg)) + { + /* Do an unsigned shift if the operand was zero-extended. */ + result_type + = c_common_signed_or_unsigned_type (unsigned_arg, + TREE_TYPE (arg0)); + /* Convert value-to-be-shifted to that type. */ + if (TREE_TYPE (op0) != result_type) + op0 = convert (result_type, op0); + converted = 1; + } + } + + /* Comparison operations are shortened too but differently. + They identify themselves by setting short_compare = 1. */ + + if (short_compare) + { + /* Don't write &op0, etc., because that would prevent op0 + from being kept in a register. + Instead, make copies of the our local variables and + pass the copies by reference, then copy them back afterward. */ + tree xop0 = op0, xop1 = op1, xresult_type = result_type; + enum tree_code xresultcode = resultcode; + tree val + = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode); + + if (val != 0) + { + ret = val; + goto return_build_binary_op; + } + + op0 = xop0, op1 = xop1; + converted = 1; + resultcode = xresultcode; + + if (c_inhibit_evaluation_warnings == 0) + { + bool op0_maybe_const = true; + bool op1_maybe_const = true; + tree orig_op0_folded, orig_op1_folded; + + if (in_late_binary_op) + { + orig_op0_folded = orig_op0; + orig_op1_folded = orig_op1; + } + else + { + /* Fold for the sake of possible warnings, as in + build_conditional_expr. This requires the + "original" values to be folded, not just op0 and + op1. */ + c_inhibit_evaluation_warnings++; + op0 = c_fully_fold (op0, require_constant_value, + &op0_maybe_const); + op1 = c_fully_fold (op1, require_constant_value, + &op1_maybe_const); + c_inhibit_evaluation_warnings--; + orig_op0_folded = c_fully_fold (orig_op0, + require_constant_value, + NULL); + orig_op1_folded = c_fully_fold (orig_op1, + require_constant_value, + NULL); + } + + if (warn_sign_compare) + warn_for_sign_compare (location, orig_op0_folded, + orig_op1_folded, op0, op1, + result_type, resultcode); + if (!in_late_binary_op && !int_operands) + { + if (!op0_maybe_const || TREE_CODE (op0) != INTEGER_CST) + op0 = c_wrap_maybe_const (op0, !op0_maybe_const); + if (!op1_maybe_const || TREE_CODE (op1) != INTEGER_CST) + op1 = c_wrap_maybe_const (op1, !op1_maybe_const); + } + } + } + } + + /* At this point, RESULT_TYPE must be nonzero to avoid an error message. + If CONVERTED is zero, both args will be converted to type RESULT_TYPE. + Then the expression will be built. + It will be given type FINAL_TYPE if that is nonzero; + otherwise, it will be given type RESULT_TYPE. */ + + if (!result_type) + { + binary_op_error (location, code, TREE_TYPE (op0), TREE_TYPE (op1)); + return error_mark_node; + } + + if (build_type == NULL_TREE) + { + build_type = result_type; + if ((type0 != orig_type0 || type1 != orig_type1) + && !boolean_op) + { + gcc_assert (may_need_excess_precision && common); + semantic_result_type = c_common_type (orig_type0, orig_type1); + } + } + + if (!converted) + { + op0 = ep_convert_and_check (result_type, op0, semantic_result_type); + op1 = ep_convert_and_check (result_type, op1, semantic_result_type); + + /* This can happen if one operand has a vector type, and the other + has a different type. */ + if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK) + return error_mark_node; + } + + /* Treat expressions in initializers specially as they can't trap. */ + if (int_const_or_overflow) + ret = (require_constant_value + ? fold_build2_initializer_loc (location, resultcode, build_type, + op0, op1) + : fold_build2_loc (location, resultcode, build_type, op0, op1)); + else + ret = build2 (resultcode, build_type, op0, op1); + if (final_type != 0) + ret = convert (final_type, ret); + + return_build_binary_op: + gcc_assert (ret != error_mark_node); + if (TREE_CODE (ret) == INTEGER_CST && !TREE_OVERFLOW (ret) && !int_const) + ret = (int_operands + ? note_integer_operands (ret) + : build1 (NOP_EXPR, TREE_TYPE (ret), ret)); + else if (TREE_CODE (ret) != INTEGER_CST && int_operands + && !in_late_binary_op) + ret = note_integer_operands (ret); + if (semantic_result_type) + ret = build1 (EXCESS_PRECISION_EXPR, semantic_result_type, ret); + protected_set_expr_location (ret, location); + return ret; +} + + +/* Convert EXPR to be a truth-value, validating its type for this + purpose. LOCATION is the source location for the expression. */ + +tree +c_objc_common_truthvalue_conversion (location_t location, tree expr) +{ + bool int_const, int_operands; + + switch (TREE_CODE (TREE_TYPE (expr))) + { + case ARRAY_TYPE: + error_at (location, "used array that cannot be converted to pointer where scalar is required"); + return error_mark_node; + + case RECORD_TYPE: + error_at (location, "used struct type value where scalar is required"); + return error_mark_node; + + case UNION_TYPE: + error_at (location, "used union type value where scalar is required"); + return error_mark_node; + + case VOID_TYPE: + error_at (location, "void value not ignored as it ought to be"); + return error_mark_node; + + case FUNCTION_TYPE: + gcc_unreachable (); + + default: + break; + } + + int_const = (TREE_CODE (expr) == INTEGER_CST && !TREE_OVERFLOW (expr)); + int_operands = EXPR_INT_CONST_OPERANDS (expr); + if (int_operands && TREE_CODE (expr) != INTEGER_CST) + { + expr = remove_c_maybe_const_expr (expr); + expr = build2 (NE_EXPR, integer_type_node, expr, + convert (TREE_TYPE (expr), integer_zero_node)); + expr = note_integer_operands (expr); + } + else + /* ??? Should we also give an error for vectors rather than leaving + those to give errors later? */ + expr = c_common_truthvalue_conversion (location, expr); + + if (TREE_CODE (expr) == INTEGER_CST && int_operands && !int_const) + { + if (TREE_OVERFLOW (expr)) + return expr; + else + return note_integer_operands (expr); + } + if (TREE_CODE (expr) == INTEGER_CST && !int_const) + return build1 (NOP_EXPR, TREE_TYPE (expr), expr); + return expr; +} + + +/* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as + required. */ + +tree +c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED, bool *se) +{ + if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR) + { + tree decl = COMPOUND_LITERAL_EXPR_DECL (expr); + /* Executing a compound literal inside a function reinitializes + it. */ + if (!TREE_STATIC (decl)) + *se = true; + return decl; + } + else + return expr; +} + +/* Like c_begin_compound_stmt, except force the retention of the BLOCK. */ + +tree +c_begin_omp_parallel (void) +{ + tree block; + + keep_next_level (); + block = c_begin_compound_stmt (true); + + return block; +} + +/* Generate OMP_PARALLEL, with CLAUSES and BLOCK as its compound + statement. LOC is the location of the OMP_PARALLEL. */ + +tree +c_finish_omp_parallel (location_t loc, tree clauses, tree block) +{ + tree stmt; + + block = c_end_compound_stmt (loc, block, true); + + stmt = make_node (OMP_PARALLEL); + TREE_TYPE (stmt) = void_type_node; + OMP_PARALLEL_CLAUSES (stmt) = clauses; + OMP_PARALLEL_BODY (stmt) = block; + SET_EXPR_LOCATION (stmt, loc); + + return add_stmt (stmt); +} + +/* Like c_begin_compound_stmt, except force the retention of the BLOCK. */ + +tree +c_begin_omp_task (void) +{ + tree block; + + keep_next_level (); + block = c_begin_compound_stmt (true); + + return block; +} + +/* Generate OMP_TASK, with CLAUSES and BLOCK as its compound + statement. LOC is the location of the #pragma. */ + +tree +c_finish_omp_task (location_t loc, tree clauses, tree block) +{ + tree stmt; + + block = c_end_compound_stmt (loc, block, true); + + stmt = make_node (OMP_TASK); + TREE_TYPE (stmt) = void_type_node; + OMP_TASK_CLAUSES (stmt) = clauses; + OMP_TASK_BODY (stmt) = block; + SET_EXPR_LOCATION (stmt, loc); + + return add_stmt (stmt); +} + +/* For all elements of CLAUSES, validate them vs OpenMP constraints. + Remove any elements from the list that are invalid. */ + +tree +c_finish_omp_clauses (tree clauses) +{ + bitmap_head generic_head, firstprivate_head, lastprivate_head; + tree c, t, *pc = &clauses; + const char *name; + + bitmap_obstack_initialize (NULL); + bitmap_initialize (&generic_head, &bitmap_default_obstack); + bitmap_initialize (&firstprivate_head, &bitmap_default_obstack); + bitmap_initialize (&lastprivate_head, &bitmap_default_obstack); + + for (pc = &clauses, c = clauses; c ; c = *pc) + { + bool remove = false; + bool need_complete = false; + bool need_implicitly_determined = false; + + switch (OMP_CLAUSE_CODE (c)) + { + case OMP_CLAUSE_SHARED: + name = "shared"; + need_implicitly_determined = true; + goto check_dup_generic; + + case OMP_CLAUSE_PRIVATE: + name = "private"; + need_complete = true; + need_implicitly_determined = true; + goto check_dup_generic; + + case OMP_CLAUSE_REDUCTION: + name = "reduction"; + need_implicitly_determined = true; + t = OMP_CLAUSE_DECL (c); + if (AGGREGATE_TYPE_P (TREE_TYPE (t)) + || POINTER_TYPE_P (TREE_TYPE (t))) + { + error_at (OMP_CLAUSE_LOCATION (c), + "%qE has invalid type for %<reduction%>", t); + remove = true; + } + else if (FLOAT_TYPE_P (TREE_TYPE (t))) + { + enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c); + const char *r_name = NULL; + + switch (r_code) + { + case PLUS_EXPR: + case MULT_EXPR: + case MINUS_EXPR: + break; + case BIT_AND_EXPR: + r_name = "&"; + break; + case BIT_XOR_EXPR: + r_name = "^"; + break; + case BIT_IOR_EXPR: + r_name = "|"; + break; + case TRUTH_ANDIF_EXPR: + r_name = "&&"; + break; + case TRUTH_ORIF_EXPR: + r_name = "||"; + break; + default: + gcc_unreachable (); + } + if (r_name) + { + error_at (OMP_CLAUSE_LOCATION (c), + "%qE has invalid type for %<reduction(%s)%>", + t, r_name); + remove = true; + } + } + goto check_dup_generic; + + case OMP_CLAUSE_COPYPRIVATE: + name = "copyprivate"; + goto check_dup_generic; + + case OMP_CLAUSE_COPYIN: + name = "copyin"; + t = OMP_CLAUSE_DECL (c); + if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t)) + { + error_at (OMP_CLAUSE_LOCATION (c), + "%qE must be %<threadprivate%> for %<copyin%>", t); + remove = true; + } + goto check_dup_generic; + + check_dup_generic: + t = OMP_CLAUSE_DECL (c); + if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL) + { + error_at (OMP_CLAUSE_LOCATION (c), + "%qE is not a variable in clause %qs", t, name); + remove = true; + } + else if (bitmap_bit_p (&generic_head, DECL_UID (t)) + || bitmap_bit_p (&firstprivate_head, DECL_UID (t)) + || bitmap_bit_p (&lastprivate_head, DECL_UID (t))) + { + error_at (OMP_CLAUSE_LOCATION (c), + "%qE appears more than once in data clauses", t); + remove = true; + } + else + bitmap_set_bit (&generic_head, DECL_UID (t)); + break; + + case OMP_CLAUSE_FIRSTPRIVATE: + name = "firstprivate"; + t = OMP_CLAUSE_DECL (c); + need_complete = true; + need_implicitly_determined = true; + if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL) + { + error_at (OMP_CLAUSE_LOCATION (c), + "%qE is not a variable in clause %<firstprivate%>", t); + remove = true; + } + else if (bitmap_bit_p (&generic_head, DECL_UID (t)) + || bitmap_bit_p (&firstprivate_head, DECL_UID (t))) + { + error_at (OMP_CLAUSE_LOCATION (c), + "%qE appears more than once in data clauses", t); + remove = true; + } + else + bitmap_set_bit (&firstprivate_head, DECL_UID (t)); + break; + + case OMP_CLAUSE_LASTPRIVATE: + name = "lastprivate"; + t = OMP_CLAUSE_DECL (c); + need_complete = true; + need_implicitly_determined = true; + if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL) + { + error_at (OMP_CLAUSE_LOCATION (c), + "%qE is not a variable in clause %<lastprivate%>", t); + remove = true; + } + else if (bitmap_bit_p (&generic_head, DECL_UID (t)) + || bitmap_bit_p (&lastprivate_head, DECL_UID (t))) + { + error_at (OMP_CLAUSE_LOCATION (c), + "%qE appears more than once in data clauses", t); + remove = true; + } + else + bitmap_set_bit (&lastprivate_head, DECL_UID (t)); + break; + + case OMP_CLAUSE_IF: + case OMP_CLAUSE_NUM_THREADS: + case OMP_CLAUSE_SCHEDULE: + case OMP_CLAUSE_NOWAIT: + case OMP_CLAUSE_ORDERED: + case OMP_CLAUSE_DEFAULT: + case OMP_CLAUSE_UNTIED: + case OMP_CLAUSE_COLLAPSE: + pc = &OMP_CLAUSE_CHAIN (c); + continue; + + default: + gcc_unreachable (); + } + + if (!remove) + { + t = OMP_CLAUSE_DECL (c); + + if (need_complete) + { + t = require_complete_type (t); + if (t == error_mark_node) + remove = true; + } + + if (need_implicitly_determined) + { + const char *share_name = NULL; + + if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t)) + share_name = "threadprivate"; + else switch (c_omp_predetermined_sharing (t)) + { + case OMP_CLAUSE_DEFAULT_UNSPECIFIED: + break; + case OMP_CLAUSE_DEFAULT_SHARED: + share_name = "shared"; + break; + case OMP_CLAUSE_DEFAULT_PRIVATE: + share_name = "private"; + break; + default: + gcc_unreachable (); + } + if (share_name) + { + error_at (OMP_CLAUSE_LOCATION (c), + "%qE is predetermined %qs for %qs", + t, share_name, name); + remove = true; + } + } + } + + if (remove) + *pc = OMP_CLAUSE_CHAIN (c); + else + pc = &OMP_CLAUSE_CHAIN (c); + } + + bitmap_obstack_release (NULL); + return clauses; +} + +/* Make a variant type in the proper way for C/C++, propagating qualifiers + down to the element type of an array. */ + +tree +c_build_qualified_type (tree type, int type_quals) +{ + if (type == error_mark_node) + return type; + + if (TREE_CODE (type) == ARRAY_TYPE) + { + tree t; + tree element_type = c_build_qualified_type (TREE_TYPE (type), + type_quals); + + /* See if we already have an identically qualified type. */ + for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t)) + { + if (TYPE_QUALS (strip_array_types (t)) == type_quals + && TYPE_NAME (t) == TYPE_NAME (type) + && TYPE_CONTEXT (t) == TYPE_CONTEXT (type) + && attribute_list_equal (TYPE_ATTRIBUTES (t), + TYPE_ATTRIBUTES (type))) + break; + } + if (!t) + { + tree domain = TYPE_DOMAIN (type); + + t = build_variant_type_copy (type); + TREE_TYPE (t) = element_type; + + if (TYPE_STRUCTURAL_EQUALITY_P (element_type) + || (domain && TYPE_STRUCTURAL_EQUALITY_P (domain))) + SET_TYPE_STRUCTURAL_EQUALITY (t); + else if (TYPE_CANONICAL (element_type) != element_type + || (domain && TYPE_CANONICAL (domain) != domain)) + { + tree unqualified_canon + = build_array_type (TYPE_CANONICAL (element_type), + domain? TYPE_CANONICAL (domain) + : NULL_TREE); + TYPE_CANONICAL (t) + = c_build_qualified_type (unqualified_canon, type_quals); + } + else + TYPE_CANONICAL (t) = t; + } + return t; + } + + /* A restrict-qualified pointer type must be a pointer to object or + incomplete type. Note that the use of POINTER_TYPE_P also allows + REFERENCE_TYPEs, which is appropriate for C++. */ + if ((type_quals & TYPE_QUAL_RESTRICT) + && (!POINTER_TYPE_P (type) + || !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type)))) + { + error ("invalid use of %<restrict%>"); + type_quals &= ~TYPE_QUAL_RESTRICT; + } + + return build_qualified_type (type, type_quals); +} + +/* Build a VA_ARG_EXPR for the C parser. */ + +tree +c_build_va_arg (location_t loc, tree expr, tree type) +{ + if (warn_cxx_compat && TREE_CODE (type) == ENUMERAL_TYPE) + warning_at (loc, OPT_Wc___compat, + "C++ requires promoted type, not enum type, in %<va_arg%>"); + return build_va_arg (loc, expr, type); +} |