summaryrefslogtreecommitdiff
path: root/gcc/config/fr30/fr30.h
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/config/fr30/fr30.h
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'gcc/config/fr30/fr30.h')
-rw-r--r--gcc/config/fr30/fr30.h871
1 files changed, 871 insertions, 0 deletions
diff --git a/gcc/config/fr30/fr30.h b/gcc/config/fr30/fr30.h
new file mode 100644
index 000000000..d20d7fb79
--- /dev/null
+++ b/gcc/config/fr30/fr30.h
@@ -0,0 +1,871 @@
+/*{{{ Comment. */
+
+/* Definitions of FR30 target.
+ Copyright (C) 1998, 1999, 2000, 2001, 2002, 2004, 2007, 2008, 2009, 2010
+ Free Software Foundation, Inc.
+ Contributed by Cygnus Solutions.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/*}}}*/
+/*{{{ Run-time target specifications. */
+
+#undef ASM_SPEC
+#define ASM_SPEC ""
+
+/* Define this to be a string constant containing `-D' options to define the
+ predefined macros that identify this machine and system. These macros will
+ be predefined unless the `-ansi' option is specified. */
+
+#define TARGET_CPU_CPP_BUILTINS() \
+ do \
+ { \
+ builtin_define_std ("fr30"); \
+ builtin_assert ("machine=fr30"); \
+ } \
+ while (0)
+
+#define TARGET_VERSION fprintf (stderr, " (fr30)");
+
+#undef STARTFILE_SPEC
+#define STARTFILE_SPEC "crt0.o%s crti.o%s crtbegin.o%s"
+
+/* Include the OS stub library, so that the code can be simulated.
+ This is not the right way to do this. Ideally this kind of thing
+ should be done in the linker script - but I have not worked out how
+ to specify the location of a linker script in a gcc command line yet... */
+#undef ENDFILE_SPEC
+#define ENDFILE_SPEC "%{!mno-lsim:-lsim} crtend.o%s crtn.o%s"
+
+#undef LIB_SPEC
+#define LIB_SPEC "-lc"
+
+#undef LINK_SPEC
+#define LINK_SPEC "%{h*} %{v:-V} \
+ %{static:-Bstatic} %{shared:-shared} %{symbolic:-Bsymbolic}"
+
+/*}}}*/
+/*{{{ Storage Layout. */
+
+#define BITS_BIG_ENDIAN 1
+
+#define BYTES_BIG_ENDIAN 1
+
+#define WORDS_BIG_ENDIAN 1
+
+#define UNITS_PER_WORD 4
+
+#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
+ do \
+ { \
+ if (GET_MODE_CLASS (MODE) == MODE_INT \
+ && GET_MODE_SIZE (MODE) < 4) \
+ (MODE) = SImode; \
+ } \
+ while (0)
+
+#define PARM_BOUNDARY 32
+
+#define STACK_BOUNDARY 32
+
+#define FUNCTION_BOUNDARY 32
+
+#define BIGGEST_ALIGNMENT 32
+
+#define DATA_ALIGNMENT(TYPE, ALIGN) \
+ (TREE_CODE (TYPE) == ARRAY_TYPE \
+ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
+ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
+
+#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
+ (TREE_CODE (EXP) == STRING_CST \
+ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
+
+#define STRICT_ALIGNMENT 1
+
+#define PCC_BITFIELD_TYPE_MATTERS 1
+
+/*}}}*/
+/*{{{ Layout of Source Language Data Types. */
+
+#define SHORT_TYPE_SIZE 16
+#define INT_TYPE_SIZE 32
+#define LONG_TYPE_SIZE 32
+#define LONG_LONG_TYPE_SIZE 64
+#define FLOAT_TYPE_SIZE 32
+#define DOUBLE_TYPE_SIZE 64
+#define LONG_DOUBLE_TYPE_SIZE 64
+
+#define DEFAULT_SIGNED_CHAR 1
+
+#undef SIZE_TYPE
+#define SIZE_TYPE "unsigned int"
+
+#undef PTRDIFF_TYPE
+#define PTRDIFF_TYPE "int"
+
+#undef WCHAR_TYPE
+#define WCHAR_TYPE "long int"
+
+#undef WCHAR_TYPE_SIZE
+#define WCHAR_TYPE_SIZE BITS_PER_WORD
+
+/*}}}*/
+/*{{{ REGISTER BASICS. */
+
+/* Number of hardware registers known to the compiler. They receive numbers 0
+ through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
+ really is assigned the number `FIRST_PSEUDO_REGISTER'. */
+#define FIRST_PSEUDO_REGISTER 21
+
+/* Fixed register assignments: */
+
+/* Here we do a BAD THING - reserve a register for use by the machine
+ description file. There are too many places in compiler where it
+ assumes that it can issue a branch or jump instruction without
+ providing a scratch register for it, and reload just cannot cope, so
+ we keep a register back for these situations. */
+#define COMPILER_SCRATCH_REGISTER 0
+
+/* The register that contains the result of a function call. */
+#define RETURN_VALUE_REGNUM 4
+
+/* The first register that can contain the arguments to a function. */
+#define FIRST_ARG_REGNUM 4
+
+/* A call-used register that can be used during the function prologue. */
+#define PROLOGUE_TMP_REGNUM COMPILER_SCRATCH_REGISTER
+
+/* Register numbers used for passing a function's static chain pointer. If
+ register windows are used, the register number as seen by the called
+ function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
+ seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers
+ are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
+
+ The static chain register need not be a fixed register.
+
+ If the static chain is passed in memory, these macros should not be defined;
+ instead, the next two macros should be defined. */
+#define STATIC_CHAIN_REGNUM 12
+/* #define STATIC_CHAIN_INCOMING_REGNUM */
+
+/* An FR30 specific hardware register. */
+#define ACCUMULATOR_REGNUM 13
+
+/* The register number of the frame pointer register, which is used to access
+ automatic variables in the stack frame. On some machines, the hardware
+ determines which register this is. On other machines, you can choose any
+ register you wish for this purpose. */
+#define FRAME_POINTER_REGNUM 14
+
+/* The register number of the stack pointer register, which must also be a
+ fixed register according to `FIXED_REGISTERS'. On most machines, the
+ hardware determines which register this is. */
+#define STACK_POINTER_REGNUM 15
+
+/* The following a fake hard registers that describe some of the dedicated
+ registers on the FR30. */
+#define CONDITION_CODE_REGNUM 16
+#define RETURN_POINTER_REGNUM 17
+#define MD_HIGH_REGNUM 18
+#define MD_LOW_REGNUM 19
+
+/* An initializer that says which registers are used for fixed purposes all
+ throughout the compiled code and are therefore not available for general
+ allocation. These would include the stack pointer, the frame pointer
+ (except on machines where that can be used as a general register when no
+ frame pointer is needed), the program counter on machines where that is
+ considered one of the addressable registers, and any other numbered register
+ with a standard use.
+
+ This information is expressed as a sequence of numbers, separated by commas
+ and surrounded by braces. The Nth number is 1 if register N is fixed, 0
+ otherwise.
+
+ The table initialized from this macro, and the table initialized by the
+ following one, may be overridden at run time either automatically, by the
+ actions of the macro `TARGET_CONDITIONAL_REGISTER_USAGE', or by the user
+ with the command options `-ffixed-REG', `-fcall-used-REG' and
+ `-fcall-saved-REG'. */
+#define FIXED_REGISTERS \
+ { 1, 0, 0, 0, 0, 0, 0, 0, /* 0 - 7 */ \
+ 0, 0, 0, 0, 0, 0, 0, 1, /* 8 - 15 */ \
+ 1, 1, 1, 1, 1 } /* 16 - 20 */
+
+/* XXX - MDL and MDH set as fixed for now - this is until I can get the
+ mul patterns working. */
+
+/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
+ general) by function calls as well as for fixed registers. This macro
+ therefore identifies the registers that are not available for general
+ allocation of values that must live across function calls.
+
+ If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
+ saves it on function entry and restores it on function exit, if the register
+ is used within the function. */
+#define CALL_USED_REGISTERS \
+ { 1, 1, 1, 1, 1, 1, 1, 1, /* 0 - 7 */ \
+ 0, 0, 0, 0, 1, 1, 0, 1, /* 8 - 15 */ \
+ 1, 1, 1, 1, 1 } /* 16 - 20 */
+
+/* A C initializer containing the assembler's names for the machine registers,
+ each one as a C string constant. This is what translates register numbers
+ in the compiler into assembler language. */
+#define REGISTER_NAMES \
+{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
+ "r8", "r9", "r10", "r11", "r12", "ac", "fp", "sp", \
+ "cc", "rp", "mdh", "mdl", "ap" \
+}
+
+/* If defined, a C initializer for an array of structures containing a name and
+ a register number. This macro defines additional names for hard registers,
+ thus allowing the `asm' option in declarations to refer to registers using
+ alternate names. */
+#define ADDITIONAL_REGISTER_NAMES \
+{ \
+ {"r13", 13}, {"r14", 14}, {"r15", 15}, {"usp", 15}, {"ps", 16}\
+}
+
+/*}}}*/
+/*{{{ How Values Fit in Registers. */
+
+/* A C expression for the number of consecutive hard registers, starting at
+ register number REGNO, required to hold a value of mode MODE. */
+
+#define HARD_REGNO_NREGS(REGNO, MODE) \
+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
+
+/* A C expression that is nonzero if it is permissible to store a value of mode
+ MODE in hard register number REGNO (or in several registers starting with
+ that one). */
+
+#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
+
+/* A C expression that is nonzero if it is desirable to choose register
+ allocation so as to avoid move instructions between a value of mode MODE1
+ and a value of mode MODE2.
+
+ If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
+ ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
+ zero. */
+#define MODES_TIEABLE_P(MODE1, MODE2) 1
+
+/*}}}*/
+/*{{{ Register Classes. */
+
+/* An enumeral type that must be defined with all the register class names as
+ enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
+ register class, followed by one more enumeral value, `LIM_REG_CLASSES',
+ which is not a register class but rather tells how many classes there are.
+
+ Each register class has a number, which is the value of casting the class
+ name to type `int'. The number serves as an index in many of the tables
+ described below. */
+enum reg_class
+{
+ NO_REGS,
+ MULTIPLY_32_REG, /* the MDL register as used by the MULH, MULUH insns */
+ MULTIPLY_64_REG, /* the MDH,MDL register pair as used by MUL and MULU */
+ LOW_REGS, /* registers 0 through 7 */
+ HIGH_REGS, /* registers 8 through 15 */
+ REAL_REGS, /* i.e. all the general hardware registers on the FR30 */
+ ALL_REGS,
+ LIM_REG_CLASSES
+};
+
+#define GENERAL_REGS REAL_REGS
+#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
+
+#define IRA_COVER_CLASSES \
+{ \
+ REAL_REGS, MULTIPLY_64_REG, LIM_REG_CLASSES \
+}
+
+/* An initializer containing the names of the register classes as C string
+ constants. These names are used in writing some of the debugging dumps. */
+#define REG_CLASS_NAMES \
+{ \
+ "NO_REGS", \
+ "MULTIPLY_32_REG", \
+ "MULTIPLY_64_REG", \
+ "LOW_REGS", \
+ "HIGH_REGS", \
+ "REAL_REGS", \
+ "ALL_REGS" \
+ }
+
+/* An initializer containing the contents of the register classes, as integers
+ which are bit masks. The Nth integer specifies the contents of class N.
+ The way the integer MASK is interpreted is that register R is in the class
+ if `MASK & (1 << R)' is 1.
+
+ When the machine has more than 32 registers, an integer does not suffice.
+ Then the integers are replaced by sub-initializers, braced groupings
+ containing several integers. Each sub-initializer must be suitable as an
+ initializer for the type `HARD_REG_SET' which is defined in
+ `hard-reg-set.h'. */
+#define REG_CLASS_CONTENTS \
+{ \
+ { 0 }, \
+ { 1 << MD_LOW_REGNUM }, \
+ { (1 << MD_LOW_REGNUM) | (1 << MD_HIGH_REGNUM) }, \
+ { (1 << 8) - 1 }, \
+ { ((1 << 8) - 1) << 8 }, \
+ { (1 << CONDITION_CODE_REGNUM) - 1 }, \
+ { (1 << FIRST_PSEUDO_REGISTER) - 1 } \
+}
+
+/* A C expression whose value is a register class containing hard register
+ REGNO. In general there is more than one such class; choose a class which
+ is "minimal", meaning that no smaller class also contains the register. */
+#define REGNO_REG_CLASS(REGNO) \
+ ( (REGNO) < 8 ? LOW_REGS \
+ : (REGNO) < CONDITION_CODE_REGNUM ? HIGH_REGS \
+ : (REGNO) == MD_LOW_REGNUM ? MULTIPLY_32_REG \
+ : (REGNO) == MD_HIGH_REGNUM ? MULTIPLY_64_REG \
+ : ALL_REGS)
+
+/* A macro whose definition is the name of the class to which a valid base
+ register must belong. A base register is one used in an address which is
+ the register value plus a displacement. */
+#define BASE_REG_CLASS REAL_REGS
+
+/* A macro whose definition is the name of the class to which a valid index
+ register must belong. An index register is one used in an address where its
+ value is either multiplied by a scale factor or added to another register
+ (as well as added to a displacement). */
+#define INDEX_REG_CLASS REAL_REGS
+
+/* A C expression which is nonzero if register number NUM is suitable for use
+ as a base register in operand addresses. It may be either a suitable hard
+ register or a pseudo register that has been allocated such a hard register. */
+#define REGNO_OK_FOR_BASE_P(NUM) 1
+
+/* A C expression which is nonzero if register number NUM is suitable for use
+ as an index register in operand addresses. It may be either a suitable hard
+ register or a pseudo register that has been allocated such a hard register.
+
+ The difference between an index register and a base register is that the
+ index register may be scaled. If an address involves the sum of two
+ registers, neither one of them scaled, then either one may be labeled the
+ "base" and the other the "index"; but whichever labeling is used must fit
+ the machine's constraints of which registers may serve in each capacity.
+ The compiler will try both labelings, looking for one that is valid, and
+ will reload one or both registers only if neither labeling works. */
+#define REGNO_OK_FOR_INDEX_P(NUM) 1
+
+/* A C expression for the maximum number of consecutive registers of
+ class CLASS needed to hold a value of mode MODE.
+
+ This is closely related to the macro `HARD_REGNO_NREGS'. In fact, the value
+ of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
+ `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
+
+ This macro helps control the handling of multiple-word values in
+ the reload pass. */
+#define CLASS_MAX_NREGS(CLASS, MODE) HARD_REGNO_NREGS (0, MODE)
+
+/*}}}*/
+/*{{{ Basic Stack Layout. */
+
+/* Define this macro if pushing a word onto the stack moves the stack pointer
+ to a smaller address. */
+#define STACK_GROWS_DOWNWARD 1
+
+/* Define this to macro nonzero if the addresses of local variable slots
+ are at negative offsets from the frame pointer. */
+#define FRAME_GROWS_DOWNWARD 1
+
+/* Offset from the frame pointer to the first local variable slot to be
+ allocated.
+
+ If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
+ first slot's length from `STARTING_FRAME_OFFSET'. Otherwise, it is found by
+ adding the length of the first slot to the value `STARTING_FRAME_OFFSET'. */
+/* #define STARTING_FRAME_OFFSET -4 */
+#define STARTING_FRAME_OFFSET 0
+
+/* Offset from the stack pointer register to the first location at which
+ outgoing arguments are placed. If not specified, the default value of zero
+ is used. This is the proper value for most machines.
+
+ If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
+ location at which outgoing arguments are placed. */
+#define STACK_POINTER_OFFSET 0
+
+/* Offset from the argument pointer register to the first argument's address.
+ On some machines it may depend on the data type of the function.
+
+ If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
+ argument's address. */
+#define FIRST_PARM_OFFSET(FUNDECL) 0
+
+/* A C expression whose value is RTL representing the location of the incoming
+ return address at the beginning of any function, before the prologue. This
+ RTL is either a `REG', indicating that the return value is saved in `REG',
+ or a `MEM' representing a location in the stack.
+
+ You only need to define this macro if you want to support call frame
+ debugging information like that provided by DWARF 2. */
+#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
+
+/*}}}*/
+/*{{{ Register That Address the Stack Frame. */
+
+/* The register number of the arg pointer register, which is used to access the
+ function's argument list. On some machines, this is the same as the frame
+ pointer register. On some machines, the hardware determines which register
+ this is. On other machines, you can choose any register you wish for this
+ purpose. If this is not the same register as the frame pointer register,
+ then you must mark it as a fixed register according to `FIXED_REGISTERS', or
+ arrange to be able to eliminate it. */
+#define ARG_POINTER_REGNUM 20
+
+/*}}}*/
+/*{{{ Eliminating the Frame Pointer and the Arg Pointer. */
+
+/* If defined, this macro specifies a table of register pairs used to eliminate
+ unneeded registers that point into the stack frame. If it is not defined,
+ the only elimination attempted by the compiler is to replace references to
+ the frame pointer with references to the stack pointer.
+
+ The definition of this macro is a list of structure initializations, each of
+ which specifies an original and replacement register.
+
+ On some machines, the position of the argument pointer is not known until
+ the compilation is completed. In such a case, a separate hard register must
+ be used for the argument pointer. This register can be eliminated by
+ replacing it with either the frame pointer or the argument pointer,
+ depending on whether or not the frame pointer has been eliminated.
+
+ In this case, you might specify:
+ #define ELIMINABLE_REGS \
+ {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
+ {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
+
+ Note that the elimination of the argument pointer with the stack pointer is
+ specified first since that is the preferred elimination. */
+
+#define ELIMINABLE_REGS \
+{ \
+ {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
+ {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
+}
+
+/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
+ initial difference between the specified pair of registers. This macro must
+ be defined if `ELIMINABLE_REGS' is defined. */
+#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
+ (OFFSET) = fr30_compute_frame_size (FROM, TO)
+
+/*}}}*/
+/*{{{ Passing Function Arguments on the Stack. */
+
+/* If defined, the maximum amount of space required for outgoing arguments will
+ be computed and placed into the variable
+ `crtl->outgoing_args_size'. No space will be pushed onto the
+ stack for each call; instead, the function prologue should increase the
+ stack frame size by this amount.
+
+ Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
+ proper. */
+#define ACCUMULATE_OUTGOING_ARGS 1
+
+/*}}}*/
+/*{{{ Function Arguments in Registers. */
+
+/* The number of register assigned to holding function arguments. */
+
+#define FR30_NUM_ARG_REGS 4
+
+/* A C type for declaring a variable that is used as the first argument of
+ `FUNCTION_ARG' and other related values. For some target machines, the type
+ `int' suffices and can hold the number of bytes of argument so far.
+
+ There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
+ that have been passed on the stack. The compiler has other variables to
+ keep track of that. For target machines on which all arguments are passed
+ on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
+ however, the data structure must exist and should not be empty, so use
+ `int'. */
+/* On the FR30 this value is an accumulating count of the number of argument
+ registers that have been filled with argument values, as opposed to say,
+ the number of bytes of argument accumulated so far. */
+#define CUMULATIVE_ARGS int
+
+/* A C statement (sans semicolon) for initializing the variable CUM for the
+ state at the beginning of the argument list. The variable has type
+ `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
+ of the function which will receive the args, or 0 if the args are to a
+ compiler support library function. The value of INDIRECT is nonzero when
+ processing an indirect call, for example a call through a function pointer.
+ The value of INDIRECT is zero for a call to an explicitly named function, a
+ library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
+ arguments for the function being compiled.
+
+ When processing a call to a compiler support library function, LIBNAME
+ identifies which one. It is a `symbol_ref' rtx which contains the name of
+ the function, as a string. LIBNAME is 0 when an ordinary C function call is
+ being processed. Thus, each time this macro is called, either LIBNAME or
+ FNTYPE is nonzero, but never both of them at once. */
+#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
+ (CUM) = 0
+
+/* A C expression that is nonzero if REGNO is the number of a hard register in
+ which function arguments are sometimes passed. This does *not* include
+ implicit arguments such as the static chain and the structure-value address.
+ On many machines, no registers can be used for this purpose since all
+ function arguments are pushed on the stack. */
+#define FUNCTION_ARG_REGNO_P(REGNO) \
+ ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) < FIRST_ARG_REGNUM + FR30_NUM_ARG_REGS))
+
+/*}}}*/
+/*{{{ How Large Values are Returned. */
+
+/* Define this macro to be 1 if all structure and union return values must be
+ in memory. Since this results in slower code, this should be defined only
+ if needed for compatibility with other compilers or with an ABI. If you
+ define this macro to be 0, then the conventions used for structure and union
+ return values are decided by the `TARGET_RETURN_IN_MEMORY' macro.
+
+ If not defined, this defaults to the value 1. */
+#define DEFAULT_PCC_STRUCT_RETURN 1
+
+/*}}}*/
+/*{{{ Generating Code for Profiling. */
+
+/* A C statement or compound statement to output to FILE some assembler code to
+ call the profiling subroutine `mcount'. Before calling, the assembler code
+ must load the address of a counter variable into a register where `mcount'
+ expects to find the address. The name of this variable is `LP' followed by
+ the number LABELNO, so you would generate the name using `LP%d' in a
+ `fprintf'.
+
+ The details of how the address should be passed to `mcount' are determined
+ by your operating system environment, not by GCC. To figure them out,
+ compile a small program for profiling using the system's installed C
+ compiler and look at the assembler code that results. */
+#define FUNCTION_PROFILER(FILE, LABELNO) \
+{ \
+ fprintf (FILE, "\t mov rp, r1\n" ); \
+ fprintf (FILE, "\t ldi:32 mcount, r0\n" ); \
+ fprintf (FILE, "\t call @r0\n" ); \
+ fprintf (FILE, ".word\tLP%d\n", LABELNO); \
+}
+
+/*}}}*/
+/*{{{ Trampolines for Nested Functions. */
+
+/* A C expression for the size in bytes of the trampoline, as an integer. */
+#define TRAMPOLINE_SIZE 18
+
+/* We want the trampoline to be aligned on a 32bit boundary so that we can
+ make sure the location of the static chain & target function within
+ the trampoline is also aligned on a 32bit boundary. */
+#define TRAMPOLINE_ALIGNMENT 32
+
+/*}}}*/
+/*{{{ Addressing Modes. */
+
+/* A number, the maximum number of registers that can appear in a valid memory
+ address. Note that it is up to you to specify a value equal to the maximum
+ number that `GO_IF_LEGITIMATE_ADDRESS' would ever accept. */
+#define MAX_REGS_PER_ADDRESS 1
+
+/* A C compound statement with a conditional `goto LABEL;' executed if X (an
+ RTX) is a legitimate memory address on the target machine for a memory
+ operand of mode MODE. */
+
+/* On the FR30 we only have one real addressing mode - an address in a
+ register. There are three special cases however:
+
+ * indexed addressing using small positive offsets from the stack pointer
+
+ * indexed addressing using small signed offsets from the frame pointer
+
+ * register plus register addressing using R13 as the base register.
+
+ At the moment we only support the first two of these special cases. */
+
+#ifdef REG_OK_STRICT
+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
+ do \
+ { \
+ if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
+ goto LABEL; \
+ if (GET_CODE (X) == PLUS \
+ && ((MODE) == SImode || (MODE) == SFmode) \
+ && GET_CODE (XEXP (X, 0)) == REG \
+ && REGNO (XEXP (X, 0)) == STACK_POINTER_REGNUM \
+ && GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && IN_RANGE (INTVAL (XEXP (X, 1)), 0, (1 << 6) - 4)) \
+ goto LABEL; \
+ if (GET_CODE (X) == PLUS \
+ && ((MODE) == SImode || (MODE) == SFmode) \
+ && GET_CODE (XEXP (X, 0)) == REG \
+ && REGNO (XEXP (X, 0)) == FRAME_POINTER_REGNUM \
+ && GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && IN_RANGE (INTVAL (XEXP (X, 1)), -(1 << 9), (1 << 9) - 4)) \
+ goto LABEL; \
+ } \
+ while (0)
+#else
+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
+ do \
+ { \
+ if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
+ goto LABEL; \
+ if (GET_CODE (X) == PLUS \
+ && ((MODE) == SImode || (MODE) == SFmode) \
+ && GET_CODE (XEXP (X, 0)) == REG \
+ && REGNO (XEXP (X, 0)) == STACK_POINTER_REGNUM \
+ && GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && IN_RANGE (INTVAL (XEXP (X, 1)), 0, (1 << 6) - 4)) \
+ goto LABEL; \
+ if (GET_CODE (X) == PLUS \
+ && ((MODE) == SImode || (MODE) == SFmode) \
+ && GET_CODE (XEXP (X, 0)) == REG \
+ && (REGNO (XEXP (X, 0)) == FRAME_POINTER_REGNUM \
+ || REGNO (XEXP (X, 0)) == ARG_POINTER_REGNUM) \
+ && GET_CODE (XEXP (X, 1)) == CONST_INT \
+ && IN_RANGE (INTVAL (XEXP (X, 1)), -(1 << 9), (1 << 9) - 4)) \
+ goto LABEL; \
+ } \
+ while (0)
+#endif
+
+/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
+ use as a base register. For hard registers, it should always accept those
+ which the hardware permits and reject the others. Whether the macro accepts
+ or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
+ described above. This usually requires two variant definitions, of which
+ `REG_OK_STRICT' controls the one actually used. */
+#ifdef REG_OK_STRICT
+#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) <= STACK_POINTER_REGNUM)
+#else
+#define REG_OK_FOR_BASE_P(X) 1
+#endif
+
+/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
+ use as an index register.
+
+ The difference between an index register and a base register is that the
+ index register may be scaled. If an address involves the sum of two
+ registers, neither one of them scaled, then either one may be labeled the
+ "base" and the other the "index"; but whichever labeling is used must fit
+ the machine's constraints of which registers may serve in each capacity.
+ The compiler will try both labelings, looking for one that is valid, and
+ will reload one or both registers only if neither labeling works. */
+#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
+
+/* A C expression that is nonzero if X is a legitimate constant for an
+ immediate operand on the target machine. You can assume that X satisfies
+ `CONSTANT_P', so you need not check this. In fact, `1' is a suitable
+ definition for this macro on machines where anything `CONSTANT_P' is valid. */
+#define LEGITIMATE_CONSTANT_P(X) 1
+
+/*}}}*/
+/*{{{ Describing Relative Costs of Operations */
+
+/* Define this macro as a C expression which is nonzero if accessing less than
+ a word of memory (i.e. a `char' or a `short') is no faster than accessing a
+ word of memory, i.e., if such access require more than one instruction or if
+ there is no difference in cost between byte and (aligned) word loads.
+
+ When this macro is not defined, the compiler will access a field by finding
+ the smallest containing object; when it is defined, a fullword load will be
+ used if alignment permits. Unless bytes accesses are faster than word
+ accesses, using word accesses is preferable since it may eliminate
+ subsequent memory access if subsequent accesses occur to other fields in the
+ same word of the structure, but to different bytes. */
+#define SLOW_BYTE_ACCESS 1
+
+/*}}}*/
+/*{{{ Dividing the output into sections. */
+
+/* A C expression whose value is a string containing the assembler operation
+ that should precede instructions and read-only data. Normally `".text"' is
+ right. */
+#define TEXT_SECTION_ASM_OP "\t.text"
+
+/* A C expression whose value is a string containing the assembler operation to
+ identify the following data as writable initialized data. Normally
+ `".data"' is right. */
+#define DATA_SECTION_ASM_OP "\t.data"
+
+/* If defined, a C expression whose value is a string containing the
+ assembler operation to identify the following data as
+ uninitialized global data. If not defined, and neither
+ `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
+ uninitialized global data will be output in the data section if
+ `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
+ used. */
+#define BSS_SECTION_ASM_OP "\t.section .bss"
+
+/*}}}*/
+/*{{{ The Overall Framework of an Assembler File. */
+
+/* A C string constant describing how to begin a comment in the target
+ assembler language. The compiler assumes that the comment will end at the
+ end of the line. */
+#define ASM_COMMENT_START ";"
+
+/* A C string constant for text to be output before each `asm' statement or
+ group of consecutive ones. Normally this is `"#APP"', which is a comment
+ that has no effect on most assemblers but tells the GNU assembler that it
+ must check the lines that follow for all valid assembler constructs. */
+#define ASM_APP_ON "#APP\n"
+
+/* A C string constant for text to be output after each `asm' statement or
+ group of consecutive ones. Normally this is `"#NO_APP"', which tells the
+ GNU assembler to resume making the time-saving assumptions that are valid
+ for ordinary compiler output. */
+#define ASM_APP_OFF "#NO_APP\n"
+
+/*}}}*/
+/*{{{ Output and Generation of Labels. */
+
+/* Globalizing directive for a label. */
+#define GLOBAL_ASM_OP "\t.globl "
+
+/*}}}*/
+/*{{{ Output of Assembler Instructions. */
+
+/* A C compound statement to output to stdio stream STREAM the assembler syntax
+ for an instruction operand X. X is an RTL expression.
+
+ CODE is a value that can be used to specify one of several ways of printing
+ the operand. It is used when identical operands must be printed differently
+ depending on the context. CODE comes from the `%' specification that was
+ used to request printing of the operand. If the specification was just
+ `%DIGIT' then CODE is 0; if the specification was `%LTR DIGIT' then CODE is
+ the ASCII code for LTR.
+
+ If X is a register, this macro should print the register's name. The names
+ can be found in an array `reg_names' whose type is `char *[]'. `reg_names'
+ is initialized from `REGISTER_NAMES'.
+
+ When the machine description has a specification `%PUNCT' (a `%' followed by
+ a punctuation character), this macro is called with a null pointer for X and
+ the punctuation character for CODE. */
+#define PRINT_OPERAND(STREAM, X, CODE) fr30_print_operand (STREAM, X, CODE)
+
+/* A C expression which evaluates to true if CODE is a valid punctuation
+ character for use in the `PRINT_OPERAND' macro. If
+ `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no punctuation
+ characters (except for the standard one, `%') are used in this way. */
+#define PRINT_OPERAND_PUNCT_VALID_P(CODE) (CODE == '#')
+
+/* A C compound statement to output to stdio stream STREAM the assembler syntax
+ for an instruction operand that is a memory reference whose address is X. X
+ is an RTL expression. */
+
+#define PRINT_OPERAND_ADDRESS(STREAM, X) fr30_print_operand_address (STREAM, X)
+
+#define REGISTER_PREFIX "%"
+#define LOCAL_LABEL_PREFIX "."
+#define USER_LABEL_PREFIX ""
+#define IMMEDIATE_PREFIX ""
+
+/*}}}*/
+/*{{{ Output of Dispatch Tables. */
+
+/* This macro should be provided on machines where the addresses in a dispatch
+ table are relative to the table's own address.
+
+ The definition should be a C statement to output to the stdio stream STREAM
+ an assembler pseudo-instruction to generate a difference between two labels.
+ VALUE and REL are the numbers of two internal labels. The definitions of
+ these labels are output using `(*targetm.asm_out.internal_label)', and they must be
+ printed in the same way here. For example,
+
+ fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */
+#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
+fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
+
+/* This macro should be provided on machines where the addresses in a dispatch
+ table are absolute.
+
+ The definition should be a C statement to output to the stdio stream STREAM
+ an assembler pseudo-instruction to generate a reference to a label. VALUE
+ is the number of an internal label whose definition is output using
+ `(*targetm.asm_out.internal_label)'. For example,
+
+ fprintf (STREAM, "\t.word L%d\n", VALUE) */
+#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
+fprintf (STREAM, "\t.word .L%d\n", VALUE)
+
+/*}}}*/
+/*{{{ Assembler Commands for Alignment. */
+
+/* A C statement to output to the stdio stream STREAM an assembler command to
+ advance the location counter to a multiple of 2 to the POWER bytes. POWER
+ will be a C expression of type `int'. */
+#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
+ fprintf ((STREAM), "\t.p2align %d\n", (POWER))
+
+/*}}}*/
+/*{{{ Miscellaneous Parameters. */
+
+/* An alias for a machine mode name. This is the machine mode that elements of
+ a jump-table should have. */
+#define CASE_VECTOR_MODE SImode
+
+/* The maximum number of bytes that a single instruction can move quickly from
+ memory to memory. */
+#define MOVE_MAX 8
+
+/* A C expression which is nonzero if on this machine it is safe to "convert"
+ an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
+ than INPREC) by merely operating on it as if it had only OUTPREC bits.
+
+ On many machines, this expression can be 1.
+
+ When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
+ which `MODES_TIEABLE_P' is 0, suboptimal code can result. If this is the
+ case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
+ things. */
+#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
+
+/* An alias for the machine mode for pointers. On most machines, define this
+ to be the integer mode corresponding to the width of a hardware pointer;
+ `SImode' on 32-bit machine or `DImode' on 64-bit machines. On some machines
+ you must define this to be one of the partial integer modes, such as
+ `PSImode'.
+
+ The width of `Pmode' must be at least as large as the value of
+ `POINTER_SIZE'. If it is not equal, you must define the macro
+ `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'. */
+#define Pmode SImode
+
+/* An alias for the machine mode used for memory references to functions being
+ called, in `call' RTL expressions. On most machines this should be
+ `QImode'. */
+#define FUNCTION_MODE QImode
+
+/* If cross-compiling, don't require stdio.h etc to build libgcc.a. */
+#if defined CROSS_DIRECTORY_STRUCTURE && ! defined inhibit_libc
+#define inhibit_libc
+#endif
+
+/*}}}*/
+
+/* Local Variables: */
+/* folded-file: t */
+/* End: */