diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/config/rs6000/rs6000.h | |
download | cbb-gcc-4.6.4-upstream.tar.bz2 cbb-gcc-4.6.4-upstream.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'gcc/config/rs6000/rs6000.h')
-rw-r--r-- | gcc/config/rs6000/rs6000.h | 2439 |
1 files changed, 2439 insertions, 0 deletions
diff --git a/gcc/config/rs6000/rs6000.h b/gcc/config/rs6000/rs6000.h new file mode 100644 index 000000000..0eae3265a --- /dev/null +++ b/gcc/config/rs6000/rs6000.h @@ -0,0 +1,2439 @@ +/* Definitions of target machine for GNU compiler, for IBM RS/6000. + Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, + 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, + 2010, 2011 + Free Software Foundation, Inc. + Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu) + + This file is part of GCC. + + GCC is free software; you can redistribute it and/or modify it + under the terms of the GNU General Public License as published + by the Free Software Foundation; either version 3, or (at your + option) any later version. + + GCC is distributed in the hope that it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY + or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public + License for more details. + + Under Section 7 of GPL version 3, you are granted additional + permissions described in the GCC Runtime Library Exception, version + 3.1, as published by the Free Software Foundation. + + You should have received a copy of the GNU General Public License and + a copy of the GCC Runtime Library Exception along with this program; + see the files COPYING3 and COPYING.RUNTIME respectively. If not, see + <http://www.gnu.org/licenses/>. */ + +/* Note that some other tm.h files include this one and then override + many of the definitions. */ + +#ifndef RS6000_OPTS_H +#include "config/rs6000/rs6000-opts.h" +#endif + +/* Definitions for the object file format. These are set at + compile-time. */ + +#define OBJECT_XCOFF 1 +#define OBJECT_ELF 2 +#define OBJECT_PEF 3 +#define OBJECT_MACHO 4 + +#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF) +#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF) +#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF) +#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO) + +#ifndef TARGET_AIX +#define TARGET_AIX 0 +#endif + +#ifndef TARGET_AIX_OS +#define TARGET_AIX_OS 0 +#endif + +/* Control whether function entry points use a "dot" symbol when + ABI_AIX. */ +#define DOT_SYMBOLS 1 + +/* Default string to use for cpu if not specified. */ +#ifndef TARGET_CPU_DEFAULT +#define TARGET_CPU_DEFAULT ((char *)0) +#endif + +/* If configured for PPC405, support PPC405CR Erratum77. */ +#ifdef CONFIG_PPC405CR +#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405) +#else +#define PPC405_ERRATUM77 0 +#endif + +#ifndef TARGET_PAIRED_FLOAT +#define TARGET_PAIRED_FLOAT 0 +#endif + +#ifdef HAVE_AS_POPCNTB +#define ASM_CPU_POWER5_SPEC "-mpower5" +#else +#define ASM_CPU_POWER5_SPEC "-mpower4" +#endif + +#ifdef HAVE_AS_DFP +#define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec" +#else +#define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec" +#endif + +#ifdef HAVE_AS_POPCNTD +#define ASM_CPU_POWER7_SPEC "-mpower7" +#else +#define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec" +#endif + +#ifdef HAVE_AS_DCI +#define ASM_CPU_476_SPEC "-m476" +#else +#define ASM_CPU_476_SPEC "-mpower4" +#endif + +/* Common ASM definitions used by ASM_SPEC among the various targets for + handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to + provide the default assembler options if the user uses -mcpu=native, so if + you make changes here, make them also there. */ +#define ASM_CPU_SPEC \ +"%{!mcpu*: \ + %{mpower: %{!mpower2: -mpwr}} \ + %{mpower2: -mpwrx} \ + %{mpowerpc64*: -mppc64} \ + %{!mpowerpc64*: %{mpowerpc*: -mppc}} \ + %{mno-power: %{!mpowerpc*: -mcom}} \ + %{!mno-power: %{!mpower*: %(asm_default)}}} \ +%{mcpu=native: %(asm_cpu_native)} \ +%{mcpu=common: -mcom} \ +%{mcpu=cell: -mcell} \ +%{mcpu=power: -mpwr} \ +%{mcpu=power2: -mpwrx} \ +%{mcpu=power3: -mppc64} \ +%{mcpu=power4: -mpower4} \ +%{mcpu=power5: %(asm_cpu_power5)} \ +%{mcpu=power5+: %(asm_cpu_power5)} \ +%{mcpu=power6: %(asm_cpu_power6) -maltivec} \ +%{mcpu=power6x: %(asm_cpu_power6) -maltivec} \ +%{mcpu=power7: %(asm_cpu_power7)} \ +%{mcpu=a2: -ma2} \ +%{mcpu=powerpc: -mppc} \ +%{mcpu=rios: -mpwr} \ +%{mcpu=rios1: -mpwr} \ +%{mcpu=rios2: -mpwrx} \ +%{mcpu=rsc: -mpwr} \ +%{mcpu=rsc1: -mpwr} \ +%{mcpu=rs64a: -mppc64} \ +%{mcpu=401: -mppc} \ +%{mcpu=403: -m403} \ +%{mcpu=405: -m405} \ +%{mcpu=405fp: -m405} \ +%{mcpu=440: -m440} \ +%{mcpu=440fp: -m440} \ +%{mcpu=464: -m440} \ +%{mcpu=464fp: -m440} \ +%{mcpu=476: %(asm_cpu_476)} \ +%{mcpu=476fp: %(asm_cpu_476)} \ +%{mcpu=505: -mppc} \ +%{mcpu=601: -m601} \ +%{mcpu=602: -mppc} \ +%{mcpu=603: -mppc} \ +%{mcpu=603e: -mppc} \ +%{mcpu=ec603e: -mppc} \ +%{mcpu=604: -mppc} \ +%{mcpu=604e: -mppc} \ +%{mcpu=620: -mppc64} \ +%{mcpu=630: -mppc64} \ +%{mcpu=740: -mppc} \ +%{mcpu=750: -mppc} \ +%{mcpu=G3: -mppc} \ +%{mcpu=7400: -mppc -maltivec} \ +%{mcpu=7450: -mppc -maltivec} \ +%{mcpu=G4: -mppc -maltivec} \ +%{mcpu=801: -mppc} \ +%{mcpu=821: -mppc} \ +%{mcpu=823: -mppc} \ +%{mcpu=860: -mppc} \ +%{mcpu=970: -mpower4 -maltivec} \ +%{mcpu=G5: -mpower4 -maltivec} \ +%{mcpu=8540: -me500} \ +%{mcpu=8548: -me500} \ +%{mcpu=e300c2: -me300} \ +%{mcpu=e300c3: -me300} \ +%{mcpu=e500mc: -me500mc} \ +%{mcpu=e500mc64: -me500mc64} \ +%{maltivec: -maltivec} \ +%{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \ +-many" + +#define CPP_DEFAULT_SPEC "" + +#define ASM_DEFAULT_SPEC "" + +/* This macro defines names of additional specifications to put in the specs + that can be used in various specifications like CC1_SPEC. Its definition + is an initializer with a subgrouping for each command option. + + Each subgrouping contains a string constant, that defines the + specification name, and a string constant that used by the GCC driver + program. + + Do not define this macro if it does not need to do anything. */ + +#define SUBTARGET_EXTRA_SPECS + +#define EXTRA_SPECS \ + { "cpp_default", CPP_DEFAULT_SPEC }, \ + { "asm_cpu", ASM_CPU_SPEC }, \ + { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \ + { "asm_default", ASM_DEFAULT_SPEC }, \ + { "cc1_cpu", CC1_CPU_SPEC }, \ + { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \ + { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \ + { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \ + { "asm_cpu_476", ASM_CPU_476_SPEC }, \ + SUBTARGET_EXTRA_SPECS + +/* -mcpu=native handling only makes sense with compiler running on + an PowerPC chip. If changing this condition, also change + the condition in driver-rs6000.c. */ +#if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX) +/* In driver-rs6000.c. */ +extern const char *host_detect_local_cpu (int argc, const char **argv); +#define EXTRA_SPEC_FUNCTIONS \ + { "local_cpu_detect", host_detect_local_cpu }, +#define HAVE_LOCAL_CPU_DETECT +#define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)" + +#else +#define ASM_CPU_NATIVE_SPEC "%(asm_default)" +#endif + +#ifndef CC1_CPU_SPEC +#ifdef HAVE_LOCAL_CPU_DETECT +#define CC1_CPU_SPEC \ +"%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \ + %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}" +#else +#define CC1_CPU_SPEC "" +#endif +#endif + +/* Architecture type. */ + +/* Define TARGET_MFCRF if the target assembler does not support the + optional field operand for mfcr. */ + +#ifndef HAVE_AS_MFCRF +#undef TARGET_MFCRF +#define TARGET_MFCRF 0 +#endif + +/* Define TARGET_POPCNTB if the target assembler does not support the + popcount byte instruction. */ + +#ifndef HAVE_AS_POPCNTB +#undef TARGET_POPCNTB +#define TARGET_POPCNTB 0 +#endif + +/* Define TARGET_FPRND if the target assembler does not support the + fp rounding instructions. */ + +#ifndef HAVE_AS_FPRND +#undef TARGET_FPRND +#define TARGET_FPRND 0 +#endif + +/* Define TARGET_CMPB if the target assembler does not support the + cmpb instruction. */ + +#ifndef HAVE_AS_CMPB +#undef TARGET_CMPB +#define TARGET_CMPB 0 +#endif + +/* Define TARGET_MFPGPR if the target assembler does not support the + mffpr and mftgpr instructions. */ + +#ifndef HAVE_AS_MFPGPR +#undef TARGET_MFPGPR +#define TARGET_MFPGPR 0 +#endif + +/* Define TARGET_DFP if the target assembler does not support decimal + floating point instructions. */ +#ifndef HAVE_AS_DFP +#undef TARGET_DFP +#define TARGET_DFP 0 +#endif + +/* Define TARGET_POPCNTD if the target assembler does not support the + popcount word and double word instructions. */ + +#ifndef HAVE_AS_POPCNTD +#undef TARGET_POPCNTD +#define TARGET_POPCNTD 0 +#endif + +/* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If + not, generate the lwsync code as an integer constant. */ +#ifdef HAVE_AS_LWSYNC +#define TARGET_LWSYNC_INSTRUCTION 1 +#else +#define TARGET_LWSYNC_INSTRUCTION 0 +#endif + +/* Define TARGET_TLS_MARKERS if the target assembler does not support + arg markers for __tls_get_addr calls. */ +#ifndef HAVE_AS_TLS_MARKERS +#undef TARGET_TLS_MARKERS +#define TARGET_TLS_MARKERS 0 +#else +#define TARGET_TLS_MARKERS tls_markers +#endif + +#ifndef TARGET_SECURE_PLT +#define TARGET_SECURE_PLT 0 +#endif + +#ifndef TARGET_CMODEL +#define TARGET_CMODEL CMODEL_SMALL +#endif + +#define TARGET_32BIT (! TARGET_64BIT) + +#ifndef HAVE_AS_TLS +#define HAVE_AS_TLS 0 +#endif + +/* Return 1 for a symbol ref for a thread-local storage symbol. */ +#define RS6000_SYMBOL_REF_TLS_P(RTX) \ + (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0) + +#ifdef IN_LIBGCC2 +/* For libgcc2 we make sure this is a compile time constant */ +#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__) +#undef TARGET_POWERPC64 +#define TARGET_POWERPC64 1 +#else +#undef TARGET_POWERPC64 +#define TARGET_POWERPC64 0 +#endif +#else + /* The option machinery will define this. */ +#endif + +#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING) + +/* FPU operations supported. + Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must + also test TARGET_HARD_FLOAT. */ +#define TARGET_SINGLE_FLOAT 1 +#define TARGET_DOUBLE_FLOAT 1 +#define TARGET_SINGLE_FPU 0 +#define TARGET_SIMPLE_FPU 0 +#define TARGET_XILINX_FPU 0 + +/* Recast the processor type to the cpu attribute. */ +#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu) + +/* Define generic processor types based upon current deployment. */ +#define PROCESSOR_COMMON PROCESSOR_PPC601 +#define PROCESSOR_POWER PROCESSOR_RIOS1 +#define PROCESSOR_POWERPC PROCESSOR_PPC604 +#define PROCESSOR_POWERPC64 PROCESSOR_RS64A + +/* Define the default processor. This is overridden by other tm.h files. */ +#define PROCESSOR_DEFAULT PROCESSOR_RIOS1 +#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A + +extern enum fpu_type_t fpu_type; + +/* Specify the dialect of assembler to use. New mnemonics is dialect one + and the old mnemonics are dialect zero. */ +#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0) + +/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */ +struct rs6000_cpu_select +{ + const char *string; + const char *name; + int set_tune_p; + int set_arch_p; +}; + +extern struct rs6000_cpu_select rs6000_select[]; + +/* Debug support */ +#define MASK_DEBUG_STACK 0x01 /* debug stack applications */ +#define MASK_DEBUG_ARG 0x02 /* debug argument handling */ +#define MASK_DEBUG_REG 0x04 /* debug register handling */ +#define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */ +#define MASK_DEBUG_COST 0x10 /* debug rtx codes */ +#define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */ +#define MASK_DEBUG_ALL (MASK_DEBUG_STACK \ + | MASK_DEBUG_ARG \ + | MASK_DEBUG_REG \ + | MASK_DEBUG_ADDR \ + | MASK_DEBUG_COST \ + | MASK_DEBUG_TARGET) + +#define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK) +#define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG) +#define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG) +#define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR) +#define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST) +#define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET) + +extern enum rs6000_vector rs6000_vector_unit[]; + +#define VECTOR_UNIT_NONE_P(MODE) \ + (rs6000_vector_unit[(MODE)] == VECTOR_NONE) + +#define VECTOR_UNIT_VSX_P(MODE) \ + (rs6000_vector_unit[(MODE)] == VECTOR_VSX) + +#define VECTOR_UNIT_ALTIVEC_P(MODE) \ + (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC) + +#define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \ + (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC \ + || rs6000_vector_unit[(MODE)] == VECTOR_VSX) + +/* Describe whether to use VSX loads or Altivec loads. For now, just use the + same unit as the vector unit we are using, but we may want to migrate to + using VSX style loads even for types handled by altivec. */ +extern enum rs6000_vector rs6000_vector_mem[]; + +#define VECTOR_MEM_NONE_P(MODE) \ + (rs6000_vector_mem[(MODE)] == VECTOR_NONE) + +#define VECTOR_MEM_VSX_P(MODE) \ + (rs6000_vector_mem[(MODE)] == VECTOR_VSX) + +#define VECTOR_MEM_ALTIVEC_P(MODE) \ + (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC) + +#define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \ + (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC \ + || rs6000_vector_mem[(MODE)] == VECTOR_VSX) + +/* Return the alignment of a given vector type, which is set based on the + vector unit use. VSX for instance can load 32 or 64 bit aligned words + without problems, while Altivec requires 128-bit aligned vectors. */ +extern int rs6000_vector_align[]; + +#define VECTOR_ALIGN(MODE) \ + ((rs6000_vector_align[(MODE)] != 0) \ + ? rs6000_vector_align[(MODE)] \ + : (int)GET_MODE_BITSIZE ((MODE))) + +/* Alignment options for fields in structures for sub-targets following + AIX-like ABI. + ALIGN_POWER word-aligns FP doubles (default AIX ABI). + ALIGN_NATURAL doubleword-aligns FP doubles (align to object size). + + Override the macro definitions when compiling libobjc to avoid undefined + reference to rs6000_alignment_flags due to library's use of GCC alignment + macros which use the macros below. */ + +#ifndef IN_TARGET_LIBS +#define MASK_ALIGN_POWER 0x00000000 +#define MASK_ALIGN_NATURAL 0x00000001 +#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL) +#else +#define TARGET_ALIGN_NATURAL 0 +#endif + +#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128) +#define TARGET_IEEEQUAD rs6000_ieeequad +#define TARGET_ALTIVEC_ABI rs6000_altivec_abi +#define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL) + +#define TARGET_SPE_ABI 0 +#define TARGET_SPE 0 +#define TARGET_E500 0 +#define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64) +#define TARGET_FPRS 1 +#define TARGET_E500_SINGLE 0 +#define TARGET_E500_DOUBLE 0 +#define CHECK_E500_OPTIONS do { } while (0) + +/* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only. + Enable 32-bit fcfid's on any of the switches for newer ISA machines or + XILINX. */ +#define TARGET_FCFID (TARGET_POWERPC64 \ + || TARGET_PPC_GPOPT /* 970/power4 */ \ + || TARGET_POPCNTB /* ISA 2.02 */ \ + || TARGET_CMPB /* ISA 2.05 */ \ + || TARGET_POPCNTD /* ISA 2.06 */ \ + || TARGET_XILINX_FPU) + +#define TARGET_FCTIDZ TARGET_FCFID +#define TARGET_STFIWX TARGET_PPC_GFXOPT +#define TARGET_LFIWAX TARGET_CMPB +#define TARGET_LFIWZX TARGET_POPCNTD +#define TARGET_FCFIDS TARGET_POPCNTD +#define TARGET_FCFIDU TARGET_POPCNTD +#define TARGET_FCFIDUS TARGET_POPCNTD +#define TARGET_FCTIDUZ TARGET_POPCNTD +#define TARGET_FCTIWUZ TARGET_POPCNTD + +/* E500 processors only support plain "sync", not lwsync. */ +#define TARGET_NO_LWSYNC TARGET_E500 + +/* Which machine supports the various reciprocal estimate instructions. */ +#define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \ + && TARGET_FPRS && TARGET_SINGLE_FLOAT) + +#define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \ + && TARGET_DOUBLE_FLOAT \ + && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode))) + +#define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \ + && TARGET_FPRS && TARGET_SINGLE_FLOAT) + +#define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \ + && TARGET_DOUBLE_FLOAT \ + && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode))) + +/* Whether the various reciprocal divide/square root estimate instructions + exist, and whether we should automatically generate code for the instruction + by default. */ +#define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */ +#define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */ +#define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */ +#define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */ + +extern unsigned char rs6000_recip_bits[]; + +#define RS6000_RECIP_HAVE_RE_P(MODE) \ + (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE) + +#define RS6000_RECIP_AUTO_RE_P(MODE) \ + (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE) + +#define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \ + (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE) + +#define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \ + (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE) + +#define RS6000_RECIP_HIGH_PRECISION_P(MODE) \ + ((MODE) == SFmode || (MODE) == V4SFmode || TARGET_RECIP_PRECISION) + +/* The default CPU for TARGET_OPTION_OVERRIDE. */ +#define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT + +/* Target pragma. */ +#define REGISTER_TARGET_PRAGMAS() do { \ + c_register_pragma (0, "longcall", rs6000_pragma_longcall); \ + targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \ + targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \ +} while (0) + +/* Target #defines. */ +#define TARGET_CPU_CPP_BUILTINS() \ + rs6000_cpu_cpp_builtins (pfile) + +/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order + we're compiling for. Some configurations may need to override it. */ +#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \ + do \ + { \ + if (BYTES_BIG_ENDIAN) \ + { \ + builtin_define ("__BIG_ENDIAN__"); \ + builtin_define ("_BIG_ENDIAN"); \ + builtin_assert ("machine=bigendian"); \ + } \ + else \ + { \ + builtin_define ("__LITTLE_ENDIAN__"); \ + builtin_define ("_LITTLE_ENDIAN"); \ + builtin_assert ("machine=littleendian"); \ + } \ + } \ + while (0) + +/* Target machine storage layout. */ + +/* Define this macro if it is advisable to hold scalars in registers + in a wider mode than that declared by the program. In such cases, + the value is constrained to be within the bounds of the declared + type, but kept valid in the wider mode. The signedness of the + extension may differ from that of the type. */ + +#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \ + if (GET_MODE_CLASS (MODE) == MODE_INT \ + && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \ + (MODE) = TARGET_32BIT ? SImode : DImode; + +/* Define this if most significant bit is lowest numbered + in instructions that operate on numbered bit-fields. */ +/* That is true on RS/6000. */ +#define BITS_BIG_ENDIAN 1 + +/* Define this if most significant byte of a word is the lowest numbered. */ +/* That is true on RS/6000. */ +#define BYTES_BIG_ENDIAN 1 + +/* Define this if most significant word of a multiword number is lowest + numbered. + + For RS/6000 we can decide arbitrarily since there are no machine + instructions for them. Might as well be consistent with bits and bytes. */ +#define WORDS_BIG_ENDIAN 1 + +#define MAX_BITS_PER_WORD 64 + +/* Width of a word, in units (bytes). */ +#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8) +#ifdef IN_LIBGCC2 +#define MIN_UNITS_PER_WORD UNITS_PER_WORD +#else +#define MIN_UNITS_PER_WORD 4 +#endif +#define UNITS_PER_FP_WORD 8 +#define UNITS_PER_ALTIVEC_WORD 16 +#define UNITS_PER_VSX_WORD 16 +#define UNITS_PER_SPE_WORD 8 +#define UNITS_PER_PAIRED_WORD 8 + +/* Type used for ptrdiff_t, as a string used in a declaration. */ +#define PTRDIFF_TYPE "int" + +/* Type used for size_t, as a string used in a declaration. */ +#define SIZE_TYPE "long unsigned int" + +/* Type used for wchar_t, as a string used in a declaration. */ +#define WCHAR_TYPE "short unsigned int" + +/* Width of wchar_t in bits. */ +#define WCHAR_TYPE_SIZE 16 + +/* A C expression for the size in bits of the type `short' on the + target machine. If you don't define this, the default is half a + word. (If this would be less than one storage unit, it is + rounded up to one unit.) */ +#define SHORT_TYPE_SIZE 16 + +/* A C expression for the size in bits of the type `int' on the + target machine. If you don't define this, the default is one + word. */ +#define INT_TYPE_SIZE 32 + +/* A C expression for the size in bits of the type `long' on the + target machine. If you don't define this, the default is one + word. */ +#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64) + +/* A C expression for the size in bits of the type `long long' on the + target machine. If you don't define this, the default is two + words. */ +#define LONG_LONG_TYPE_SIZE 64 + +/* A C expression for the size in bits of the type `float' on the + target machine. If you don't define this, the default is one + word. */ +#define FLOAT_TYPE_SIZE 32 + +/* A C expression for the size in bits of the type `double' on the + target machine. If you don't define this, the default is two + words. */ +#define DOUBLE_TYPE_SIZE 64 + +/* A C expression for the size in bits of the type `long double' on + the target machine. If you don't define this, the default is two + words. */ +#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size + +/* Define this to set long double type size to use in libgcc2.c, which can + not depend on target_flags. */ +#ifdef __LONG_DOUBLE_128__ +#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128 +#else +#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64 +#endif + +/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */ +#define WIDEST_HARDWARE_FP_SIZE 64 + +/* Width in bits of a pointer. + See also the macro `Pmode' defined below. */ +extern unsigned rs6000_pointer_size; +#define POINTER_SIZE rs6000_pointer_size + +/* Allocation boundary (in *bits*) for storing arguments in argument list. */ +#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64) + +/* Boundary (in *bits*) on which stack pointer should be aligned. */ +#define STACK_BOUNDARY \ + ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \ + ? 64 : 128) + +/* Allocation boundary (in *bits*) for the code of a function. */ +#define FUNCTION_BOUNDARY 32 + +/* No data type wants to be aligned rounder than this. */ +#define BIGGEST_ALIGNMENT 128 + +/* A C expression to compute the alignment for a variables in the + local store. TYPE is the data type, and ALIGN is the alignment + that the object would ordinarily have. */ +#define LOCAL_ALIGNMENT(TYPE, ALIGN) \ + DATA_ALIGNMENT (TYPE, ALIGN) + +/* Alignment of field after `int : 0' in a structure. */ +#define EMPTY_FIELD_BOUNDARY 32 + +/* Every structure's size must be a multiple of this. */ +#define STRUCTURE_SIZE_BOUNDARY 8 + +/* Return 1 if a structure or array containing FIELD should be + accessed using `BLKMODE'. + + For the SPE, simd types are V2SI, and gcc can be tempted to put the + entire thing in a DI and use subregs to access the internals. + store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the + back-end. Because a single GPR can hold a V2SI, but not a DI, the + best thing to do is set structs to BLKmode and avoid Severe Tire + Damage. + + On e500 v2, DF and DI modes suffer from the same anomaly. DF can + fit into 1, whereas DI still needs two. */ +#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \ + ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \ + || (TARGET_E500_DOUBLE && (MODE) == DFmode)) + +/* A bit-field declared as `int' forces `int' alignment for the struct. */ +#define PCC_BITFIELD_TYPE_MATTERS 1 + +/* Make strings word-aligned so strcpy from constants will be faster. + Make vector constants quadword aligned. */ +#define CONSTANT_ALIGNMENT(EXP, ALIGN) \ + (TREE_CODE (EXP) == STRING_CST \ + && (STRICT_ALIGNMENT || !optimize_size) \ + && (ALIGN) < BITS_PER_WORD \ + ? BITS_PER_WORD \ + : (ALIGN)) + +/* Make arrays of chars word-aligned for the same reasons. + Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to + 64 bits. */ +#define DATA_ALIGNMENT(TYPE, ALIGN) \ + (TREE_CODE (TYPE) == VECTOR_TYPE \ + ? (((TARGET_SPE && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) \ + || (TARGET_PAIRED_FLOAT && PAIRED_VECTOR_MODE (TYPE_MODE (TYPE)))) \ + ? 64 : 128) \ + : ((TARGET_E500_DOUBLE \ + && TREE_CODE (TYPE) == REAL_TYPE \ + && TYPE_MODE (TYPE) == DFmode) \ + ? 64 \ + : (TREE_CODE (TYPE) == ARRAY_TYPE \ + && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ + && (ALIGN) < BITS_PER_WORD) ? BITS_PER_WORD : (ALIGN))) + +/* Nonzero if move instructions will actually fail to work + when given unaligned data. */ +#define STRICT_ALIGNMENT 0 + +/* Define this macro to be the value 1 if unaligned accesses have a cost + many times greater than aligned accesses, for example if they are + emulated in a trap handler. */ +/* Altivec vector memory instructions simply ignore the low bits; SPE vector + memory instructions trap on unaligned accesses; VSX memory instructions are + aligned to 4 or 8 bytes. */ +#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \ + (STRICT_ALIGNMENT \ + || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \ + || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode \ + || (MODE) == DImode) \ + && (ALIGN) < 32) \ + || (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE)))) + + +/* Standard register usage. */ + +/* Number of actual hardware registers. + The hardware registers are assigned numbers for the compiler + from 0 to just below FIRST_PSEUDO_REGISTER. + All registers that the compiler knows about must be given numbers, + even those that are not normally considered general registers. + + RS/6000 has 32 fixed-point registers, 32 floating-point registers, + an MQ register, a count register, a link register, and 8 condition + register fields, which we view here as separate registers. AltiVec + adds 32 vector registers and a VRsave register. + + In addition, the difference between the frame and argument pointers is + a function of the number of registers saved, so we need to have a + register for AP that will later be eliminated in favor of SP or FP. + This is a normal register, but it is fixed. + + We also create a pseudo register for float/int conversions, that will + really represent the memory location used. It is represented here as + a register, in order to work around problems in allocating stack storage + in inline functions. + + Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame + pointer, which is eventually eliminated in favor of SP or FP. */ + +#define FIRST_PSEUDO_REGISTER 114 + +/* This must be included for pre gcc 3.0 glibc compatibility. */ +#define PRE_GCC3_DWARF_FRAME_REGISTERS 77 + +/* Add 32 dwarf columns for synthetic SPE registers. */ +#define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32) + +/* The SPE has an additional 32 synthetic registers, with DWARF debug + info numbering for these registers starting at 1200. While eh_frame + register numbering need not be the same as the debug info numbering, + we choose to number these regs for eh_frame at 1200 too. This allows + future versions of the rs6000 backend to add hard registers and + continue to use the gcc hard register numbering for eh_frame. If the + extra SPE registers in eh_frame were numbered starting from the + current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER + changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to + avoid invalidating older SPE eh_frame info. + + We must map them here to avoid huge unwinder tables mostly consisting + of unused space. */ +#define DWARF_REG_TO_UNWIND_COLUMN(r) \ + ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r)) + +/* Use standard DWARF numbering for DWARF debugging information. */ +#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO) + +/* Use gcc hard register numbering for eh_frame. */ +#define DWARF_FRAME_REGNUM(REGNO) (REGNO) + +/* Map register numbers held in the call frame info that gcc has + collected using DWARF_FRAME_REGNUM to those that should be output in + .debug_frame and .eh_frame. We continue to use gcc hard reg numbers + for .eh_frame, but use the numbers mandated by the various ABIs for + .debug_frame. rs6000_emit_prologue has translated any combination of + CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves + the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */ +#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \ + ((FOR_EH) ? (REGNO) \ + : (REGNO) == CR2_REGNO ? 64 \ + : DBX_REGISTER_NUMBER (REGNO)) + +/* 1 for registers that have pervasive standard uses + and are not available for the register allocator. + + On RS/6000, r1 is used for the stack. On Darwin, r2 is available + as a local register; for all other OS's r2 is the TOC pointer. + + cr5 is not supposed to be used. + + On System V implementations, r13 is fixed and not available for use. */ + +#define FIXED_REGISTERS \ + {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \ + /* AltiVec registers. */ \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 1, 1 \ + , 1, 1, 1 \ +} + +/* 1 for registers not available across function calls. + These must include the FIXED_REGISTERS and also any + registers that can be used without being saved. + The latter must include the registers where values are returned + and the register where structure-value addresses are passed. + Aside from that, you can include as many other registers as you like. */ + +#define CALL_USED_REGISTERS \ + {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \ + /* AltiVec registers. */ \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 1, 1 \ + , 1, 1, 1 \ +} + +/* Like `CALL_USED_REGISTERS' except this macro doesn't require that + the entire set of `FIXED_REGISTERS' be included. + (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS'). + This macro is optional. If not specified, it defaults to the value + of `CALL_USED_REGISTERS'. */ + +#define CALL_REALLY_USED_REGISTERS \ + {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \ + /* AltiVec registers. */ \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0 \ + , 0, 0, 0 \ +} + +#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1) + +#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20) +#define FIRST_SAVED_FP_REGNO (14+32) +#define FIRST_SAVED_GP_REGNO 13 + +/* List the order in which to allocate registers. Each register must be + listed once, even those in FIXED_REGISTERS. + + We allocate in the following order: + fp0 (not saved or used for anything) + fp13 - fp2 (not saved; incoming fp arg registers) + fp1 (not saved; return value) + fp31 - fp14 (saved; order given to save least number) + cr7, cr6 (not saved or special) + cr1 (not saved, but used for FP operations) + cr0 (not saved, but used for arithmetic operations) + cr4, cr3, cr2 (saved) + r0 (not saved; cannot be base reg) + r9 (not saved; best for TImode) + r11, r10, r8-r4 (not saved; highest used first to make less conflict) + r3 (not saved; return value register) + r31 - r13 (saved; order given to save least number) + r12 (not saved; if used for DImode or DFmode would use r13) + mq (not saved; best to use it if we can) + ctr (not saved; when we have the choice ctr is better) + lr (saved) + cr5, r1, r2, ap, ca (fixed) + v0 - v1 (not saved or used for anything) + v13 - v3 (not saved; incoming vector arg registers) + v2 (not saved; incoming vector arg reg; return value) + v19 - v14 (not saved or used for anything) + v31 - v20 (saved; order given to save least number) + vrsave, vscr (fixed) + spe_acc, spefscr (fixed) + sfp (fixed) +*/ + +#if FIXED_R2 == 1 +#define MAYBE_R2_AVAILABLE +#define MAYBE_R2_FIXED 2, +#else +#define MAYBE_R2_AVAILABLE 2, +#define MAYBE_R2_FIXED +#endif + +#define REG_ALLOC_ORDER \ + {32, \ + 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \ + 33, \ + 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \ + 50, 49, 48, 47, 46, \ + 75, 74, 69, 68, 72, 71, 70, \ + 0, MAYBE_R2_AVAILABLE \ + 9, 11, 10, 8, 7, 6, 5, 4, \ + 3, \ + 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \ + 18, 17, 16, 15, 14, 13, 12, \ + 64, 66, 65, \ + 73, 1, MAYBE_R2_FIXED 67, 76, \ + /* AltiVec registers. */ \ + 77, 78, \ + 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \ + 79, \ + 96, 95, 94, 93, 92, 91, \ + 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \ + 109, 110, \ + 111, 112, 113 \ +} + +/* True if register is floating-point. */ +#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63) + +/* True if register is a condition register. */ +#define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO) + +/* True if register is a condition register, but not cr0. */ +#define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO) + +/* True if register is an integer register. */ +#define INT_REGNO_P(N) \ + ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM) + +/* SPE SIMD registers are just the GPRs. */ +#define SPE_SIMD_REGNO_P(N) ((N) <= 31) + +/* PAIRED SIMD registers are just the FPRs. */ +#define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63) + +/* True if register is the CA register. */ +#define CA_REGNO_P(N) ((N) == CA_REGNO) + +/* True if register is an AltiVec register. */ +#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO) + +/* True if register is a VSX register. */ +#define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N)) + +/* Alternate name for any vector register supporting floating point, no matter + which instruction set(s) are available. */ +#define VFLOAT_REGNO_P(N) \ + (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N))) + +/* Alternate name for any vector register supporting integer, no matter which + instruction set(s) are available. */ +#define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N) + +/* Alternate name for any vector register supporting logical operations, no + matter which instruction set(s) are available. */ +#define VLOGICAL_REGNO_P(N) VFLOAT_REGNO_P (N) + +/* Return number of consecutive hard regs needed starting at reg REGNO + to hold something of mode MODE. */ + +#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)] + +/* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate + enough space to account for vectors in FP regs. */ +#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \ + (TARGET_VSX \ + && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \ + && FP_REGNO_P (REGNO) \ + ? V2DFmode \ + : choose_hard_reg_mode ((REGNO), (NREGS), false)) + +#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \ + (((TARGET_32BIT && TARGET_POWERPC64 \ + && (GET_MODE_SIZE (MODE) > 4) \ + && INT_REGNO_P (REGNO)) ? 1 : 0) \ + || (TARGET_VSX && FP_REGNO_P (REGNO) \ + && GET_MODE_SIZE (MODE) > 8)) + +#define VSX_VECTOR_MODE(MODE) \ + ((MODE) == V4SFmode \ + || (MODE) == V2DFmode) \ + +#define ALTIVEC_VECTOR_MODE(MODE) \ + ((MODE) == V16QImode \ + || (MODE) == V8HImode \ + || (MODE) == V4SFmode \ + || (MODE) == V4SImode) + +#define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \ + (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \ + || (MODE) == V2DImode) + +#define SPE_VECTOR_MODE(MODE) \ + ((MODE) == V4HImode \ + || (MODE) == V2SFmode \ + || (MODE) == V1DImode \ + || (MODE) == V2SImode) + +#define PAIRED_VECTOR_MODE(MODE) \ + ((MODE) == V2SFmode) + +/* Value is TRUE if hard register REGNO can hold a value of + machine-mode MODE. */ +#define HARD_REGNO_MODE_OK(REGNO, MODE) \ + rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO] + +/* Value is 1 if it is a good idea to tie two pseudo registers + when one has mode MODE1 and one has mode MODE2. + If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, + for any hard reg, then this must be 0 for correct output. */ +#define MODES_TIEABLE_P(MODE1, MODE2) \ + (SCALAR_FLOAT_MODE_P (MODE1) \ + ? SCALAR_FLOAT_MODE_P (MODE2) \ + : SCALAR_FLOAT_MODE_P (MODE2) \ + ? SCALAR_FLOAT_MODE_P (MODE1) \ + : GET_MODE_CLASS (MODE1) == MODE_CC \ + ? GET_MODE_CLASS (MODE2) == MODE_CC \ + : GET_MODE_CLASS (MODE2) == MODE_CC \ + ? GET_MODE_CLASS (MODE1) == MODE_CC \ + : SPE_VECTOR_MODE (MODE1) \ + ? SPE_VECTOR_MODE (MODE2) \ + : SPE_VECTOR_MODE (MODE2) \ + ? SPE_VECTOR_MODE (MODE1) \ + : ALTIVEC_VECTOR_MODE (MODE1) \ + ? ALTIVEC_VECTOR_MODE (MODE2) \ + : ALTIVEC_VECTOR_MODE (MODE2) \ + ? ALTIVEC_VECTOR_MODE (MODE1) \ + : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \ + ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \ + : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \ + ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \ + : 1) + +/* Post-reload, we can't use any new AltiVec registers, as we already + emitted the vrsave mask. */ + +#define HARD_REGNO_RENAME_OK(SRC, DST) \ + (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST)) + +/* Specify the cost of a branch insn; roughly the number of extra insns that + should be added to avoid a branch. + + Set this to 3 on the RS/6000 since that is roughly the average cost of an + unscheduled conditional branch. */ + +#define BRANCH_COST(speed_p, predictable_p) 3 + +/* Override BRANCH_COST heuristic which empirically produces worse + performance for removing short circuiting from the logical ops. */ + +#define LOGICAL_OP_NON_SHORT_CIRCUIT 0 + +/* A fixed register used at epilogue generation to address SPE registers + with negative offsets. The 64-bit load/store instructions on the SPE + only take positive offsets (and small ones at that), so we need to + reserve a register for consing up negative offsets. */ + +#define FIXED_SCRATCH 0 + +/* Specify the registers used for certain standard purposes. + The values of these macros are register numbers. */ + +/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */ +/* #define PC_REGNUM */ + +/* Register to use for pushing function arguments. */ +#define STACK_POINTER_REGNUM 1 + +/* Base register for access to local variables of the function. */ +#define HARD_FRAME_POINTER_REGNUM 31 + +/* Base register for access to local variables of the function. */ +#define FRAME_POINTER_REGNUM 113 + +/* Base register for access to arguments of the function. */ +#define ARG_POINTER_REGNUM 67 + +/* Place to put static chain when calling a function that requires it. */ +#define STATIC_CHAIN_REGNUM 11 + + +/* Define the classes of registers for register constraints in the + machine description. Also define ranges of constants. + + One of the classes must always be named ALL_REGS and include all hard regs. + If there is more than one class, another class must be named NO_REGS + and contain no registers. + + The name GENERAL_REGS must be the name of a class (or an alias for + another name such as ALL_REGS). This is the class of registers + that is allowed by "g" or "r" in a register constraint. + Also, registers outside this class are allocated only when + instructions express preferences for them. + + The classes must be numbered in nondecreasing order; that is, + a larger-numbered class must never be contained completely + in a smaller-numbered class. + + For any two classes, it is very desirable that there be another + class that represents their union. */ + +/* The RS/6000 has three types of registers, fixed-point, floating-point, and + condition registers, plus three special registers, MQ, CTR, and the link + register. AltiVec adds a vector register class. VSX registers overlap the + FPR registers and the Altivec registers. + + However, r0 is special in that it cannot be used as a base register. + So make a class for registers valid as base registers. + + Also, cr0 is the only condition code register that can be used in + arithmetic insns, so make a separate class for it. */ + +enum reg_class +{ + NO_REGS, + BASE_REGS, + GENERAL_REGS, + FLOAT_REGS, + ALTIVEC_REGS, + VSX_REGS, + VRSAVE_REGS, + VSCR_REGS, + SPE_ACC_REGS, + SPEFSCR_REGS, + NON_SPECIAL_REGS, + MQ_REGS, + LINK_REGS, + CTR_REGS, + LINK_OR_CTR_REGS, + SPECIAL_REGS, + SPEC_OR_GEN_REGS, + CR0_REGS, + CR_REGS, + NON_FLOAT_REGS, + CA_REGS, + ALL_REGS, + LIM_REG_CLASSES +}; + +#define N_REG_CLASSES (int) LIM_REG_CLASSES + +/* Give names of register classes as strings for dump file. */ + +#define REG_CLASS_NAMES \ +{ \ + "NO_REGS", \ + "BASE_REGS", \ + "GENERAL_REGS", \ + "FLOAT_REGS", \ + "ALTIVEC_REGS", \ + "VSX_REGS", \ + "VRSAVE_REGS", \ + "VSCR_REGS", \ + "SPE_ACC_REGS", \ + "SPEFSCR_REGS", \ + "NON_SPECIAL_REGS", \ + "MQ_REGS", \ + "LINK_REGS", \ + "CTR_REGS", \ + "LINK_OR_CTR_REGS", \ + "SPECIAL_REGS", \ + "SPEC_OR_GEN_REGS", \ + "CR0_REGS", \ + "CR_REGS", \ + "NON_FLOAT_REGS", \ + "CA_REGS", \ + "ALL_REGS" \ +} + +/* Define which registers fit in which classes. + This is an initializer for a vector of HARD_REG_SET + of length N_REG_CLASSES. */ + +#define REG_CLASS_CONTENTS \ +{ \ + { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \ + { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \ + { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \ + { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \ + { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \ + { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, /* VSX_REGS */ \ + { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \ + { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \ + { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \ + { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \ + { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \ + { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \ + { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \ + { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \ + { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \ + { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \ + { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \ + { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \ + { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \ + { 0xffffffff, 0x00000000, 0x00000fff, 0x00020000 }, /* NON_FLOAT_REGS */ \ + { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* CA_REGS */ \ + { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff } /* ALL_REGS */ \ +} + +/* The following macro defines cover classes for Integrated Register + Allocator. Cover classes is a set of non-intersected register + classes covering all hard registers used for register allocation + purpose. Any move between two registers of a cover class should be + cheaper than load or store of the registers. The macro value is + array of register classes with LIM_REG_CLASSES used as the end + marker. + + We need two IRA_COVER_CLASSES, one for pre-VSX, and the other for VSX to + account for the Altivec and Floating registers being subsets of the VSX + register set. */ + +#define IRA_COVER_CLASSES_PRE_VSX \ +{ \ + GENERAL_REGS, SPECIAL_REGS, FLOAT_REGS, ALTIVEC_REGS, /* VSX_REGS, */ \ + /* VRSAVE_REGS,*/ VSCR_REGS, SPE_ACC_REGS, SPEFSCR_REGS, \ + /* MQ_REGS, LINK_REGS, CTR_REGS, */ \ + CR_REGS, CA_REGS, LIM_REG_CLASSES \ +} + +#define IRA_COVER_CLASSES_VSX \ +{ \ + GENERAL_REGS, SPECIAL_REGS, /* FLOAT_REGS, ALTIVEC_REGS, */ VSX_REGS, \ + /* VRSAVE_REGS,*/ VSCR_REGS, SPE_ACC_REGS, SPEFSCR_REGS, \ + /* MQ_REGS, LINK_REGS, CTR_REGS, */ \ + CR_REGS, CA_REGS, LIM_REG_CLASSES \ +} + +/* The same information, inverted: + Return the class number of the smallest class containing + reg number REGNO. This could be a conditional expression + or could index an array. */ + +extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER]; + +#if ENABLE_CHECKING +#define REGNO_REG_CLASS(REGNO) \ + (gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)), \ + rs6000_regno_regclass[(REGNO)]) + +#else +#define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)] +#endif + +/* Register classes for various constraints that are based on the target + switches. */ +enum r6000_reg_class_enum { + RS6000_CONSTRAINT_d, /* fpr registers for double values */ + RS6000_CONSTRAINT_f, /* fpr registers for single values */ + RS6000_CONSTRAINT_v, /* Altivec registers */ + RS6000_CONSTRAINT_wa, /* Any VSX register */ + RS6000_CONSTRAINT_wd, /* VSX register for V2DF */ + RS6000_CONSTRAINT_wf, /* VSX register for V4SF */ + RS6000_CONSTRAINT_ws, /* VSX register for DF */ + RS6000_CONSTRAINT_MAX +}; + +extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX]; + +/* The class value for index registers, and the one for base regs. */ +#define INDEX_REG_CLASS GENERAL_REGS +#define BASE_REG_CLASS BASE_REGS + +/* Return whether a given register class can hold VSX objects. */ +#define VSX_REG_CLASS_P(CLASS) \ + ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS) + +/* Given an rtx X being reloaded into a reg required to be + in class CLASS, return the class of reg to actually use. + In general this is just CLASS; but on some machines + in some cases it is preferable to use a more restrictive class. + + On the RS/6000, we have to return NO_REGS when we want to reload a + floating-point CONST_DOUBLE to force it to be copied to memory. + + We also don't want to reload integer values into floating-point + registers if we can at all help it. In fact, this can + cause reload to die, if it tries to generate a reload of CTR + into a FP register and discovers it doesn't have the memory location + required. + + ??? Would it be a good idea to have reload do the converse, that is + try to reload floating modes into FP registers if possible? + */ + +#define PREFERRED_RELOAD_CLASS(X,CLASS) \ + rs6000_preferred_reload_class_ptr (X, CLASS) + +/* Return the register class of a scratch register needed to copy IN into + or out of a register in CLASS in MODE. If it can be done directly, + NO_REGS is returned. */ + +#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \ + rs6000_secondary_reload_class_ptr (CLASS, MODE, IN) + +/* If we are copying between FP or AltiVec registers and anything + else, we need a memory location. The exception is when we are + targeting ppc64 and the move to/from fpr to gpr instructions + are available.*/ + +#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \ + rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE) + +/* For cpus that cannot load/store SDmode values from the 64-bit + FP registers without using a full 64-bit load/store, we need + to allocate a full 64-bit stack slot for them. */ + +#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \ + rs6000_secondary_memory_needed_rtx (MODE) + +/* Return the maximum number of consecutive registers + needed to represent mode MODE in a register of class CLASS. + + On RS/6000, this is the size of MODE in words, except in the FP regs, where + a single reg is enough for two words, unless we have VSX, where the FP + registers can hold 128 bits. */ +#define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)] + +/* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */ + +#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ + rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS) + +/* Stack layout; function entry, exit and calling. */ + +/* Define this if pushing a word on the stack + makes the stack pointer a smaller address. */ +#define STACK_GROWS_DOWNWARD + +/* Offsets recorded in opcodes are a multiple of this alignment factor. */ +#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8))) + +/* Define this to nonzero if the nominal address of the stack frame + is at the high-address end of the local variables; + that is, each additional local variable allocated + goes at a more negative offset in the frame. + + On the RS/6000, we grow upwards, from the area after the outgoing + arguments. */ +#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0) + +/* Size of the outgoing register save area */ +#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \ + || DEFAULT_ABI == ABI_DARWIN) \ + ? (TARGET_64BIT ? 64 : 32) \ + : 0) + +/* Size of the fixed area on the stack */ +#define RS6000_SAVE_AREA \ + (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \ + << (TARGET_64BIT ? 1 : 0)) + +/* MEM representing address to save the TOC register */ +#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \ + plus_constant (stack_pointer_rtx, \ + (TARGET_32BIT ? 20 : 40))) + +/* Align an address */ +#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1)) + +/* Offset within stack frame to start allocating local variables at. + If FRAME_GROWS_DOWNWARD, this is the offset to the END of the + first local allocated. Otherwise, it is the offset to the BEGINNING + of the first local allocated. + + On the RS/6000, the frame pointer is the same as the stack pointer, + except for dynamic allocations. So we start after the fixed area and + outgoing parameter area. */ + +#define STARTING_FRAME_OFFSET \ + (FRAME_GROWS_DOWNWARD \ + ? 0 \ + : (RS6000_ALIGN (crtl->outgoing_args_size, \ + (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \ + + RS6000_SAVE_AREA)) + +/* Offset from the stack pointer register to an item dynamically + allocated on the stack, e.g., by `alloca'. + + The default value for this macro is `STACK_POINTER_OFFSET' plus the + length of the outgoing arguments. The default is correct for most + machines. See `function.c' for details. */ +#define STACK_DYNAMIC_OFFSET(FUNDECL) \ + (RS6000_ALIGN (crtl->outgoing_args_size, \ + (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \ + + (STACK_POINTER_OFFSET)) + +/* If we generate an insn to push BYTES bytes, + this says how many the stack pointer really advances by. + On RS/6000, don't define this because there are no push insns. */ +/* #define PUSH_ROUNDING(BYTES) */ + +/* Offset of first parameter from the argument pointer register value. + On the RS/6000, we define the argument pointer to the start of the fixed + area. */ +#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA + +/* Offset from the argument pointer register value to the top of + stack. This is different from FIRST_PARM_OFFSET because of the + register save area. */ +#define ARG_POINTER_CFA_OFFSET(FNDECL) 0 + +/* Define this if stack space is still allocated for a parameter passed + in a register. The value is the number of bytes allocated to this + area. */ +#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE + +/* Define this if the above stack space is to be considered part of the + space allocated by the caller. */ +#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1 + +/* This is the difference between the logical top of stack and the actual sp. + + For the RS/6000, sp points past the fixed area. */ +#define STACK_POINTER_OFFSET RS6000_SAVE_AREA + +/* Define this if the maximum size of all the outgoing args is to be + accumulated and pushed during the prologue. The amount can be + found in the variable crtl->outgoing_args_size. */ +#define ACCUMULATE_OUTGOING_ARGS 1 + +/* Define how to find the value returned by a library function + assuming the value has mode MODE. */ + +#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE)) + +/* DRAFT_V4_STRUCT_RET defaults off. */ +#define DRAFT_V4_STRUCT_RET 0 + +/* Let TARGET_RETURN_IN_MEMORY control what happens. */ +#define DEFAULT_PCC_STRUCT_RETURN 0 + +/* Mode of stack savearea. + FUNCTION is VOIDmode because calling convention maintains SP. + BLOCK needs Pmode for SP. + NONLOCAL needs twice Pmode to maintain both backchain and SP. */ +#define STACK_SAVEAREA_MODE(LEVEL) \ + (LEVEL == SAVE_FUNCTION ? VOIDmode \ + : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode) + +/* Minimum and maximum general purpose registers used to hold arguments. */ +#define GP_ARG_MIN_REG 3 +#define GP_ARG_MAX_REG 10 +#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1) + +/* Minimum and maximum floating point registers used to hold arguments. */ +#define FP_ARG_MIN_REG 33 +#define FP_ARG_AIX_MAX_REG 45 +#define FP_ARG_V4_MAX_REG 40 +#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \ + || DEFAULT_ABI == ABI_DARWIN) \ + ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG) +#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1) + +/* Minimum and maximum AltiVec registers used to hold arguments. */ +#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2) +#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11) +#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1) + +/* Return registers */ +#define GP_ARG_RETURN GP_ARG_MIN_REG +#define FP_ARG_RETURN FP_ARG_MIN_REG +#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2) + +/* Flags for the call/call_value rtl operations set up by function_arg */ +#define CALL_NORMAL 0x00000000 /* no special processing */ +/* Bits in 0x00000001 are unused. */ +#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */ +#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */ +#define CALL_LONG 0x00000008 /* always call indirect */ +#define CALL_LIBCALL 0x00000010 /* libcall */ + +/* We don't have prologue and epilogue functions to save/restore + everything for most ABIs. */ +#define WORLD_SAVE_P(INFO) 0 + +/* 1 if N is a possible register number for a function value + as seen by the caller. + + On RS/6000, this is r3, fp1, and v2 (for AltiVec). */ +#define FUNCTION_VALUE_REGNO_P(N) \ + ((N) == GP_ARG_RETURN \ + || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \ + || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)) + +/* 1 if N is a possible register number for function argument passing. + On RS/6000, these are r3-r10 and fp1-fp13. + On AltiVec, v2 - v13 are used for passing vectors. */ +#define FUNCTION_ARG_REGNO_P(N) \ + ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \ + || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \ + && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \ + || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \ + && TARGET_HARD_FLOAT && TARGET_FPRS)) + +/* Define a data type for recording info about an argument list + during the scan of that argument list. This data type should + hold all necessary information about the function itself + and about the args processed so far, enough to enable macros + such as FUNCTION_ARG to determine where the next arg should go. + + On the RS/6000, this is a structure. The first element is the number of + total argument words, the second is used to store the next + floating-point register number, and the third says how many more args we + have prototype types for. + + For ABI_V4, we treat these slightly differently -- `sysv_gregno' is + the next available GP register, `fregno' is the next available FP + register, and `words' is the number of words used on the stack. + + The varargs/stdarg support requires that this structure's size + be a multiple of sizeof(int). */ + +typedef struct rs6000_args +{ + int words; /* # words used for passing GP registers */ + int fregno; /* next available FP register */ + int vregno; /* next available AltiVec register */ + int nargs_prototype; /* # args left in the current prototype */ + int prototype; /* Whether a prototype was defined */ + int stdarg; /* Whether function is a stdarg function. */ + int call_cookie; /* Do special things for this call */ + int sysv_gregno; /* next available GP register */ + int intoffset; /* running offset in struct (darwin64) */ + int use_stack; /* any part of struct on stack (darwin64) */ + int floats_in_gpr; /* count of SFmode floats taking up + GPR space (darwin64) */ + int named; /* false for varargs params */ + int escapes; /* if function visible outside tu */ +} CUMULATIVE_ARGS; + +/* Initialize a variable CUM of type CUMULATIVE_ARGS + for a call to a function whose data type is FNTYPE. + For a library call, FNTYPE is 0. */ + +#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ + init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \ + N_NAMED_ARGS, FNDECL, VOIDmode) + +/* Similar, but when scanning the definition of a procedure. We always + set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */ + +#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \ + init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \ + 1000, current_function_decl, VOIDmode) + +/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */ + +#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \ + init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \ + 0, NULL_TREE, MODE) + +/* If defined, a C expression which determines whether, and in which + direction, to pad out an argument with extra space. The value + should be of type `enum direction': either `upward' to pad above + the argument, `downward' to pad below, or `none' to inhibit + padding. */ + +#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE) + +#define PAD_VARARGS_DOWN \ + (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward) + +/* Output assembler code to FILE to increment profiler label # LABELNO + for profiling a function entry. */ + +#define FUNCTION_PROFILER(FILE, LABELNO) \ + output_function_profiler ((FILE), (LABELNO)); + +/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, + the stack pointer does not matter. No definition is equivalent to + always zero. + + On the RS/6000, this is nonzero because we can restore the stack from + its backpointer, which we maintain. */ +#define EXIT_IGNORE_STACK 1 + +/* Define this macro as a C expression that is nonzero for registers + that are used by the epilogue or the return' pattern. The stack + and frame pointer registers are already be assumed to be used as + needed. */ + +#define EPILOGUE_USES(REGNO) \ + ((reload_completed && (REGNO) == LR_REGNO) \ + || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \ + || (crtl->calls_eh_return \ + && TARGET_AIX \ + && (REGNO) == 2)) + + +/* Length in units of the trampoline for entering a nested function. */ + +#define TRAMPOLINE_SIZE rs6000_trampoline_size () + +/* Definitions for __builtin_return_address and __builtin_frame_address. + __builtin_return_address (0) should give link register (65), enable + this. */ +/* This should be uncommented, so that the link register is used, but + currently this would result in unmatched insns and spilling fixed + registers so we'll leave it for another day. When these problems are + taken care of one additional fetch will be necessary in RETURN_ADDR_RTX. + (mrs) */ +/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */ + +/* Number of bytes into the frame return addresses can be found. See + rs6000_stack_info in rs6000.c for more information on how the different + abi's store the return address. */ +#define RETURN_ADDRESS_OFFSET \ + ((DEFAULT_ABI == ABI_AIX \ + || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \ + (DEFAULT_ABI == ABI_V4) ? 4 : \ + (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0)) + +/* The current return address is in link register (65). The return address + of anything farther back is accessed normally at an offset of 8 from the + frame pointer. */ +#define RETURN_ADDR_RTX(COUNT, FRAME) \ + (rs6000_return_addr (COUNT, FRAME)) + + +/* Definitions for register eliminations. + + We have two registers that can be eliminated on the RS/6000. First, the + frame pointer register can often be eliminated in favor of the stack + pointer register. Secondly, the argument pointer register can always be + eliminated; it is replaced with either the stack or frame pointer. + + In addition, we use the elimination mechanism to see if r30 is needed + Initially we assume that it isn't. If it is, we spill it. This is done + by making it an eliminable register. We replace it with itself so that + if it isn't needed, then existing uses won't be modified. */ + +/* This is an array of structures. Each structure initializes one pair + of eliminable registers. The "from" register number is given first, + followed by "to". Eliminations of the same "from" register are listed + in order of preference. */ +#define ELIMINABLE_REGS \ +{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ + { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ + { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ + { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ + { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ + { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } } + +/* Define the offset between two registers, one to be eliminated, and the other + its replacement, at the start of a routine. */ +#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ + ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO)) + +/* Addressing modes, and classification of registers for them. */ + +#define HAVE_PRE_DECREMENT 1 +#define HAVE_PRE_INCREMENT 1 +#define HAVE_PRE_MODIFY_DISP 1 +#define HAVE_PRE_MODIFY_REG 1 + +/* Macros to check register numbers against specific register classes. */ + +/* These assume that REGNO is a hard or pseudo reg number. + They give nonzero only if REGNO is a hard reg of the suitable class + or a pseudo reg currently allocated to a suitable hard reg. + Since they use reg_renumber, they are safe only once reg_renumber + has been allocated, which happens in local-alloc.c. */ + +#define REGNO_OK_FOR_INDEX_P(REGNO) \ +((REGNO) < FIRST_PSEUDO_REGISTER \ + ? (REGNO) <= 31 || (REGNO) == 67 \ + || (REGNO) == FRAME_POINTER_REGNUM \ + : (reg_renumber[REGNO] >= 0 \ + && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \ + || reg_renumber[REGNO] == FRAME_POINTER_REGNUM))) + +#define REGNO_OK_FOR_BASE_P(REGNO) \ +((REGNO) < FIRST_PSEUDO_REGISTER \ + ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \ + || (REGNO) == FRAME_POINTER_REGNUM \ + : (reg_renumber[REGNO] > 0 \ + && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \ + || reg_renumber[REGNO] == FRAME_POINTER_REGNUM))) + +/* Nonzero if X is a hard reg that can be used as an index + or if it is a pseudo reg in the non-strict case. */ +#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \ + ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \ + || REGNO_OK_FOR_INDEX_P (REGNO (X))) + +/* Nonzero if X is a hard reg that can be used as a base reg + or if it is a pseudo reg in the non-strict case. */ +#define INT_REG_OK_FOR_BASE_P(X, STRICT) \ + ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \ + || REGNO_OK_FOR_BASE_P (REGNO (X))) + + +/* Maximum number of registers that can appear in a valid memory address. */ + +#define MAX_REGS_PER_ADDRESS 2 + +/* Recognize any constant value that is a valid address. */ + +#define CONSTANT_ADDRESS_P(X) \ + (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ + || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ + || GET_CODE (X) == HIGH) + +/* Nonzero if the constant value X is a legitimate general operand. + It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. + + On the RS/6000, all integer constants are acceptable, most won't be valid + for particular insns, though. Only easy FP constants are + acceptable. */ + +#define LEGITIMATE_CONSTANT_P(X) \ + (((GET_CODE (X) != CONST_DOUBLE \ + && GET_CODE (X) != CONST_VECTOR) \ + || GET_MODE (X) == VOIDmode \ + || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \ + || easy_fp_constant (X, GET_MODE (X)) \ + || easy_vector_constant (X, GET_MODE (X))) \ + && !rs6000_tls_referenced_p (X)) + +#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15) +#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \ + && EASY_VECTOR_15((n) >> 1) \ + && ((n) & 1) == 0) + +#define EASY_VECTOR_MSB(n,mode) \ + (((unsigned HOST_WIDE_INT)n) == \ + ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1)) + + +/* Try a machine-dependent way of reloading an illegitimate address + operand. If we find one, push the reload and jump to WIN. This + macro is used in only one place: `find_reloads_address' in reload.c. + + Implemented on rs6000 by rs6000_legitimize_reload_address. + Note that (X) is evaluated twice; this is safe in current usage. */ + +#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \ +do { \ + int win; \ + (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \ + (int)(TYPE), (IND_LEVELS), &win); \ + if ( win ) \ + goto WIN; \ +} while (0) + +#define FIND_BASE_TERM rs6000_find_base_term + +/* The register number of the register used to address a table of + static data addresses in memory. In some cases this register is + defined by a processor's "application binary interface" (ABI). + When this macro is defined, RTL is generated for this register + once, as with the stack pointer and frame pointer registers. If + this macro is not defined, it is up to the machine-dependent files + to allocate such a register (if necessary). */ + +#define RS6000_PIC_OFFSET_TABLE_REGNUM 30 +#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM) + +#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2) + +/* Define this macro if the register defined by + `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define + this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */ + +/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */ + +/* A C expression that is nonzero if X is a legitimate immediate + operand on the target machine when generating position independent + code. You can assume that X satisfies `CONSTANT_P', so you need + not check this. You can also assume FLAG_PIC is true, so you need + not check it either. You need not define this macro if all + constants (including `SYMBOL_REF') can be immediate operands when + generating position independent code. */ + +/* #define LEGITIMATE_PIC_OPERAND_P (X) */ + +/* Define this if some processing needs to be done immediately before + emitting code for an insn. */ + +#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \ + rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS) + +/* Specify the machine mode that this machine uses + for the index in the tablejump instruction. */ +#define CASE_VECTOR_MODE SImode + +/* Define as C expression which evaluates to nonzero if the tablejump + instruction expects the table to contain offsets from the address of the + table. + Do not define this if the table should contain absolute addresses. */ +#define CASE_VECTOR_PC_RELATIVE 1 + +/* Define this as 1 if `char' should by default be signed; else as 0. */ +#define DEFAULT_SIGNED_CHAR 0 + +/* This flag, if defined, says the same insns that convert to a signed fixnum + also convert validly to an unsigned one. */ + +/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */ + +/* An integer expression for the size in bits of the largest integer machine + mode that should actually be used. */ + +/* Allow pairs of registers to be used, which is the intent of the default. */ +#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode) + +/* Max number of bytes we can move from memory to memory + in one reasonably fast instruction. */ +#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8) +#define MAX_MOVE_MAX 8 + +/* Nonzero if access to memory by bytes is no faster than for words. + Also nonzero if doing byte operations (specifically shifts) in registers + is undesirable. */ +#define SLOW_BYTE_ACCESS 1 + +/* Define if operations between registers always perform the operation + on the full register even if a narrower mode is specified. */ +#define WORD_REGISTER_OPERATIONS + +/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD + will either zero-extend or sign-extend. The value of this macro should + be the code that says which one of the two operations is implicitly + done, UNKNOWN if none. */ +#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND + +/* Define if loading short immediate values into registers sign extends. */ +#define SHORT_IMMEDIATES_SIGN_EXTEND + +/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits + is done just by pretending it is already truncated. */ +#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 + +/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */ +#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ + ((VALUE) = ((MODE) == SImode ? 32 : 64), 1) + +/* The CTZ patterns return -1 for input of zero. */ +#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1) + +/* Specify the machine mode that pointers have. + After generation of rtl, the compiler makes no further distinction + between pointers and any other objects of this machine mode. */ +extern unsigned rs6000_pmode; +#define Pmode ((enum machine_mode)rs6000_pmode) + +/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */ +#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode) + +/* Mode of a function address in a call instruction (for indexing purposes). + Doesn't matter on RS/6000. */ +#define FUNCTION_MODE SImode + +/* Define this if addresses of constant functions + shouldn't be put through pseudo regs where they can be cse'd. + Desirable on machines where ordinary constants are expensive + but a CALL with constant address is cheap. */ +#define NO_FUNCTION_CSE + +/* Define this to be nonzero if shift instructions ignore all but the low-order + few bits. + + The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED + have been dropped from the PowerPC architecture. */ + +#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0) + +/* Adjust the length of an INSN. LENGTH is the currently-computed length and + should be adjusted to reflect any required changes. This macro is used when + there is some systematic length adjustment required that would be difficult + to express in the length attribute. */ + +/* #define ADJUST_INSN_LENGTH(X,LENGTH) */ + +/* Given a comparison code (EQ, NE, etc.) and the first operand of a + COMPARE, return the mode to be used for the comparison. For + floating-point, CCFPmode should be used. CCUNSmode should be used + for unsigned comparisons. CCEQmode should be used when we are + doing an inequality comparison on the result of a + comparison. CCmode should be used in all other cases. */ + +#define SELECT_CC_MODE(OP,X,Y) \ + (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \ + : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \ + : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \ + ? CCEQmode : CCmode)) + +/* Can the condition code MODE be safely reversed? This is safe in + all cases on this port, because at present it doesn't use the + trapping FP comparisons (fcmpo). */ +#define REVERSIBLE_CC_MODE(MODE) 1 + +/* Given a condition code and a mode, return the inverse condition. */ +#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE) + + +/* Control the assembler format that we output. */ + +/* A C string constant describing how to begin a comment in the target + assembler language. The compiler assumes that the comment will end at + the end of the line. */ +#define ASM_COMMENT_START " #" + +/* Flag to say the TOC is initialized */ +extern int toc_initialized; + +/* Macro to output a special constant pool entry. Go to WIN if we output + it. Otherwise, it is written the usual way. + + On the RS/6000, toc entries are handled this way. */ + +#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \ +{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \ + { \ + output_toc (FILE, X, LABELNO, MODE); \ + goto WIN; \ + } \ +} + +#ifdef HAVE_GAS_WEAK +#define RS6000_WEAK 1 +#else +#define RS6000_WEAK 0 +#endif + +#if RS6000_WEAK +/* Used in lieu of ASM_WEAKEN_LABEL. */ +#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \ + do \ + { \ + fputs ("\t.weak\t", (FILE)); \ + RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ + if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \ + && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \ + { \ + if (TARGET_XCOFF) \ + fputs ("[DS]", (FILE)); \ + fputs ("\n\t.weak\t.", (FILE)); \ + RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ + } \ + fputc ('\n', (FILE)); \ + if (VAL) \ + { \ + ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \ + if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \ + && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \ + { \ + fputs ("\t.set\t.", (FILE)); \ + RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ + fputs (",.", (FILE)); \ + RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \ + fputc ('\n', (FILE)); \ + } \ + } \ + } \ + while (0) +#endif + +#if HAVE_GAS_WEAKREF +#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \ + do \ + { \ + fputs ("\t.weakref\t", (FILE)); \ + RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ + fputs (", ", (FILE)); \ + RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \ + if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \ + && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \ + { \ + fputs ("\n\t.weakref\t.", (FILE)); \ + RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ + fputs (", .", (FILE)); \ + RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \ + } \ + fputc ('\n', (FILE)); \ + } while (0) +#endif + +/* This implements the `alias' attribute. */ +#undef ASM_OUTPUT_DEF_FROM_DECLS +#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \ + do \ + { \ + const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \ + const char *name = IDENTIFIER_POINTER (TARGET); \ + if (TREE_CODE (DECL) == FUNCTION_DECL \ + && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \ + { \ + if (TREE_PUBLIC (DECL)) \ + { \ + if (!RS6000_WEAK || !DECL_WEAK (DECL)) \ + { \ + fputs ("\t.globl\t.", FILE); \ + RS6000_OUTPUT_BASENAME (FILE, alias); \ + putc ('\n', FILE); \ + } \ + } \ + else if (TARGET_XCOFF) \ + { \ + fputs ("\t.lglobl\t.", FILE); \ + RS6000_OUTPUT_BASENAME (FILE, alias); \ + putc ('\n', FILE); \ + } \ + fputs ("\t.set\t.", FILE); \ + RS6000_OUTPUT_BASENAME (FILE, alias); \ + fputs (",.", FILE); \ + RS6000_OUTPUT_BASENAME (FILE, name); \ + fputc ('\n', FILE); \ + } \ + ASM_OUTPUT_DEF (FILE, alias, name); \ + } \ + while (0) + +#define TARGET_ASM_FILE_START rs6000_file_start + +/* Output to assembler file text saying following lines + may contain character constants, extra white space, comments, etc. */ + +#define ASM_APP_ON "" + +/* Output to assembler file text saying following lines + no longer contain unusual constructs. */ + +#define ASM_APP_OFF "" + +/* How to refer to registers in assembler output. + This sequence is indexed by compiler's hard-register-number (see above). */ + +extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */ + +#define REGISTER_NAMES \ +{ \ + &rs6000_reg_names[ 0][0], /* r0 */ \ + &rs6000_reg_names[ 1][0], /* r1 */ \ + &rs6000_reg_names[ 2][0], /* r2 */ \ + &rs6000_reg_names[ 3][0], /* r3 */ \ + &rs6000_reg_names[ 4][0], /* r4 */ \ + &rs6000_reg_names[ 5][0], /* r5 */ \ + &rs6000_reg_names[ 6][0], /* r6 */ \ + &rs6000_reg_names[ 7][0], /* r7 */ \ + &rs6000_reg_names[ 8][0], /* r8 */ \ + &rs6000_reg_names[ 9][0], /* r9 */ \ + &rs6000_reg_names[10][0], /* r10 */ \ + &rs6000_reg_names[11][0], /* r11 */ \ + &rs6000_reg_names[12][0], /* r12 */ \ + &rs6000_reg_names[13][0], /* r13 */ \ + &rs6000_reg_names[14][0], /* r14 */ \ + &rs6000_reg_names[15][0], /* r15 */ \ + &rs6000_reg_names[16][0], /* r16 */ \ + &rs6000_reg_names[17][0], /* r17 */ \ + &rs6000_reg_names[18][0], /* r18 */ \ + &rs6000_reg_names[19][0], /* r19 */ \ + &rs6000_reg_names[20][0], /* r20 */ \ + &rs6000_reg_names[21][0], /* r21 */ \ + &rs6000_reg_names[22][0], /* r22 */ \ + &rs6000_reg_names[23][0], /* r23 */ \ + &rs6000_reg_names[24][0], /* r24 */ \ + &rs6000_reg_names[25][0], /* r25 */ \ + &rs6000_reg_names[26][0], /* r26 */ \ + &rs6000_reg_names[27][0], /* r27 */ \ + &rs6000_reg_names[28][0], /* r28 */ \ + &rs6000_reg_names[29][0], /* r29 */ \ + &rs6000_reg_names[30][0], /* r30 */ \ + &rs6000_reg_names[31][0], /* r31 */ \ + \ + &rs6000_reg_names[32][0], /* fr0 */ \ + &rs6000_reg_names[33][0], /* fr1 */ \ + &rs6000_reg_names[34][0], /* fr2 */ \ + &rs6000_reg_names[35][0], /* fr3 */ \ + &rs6000_reg_names[36][0], /* fr4 */ \ + &rs6000_reg_names[37][0], /* fr5 */ \ + &rs6000_reg_names[38][0], /* fr6 */ \ + &rs6000_reg_names[39][0], /* fr7 */ \ + &rs6000_reg_names[40][0], /* fr8 */ \ + &rs6000_reg_names[41][0], /* fr9 */ \ + &rs6000_reg_names[42][0], /* fr10 */ \ + &rs6000_reg_names[43][0], /* fr11 */ \ + &rs6000_reg_names[44][0], /* fr12 */ \ + &rs6000_reg_names[45][0], /* fr13 */ \ + &rs6000_reg_names[46][0], /* fr14 */ \ + &rs6000_reg_names[47][0], /* fr15 */ \ + &rs6000_reg_names[48][0], /* fr16 */ \ + &rs6000_reg_names[49][0], /* fr17 */ \ + &rs6000_reg_names[50][0], /* fr18 */ \ + &rs6000_reg_names[51][0], /* fr19 */ \ + &rs6000_reg_names[52][0], /* fr20 */ \ + &rs6000_reg_names[53][0], /* fr21 */ \ + &rs6000_reg_names[54][0], /* fr22 */ \ + &rs6000_reg_names[55][0], /* fr23 */ \ + &rs6000_reg_names[56][0], /* fr24 */ \ + &rs6000_reg_names[57][0], /* fr25 */ \ + &rs6000_reg_names[58][0], /* fr26 */ \ + &rs6000_reg_names[59][0], /* fr27 */ \ + &rs6000_reg_names[60][0], /* fr28 */ \ + &rs6000_reg_names[61][0], /* fr29 */ \ + &rs6000_reg_names[62][0], /* fr30 */ \ + &rs6000_reg_names[63][0], /* fr31 */ \ + \ + &rs6000_reg_names[64][0], /* mq */ \ + &rs6000_reg_names[65][0], /* lr */ \ + &rs6000_reg_names[66][0], /* ctr */ \ + &rs6000_reg_names[67][0], /* ap */ \ + \ + &rs6000_reg_names[68][0], /* cr0 */ \ + &rs6000_reg_names[69][0], /* cr1 */ \ + &rs6000_reg_names[70][0], /* cr2 */ \ + &rs6000_reg_names[71][0], /* cr3 */ \ + &rs6000_reg_names[72][0], /* cr4 */ \ + &rs6000_reg_names[73][0], /* cr5 */ \ + &rs6000_reg_names[74][0], /* cr6 */ \ + &rs6000_reg_names[75][0], /* cr7 */ \ + \ + &rs6000_reg_names[76][0], /* ca */ \ + \ + &rs6000_reg_names[77][0], /* v0 */ \ + &rs6000_reg_names[78][0], /* v1 */ \ + &rs6000_reg_names[79][0], /* v2 */ \ + &rs6000_reg_names[80][0], /* v3 */ \ + &rs6000_reg_names[81][0], /* v4 */ \ + &rs6000_reg_names[82][0], /* v5 */ \ + &rs6000_reg_names[83][0], /* v6 */ \ + &rs6000_reg_names[84][0], /* v7 */ \ + &rs6000_reg_names[85][0], /* v8 */ \ + &rs6000_reg_names[86][0], /* v9 */ \ + &rs6000_reg_names[87][0], /* v10 */ \ + &rs6000_reg_names[88][0], /* v11 */ \ + &rs6000_reg_names[89][0], /* v12 */ \ + &rs6000_reg_names[90][0], /* v13 */ \ + &rs6000_reg_names[91][0], /* v14 */ \ + &rs6000_reg_names[92][0], /* v15 */ \ + &rs6000_reg_names[93][0], /* v16 */ \ + &rs6000_reg_names[94][0], /* v17 */ \ + &rs6000_reg_names[95][0], /* v18 */ \ + &rs6000_reg_names[96][0], /* v19 */ \ + &rs6000_reg_names[97][0], /* v20 */ \ + &rs6000_reg_names[98][0], /* v21 */ \ + &rs6000_reg_names[99][0], /* v22 */ \ + &rs6000_reg_names[100][0], /* v23 */ \ + &rs6000_reg_names[101][0], /* v24 */ \ + &rs6000_reg_names[102][0], /* v25 */ \ + &rs6000_reg_names[103][0], /* v26 */ \ + &rs6000_reg_names[104][0], /* v27 */ \ + &rs6000_reg_names[105][0], /* v28 */ \ + &rs6000_reg_names[106][0], /* v29 */ \ + &rs6000_reg_names[107][0], /* v30 */ \ + &rs6000_reg_names[108][0], /* v31 */ \ + &rs6000_reg_names[109][0], /* vrsave */ \ + &rs6000_reg_names[110][0], /* vscr */ \ + &rs6000_reg_names[111][0], /* spe_acc */ \ + &rs6000_reg_names[112][0], /* spefscr */ \ + &rs6000_reg_names[113][0], /* sfp */ \ +} + +/* Table of additional register names to use in user input. */ + +#define ADDITIONAL_REGISTER_NAMES \ + {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \ + {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \ + {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \ + {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \ + {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \ + {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \ + {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \ + {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \ + {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \ + {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \ + {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \ + {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \ + {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \ + {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \ + {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \ + {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \ + {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \ + {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \ + {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \ + {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \ + {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \ + {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \ + {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \ + {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \ + {"vrsave", 109}, {"vscr", 110}, \ + {"spe_acc", 111}, {"spefscr", 112}, \ + /* no additional names for: mq, lr, ctr, ap */ \ + {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \ + {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \ + {"cc", 68}, {"sp", 1}, {"toc", 2}, \ + /* CA is only part of XER, but we do not model the other parts (yet). */ \ + {"xer", 76}, \ + /* VSX registers overlaid on top of FR, Altivec registers */ \ + {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \ + {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \ + {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \ + {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \ + {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \ + {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \ + {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \ + {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \ + {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \ + {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \ + {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \ + {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \ + {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \ + {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \ + {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \ + {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108} } + +/* Text to write out after a CALL that may be replaced by glue code by + the loader. This depends on the AIX version. */ +#define RS6000_CALL_GLUE "cror 31,31,31" + +/* This is how to output an element of a case-vector that is relative. */ + +#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ + do { char buf[100]; \ + fputs ("\t.long ", FILE); \ + ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \ + assemble_name (FILE, buf); \ + putc ('-', FILE); \ + ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \ + assemble_name (FILE, buf); \ + putc ('\n', FILE); \ + } while (0) + +/* This is how to output an assembler line + that says to advance the location counter + to a multiple of 2**LOG bytes. */ + +#define ASM_OUTPUT_ALIGN(FILE,LOG) \ + if ((LOG) != 0) \ + fprintf (FILE, "\t.align %d\n", (LOG)) + +/* How to align the given loop. */ +#define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL) + +/* Pick up the return address upon entry to a procedure. Used for + dwarf2 unwind information. This also enables the table driven + mechanism. */ + +#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO) +#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO) + +/* Describe how we implement __builtin_eh_return. */ +#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM) +#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10) + +/* Print operand X (an rtx) in assembler syntax to file FILE. + CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. + For `%' followed by punctuation, CODE is the punctuation and X is null. */ + +#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) + +/* Define which CODE values are valid. */ + +#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ + ((CODE) == '.' || (CODE) == '&') + +/* Print a memory address as an operand to reference that memory location. */ + +#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR) + +/* uncomment for disabling the corresponding default options */ +/* #define MACHINE_no_sched_interblock */ +/* #define MACHINE_no_sched_speculative */ +/* #define MACHINE_no_sched_speculative_load */ + +/* General flags. */ +extern int frame_pointer_needed; + +/* Classification of the builtin functions to properly set the declaration tree + flags. */ +enum rs6000_btc +{ + RS6000_BTC_MISC, /* assume builtin can do anything */ + RS6000_BTC_CONST, /* builtin is a 'const' function. */ + RS6000_BTC_PURE, /* builtin is a 'pure' function. */ + RS6000_BTC_FP_PURE /* builtin is 'pure' if rounding math. */ +}; + +/* Convenience macros to document the instruction type. */ +#define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches memory */ +#define RS6000_BTC_SAT RS6000_BTC_MISC /* VMX saturate sets VSCR register */ + +#undef RS6000_BUILTIN +#undef RS6000_BUILTIN_EQUATE +#define RS6000_BUILTIN(NAME, TYPE) NAME, +#define RS6000_BUILTIN_EQUATE(NAME, VALUE) NAME = VALUE, + +enum rs6000_builtins +{ +#include "rs6000-builtin.def" + + RS6000_BUILTIN_COUNT +}; + +#undef RS6000_BUILTIN +#undef RS6000_BUILTIN_EQUATE + +enum rs6000_builtin_type_index +{ + RS6000_BTI_NOT_OPAQUE, + RS6000_BTI_opaque_V2SI, + RS6000_BTI_opaque_V2SF, + RS6000_BTI_opaque_p_V2SI, + RS6000_BTI_opaque_V4SI, + RS6000_BTI_V16QI, + RS6000_BTI_V2SI, + RS6000_BTI_V2SF, + RS6000_BTI_V2DI, + RS6000_BTI_V2DF, + RS6000_BTI_V4HI, + RS6000_BTI_V4SI, + RS6000_BTI_V4SF, + RS6000_BTI_V8HI, + RS6000_BTI_unsigned_V16QI, + RS6000_BTI_unsigned_V8HI, + RS6000_BTI_unsigned_V4SI, + RS6000_BTI_unsigned_V2DI, + RS6000_BTI_bool_char, /* __bool char */ + RS6000_BTI_bool_short, /* __bool short */ + RS6000_BTI_bool_int, /* __bool int */ + RS6000_BTI_bool_long, /* __bool long */ + RS6000_BTI_pixel, /* __pixel */ + RS6000_BTI_bool_V16QI, /* __vector __bool char */ + RS6000_BTI_bool_V8HI, /* __vector __bool short */ + RS6000_BTI_bool_V4SI, /* __vector __bool int */ + RS6000_BTI_bool_V2DI, /* __vector __bool long */ + RS6000_BTI_pixel_V8HI, /* __vector __pixel */ + RS6000_BTI_long, /* long_integer_type_node */ + RS6000_BTI_unsigned_long, /* long_unsigned_type_node */ + RS6000_BTI_long_long, /* long_long_integer_type_node */ + RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */ + RS6000_BTI_INTQI, /* intQI_type_node */ + RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */ + RS6000_BTI_INTHI, /* intHI_type_node */ + RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */ + RS6000_BTI_INTSI, /* intSI_type_node */ + RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */ + RS6000_BTI_INTDI, /* intDI_type_node */ + RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */ + RS6000_BTI_float, /* float_type_node */ + RS6000_BTI_double, /* double_type_node */ + RS6000_BTI_void, /* void_type_node */ + RS6000_BTI_MAX +}; + + +#define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI]) +#define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF]) +#define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI]) +#define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI]) +#define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI]) +#define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI]) +#define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF]) +#define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI]) +#define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF]) +#define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI]) +#define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI]) +#define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF]) +#define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI]) +#define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI]) +#define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI]) +#define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI]) +#define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI]) +#define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char]) +#define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short]) +#define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int]) +#define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long]) +#define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel]) +#define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI]) +#define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI]) +#define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI]) +#define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI]) +#define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI]) + +#define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long]) +#define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long]) +#define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long]) +#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long]) +#define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI]) +#define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI]) +#define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI]) +#define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI]) +#define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI]) +#define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI]) +#define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI]) +#define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI]) +#define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float]) +#define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double]) +#define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void]) + +extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX]; +extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT]; + |