diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/config/sh/sh.c | |
download | cbb-gcc-4.6.4-upstream.tar.bz2 cbb-gcc-4.6.4-upstream.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'gcc/config/sh/sh.c')
-rw-r--r-- | gcc/config/sh/sh.c | 12610 |
1 files changed, 12610 insertions, 0 deletions
diff --git a/gcc/config/sh/sh.c b/gcc/config/sh/sh.c new file mode 100644 index 000000000..11e537b1f --- /dev/null +++ b/gcc/config/sh/sh.c @@ -0,0 +1,12610 @@ +/* Output routines for GCC for Renesas / SuperH SH. + Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, + 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 + Free Software Foundation, Inc. + Contributed by Steve Chamberlain (sac@cygnus.com). + Improved by Jim Wilson (wilson@cygnus.com). + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "insn-config.h" +#include "rtl.h" +#include "tree.h" +#include "flags.h" +#include "expr.h" +#include "optabs.h" +#include "reload.h" +#include "function.h" +#include "regs.h" +#include "hard-reg-set.h" +#include "output.h" +#include "insn-attr.h" +#include "diagnostic-core.h" +#include "recog.h" +#include "integrate.h" +#include "dwarf2.h" +#include "tm_p.h" +#include "target.h" +#include "target-def.h" +#include "langhooks.h" +#include "basic-block.h" +#include "df.h" +#include "cfglayout.h" +#include "intl.h" +#include "sched-int.h" +#include "params.h" +#include "ggc.h" +#include "gimple.h" +#include "cfgloop.h" +#include "alloc-pool.h" +#include "tm-constrs.h" + + +int code_for_indirect_jump_scratch = CODE_FOR_indirect_jump_scratch; + +#define MSW (TARGET_LITTLE_ENDIAN ? 1 : 0) +#define LSW (TARGET_LITTLE_ENDIAN ? 0 : 1) + +/* These are some macros to abstract register modes. */ +#define CONST_OK_FOR_ADD(size) \ + (TARGET_SHMEDIA ? CONST_OK_FOR_I10 (size) : CONST_OK_FOR_I08 (size)) +#define GEN_MOV (*(TARGET_SHMEDIA64 ? gen_movdi : gen_movsi)) +#define GEN_ADD3 (*(TARGET_SHMEDIA64 ? gen_adddi3 : gen_addsi3)) +#define GEN_SUB3 (*(TARGET_SHMEDIA64 ? gen_subdi3 : gen_subsi3)) + +/* Used to simplify the logic below. Find the attributes wherever + they may be. */ +#define SH_ATTRIBUTES(decl) \ + (TYPE_P (decl)) ? TYPE_ATTRIBUTES (decl) \ + : DECL_ATTRIBUTES (decl) \ + ? (DECL_ATTRIBUTES (decl)) \ + : TYPE_ATTRIBUTES (TREE_TYPE (decl)) + +/* Set to 1 by expand_prologue() when the function is an interrupt handler. */ +int current_function_interrupt; + +tree sh_deferred_function_attributes; +tree *sh_deferred_function_attributes_tail = &sh_deferred_function_attributes; + +/* Global variables for machine-dependent things. */ + +/* Which cpu are we scheduling for. */ +enum processor_type sh_cpu; + +/* Definitions used in ready queue reordering for first scheduling pass. */ + +/* Reg weights arrays for modes SFmode and SImode, indexed by insn LUID. */ +static short *regmode_weight[2]; + +/* Total SFmode and SImode weights of scheduled insns. */ +static int curr_regmode_pressure[2]; + +/* Number of r0 life regions. */ +static int r0_life_regions; + +/* If true, skip cycles for Q -> R movement. */ +static int skip_cycles = 0; + +/* Cached value of can_issue_more. This is cached in sh_variable_issue hook + and returned from sh_reorder2. */ +static short cached_can_issue_more; + +/* Unique number for UNSPEC_BBR pattern. */ +static unsigned int unspec_bbr_uid = 1; + +/* Provides the class number of the smallest class containing + reg number. */ + +enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER] = +{ + R0_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, + GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, + GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, + GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, + GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, + GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, + GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, + GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, + GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, + GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, + GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, + GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, + GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, + GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, + GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, + GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, + FP0_REGS,FP_REGS, FP_REGS, FP_REGS, + FP_REGS, FP_REGS, FP_REGS, FP_REGS, + FP_REGS, FP_REGS, FP_REGS, FP_REGS, + FP_REGS, FP_REGS, FP_REGS, FP_REGS, + FP_REGS, FP_REGS, FP_REGS, FP_REGS, + FP_REGS, FP_REGS, FP_REGS, FP_REGS, + FP_REGS, FP_REGS, FP_REGS, FP_REGS, + FP_REGS, FP_REGS, FP_REGS, FP_REGS, + FP_REGS, FP_REGS, FP_REGS, FP_REGS, + FP_REGS, FP_REGS, FP_REGS, FP_REGS, + FP_REGS, FP_REGS, FP_REGS, FP_REGS, + FP_REGS, FP_REGS, FP_REGS, FP_REGS, + FP_REGS, FP_REGS, FP_REGS, FP_REGS, + FP_REGS, FP_REGS, FP_REGS, FP_REGS, + FP_REGS, FP_REGS, FP_REGS, FP_REGS, + FP_REGS, FP_REGS, FP_REGS, FP_REGS, + TARGET_REGS, TARGET_REGS, TARGET_REGS, TARGET_REGS, + TARGET_REGS, TARGET_REGS, TARGET_REGS, TARGET_REGS, + DF_REGS, DF_REGS, DF_REGS, DF_REGS, + DF_REGS, DF_REGS, DF_REGS, DF_REGS, + NO_REGS, GENERAL_REGS, PR_REGS, T_REGS, + MAC_REGS, MAC_REGS, FPUL_REGS, FPSCR_REGS, + GENERAL_REGS, GENERAL_REGS, +}; + +char sh_register_names[FIRST_PSEUDO_REGISTER] \ + [MAX_REGISTER_NAME_LENGTH + 1] = SH_REGISTER_NAMES_INITIALIZER; + +char sh_additional_register_names[ADDREGNAMES_SIZE] \ + [MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1] + = SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER; + +int assembler_dialect; + +static bool shmedia_space_reserved_for_target_registers; + +static bool sh_handle_option (size_t, const char *, int); +static void split_branches (rtx); +static int branch_dest (rtx); +static void force_into (rtx, rtx); +static void print_slot (rtx); +static rtx add_constant (rtx, enum machine_mode, rtx); +static void dump_table (rtx, rtx); +static int hi_const (rtx); +static int broken_move (rtx); +static int mova_p (rtx); +static rtx find_barrier (int, rtx, rtx); +static int noncall_uses_reg (rtx, rtx, rtx *); +static rtx gen_block_redirect (rtx, int, int); +static void sh_reorg (void); +static void sh_option_override (void); +static void sh_option_init_struct (struct gcc_options *); +static void sh_option_default_params (void); +static void output_stack_adjust (int, rtx, int, HARD_REG_SET *, bool); +static rtx frame_insn (rtx); +static rtx push (int); +static void pop (int); +static void push_regs (HARD_REG_SET *, int); +static int calc_live_regs (HARD_REG_SET *); +static HOST_WIDE_INT rounded_frame_size (int); +static bool sh_frame_pointer_required (void); +static rtx mark_constant_pool_use (rtx); +static tree sh_handle_interrupt_handler_attribute (tree *, tree, tree, int, bool *); +static tree sh_handle_resbank_handler_attribute (tree *, tree, + tree, int, bool *); +static tree sh2a_handle_function_vector_handler_attribute (tree *, tree, + tree, int, bool *); +static tree sh_handle_sp_switch_attribute (tree *, tree, tree, int, bool *); +static tree sh_handle_trap_exit_attribute (tree *, tree, tree, int, bool *); +static tree sh_handle_renesas_attribute (tree *, tree, tree, int, bool *); +static void sh_print_operand (FILE *, rtx, int); +static void sh_print_operand_address (FILE *, rtx); +static bool sh_print_operand_punct_valid_p (unsigned char code); +static bool sh_asm_output_addr_const_extra (FILE *file, rtx x); +static void sh_output_function_epilogue (FILE *, HOST_WIDE_INT); +static void sh_insert_attributes (tree, tree *); +static const char *sh_check_pch_target_flags (int); +static int sh_register_move_cost (enum machine_mode, reg_class_t, reg_class_t); +static int sh_adjust_cost (rtx, rtx, rtx, int); +static int sh_issue_rate (void); +static int sh_dfa_new_cycle (FILE *, int, rtx, int, int, int *sort_p); +static short find_set_regmode_weight (rtx, enum machine_mode); +static short find_insn_regmode_weight (rtx, enum machine_mode); +static void find_regmode_weight (basic_block, enum machine_mode); +static int find_r0_life_regions (basic_block); +static void sh_md_init_global (FILE *, int, int); +static void sh_md_finish_global (FILE *, int); +static int rank_for_reorder (const void *, const void *); +static void swap_reorder (rtx *, int); +static void ready_reorder (rtx *, int); +static short high_pressure (enum machine_mode); +static int sh_reorder (FILE *, int, rtx *, int *, int); +static int sh_reorder2 (FILE *, int, rtx *, int *, int); +static void sh_md_init (FILE *, int, int); +static int sh_variable_issue (FILE *, int, rtx, int); + +static bool sh_function_ok_for_sibcall (tree, tree); + +static bool sh_cannot_modify_jumps_p (void); +static reg_class_t sh_target_reg_class (void); +static bool sh_optimize_target_register_callee_saved (bool); +static bool sh_ms_bitfield_layout_p (const_tree); + +static void sh_init_builtins (void); +static tree sh_builtin_decl (unsigned, bool); +static void sh_media_init_builtins (void); +static tree sh_media_builtin_decl (unsigned, bool); +static rtx sh_expand_builtin (tree, rtx, rtx, enum machine_mode, int); +static void sh_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree); +static void sh_file_start (void); +static int flow_dependent_p (rtx, rtx); +static void flow_dependent_p_1 (rtx, const_rtx, void *); +static int shiftcosts (rtx); +static int andcosts (rtx); +static int addsubcosts (rtx); +static int multcosts (rtx); +static bool unspec_caller_rtx_p (rtx); +static bool sh_cannot_copy_insn_p (rtx); +static bool sh_rtx_costs (rtx, int, int, int *, bool); +static int sh_address_cost (rtx, bool); +static int sh_pr_n_sets (void); +static rtx sh_allocate_initial_value (rtx); +static reg_class_t sh_preferred_reload_class (rtx, reg_class_t); +static reg_class_t sh_secondary_reload (bool, rtx, reg_class_t, + enum machine_mode, + struct secondary_reload_info *); +static bool sh_legitimate_address_p (enum machine_mode, rtx, bool); +static rtx sh_legitimize_address (rtx, rtx, enum machine_mode); +static rtx sh_delegitimize_address (rtx); +static int shmedia_target_regs_stack_space (HARD_REG_SET *); +static int shmedia_reserve_space_for_target_registers_p (int, HARD_REG_SET *); +static int shmedia_target_regs_stack_adjust (HARD_REG_SET *); +static int scavenge_reg (HARD_REG_SET *s); +struct save_schedule_s; +static struct save_entry_s *sh5_schedule_saves (HARD_REG_SET *, + struct save_schedule_s *, int); + +static rtx sh_struct_value_rtx (tree, int); +static rtx sh_function_value (const_tree, const_tree, bool); +static bool sh_function_value_regno_p (const unsigned int); +static rtx sh_libcall_value (enum machine_mode, const_rtx); +static bool sh_return_in_memory (const_tree, const_tree); +static rtx sh_builtin_saveregs (void); +static void sh_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode, tree, int *, int); +static bool sh_strict_argument_naming (CUMULATIVE_ARGS *); +static bool sh_pretend_outgoing_varargs_named (CUMULATIVE_ARGS *); +static tree sh_build_builtin_va_list (void); +static void sh_va_start (tree, rtx); +static tree sh_gimplify_va_arg_expr (tree, tree, gimple_seq *, gimple_seq *); +static bool sh_promote_prototypes (const_tree); +static enum machine_mode sh_promote_function_mode (const_tree type, + enum machine_mode, + int *punsignedp, + const_tree funtype, + int for_return); +static bool sh_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode, + const_tree, bool); +static bool sh_callee_copies (CUMULATIVE_ARGS *, enum machine_mode, + const_tree, bool); +static int sh_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode, + tree, bool); +static void sh_function_arg_advance (CUMULATIVE_ARGS *, enum machine_mode, + const_tree, bool); +static rtx sh_function_arg (CUMULATIVE_ARGS *, enum machine_mode, + const_tree, bool); +static bool sh_scalar_mode_supported_p (enum machine_mode); +static int sh_dwarf_calling_convention (const_tree); +static void sh_encode_section_info (tree, rtx, int); +static int sh2a_function_vector_p (tree); +static void sh_trampoline_init (rtx, tree, rtx); +static rtx sh_trampoline_adjust_address (rtx); +static void sh_conditional_register_usage (void); + +static const struct attribute_spec sh_attribute_table[] = +{ + /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */ + { "interrupt_handler", 0, 0, true, false, false, sh_handle_interrupt_handler_attribute }, + { "sp_switch", 1, 1, true, false, false, sh_handle_sp_switch_attribute }, + { "trap_exit", 1, 1, true, false, false, sh_handle_trap_exit_attribute }, + { "renesas", 0, 0, false, true, false, sh_handle_renesas_attribute }, + { "trapa_handler", 0, 0, true, false, false, sh_handle_interrupt_handler_attribute }, + { "nosave_low_regs", 0, 0, true, false, false, sh_handle_interrupt_handler_attribute }, + { "resbank", 0, 0, true, false, false, sh_handle_resbank_handler_attribute }, + { "function_vector", 1, 1, true, false, false, sh2a_handle_function_vector_handler_attribute }, +#ifdef SYMBIAN + /* Symbian support adds three new attributes: + dllexport - for exporting a function/variable that will live in a dll + dllimport - for importing a function/variable from a dll + + Microsoft allows multiple declspecs in one __declspec, separating + them with spaces. We do NOT support this. Instead, use __declspec + multiple times. */ + { "dllimport", 0, 0, true, false, false, sh_symbian_handle_dll_attribute }, + { "dllexport", 0, 0, true, false, false, sh_symbian_handle_dll_attribute }, +#endif + { NULL, 0, 0, false, false, false, NULL } +}; + +/* Set default optimization options. */ +static const struct default_options sh_option_optimization_table[] = + { + { OPT_LEVELS_1_PLUS, OPT_fomit_frame_pointer, NULL, 1 }, + { OPT_LEVELS_1_PLUS_SPEED_ONLY, OPT_mdiv_, "inv:minlat", 1 }, + { OPT_LEVELS_SIZE, OPT_mdiv_, SH_DIV_STR_FOR_SIZE, 1 }, + { OPT_LEVELS_0_ONLY, OPT_mdiv_, "", 1 }, + { OPT_LEVELS_SIZE, OPT_mcbranchdi, NULL, 0 }, + /* We can't meaningfully test TARGET_SHMEDIA here, because -m + options haven't been parsed yet, hence we'd read only the + default. sh_target_reg_class will return NO_REGS if this is + not SHMEDIA, so it's OK to always set + flag_branch_target_load_optimize. */ + { OPT_LEVELS_2_PLUS, OPT_fbranch_target_load_optimize, NULL, 1 }, + { OPT_LEVELS_NONE, 0, NULL, 0 } + }; + +/* Initialize the GCC target structure. */ +#undef TARGET_ATTRIBUTE_TABLE +#define TARGET_ATTRIBUTE_TABLE sh_attribute_table + +/* The next two are used for debug info when compiling with -gdwarf. */ +#undef TARGET_ASM_UNALIGNED_HI_OP +#define TARGET_ASM_UNALIGNED_HI_OP "\t.uaword\t" +#undef TARGET_ASM_UNALIGNED_SI_OP +#define TARGET_ASM_UNALIGNED_SI_OP "\t.ualong\t" + +/* These are NULLed out on non-SH5 in TARGET_OPTION_OVERRIDE. */ +#undef TARGET_ASM_UNALIGNED_DI_OP +#define TARGET_ASM_UNALIGNED_DI_OP "\t.uaquad\t" +#undef TARGET_ASM_ALIGNED_DI_OP +#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t" + +#undef TARGET_OPTION_OVERRIDE +#define TARGET_OPTION_OVERRIDE sh_option_override +#undef TARGET_OPTION_OPTIMIZATION_TABLE +#define TARGET_OPTION_OPTIMIZATION_TABLE sh_option_optimization_table +#undef TARGET_OPTION_INIT_STRUCT +#define TARGET_OPTION_INIT_STRUCT sh_option_init_struct +#undef TARGET_OPTION_DEFAULT_PARAMS +#define TARGET_OPTION_DEFAULT_PARAMS sh_option_default_params + +#undef TARGET_PRINT_OPERAND +#define TARGET_PRINT_OPERAND sh_print_operand +#undef TARGET_PRINT_OPERAND_ADDRESS +#define TARGET_PRINT_OPERAND_ADDRESS sh_print_operand_address +#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P +#define TARGET_PRINT_OPERAND_PUNCT_VALID_P sh_print_operand_punct_valid_p +#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA +#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA sh_asm_output_addr_const_extra + +#undef TARGET_ASM_FUNCTION_EPILOGUE +#define TARGET_ASM_FUNCTION_EPILOGUE sh_output_function_epilogue + +#undef TARGET_ASM_OUTPUT_MI_THUNK +#define TARGET_ASM_OUTPUT_MI_THUNK sh_output_mi_thunk + +#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK +#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true + +#undef TARGET_ASM_FILE_START +#define TARGET_ASM_FILE_START sh_file_start +#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE +#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true + +#undef TARGET_DEFAULT_TARGET_FLAGS +#define TARGET_DEFAULT_TARGET_FLAGS TARGET_DEFAULT +#undef TARGET_HANDLE_OPTION +#define TARGET_HANDLE_OPTION sh_handle_option + +#undef TARGET_REGISTER_MOVE_COST +#define TARGET_REGISTER_MOVE_COST sh_register_move_cost + +#undef TARGET_INSERT_ATTRIBUTES +#define TARGET_INSERT_ATTRIBUTES sh_insert_attributes + +#undef TARGET_SCHED_ADJUST_COST +#define TARGET_SCHED_ADJUST_COST sh_adjust_cost + +#undef TARGET_SCHED_ISSUE_RATE +#define TARGET_SCHED_ISSUE_RATE sh_issue_rate + +/* The next 5 hooks have been implemented for reenabling sched1. With the + help of these macros we are limiting the movement of insns in sched1 to + reduce the register pressure. The overall idea is to keep count of SImode + and SFmode regs required by already scheduled insns. When these counts + cross some threshold values; give priority to insns that free registers. + The insn that frees registers is most likely to be the insn with lowest + LUID (original insn order); but such an insn might be there in the stalled + queue (Q) instead of the ready queue (R). To solve this, we skip cycles + upto a max of 8 cycles so that such insns may move from Q -> R. + + The description of the hooks are as below: + + TARGET_SCHED_INIT_GLOBAL: Added a new target hook in the generic + scheduler; it is called inside the sched_init function just after + find_insn_reg_weights function call. It is used to calculate the SImode + and SFmode weights of insns of basic blocks; much similar to what + find_insn_reg_weights does. + TARGET_SCHED_FINISH_GLOBAL: Corresponding cleanup hook. + + TARGET_SCHED_DFA_NEW_CYCLE: Skip cycles if high register pressure is + indicated by TARGET_SCHED_REORDER2; doing this may move insns from + (Q)->(R). + + TARGET_SCHED_REORDER: If the register pressure for SImode or SFmode is + high; reorder the ready queue so that the insn with lowest LUID will be + issued next. + + TARGET_SCHED_REORDER2: If the register pressure is high, indicate to + TARGET_SCHED_DFA_NEW_CYCLE to skip cycles. + + TARGET_SCHED_VARIABLE_ISSUE: Cache the value of can_issue_more so that it + can be returned from TARGET_SCHED_REORDER2. + + TARGET_SCHED_INIT: Reset the register pressure counting variables. */ + +#undef TARGET_SCHED_DFA_NEW_CYCLE +#define TARGET_SCHED_DFA_NEW_CYCLE sh_dfa_new_cycle + +#undef TARGET_SCHED_INIT_GLOBAL +#define TARGET_SCHED_INIT_GLOBAL sh_md_init_global + +#undef TARGET_SCHED_FINISH_GLOBAL +#define TARGET_SCHED_FINISH_GLOBAL sh_md_finish_global + +#undef TARGET_SCHED_VARIABLE_ISSUE +#define TARGET_SCHED_VARIABLE_ISSUE sh_variable_issue + +#undef TARGET_SCHED_REORDER +#define TARGET_SCHED_REORDER sh_reorder + +#undef TARGET_SCHED_REORDER2 +#define TARGET_SCHED_REORDER2 sh_reorder2 + +#undef TARGET_SCHED_INIT +#define TARGET_SCHED_INIT sh_md_init + +#undef TARGET_DELEGITIMIZE_ADDRESS +#define TARGET_DELEGITIMIZE_ADDRESS sh_delegitimize_address + +#undef TARGET_LEGITIMIZE_ADDRESS +#define TARGET_LEGITIMIZE_ADDRESS sh_legitimize_address + +#undef TARGET_CANNOT_MODIFY_JUMPS_P +#define TARGET_CANNOT_MODIFY_JUMPS_P sh_cannot_modify_jumps_p +#undef TARGET_BRANCH_TARGET_REGISTER_CLASS +#define TARGET_BRANCH_TARGET_REGISTER_CLASS sh_target_reg_class +#undef TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED +#define TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED \ + sh_optimize_target_register_callee_saved + +#undef TARGET_MS_BITFIELD_LAYOUT_P +#define TARGET_MS_BITFIELD_LAYOUT_P sh_ms_bitfield_layout_p + +#undef TARGET_INIT_BUILTINS +#define TARGET_INIT_BUILTINS sh_init_builtins +#undef TARGET_BUILTIN_DECL +#define TARGET_BUILTIN_DECL sh_builtin_decl +#undef TARGET_EXPAND_BUILTIN +#define TARGET_EXPAND_BUILTIN sh_expand_builtin + +#undef TARGET_FUNCTION_OK_FOR_SIBCALL +#define TARGET_FUNCTION_OK_FOR_SIBCALL sh_function_ok_for_sibcall + +#undef TARGET_CANNOT_COPY_INSN_P +#define TARGET_CANNOT_COPY_INSN_P sh_cannot_copy_insn_p +#undef TARGET_RTX_COSTS +#define TARGET_RTX_COSTS sh_rtx_costs +#undef TARGET_ADDRESS_COST +#define TARGET_ADDRESS_COST sh_address_cost +#undef TARGET_ALLOCATE_INITIAL_VALUE +#define TARGET_ALLOCATE_INITIAL_VALUE sh_allocate_initial_value + +#undef TARGET_MACHINE_DEPENDENT_REORG +#define TARGET_MACHINE_DEPENDENT_REORG sh_reorg + +#undef TARGET_DWARF_REGISTER_SPAN +#define TARGET_DWARF_REGISTER_SPAN sh_dwarf_register_span + +#ifdef HAVE_AS_TLS +#undef TARGET_HAVE_TLS +#define TARGET_HAVE_TLS true +#endif + +#undef TARGET_PROMOTE_PROTOTYPES +#define TARGET_PROMOTE_PROTOTYPES sh_promote_prototypes +#undef TARGET_PROMOTE_FUNCTION_MODE +#define TARGET_PROMOTE_FUNCTION_MODE sh_promote_function_mode + +#undef TARGET_FUNCTION_VALUE +#define TARGET_FUNCTION_VALUE sh_function_value +#undef TARGET_FUNCTION_VALUE_REGNO_P +#define TARGET_FUNCTION_VALUE_REGNO_P sh_function_value_regno_p +#undef TARGET_LIBCALL_VALUE +#define TARGET_LIBCALL_VALUE sh_libcall_value +#undef TARGET_STRUCT_VALUE_RTX +#define TARGET_STRUCT_VALUE_RTX sh_struct_value_rtx +#undef TARGET_RETURN_IN_MEMORY +#define TARGET_RETURN_IN_MEMORY sh_return_in_memory + +#undef TARGET_EXPAND_BUILTIN_SAVEREGS +#define TARGET_EXPAND_BUILTIN_SAVEREGS sh_builtin_saveregs +#undef TARGET_SETUP_INCOMING_VARARGS +#define TARGET_SETUP_INCOMING_VARARGS sh_setup_incoming_varargs +#undef TARGET_STRICT_ARGUMENT_NAMING +#define TARGET_STRICT_ARGUMENT_NAMING sh_strict_argument_naming +#undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED +#define TARGET_PRETEND_OUTGOING_VARARGS_NAMED sh_pretend_outgoing_varargs_named +#undef TARGET_MUST_PASS_IN_STACK +#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size +#undef TARGET_PASS_BY_REFERENCE +#define TARGET_PASS_BY_REFERENCE sh_pass_by_reference +#undef TARGET_CALLEE_COPIES +#define TARGET_CALLEE_COPIES sh_callee_copies +#undef TARGET_ARG_PARTIAL_BYTES +#define TARGET_ARG_PARTIAL_BYTES sh_arg_partial_bytes +#undef TARGET_FUNCTION_ARG +#define TARGET_FUNCTION_ARG sh_function_arg +#undef TARGET_FUNCTION_ARG_ADVANCE +#define TARGET_FUNCTION_ARG_ADVANCE sh_function_arg_advance + +#undef TARGET_BUILD_BUILTIN_VA_LIST +#define TARGET_BUILD_BUILTIN_VA_LIST sh_build_builtin_va_list +#undef TARGET_EXPAND_BUILTIN_VA_START +#define TARGET_EXPAND_BUILTIN_VA_START sh_va_start +#undef TARGET_GIMPLIFY_VA_ARG_EXPR +#define TARGET_GIMPLIFY_VA_ARG_EXPR sh_gimplify_va_arg_expr + +#undef TARGET_SCALAR_MODE_SUPPORTED_P +#define TARGET_SCALAR_MODE_SUPPORTED_P sh_scalar_mode_supported_p +#undef TARGET_VECTOR_MODE_SUPPORTED_P +#define TARGET_VECTOR_MODE_SUPPORTED_P sh_vector_mode_supported_p + +#undef TARGET_CHECK_PCH_TARGET_FLAGS +#define TARGET_CHECK_PCH_TARGET_FLAGS sh_check_pch_target_flags + +#undef TARGET_DWARF_CALLING_CONVENTION +#define TARGET_DWARF_CALLING_CONVENTION sh_dwarf_calling_convention + +#undef TARGET_FRAME_POINTER_REQUIRED +#define TARGET_FRAME_POINTER_REQUIRED sh_frame_pointer_required + +/* Return regmode weight for insn. */ +#define INSN_REGMODE_WEIGHT(INSN, MODE) regmode_weight[((MODE) == SImode) ? 0 : 1][INSN_UID (INSN)] + +/* Return current register pressure for regmode. */ +#define CURR_REGMODE_PRESSURE(MODE) curr_regmode_pressure[((MODE) == SImode) ? 0 : 1] + +#undef TARGET_ENCODE_SECTION_INFO +#define TARGET_ENCODE_SECTION_INFO sh_encode_section_info + +#ifdef SYMBIAN + +#undef TARGET_ENCODE_SECTION_INFO +#define TARGET_ENCODE_SECTION_INFO sh_symbian_encode_section_info +#undef TARGET_STRIP_NAME_ENCODING +#define TARGET_STRIP_NAME_ENCODING sh_symbian_strip_name_encoding +#undef TARGET_CXX_IMPORT_EXPORT_CLASS +#define TARGET_CXX_IMPORT_EXPORT_CLASS sh_symbian_import_export_class + +#endif /* SYMBIAN */ + +#undef TARGET_SECONDARY_RELOAD +#define TARGET_SECONDARY_RELOAD sh_secondary_reload + +#undef TARGET_PREFERRED_RELOAD_CLASS +#define TARGET_PREFERRED_RELOAD_CLASS sh_preferred_reload_class + +#undef TARGET_CONDITIONAL_REGISTER_USAGE +#define TARGET_CONDITIONAL_REGISTER_USAGE sh_conditional_register_usage + +#undef TARGET_LEGITIMATE_ADDRESS_P +#define TARGET_LEGITIMATE_ADDRESS_P sh_legitimate_address_p + +#undef TARGET_TRAMPOLINE_INIT +#define TARGET_TRAMPOLINE_INIT sh_trampoline_init +#undef TARGET_TRAMPOLINE_ADJUST_ADDRESS +#define TARGET_TRAMPOLINE_ADJUST_ADDRESS sh_trampoline_adjust_address + +/* Machine-specific symbol_ref flags. */ +#define SYMBOL_FLAG_FUNCVEC_FUNCTION (SYMBOL_FLAG_MACH_DEP << 0) + +struct gcc_target targetm = TARGET_INITIALIZER; + +/* Implement TARGET_HANDLE_OPTION. */ + +static bool +sh_handle_option (size_t code, const char *arg ATTRIBUTE_UNUSED, + int value ATTRIBUTE_UNUSED) +{ + switch (code) + { + case OPT_m1: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH1; + return true; + + case OPT_m2: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH2; + return true; + + case OPT_m2a: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH2A; + return true; + + case OPT_m2a_nofpu: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH2A_NOFPU; + return true; + + case OPT_m2a_single: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH2A_SINGLE; + return true; + + case OPT_m2a_single_only: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH2A_SINGLE_ONLY; + return true; + + case OPT_m2e: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH2E; + return true; + + case OPT_m3: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH3; + return true; + + case OPT_m3e: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH3E; + return true; + + case OPT_m4: + case OPT_m4_100: + case OPT_m4_200: + case OPT_m4_300: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH4; + return true; + + case OPT_m4_nofpu: + case OPT_m4_100_nofpu: + case OPT_m4_200_nofpu: + case OPT_m4_300_nofpu: + case OPT_m4_340: + case OPT_m4_400: + case OPT_m4_500: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH4_NOFPU; + return true; + + case OPT_m4_single: + case OPT_m4_100_single: + case OPT_m4_200_single: + case OPT_m4_300_single: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH4_SINGLE; + return true; + + case OPT_m4_single_only: + case OPT_m4_100_single_only: + case OPT_m4_200_single_only: + case OPT_m4_300_single_only: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH4_SINGLE_ONLY; + return true; + + case OPT_m4a: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH4A; + return true; + + case OPT_m4a_nofpu: + case OPT_m4al: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH4A_NOFPU; + return true; + + case OPT_m4a_single: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH4A_SINGLE; + return true; + + case OPT_m4a_single_only: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH4A_SINGLE_ONLY; + return true; + + case OPT_m5_32media: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH5_32MEDIA; + return true; + + case OPT_m5_32media_nofpu: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH5_32MEDIA_NOFPU; + return true; + + case OPT_m5_64media: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH5_64MEDIA; + return true; + + case OPT_m5_64media_nofpu: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH5_64MEDIA_NOFPU; + return true; + + case OPT_m5_compact: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH5_COMPACT; + return true; + + case OPT_m5_compact_nofpu: + target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH5_COMPACT_NOFPU; + return true; + + default: + return true; + } +} + +/* Implement TARGET_OPTION_INIT_STRUCT. */ +static void +sh_option_init_struct (struct gcc_options *opts) +{ + /* We can't meaningfully test TARGET_SH2E / TARGET_IEEE + here, so leave it to TARGET_OPTION_OVERRIDE to set + flag_finite_math_only. We set it to 2 here so we know if the user + explicitly requested this to be on or off. */ + opts->x_flag_finite_math_only = 2; +} + +/* Implement TARGET_OPTION_DEFAULT_PARAMS. */ +static void +sh_option_default_params (void) +{ + set_default_param_value (PARAM_SIMULTANEOUS_PREFETCHES, 2); +} + +/* Implement TARGET_OPTION_OVERRIDE macro. Validate and override + various options, and do some machine dependent initialization. */ +static void +sh_option_override (void) +{ + int regno; + + SUBTARGET_OVERRIDE_OPTIONS; + if (optimize > 1 && !optimize_size) + target_flags |= MASK_SAVE_ALL_TARGET_REGS; + sh_cpu = PROCESSOR_SH1; + assembler_dialect = 0; + if (TARGET_SH2) + sh_cpu = PROCESSOR_SH2; + if (TARGET_SH2E) + sh_cpu = PROCESSOR_SH2E; + if (TARGET_SH2A) + sh_cpu = PROCESSOR_SH2A; + if (TARGET_SH3) + sh_cpu = PROCESSOR_SH3; + if (TARGET_SH3E) + sh_cpu = PROCESSOR_SH3E; + if (TARGET_SH4) + { + assembler_dialect = 1; + sh_cpu = PROCESSOR_SH4; + } + if (TARGET_SH4A_ARCH) + { + assembler_dialect = 1; + sh_cpu = PROCESSOR_SH4A; + } + if (TARGET_SH5) + { + sh_cpu = PROCESSOR_SH5; + target_flags |= MASK_ALIGN_DOUBLE; + if (TARGET_SHMEDIA_FPU) + target_flags |= MASK_FMOVD; + if (TARGET_SHMEDIA) + { + /* There are no delay slots on SHmedia. */ + flag_delayed_branch = 0; + /* Relaxation isn't yet supported for SHmedia */ + target_flags &= ~MASK_RELAX; + /* After reload, if conversion does little good but can cause + ICEs: + - find_if_block doesn't do anything for SH because we don't + have conditional execution patterns. (We use conditional + move patterns, which are handled differently, and only + before reload). + - find_cond_trap doesn't do anything for the SH because we + don't have conditional traps. + - find_if_case_1 uses redirect_edge_and_branch_force in + the only path that does an optimization, and this causes + an ICE when branch targets are in registers. + - find_if_case_2 doesn't do anything for the SHmedia after + reload except when it can redirect a tablejump - and + that's rather rare. */ + flag_if_conversion2 = 0; + if (! strcmp (sh_div_str, "call")) + sh_div_strategy = SH_DIV_CALL; + else if (! strcmp (sh_div_str, "call2")) + sh_div_strategy = SH_DIV_CALL2; + if (! strcmp (sh_div_str, "fp") && TARGET_FPU_ANY) + sh_div_strategy = SH_DIV_FP; + else if (! strcmp (sh_div_str, "inv")) + sh_div_strategy = SH_DIV_INV; + else if (! strcmp (sh_div_str, "inv:minlat")) + sh_div_strategy = SH_DIV_INV_MINLAT; + else if (! strcmp (sh_div_str, "inv20u")) + sh_div_strategy = SH_DIV_INV20U; + else if (! strcmp (sh_div_str, "inv20l")) + sh_div_strategy = SH_DIV_INV20L; + else if (! strcmp (sh_div_str, "inv:call2")) + sh_div_strategy = SH_DIV_INV_CALL2; + else if (! strcmp (sh_div_str, "inv:call")) + sh_div_strategy = SH_DIV_INV_CALL; + else if (! strcmp (sh_div_str, "inv:fp")) + { + if (TARGET_FPU_ANY) + sh_div_strategy = SH_DIV_INV_FP; + else + sh_div_strategy = SH_DIV_INV; + } + TARGET_CBRANCHDI4 = 0; + /* Assembler CFI isn't yet fully supported for SHmedia. */ + flag_dwarf2_cfi_asm = 0; + } + } + else + { + /* Only the sh64-elf assembler fully supports .quad properly. */ + targetm.asm_out.aligned_op.di = NULL; + targetm.asm_out.unaligned_op.di = NULL; + } + if (TARGET_SH1) + { + if (! strcmp (sh_div_str, "call-div1")) + sh_div_strategy = SH_DIV_CALL_DIV1; + else if (! strcmp (sh_div_str, "call-fp") + && (TARGET_FPU_DOUBLE + || (TARGET_HARD_SH4 && TARGET_SH2E) + || (TARGET_SHCOMPACT && TARGET_FPU_ANY))) + sh_div_strategy = SH_DIV_CALL_FP; + else if (! strcmp (sh_div_str, "call-table") && TARGET_SH2) + sh_div_strategy = SH_DIV_CALL_TABLE; + else + /* Pick one that makes most sense for the target in general. + It is not much good to use different functions depending + on -Os, since then we'll end up with two different functions + when some of the code is compiled for size, and some for + speed. */ + + /* SH4 tends to emphasize speed. */ + if (TARGET_HARD_SH4) + sh_div_strategy = SH_DIV_CALL_TABLE; + /* These have their own way of doing things. */ + else if (TARGET_SH2A) + sh_div_strategy = SH_DIV_INTRINSIC; + /* ??? Should we use the integer SHmedia function instead? */ + else if (TARGET_SHCOMPACT && TARGET_FPU_ANY) + sh_div_strategy = SH_DIV_CALL_FP; + /* SH1 .. SH3 cores often go into small-footprint systems, so + default to the smallest implementation available. */ + else if (TARGET_SH2) /* ??? EXPERIMENTAL */ + sh_div_strategy = SH_DIV_CALL_TABLE; + else + sh_div_strategy = SH_DIV_CALL_DIV1; + } + if (!TARGET_SH1) + TARGET_PRETEND_CMOVE = 0; + if (sh_divsi3_libfunc[0]) + ; /* User supplied - leave it alone. */ + else if (TARGET_DIVIDE_CALL_FP) + sh_divsi3_libfunc = "__sdivsi3_i4"; + else if (TARGET_DIVIDE_CALL_TABLE) + sh_divsi3_libfunc = "__sdivsi3_i4i"; + else if (TARGET_SH5) + sh_divsi3_libfunc = "__sdivsi3_1"; + else + sh_divsi3_libfunc = "__sdivsi3"; + if (sh_branch_cost == -1) + sh_branch_cost + = TARGET_SH5 ? 1 : ! TARGET_SH2 || TARGET_HARD_SH4 ? 2 : 1; + + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + if (! VALID_REGISTER_P (regno)) + sh_register_names[regno][0] = '\0'; + + for (regno = 0; regno < ADDREGNAMES_SIZE; regno++) + if (! VALID_REGISTER_P (ADDREGNAMES_REGNO (regno))) + sh_additional_register_names[regno][0] = '\0'; + + if ((flag_pic && ! TARGET_PREFERGOT) + || (TARGET_SHMEDIA && !TARGET_PT_FIXED)) + flag_no_function_cse = 1; + + if (targetm.small_register_classes_for_mode_p (VOIDmode)) \ + { + /* Never run scheduling before reload, since that can + break global alloc, and generates slower code anyway due + to the pressure on R0. */ + /* Enable sched1 for SH4 if the user explicitly requests. + When sched1 is enabled, the ready queue will be reordered by + the target hooks if pressure is high. We can not do this for + PIC, SH3 and lower as they give spill failures for R0. */ + if (!TARGET_HARD_SH4 || flag_pic) + flag_schedule_insns = 0; + /* ??? Current exception handling places basic block boundaries + after call_insns. It causes the high pressure on R0 and gives + spill failures for R0 in reload. See PR 22553 and the thread + on gcc-patches + <http://gcc.gnu.org/ml/gcc-patches/2005-10/msg00816.html>. */ + else if (flag_exceptions) + { + if (flag_schedule_insns && global_options_set.x_flag_schedule_insns) + warning (0, "ignoring -fschedule-insns because of exception handling bug"); + flag_schedule_insns = 0; + } + else if (flag_schedule_insns + && !global_options_set.x_flag_schedule_insns) + flag_schedule_insns = 0; + } + + /* Unwind info is not correct around the CFG unless either a frame + pointer is present or M_A_O_A is set. Fixing this requires rewriting + unwind info generation to be aware of the CFG and propagating states + around edges. */ + if ((flag_unwind_tables || flag_asynchronous_unwind_tables + || flag_exceptions || flag_non_call_exceptions) + && flag_omit_frame_pointer && !TARGET_ACCUMULATE_OUTGOING_ARGS) + { + warning (0, "unwind tables currently require either a frame pointer " + "or -maccumulate-outgoing-args for correctness"); + TARGET_ACCUMULATE_OUTGOING_ARGS = 1; + } + + /* Unwinding with -freorder-blocks-and-partition does not work on this + architecture, because it requires far jumps to label crossing between + hot/cold sections which are rejected on this architecture. */ + if (flag_reorder_blocks_and_partition) + { + if (flag_exceptions) + { + inform (input_location, + "-freorder-blocks-and-partition does not work with " + "exceptions on this architecture"); + flag_reorder_blocks_and_partition = 0; + flag_reorder_blocks = 1; + } + else if (flag_unwind_tables) + { + inform (input_location, + "-freorder-blocks-and-partition does not support unwind " + "info on this architecture"); + flag_reorder_blocks_and_partition = 0; + flag_reorder_blocks = 1; + } + } + + if (align_loops == 0) + align_loops = 1 << (TARGET_SH5 ? 3 : 2); + if (align_jumps == 0) + align_jumps = 1 << CACHE_LOG; + else if (align_jumps < (TARGET_SHMEDIA ? 4 : 2)) + align_jumps = TARGET_SHMEDIA ? 4 : 2; + + /* Allocation boundary (in *bytes*) for the code of a function. + SH1: 32 bit alignment is faster, because instructions are always + fetched as a pair from a longword boundary. + SH2 .. SH5 : align to cache line start. */ + if (align_functions == 0) + align_functions + = optimize_size ? FUNCTION_BOUNDARY/8 : (1 << CACHE_LOG); + /* The linker relaxation code breaks when a function contains + alignments that are larger than that at the start of a + compilation unit. */ + if (TARGET_RELAX) + { + int min_align + = align_loops > align_jumps ? align_loops : align_jumps; + + /* Also take possible .long constants / mova tables int account. */ + if (min_align < 4) + min_align = 4; + if (align_functions < min_align) + align_functions = min_align; + } + + /* If the -mieee option was not explicitly set by the user, turn it on + unless -ffinite-math-only was specified. See also PR 33135. */ + if (! global_options_set.x_TARGET_IEEE) + TARGET_IEEE = ! flag_finite_math_only; + + if (sh_fixed_range_str) + sh_fix_range (sh_fixed_range_str); + + /* This target defaults to strict volatile bitfields. */ + if (flag_strict_volatile_bitfields < 0 && abi_version_at_least(2)) + flag_strict_volatile_bitfields = 1; +} + +/* Print the operand address in x to the stream. */ + +static void +sh_print_operand_address (FILE *stream, rtx x) +{ + switch (GET_CODE (x)) + { + case REG: + case SUBREG: + fprintf (stream, "@%s", reg_names[true_regnum (x)]); + break; + + case PLUS: + { + rtx base = XEXP (x, 0); + rtx index = XEXP (x, 1); + + switch (GET_CODE (index)) + { + case CONST_INT: + fprintf (stream, "@(%d,%s)", (int) INTVAL (index), + reg_names[true_regnum (base)]); + break; + + case REG: + case SUBREG: + { + int base_num = true_regnum (base); + int index_num = true_regnum (index); + + fprintf (stream, "@(r0,%s)", + reg_names[MAX (base_num, index_num)]); + break; + } + + default: + gcc_unreachable (); + } + } + break; + + case PRE_DEC: + fprintf (stream, "@-%s", reg_names[true_regnum (XEXP (x, 0))]); + break; + + case POST_INC: + fprintf (stream, "@%s+", reg_names[true_regnum (XEXP (x, 0))]); + break; + + default: + x = mark_constant_pool_use (x); + output_addr_const (stream, x); + break; + } +} + +/* Print operand x (an rtx) in assembler syntax to file stream + according to modifier code. + + '.' print a .s if insn needs delay slot + ',' print LOCAL_LABEL_PREFIX + '@' print trap, rte or rts depending upon pragma interruptness + '#' output a nop if there is nothing to put in the delay slot + ''' print likelihood suffix (/u for unlikely). + '>' print branch target if -fverbose-asm + 'O' print a constant without the # + 'R' print the LSW of a dp value - changes if in little endian + 'S' print the MSW of a dp value - changes if in little endian + 'T' print the next word of a dp value - same as 'R' in big endian mode. + 'M' SHMEDIA: print an `x' if `m' will print `base,index'. + otherwise: print .b / .w / .l / .s / .d suffix if operand is a MEM. + 'N' print 'r63' if the operand is (const_int 0). + 'd' print a V2SF reg as dN instead of fpN. + 'm' print a pair `base,offset' or `base,index', for LD and ST. + 'U' Likewise for {LD,ST}{HI,LO}. + 'V' print the position of a single bit set. + 'W' print the position of a single bit cleared. + 't' print a memory address which is a register. + 'u' prints the lowest 16 bits of CONST_INT, as an unsigned value. + 'o' output an operator. */ + +static void +sh_print_operand (FILE *stream, rtx x, int code) +{ + int regno; + enum machine_mode mode; + + switch (code) + { + tree trapa_attr; + + case '.': + if (final_sequence + && ! INSN_ANNULLED_BRANCH_P (XVECEXP (final_sequence, 0, 0)) + && get_attr_length (XVECEXP (final_sequence, 0, 1))) + fprintf (stream, ASSEMBLER_DIALECT ? "/s" : ".s"); + break; + case ',': + fprintf (stream, "%s", LOCAL_LABEL_PREFIX); + break; + case '@': + trapa_attr = lookup_attribute ("trap_exit", + DECL_ATTRIBUTES (current_function_decl)); + if (trapa_attr) + fprintf (stream, "trapa #%ld", + (long) TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (trapa_attr)))); + else if (sh_cfun_interrupt_handler_p ()) + { + if (sh_cfun_resbank_handler_p ()) + fprintf (stream, "resbank\n"); + fprintf (stream, "rte"); + } + else + fprintf (stream, "rts"); + break; + case '#': + /* Output a nop if there's nothing in the delay slot. */ + if (dbr_sequence_length () == 0) + fprintf (stream, "\n\tnop"); + break; + case '\'': + { + rtx note = find_reg_note (current_output_insn, REG_BR_PROB, 0); + + if (note && INTVAL (XEXP (note, 0)) * 2 < REG_BR_PROB_BASE) + fputs ("/u", stream); + break; + } + case '>': + if (flag_verbose_asm && JUMP_LABEL (current_output_insn)) + { + fputs ("\t! target: ", stream); + output_addr_const (stream, JUMP_LABEL (current_output_insn)); + } + break; + case 'O': + x = mark_constant_pool_use (x); + output_addr_const (stream, x); + break; + /* N.B.: %R / %S / %T adjust memory addresses by four. + For SHMEDIA, that means they can be used to access the first and + second 32 bit part of a 64 bit (or larger) value that + might be held in floating point registers or memory. + While they can be used to access 64 bit parts of a larger value + held in general purpose registers, that won't work with memory - + neither for fp registers, since the frxx names are used. */ + case 'R': + if (REG_P (x) || GET_CODE (x) == SUBREG) + { + regno = true_regnum (x); + regno += FP_REGISTER_P (regno) ? 1 : LSW; + fputs (reg_names[regno], (stream)); + } + else if (MEM_P (x)) + { + x = adjust_address (x, SImode, 4 * LSW); + sh_print_operand_address (stream, XEXP (x, 0)); + } + else + { + rtx sub = NULL_RTX; + + mode = GET_MODE (x); + if (mode == VOIDmode) + mode = DImode; + if (GET_MODE_SIZE (mode) >= 8) + sub = simplify_subreg (SImode, x, mode, 4 * LSW); + if (sub) + sh_print_operand (stream, sub, 0); + else + output_operand_lossage ("invalid operand to %%R"); + } + break; + case 'S': + if (REG_P (x) || GET_CODE (x) == SUBREG) + { + regno = true_regnum (x); + regno += FP_REGISTER_P (regno) ? 0 : MSW; + fputs (reg_names[regno], (stream)); + } + else if (MEM_P (x)) + { + x = adjust_address (x, SImode, 4 * MSW); + sh_print_operand_address (stream, XEXP (x, 0)); + } + else + { + rtx sub = NULL_RTX; + + mode = GET_MODE (x); + if (mode == VOIDmode) + mode = DImode; + if (GET_MODE_SIZE (mode) >= 8) + sub = simplify_subreg (SImode, x, mode, 4 * MSW); + if (sub) + sh_print_operand (stream, sub, 0); + else + output_operand_lossage ("invalid operand to %%S"); + } + break; + case 'T': + /* Next word of a double. */ + switch (GET_CODE (x)) + { + case REG: + fputs (reg_names[REGNO (x) + 1], (stream)); + break; + case MEM: + if (GET_CODE (XEXP (x, 0)) != PRE_DEC + && GET_CODE (XEXP (x, 0)) != POST_INC) + x = adjust_address (x, SImode, 4); + sh_print_operand_address (stream, XEXP (x, 0)); + break; + default: + break; + } + break; + + case 't': + gcc_assert (MEM_P (x)); + x = XEXP (x, 0); + switch (GET_CODE (x)) + { + case REG: + case SUBREG: + sh_print_operand (stream, x, 0); + break; + default: + break; + } + break; + + case 'o': + switch (GET_CODE (x)) + { + case PLUS: fputs ("add", stream); break; + case MINUS: fputs ("sub", stream); break; + case MULT: fputs ("mul", stream); break; + case DIV: fputs ("div", stream); break; + case EQ: fputs ("eq", stream); break; + case NE: fputs ("ne", stream); break; + case GT: case LT: fputs ("gt", stream); break; + case GE: case LE: fputs ("ge", stream); break; + case GTU: case LTU: fputs ("gtu", stream); break; + case GEU: case LEU: fputs ("geu", stream); break; + default: + break; + } + break; + case 'M': + if (TARGET_SHMEDIA) + { + if (MEM_P (x) + && GET_CODE (XEXP (x, 0)) == PLUS + && (REG_P (XEXP (XEXP (x, 0), 1)) + || GET_CODE (XEXP (XEXP (x, 0), 1)) == SUBREG)) + fputc ('x', stream); + } + else + { + if (MEM_P (x)) + { + switch (GET_MODE (x)) + { + case QImode: fputs (".b", stream); break; + case HImode: fputs (".w", stream); break; + case SImode: fputs (".l", stream); break; + case SFmode: fputs (".s", stream); break; + case DFmode: fputs (".d", stream); break; + default: gcc_unreachable (); + } + } + } + break; + + case 'm': + gcc_assert (MEM_P (x)); + x = XEXP (x, 0); + /* Fall through. */ + case 'U': + switch (GET_CODE (x)) + { + case REG: + case SUBREG: + sh_print_operand (stream, x, 0); + fputs (", 0", stream); + break; + + case PLUS: + sh_print_operand (stream, XEXP (x, 0), 0); + fputs (", ", stream); + sh_print_operand (stream, XEXP (x, 1), 0); + break; + + default: + gcc_unreachable (); + } + break; + + case 'V': + { + int num = exact_log2 (INTVAL (x)); + gcc_assert (num >= 0); + fprintf (stream, "#%d", num); + } + break; + + case 'W': + { + int num = exact_log2 (~INTVAL (x)); + gcc_assert (num >= 0); + fprintf (stream, "#%d", num); + } + break; + + case 'd': + gcc_assert (REG_P (x) && GET_MODE (x) == V2SFmode); + + fprintf ((stream), "d%s", reg_names[REGNO (x)] + 1); + break; + + case 'N': + if (x == CONST0_RTX (GET_MODE (x))) + { + fprintf ((stream), "r63"); + break; + } + goto default_output; + case 'u': + if (CONST_INT_P (x)) + { + fprintf ((stream), "%u", (unsigned) INTVAL (x) & (0x10000 - 1)); + break; + } + /* Fall through. */ + + default_output: + default: + regno = 0; + mode = GET_MODE (x); + + switch (GET_CODE (x)) + { + case TRUNCATE: + { + rtx inner = XEXP (x, 0); + int offset = 0; + enum machine_mode inner_mode; + + /* We might see SUBREGs with vector mode registers inside. */ + if (GET_CODE (inner) == SUBREG + && (GET_MODE_SIZE (GET_MODE (inner)) + == GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner)))) + && subreg_lowpart_p (inner)) + inner = SUBREG_REG (inner); + if (CONST_INT_P (inner)) + { + x = GEN_INT (trunc_int_for_mode (INTVAL (inner), GET_MODE (x))); + goto default_output; + } + inner_mode = GET_MODE (inner); + if (GET_CODE (inner) == SUBREG + && (GET_MODE_SIZE (GET_MODE (inner)) + < GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner)))) + && REG_P (SUBREG_REG (inner))) + { + offset = subreg_regno_offset (REGNO (SUBREG_REG (inner)), + GET_MODE (SUBREG_REG (inner)), + SUBREG_BYTE (inner), + GET_MODE (inner)); + inner = SUBREG_REG (inner); + } + if (!REG_P (inner) || GET_MODE_SIZE (inner_mode) > 8) + abort (); + /* Floating point register pairs are always big endian; + general purpose registers are 64 bit wide. */ + regno = REGNO (inner); + regno = (HARD_REGNO_NREGS (regno, inner_mode) + - HARD_REGNO_NREGS (regno, mode)) + + offset; + x = inner; + goto reg; + } + case SIGN_EXTEND: + x = XEXP (x, 0); + goto reg; + /* FIXME: We need this on SHmedia32 because reload generates + some sign-extended HI or QI loads into DImode registers + but, because Pmode is SImode, the address ends up with a + subreg:SI of the DImode register. Maybe reload should be + fixed so as to apply alter_subreg to such loads? */ + case IF_THEN_ELSE: + gcc_assert (trapping_target_operand (x, VOIDmode)); + x = XEXP (XEXP (x, 2), 0); + goto default_output; + case SUBREG: + gcc_assert (SUBREG_BYTE (x) == 0 + && REG_P (SUBREG_REG (x))); + + x = SUBREG_REG (x); + /* Fall through. */ + + reg: + case REG: + regno += REGNO (x); + if (FP_REGISTER_P (regno) + && mode == V16SFmode) + fprintf ((stream), "mtrx%s", reg_names[regno] + 2); + else if (FP_REGISTER_P (REGNO (x)) + && mode == V4SFmode) + fprintf ((stream), "fv%s", reg_names[regno] + 2); + else if (REG_P (x) + && mode == V2SFmode) + fprintf ((stream), "fp%s", reg_names[regno] + 2); + else if (FP_REGISTER_P (REGNO (x)) + && GET_MODE_SIZE (mode) > 4) + fprintf ((stream), "d%s", reg_names[regno] + 1); + else + fputs (reg_names[regno], (stream)); + break; + + case MEM: + output_address (XEXP (x, 0)); + break; + + default: + if (TARGET_SH1) + fputc ('#', stream); + output_addr_const (stream, x); + break; + } + break; + } +} + +static bool +sh_print_operand_punct_valid_p (unsigned char code) +{ + return (code == '.' || code == '#' || code == '@' || code == ',' + || code == '$' || code == '\'' || code == '>'); +} + +/* Implement TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA. */ + +static bool +sh_asm_output_addr_const_extra (FILE *file, rtx x) +{ + if (GET_CODE (x) == UNSPEC) + { + switch (XINT (x, 1)) + { + case UNSPEC_DATALABEL: + fputs ("datalabel ", file); + output_addr_const (file, XVECEXP (x, 0, 0)); + break; + case UNSPEC_PIC: + /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ + output_addr_const (file, XVECEXP (x, 0, 0)); + break; + case UNSPEC_GOT: + output_addr_const (file, XVECEXP (x, 0, 0)); + fputs ("@GOT", file); + break; + case UNSPEC_GOTOFF: + output_addr_const (file, XVECEXP (x, 0, 0)); + fputs ("@GOTOFF", file); + break; + case UNSPEC_PLT: + output_addr_const (file, XVECEXP (x, 0, 0)); + fputs ("@PLT", file); + break; + case UNSPEC_GOTPLT: + output_addr_const (file, XVECEXP (x, 0, 0)); + fputs ("@GOTPLT", file); + break; + case UNSPEC_DTPOFF: + output_addr_const (file, XVECEXP (x, 0, 0)); + fputs ("@DTPOFF", file); + break; + case UNSPEC_GOTTPOFF: + output_addr_const (file, XVECEXP (x, 0, 0)); + fputs ("@GOTTPOFF", file); + break; + case UNSPEC_TPOFF: + output_addr_const (file, XVECEXP (x, 0, 0)); + fputs ("@TPOFF", file); + break; + case UNSPEC_CALLER: + { + char name[32]; + /* LPCS stands for Label for PIC Call Site. */ + targetm.asm_out.generate_internal_label (name, "LPCS", + INTVAL (XVECEXP (x, 0, 0))); + assemble_name (file, name); + } + break; + case UNSPEC_EXTRACT_S16: + case UNSPEC_EXTRACT_U16: + { + rtx val, shift; + + val = XVECEXP (x, 0, 0); + shift = XVECEXP (x, 0, 1); + fputc ('(', file); + if (shift != const0_rtx) + fputc ('(', file); + if (GET_CODE (val) == CONST + || GET_RTX_CLASS (GET_CODE (val)) != RTX_OBJ) + { + fputc ('(', file); + output_addr_const (file, val); + fputc (')', file); + } + else + output_addr_const (file, val); + if (shift != const0_rtx) + { + fputs (" >> ", file); + output_addr_const (file, shift); + fputc (')', file); + } + fputs (" & 65535)", file); + } + break; + case UNSPEC_SYMOFF: + output_addr_const (file, XVECEXP (x, 0, 0)); + fputc ('-', file); + if (GET_CODE (XVECEXP (x, 0, 1)) == CONST) + { + fputc ('(', file); + output_addr_const (file, XVECEXP (x, 0, 1)); + fputc (')', file); + } + else + output_addr_const (file, XVECEXP (x, 0, 1)); + break; + case UNSPEC_PCREL_SYMOFF: + output_addr_const (file, XVECEXP (x, 0, 0)); + fputs ("-(", file); + output_addr_const (file, XVECEXP (x, 0, 1)); + fputs ("-.)", file); + break; + default: + return false; + } + return true; + } + else + return false; +} + + +/* Encode symbol attributes of a SYMBOL_REF into its + SYMBOL_REF_FLAGS. */ +static void +sh_encode_section_info (tree decl, rtx rtl, int first) +{ + default_encode_section_info (decl, rtl, first); + + if (TREE_CODE (decl) == FUNCTION_DECL + && sh2a_function_vector_p (decl) && TARGET_SH2A) + SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_FUNCVEC_FUNCTION; +} + +/* Like force_operand, but guarantees that VALUE ends up in TARGET. */ +static void +force_into (rtx value, rtx target) +{ + value = force_operand (value, target); + if (! rtx_equal_p (value, target)) + emit_insn (gen_move_insn (target, value)); +} + +/* Emit code to perform a block move. Choose the best method. + + OPERANDS[0] is the destination. + OPERANDS[1] is the source. + OPERANDS[2] is the size. + OPERANDS[3] is the alignment safe to use. */ + +int +expand_block_move (rtx *operands) +{ + int align = INTVAL (operands[3]); + int constp = (CONST_INT_P (operands[2])); + int bytes = (constp ? INTVAL (operands[2]) : 0); + + if (! constp) + return 0; + + /* If we could use mov.l to move words and dest is word-aligned, we + can use movua.l for loads and still generate a relatively short + and efficient sequence. */ + if (TARGET_SH4A_ARCH && align < 4 + && MEM_ALIGN (operands[0]) >= 32 + && can_move_by_pieces (bytes, 32)) + { + rtx dest = copy_rtx (operands[0]); + rtx src = copy_rtx (operands[1]); + /* We could use different pseudos for each copied word, but + since movua can only load into r0, it's kind of + pointless. */ + rtx temp = gen_reg_rtx (SImode); + rtx src_addr = copy_addr_to_reg (XEXP (src, 0)); + int copied = 0; + + while (copied + 4 <= bytes) + { + rtx to = adjust_address (dest, SImode, copied); + rtx from = adjust_automodify_address (src, BLKmode, + src_addr, copied); + + set_mem_size (from, GEN_INT (4)); + emit_insn (gen_movua (temp, from)); + emit_move_insn (src_addr, plus_constant (src_addr, 4)); + emit_move_insn (to, temp); + copied += 4; + } + + if (copied < bytes) + move_by_pieces (adjust_address (dest, BLKmode, copied), + adjust_automodify_address (src, BLKmode, + src_addr, copied), + bytes - copied, align, 0); + + return 1; + } + + /* If it isn't a constant number of bytes, or if it doesn't have 4 byte + alignment, or if it isn't a multiple of 4 bytes, then fail. */ + if (align < 4 || (bytes % 4 != 0)) + return 0; + + if (TARGET_HARD_SH4) + { + if (bytes < 12) + return 0; + else if (bytes == 12) + { + rtx func_addr_rtx = gen_reg_rtx (Pmode); + rtx r4 = gen_rtx_REG (SImode, 4); + rtx r5 = gen_rtx_REG (SImode, 5); + + function_symbol (func_addr_rtx, "__movmemSI12_i4", SFUNC_STATIC); + force_into (XEXP (operands[0], 0), r4); + force_into (XEXP (operands[1], 0), r5); + emit_insn (gen_block_move_real_i4 (func_addr_rtx)); + return 1; + } + else if (! optimize_size) + { + const char *entry_name; + rtx func_addr_rtx = gen_reg_rtx (Pmode); + int dwords; + rtx r4 = gen_rtx_REG (SImode, 4); + rtx r5 = gen_rtx_REG (SImode, 5); + rtx r6 = gen_rtx_REG (SImode, 6); + + entry_name = (bytes & 4 ? "__movmem_i4_odd" : "__movmem_i4_even"); + function_symbol (func_addr_rtx, entry_name, SFUNC_STATIC); + force_into (XEXP (operands[0], 0), r4); + force_into (XEXP (operands[1], 0), r5); + + dwords = bytes >> 3; + emit_insn (gen_move_insn (r6, GEN_INT (dwords - 1))); + emit_insn (gen_block_lump_real_i4 (func_addr_rtx)); + return 1; + } + else + return 0; + } + if (bytes < 64) + { + char entry[30]; + rtx func_addr_rtx = gen_reg_rtx (Pmode); + rtx r4 = gen_rtx_REG (SImode, 4); + rtx r5 = gen_rtx_REG (SImode, 5); + + sprintf (entry, "__movmemSI%d", bytes); + function_symbol (func_addr_rtx, entry, SFUNC_STATIC); + force_into (XEXP (operands[0], 0), r4); + force_into (XEXP (operands[1], 0), r5); + emit_insn (gen_block_move_real (func_addr_rtx)); + return 1; + } + + /* This is the same number of bytes as a memcpy call, but to a different + less common function name, so this will occasionally use more space. */ + if (! optimize_size) + { + rtx func_addr_rtx = gen_reg_rtx (Pmode); + int final_switch, while_loop; + rtx r4 = gen_rtx_REG (SImode, 4); + rtx r5 = gen_rtx_REG (SImode, 5); + rtx r6 = gen_rtx_REG (SImode, 6); + + function_symbol (func_addr_rtx, "__movmem", SFUNC_STATIC); + force_into (XEXP (operands[0], 0), r4); + force_into (XEXP (operands[1], 0), r5); + + /* r6 controls the size of the move. 16 is decremented from it + for each 64 bytes moved. Then the negative bit left over is used + as an index into a list of move instructions. e.g., a 72 byte move + would be set up with size(r6) = 14, for one iteration through the + big while loop, and a switch of -2 for the last part. */ + + final_switch = 16 - ((bytes / 4) % 16); + while_loop = ((bytes / 4) / 16 - 1) * 16; + emit_insn (gen_move_insn (r6, GEN_INT (while_loop + final_switch))); + emit_insn (gen_block_lump_real (func_addr_rtx)); + return 1; + } + + return 0; +} + +/* Prepare operands for a move define_expand; specifically, one of the + operands must be in a register. */ + +int +prepare_move_operands (rtx operands[], enum machine_mode mode) +{ + if ((mode == SImode || mode == DImode) + && flag_pic + && ! ((mode == Pmode || mode == ptr_mode) + && tls_symbolic_operand (operands[1], Pmode) != TLS_MODEL_NONE)) + { + rtx temp; + if (SYMBOLIC_CONST_P (operands[1])) + { + if (MEM_P (operands[0])) + operands[1] = force_reg (Pmode, operands[1]); + else if (TARGET_SHMEDIA + && GET_CODE (operands[1]) == LABEL_REF + && target_reg_operand (operands[0], mode)) + /* It's ok. */; + else + { + temp = (!can_create_pseudo_p () + ? operands[0] + : gen_reg_rtx (Pmode)); + operands[1] = legitimize_pic_address (operands[1], mode, temp); + } + } + else if (GET_CODE (operands[1]) == CONST + && GET_CODE (XEXP (operands[1], 0)) == PLUS + && SYMBOLIC_CONST_P (XEXP (XEXP (operands[1], 0), 0))) + { + temp = !can_create_pseudo_p () ? operands[0] : gen_reg_rtx (Pmode); + temp = legitimize_pic_address (XEXP (XEXP (operands[1], 0), 0), + mode, temp); + operands[1] = expand_binop (mode, add_optab, temp, + XEXP (XEXP (operands[1], 0), 1), + (!can_create_pseudo_p () + ? temp + : gen_reg_rtx (Pmode)), + 0, OPTAB_LIB_WIDEN); + } + } + + if (! reload_in_progress && ! reload_completed) + { + /* Copy the source to a register if both operands aren't registers. */ + if (! register_operand (operands[0], mode) + && ! sh_register_operand (operands[1], mode)) + operands[1] = copy_to_mode_reg (mode, operands[1]); + + if (MEM_P (operands[0]) && ! memory_operand (operands[0], mode)) + { + /* This is like change_address_1 (operands[0], mode, 0, 1) , + except that we can't use that function because it is static. */ + rtx new_rtx = change_address (operands[0], mode, 0); + MEM_COPY_ATTRIBUTES (new_rtx, operands[0]); + operands[0] = new_rtx; + } + + /* This case can happen while generating code to move the result + of a library call to the target. Reject `st r0,@(rX,rY)' because + reload will fail to find a spill register for rX, since r0 is already + being used for the source. */ + else if (TARGET_SH1 + && refers_to_regno_p (R0_REG, R0_REG + 1, operands[1], (rtx *)0) + && MEM_P (operands[0]) + && GET_CODE (XEXP (operands[0], 0)) == PLUS + && REG_P (XEXP (XEXP (operands[0], 0), 1))) + operands[1] = copy_to_mode_reg (mode, operands[1]); + } + + if (mode == Pmode || mode == ptr_mode) + { + rtx op0, op1, opc; + enum tls_model tls_kind; + + op0 = operands[0]; + op1 = operands[1]; + if (GET_CODE (op1) == CONST + && GET_CODE (XEXP (op1, 0)) == PLUS + && (tls_symbolic_operand (XEXP (XEXP (op1, 0), 0), Pmode) + != TLS_MODEL_NONE)) + { + opc = XEXP (XEXP (op1, 0), 1); + op1 = XEXP (XEXP (op1, 0), 0); + } + else + opc = NULL_RTX; + + if ((tls_kind = tls_symbolic_operand (op1, Pmode)) != TLS_MODEL_NONE) + { + rtx tga_op1, tga_ret, tmp, tmp2; + + switch (tls_kind) + { + case TLS_MODEL_GLOBAL_DYNAMIC: + tga_ret = gen_rtx_REG (Pmode, R0_REG); + emit_call_insn (gen_tls_global_dynamic (tga_ret, op1)); + op1 = tga_ret; + break; + + case TLS_MODEL_LOCAL_DYNAMIC: + tga_ret = gen_rtx_REG (Pmode, R0_REG); + emit_call_insn (gen_tls_local_dynamic (tga_ret, op1)); + + tmp = gen_reg_rtx (Pmode); + emit_move_insn (tmp, tga_ret); + + if (register_operand (op0, Pmode)) + tmp2 = op0; + else + tmp2 = gen_reg_rtx (Pmode); + + emit_insn (gen_symDTPOFF2reg (tmp2, op1, tmp)); + op1 = tmp2; + break; + + case TLS_MODEL_INITIAL_EXEC: + if (! flag_pic) + { + /* Don't schedule insns for getting GOT address when + the first scheduling is enabled, to avoid spill + failures for R0. */ + if (flag_schedule_insns) + emit_insn (gen_blockage ()); + emit_insn (gen_GOTaddr2picreg ()); + emit_use (gen_rtx_REG (SImode, PIC_REG)); + if (flag_schedule_insns) + emit_insn (gen_blockage ()); + } + tga_op1 = !can_create_pseudo_p () ? op0 : gen_reg_rtx (Pmode); + tmp = gen_sym2GOTTPOFF (op1); + emit_insn (gen_tls_initial_exec (tga_op1, tmp)); + op1 = tga_op1; + break; + + case TLS_MODEL_LOCAL_EXEC: + tmp2 = gen_reg_rtx (Pmode); + emit_insn (gen_load_gbr (tmp2)); + tmp = gen_reg_rtx (Pmode); + emit_insn (gen_symTPOFF2reg (tmp, op1)); + + if (register_operand (op0, Pmode)) + op1 = op0; + else + op1 = gen_reg_rtx (Pmode); + + emit_insn (gen_addsi3 (op1, tmp, tmp2)); + break; + + default: + gcc_unreachable (); + } + if (opc) + emit_insn (gen_addsi3 (op1, op1, force_reg (SImode, opc))); + operands[1] = op1; + } + } + + return 0; +} + +enum rtx_code +prepare_cbranch_operands (rtx *operands, enum machine_mode mode, + enum rtx_code comparison) +{ + rtx op1; + rtx scratch = NULL_RTX; + + if (comparison == LAST_AND_UNUSED_RTX_CODE) + comparison = GET_CODE (operands[0]); + else + scratch = operands[4]; + if (CONST_INT_P (operands[1]) + && !CONST_INT_P (operands[2])) + { + rtx tmp = operands[1]; + + operands[1] = operands[2]; + operands[2] = tmp; + comparison = swap_condition (comparison); + } + if (CONST_INT_P (operands[2])) + { + HOST_WIDE_INT val = INTVAL (operands[2]); + if ((val == -1 || val == -0x81) + && (comparison == GT || comparison == LE)) + { + comparison = (comparison == GT) ? GE : LT; + operands[2] = gen_int_mode (val + 1, mode); + } + else if ((val == 1 || val == 0x80) + && (comparison == GE || comparison == LT)) + { + comparison = (comparison == GE) ? GT : LE; + operands[2] = gen_int_mode (val - 1, mode); + } + else if (val == 1 && (comparison == GEU || comparison == LTU)) + { + comparison = (comparison == GEU) ? NE : EQ; + operands[2] = CONST0_RTX (mode); + } + else if (val == 0x80 && (comparison == GEU || comparison == LTU)) + { + comparison = (comparison == GEU) ? GTU : LEU; + operands[2] = gen_int_mode (val - 1, mode); + } + else if (val == 0 && (comparison == GTU || comparison == LEU)) + comparison = (comparison == GTU) ? NE : EQ; + else if (mode == SImode + && ((val == 0x7fffffff + && (comparison == GTU || comparison == LEU)) + || ((unsigned HOST_WIDE_INT) val + == (unsigned HOST_WIDE_INT) 0x7fffffff + 1 + && (comparison == GEU || comparison == LTU)))) + { + comparison = (comparison == GTU || comparison == GEU) ? LT : GE; + operands[2] = CONST0_RTX (mode); + } + } + op1 = operands[1]; + if (can_create_pseudo_p ()) + operands[1] = force_reg (mode, op1); + /* When we are handling DImode comparisons, we want to keep constants so + that we can optimize the component comparisons; however, memory loads + are better issued as a whole so that they can be scheduled well. + SImode equality comparisons allow I08 constants, but only when they + compare r0. Hence, if operands[1] has to be loaded from somewhere else + into a register, that register might as well be r0, and we allow the + constant. If it is already in a register, this is likely to be + allocated to a different hard register, thus we load the constant into + a register unless it is zero. */ + if (!REG_P (operands[2]) + && (!CONST_INT_P (operands[2]) + || (mode == SImode && operands[2] != CONST0_RTX (SImode) + && ((comparison != EQ && comparison != NE) + || (REG_P (op1) && REGNO (op1) != R0_REG) + || !satisfies_constraint_I08 (operands[2]))))) + { + if (scratch && GET_MODE (scratch) == mode) + { + emit_move_insn (scratch, operands[2]); + operands[2] = scratch; + } + else if (can_create_pseudo_p ()) + operands[2] = force_reg (mode, operands[2]); + } + return comparison; +} + +void +expand_cbranchsi4 (rtx *operands, enum rtx_code comparison, int probability) +{ + rtx (*branch_expander) (rtx) = gen_branch_true; + rtx jump; + + comparison = prepare_cbranch_operands (operands, SImode, comparison); + switch (comparison) + { + case NE: case LT: case LE: case LTU: case LEU: + comparison = reverse_condition (comparison); + branch_expander = gen_branch_false; + default: ; + } + emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_REG (SImode, T_REG), + gen_rtx_fmt_ee (comparison, SImode, + operands[1], operands[2]))); + jump = emit_jump_insn (branch_expander (operands[3])); + if (probability >= 0) + add_reg_note (jump, REG_BR_PROB, GEN_INT (probability)); + +} + +/* ??? How should we distribute probabilities when more than one branch + is generated. So far we only have soem ad-hoc observations: + - If the operands are random, they are likely to differ in both parts. + - If comparing items in a hash chain, the operands are random or equal; + operation should be EQ or NE. + - If items are searched in an ordered tree from the root, we can expect + the highpart to be unequal about half of the time; operation should be + an inequality comparison, operands non-constant, and overall probability + about 50%. Likewise for quicksort. + - Range checks will be often made against constants. Even if we assume for + simplicity an even distribution of the non-constant operand over a + sub-range here, the same probability could be generated with differently + wide sub-ranges - as long as the ratio of the part of the subrange that + is before the threshold to the part that comes after the threshold stays + the same. Thus, we can't really tell anything here; + assuming random distribution is at least simple. + */ + +bool +expand_cbranchdi4 (rtx *operands, enum rtx_code comparison) +{ + enum rtx_code msw_taken, msw_skip, lsw_taken; + rtx skip_label = NULL_RTX; + rtx op1h, op1l, op2h, op2l; + int num_branches; + int prob, rev_prob; + int msw_taken_prob = -1, msw_skip_prob = -1, lsw_taken_prob = -1; + rtx scratch = operands[4]; + + comparison = prepare_cbranch_operands (operands, DImode, comparison); + op1h = gen_highpart_mode (SImode, DImode, operands[1]); + op2h = gen_highpart_mode (SImode, DImode, operands[2]); + op1l = gen_lowpart (SImode, operands[1]); + op2l = gen_lowpart (SImode, operands[2]); + msw_taken = msw_skip = lsw_taken = LAST_AND_UNUSED_RTX_CODE; + prob = split_branch_probability; + rev_prob = REG_BR_PROB_BASE - prob; + switch (comparison) + { + /* ??? Should we use the cmpeqdi_t pattern for equality comparisons? + That costs 1 cycle more when the first branch can be predicted taken, + but saves us mispredicts because only one branch needs prediction. + It also enables generating the cmpeqdi_t-1 pattern. */ + case EQ: + if (TARGET_CMPEQDI_T) + { + emit_insn (gen_cmpeqdi_t (operands[1], operands[2])); + emit_jump_insn (gen_branch_true (operands[3])); + return true; + } + msw_skip = NE; + lsw_taken = EQ; + if (prob >= 0) + { + /* If we had more precision, we'd use rev_prob - (rev_prob >> 32) . + */ + msw_skip_prob = rev_prob; + if (REG_BR_PROB_BASE <= 65535) + lsw_taken_prob = prob ? REG_BR_PROB_BASE : 0; + else + { + gcc_assert (HOST_BITS_PER_WIDEST_INT >= 64); + lsw_taken_prob + = (prob + ? (REG_BR_PROB_BASE + - ((HOST_WIDEST_INT) REG_BR_PROB_BASE * rev_prob + / ((HOST_WIDEST_INT) prob << 32))) + : 0); + } + } + break; + case NE: + if (TARGET_CMPEQDI_T) + { + emit_insn (gen_cmpeqdi_t (operands[1], operands[2])); + emit_jump_insn (gen_branch_false (operands[3])); + return true; + } + msw_taken = NE; + msw_taken_prob = prob; + lsw_taken = NE; + lsw_taken_prob = 0; + break; + case GTU: case GT: + msw_taken = comparison; + if (CONST_INT_P (op2l) && INTVAL (op2l) == -1) + break; + if (comparison != GTU || op2h != CONST0_RTX (SImode)) + msw_skip = swap_condition (msw_taken); + lsw_taken = GTU; + break; + case GEU: case GE: + if (op2l == CONST0_RTX (SImode)) + msw_taken = comparison; + else + { + msw_taken = comparison == GE ? GT : GTU; + msw_skip = swap_condition (msw_taken); + lsw_taken = GEU; + } + break; + case LTU: case LT: + msw_taken = comparison; + if (op2l == CONST0_RTX (SImode)) + break; + msw_skip = swap_condition (msw_taken); + lsw_taken = LTU; + break; + case LEU: case LE: + if (CONST_INT_P (op2l) && INTVAL (op2l) == -1) + msw_taken = comparison; + else + { + lsw_taken = LEU; + if (comparison == LE) + msw_taken = LT; + else if (op2h != CONST0_RTX (SImode)) + msw_taken = LTU; + else + { + msw_skip = swap_condition (LTU); + break; + } + msw_skip = swap_condition (msw_taken); + } + break; + default: return false; + } + num_branches = ((msw_taken != LAST_AND_UNUSED_RTX_CODE) + + (msw_skip != LAST_AND_UNUSED_RTX_CODE) + + (lsw_taken != LAST_AND_UNUSED_RTX_CODE)); + if (comparison != EQ && comparison != NE && num_branches > 1) + { + if (!CONSTANT_P (operands[2]) + && prob >= (int) (REG_BR_PROB_BASE * 3 / 8U) + && prob <= (int) (REG_BR_PROB_BASE * 5 / 8U)) + { + msw_taken_prob = prob / 2U; + msw_skip_prob + = REG_BR_PROB_BASE * rev_prob / (REG_BR_PROB_BASE + rev_prob); + lsw_taken_prob = prob; + } + else + { + msw_taken_prob = prob; + msw_skip_prob = REG_BR_PROB_BASE; + /* ??? If we have a constant op2h, should we use that when + calculating lsw_taken_prob? */ + lsw_taken_prob = prob; + } + } + operands[1] = op1h; + operands[2] = op2h; + operands[4] = NULL_RTX; + if (reload_completed + && ! arith_reg_or_0_operand (op2h, SImode) + && (true_regnum (op1h) || (comparison != EQ && comparison != NE)) + && (msw_taken != LAST_AND_UNUSED_RTX_CODE + || msw_skip != LAST_AND_UNUSED_RTX_CODE)) + { + emit_move_insn (scratch, operands[2]); + operands[2] = scratch; + } + if (msw_taken != LAST_AND_UNUSED_RTX_CODE) + expand_cbranchsi4 (operands, msw_taken, msw_taken_prob); + if (msw_skip != LAST_AND_UNUSED_RTX_CODE) + { + rtx taken_label = operands[3]; + + /* Operands were possibly modified, but msw_skip doesn't expect this. + Always use the original ones. */ + if (msw_taken != LAST_AND_UNUSED_RTX_CODE) + { + operands[1] = op1h; + operands[2] = op2h; + if (reload_completed + && ! arith_reg_or_0_operand (op2h, SImode) + && (true_regnum (op1h) || (comparison != EQ && comparison != NE))) + { + emit_move_insn (scratch, operands[2]); + operands[2] = scratch; + } + } + + operands[3] = skip_label = gen_label_rtx (); + expand_cbranchsi4 (operands, msw_skip, msw_skip_prob); + operands[3] = taken_label; + } + operands[1] = op1l; + operands[2] = op2l; + if (lsw_taken != LAST_AND_UNUSED_RTX_CODE) + { + if (reload_completed + && ! arith_reg_or_0_operand (op2l, SImode) + && (true_regnum (op1l) || (lsw_taken != EQ && lsw_taken != NE))) + { + emit_move_insn (scratch, operands[2]); + operands[2] = scratch; + } + expand_cbranchsi4 (operands, lsw_taken, lsw_taken_prob); + } + if (msw_skip != LAST_AND_UNUSED_RTX_CODE) + emit_label (skip_label); + return true; +} + +/* Emit INSN, possibly in a PARALLEL with an USE of fpscr for SH4. */ + +static void +sh_emit_set_t_insn (rtx insn, enum machine_mode mode) +{ + if ((TARGET_SH4 || TARGET_SH2A) && GET_MODE_CLASS (mode) == MODE_FLOAT) + { + insn = gen_rtx_PARALLEL (VOIDmode, + gen_rtvec (2, insn, + gen_rtx_USE (VOIDmode, get_fpscr_rtx ()))); + (mode == SFmode ? emit_sf_insn : emit_df_insn) (insn); + } + else + emit_insn (insn); +} + +/* Prepare the operands for an scc instruction; make sure that the + compare has been done and the result is in T_REG. */ +void +sh_emit_scc_to_t (enum rtx_code code, rtx op0, rtx op1) +{ + rtx t_reg = gen_rtx_REG (SImode, T_REG); + enum rtx_code oldcode = code; + enum machine_mode mode; + + /* First need a compare insn. */ + switch (code) + { + case NE: + /* It isn't possible to handle this case. */ + gcc_unreachable (); + case LT: + code = GT; + break; + case LE: + code = GE; + break; + case LTU: + code = GTU; + break; + case LEU: + code = GEU; + break; + default: + break; + } + if (code != oldcode) + { + rtx tmp = op0; + op0 = op1; + op1 = tmp; + } + + mode = GET_MODE (op0); + if (mode == VOIDmode) + mode = GET_MODE (op1); + + op0 = force_reg (mode, op0); + if ((code != EQ && code != NE + && (op1 != const0_rtx + || code == GTU || code == GEU || code == LTU || code == LEU)) + || (mode == DImode && op1 != const0_rtx) + || (TARGET_SH2E && GET_MODE_CLASS (mode) == MODE_FLOAT)) + op1 = force_reg (mode, op1); + + sh_emit_set_t_insn (gen_rtx_SET (VOIDmode, t_reg, + gen_rtx_fmt_ee (code, SImode, op0, op1)), + mode); +} + +rtx +sh_emit_cheap_store_flag (enum machine_mode mode, enum rtx_code code, + rtx op0, rtx op1) +{ + rtx target = gen_reg_rtx (SImode); + rtx tmp; + + gcc_assert (TARGET_SHMEDIA); + switch (code) + { + case EQ: + case GT: + case LT: + case UNORDERED: + case GTU: + case LTU: + tmp = gen_rtx_fmt_ee (code, SImode, op0, op1); + emit_insn (gen_cstore4_media (target, tmp, op0, op1)); + code = NE; + break; + + case NE: + case GE: + case LE: + case ORDERED: + case GEU: + case LEU: + tmp = gen_rtx_fmt_ee (reverse_condition (code), mode, op0, op1); + emit_insn (gen_cstore4_media (target, tmp, op0, op1)); + code = EQ; + break; + + case UNEQ: + case UNGE: + case UNGT: + case UNLE: + case UNLT: + case LTGT: + return NULL_RTX; + + default: + gcc_unreachable (); + } + + if (mode == DImode) + { + rtx t2 = gen_reg_rtx (DImode); + emit_insn (gen_extendsidi2 (t2, target)); + target = t2; + } + + return gen_rtx_fmt_ee (code, VOIDmode, target, const0_rtx); +} + +/* Called from the md file, set up the operands of a compare instruction. */ + +void +sh_emit_compare_and_branch (rtx *operands, enum machine_mode mode) +{ + enum rtx_code code = GET_CODE (operands[0]); + enum rtx_code branch_code; + rtx op0 = operands[1]; + rtx op1 = operands[2]; + rtx insn, tem; + bool need_ccmpeq = false; + + if (TARGET_SH2E && GET_MODE_CLASS (mode) == MODE_FLOAT) + { + op0 = force_reg (mode, op0); + op1 = force_reg (mode, op1); + } + else + { + if (code != EQ || mode == DImode) + { + /* Force args into regs, since we can't use constants here. */ + op0 = force_reg (mode, op0); + if (op1 != const0_rtx || code == GTU || code == GEU) + op1 = force_reg (mode, op1); + } + } + + if (GET_MODE_CLASS (mode) == MODE_FLOAT) + { + if (code == LT + || (code == LE && TARGET_IEEE && TARGET_SH2E) + || (code == GE && !(TARGET_IEEE && TARGET_SH2E))) + { + tem = op0, op0 = op1, op1 = tem; + code = swap_condition (code); + } + + /* GE becomes fcmp/gt+fcmp/eq, for SH2E and TARGET_IEEE only. */ + if (code == GE) + { + gcc_assert (TARGET_IEEE && TARGET_SH2E); + need_ccmpeq = true; + code = GT; + } + + /* Now we can have EQ, NE, GT, LE. NE and LE are then transformed + to EQ/GT respectively. */ + gcc_assert (code == EQ || code == GT || code == NE || code == LE); + } + + switch (code) + { + case EQ: + case GT: + case GE: + case GTU: + case GEU: + branch_code = code; + break; + case NE: + case LT: + case LE: + case LTU: + case LEU: + branch_code = reverse_condition (code); + break; + default: + gcc_unreachable (); + } + + insn = gen_rtx_SET (VOIDmode, + gen_rtx_REG (SImode, T_REG), + gen_rtx_fmt_ee (branch_code, SImode, op0, op1)); + + sh_emit_set_t_insn (insn, mode); + if (need_ccmpeq) + sh_emit_set_t_insn (gen_ieee_ccmpeqsf_t (op0, op1), mode); + + if (branch_code == code) + emit_jump_insn (gen_branch_true (operands[3])); + else + emit_jump_insn (gen_branch_false (operands[3])); +} + +void +sh_emit_compare_and_set (rtx *operands, enum machine_mode mode) +{ + enum rtx_code code = GET_CODE (operands[1]); + rtx op0 = operands[2]; + rtx op1 = operands[3]; + rtx lab = NULL_RTX; + bool invert = false; + rtx tem; + + op0 = force_reg (mode, op0); + if ((code != EQ && code != NE + && (op1 != const0_rtx + || code == GTU || code == GEU || code == LTU || code == LEU)) + || (mode == DImode && op1 != const0_rtx) + || (TARGET_SH2E && GET_MODE_CLASS (mode) == MODE_FLOAT)) + op1 = force_reg (mode, op1); + + if (GET_MODE_CLASS (mode) == MODE_FLOAT) + { + if (code == LT || code == LE) + { + code = swap_condition (code); + tem = op0, op0 = op1, op1 = tem; + } + if (code == GE) + { + if (TARGET_IEEE) + { + lab = gen_label_rtx (); + sh_emit_scc_to_t (EQ, op0, op1); + emit_jump_insn (gen_branch_true (lab)); + code = GT; + } + else + { + code = LT; + invert = true; + } + } + } + + if (code == NE) + { + code = EQ; + invert = true; + } + + sh_emit_scc_to_t (code, op0, op1); + if (lab) + emit_label (lab); + if (invert) + emit_insn (gen_movnegt (operands[0])); + else + emit_move_insn (operands[0], gen_rtx_REG (SImode, T_REG)); +} + +/* Functions to output assembly code. */ + +/* Return a sequence of instructions to perform DI or DF move. + + Since the SH cannot move a DI or DF in one instruction, we have + to take care when we see overlapping source and dest registers. */ + +const char * +output_movedouble (rtx insn ATTRIBUTE_UNUSED, rtx operands[], + enum machine_mode mode) +{ + rtx dst = operands[0]; + rtx src = operands[1]; + + if (MEM_P (dst) + && GET_CODE (XEXP (dst, 0)) == PRE_DEC) + return "mov.l %T1,%0\n\tmov.l %1,%0"; + + if (register_operand (dst, mode) + && register_operand (src, mode)) + { + if (REGNO (src) == MACH_REG) + return "sts mach,%S0\n\tsts macl,%R0"; + + /* When mov.d r1,r2 do r2->r3 then r1->r2; + when mov.d r1,r0 do r1->r0 then r2->r1. */ + + if (REGNO (src) + 1 == REGNO (dst)) + return "mov %T1,%T0\n\tmov %1,%0"; + else + return "mov %1,%0\n\tmov %T1,%T0"; + } + else if (CONST_INT_P (src)) + { + if (INTVAL (src) < 0) + output_asm_insn ("mov #-1,%S0", operands); + else + output_asm_insn ("mov #0,%S0", operands); + + return "mov %1,%R0"; + } + else if (MEM_P (src)) + { + int ptrreg = -1; + int dreg = REGNO (dst); + rtx inside = XEXP (src, 0); + + switch (GET_CODE (inside)) + { + case REG: + ptrreg = REGNO (inside); + break; + + case SUBREG: + ptrreg = subreg_regno (inside); + break; + + case PLUS: + ptrreg = REGNO (XEXP (inside, 0)); + /* ??? A r0+REG address shouldn't be possible here, because it isn't + an offsettable address. Unfortunately, offsettable addresses use + QImode to check the offset, and a QImode offsettable address + requires r0 for the other operand, which is not currently + supported, so we can't use the 'o' constraint. + Thus we must check for and handle r0+REG addresses here. + We punt for now, since this is likely very rare. */ + gcc_assert (!REG_P (XEXP (inside, 1))); + break; + + case LABEL_REF: + return "mov.l %1,%0\n\tmov.l %1+4,%T0"; + case POST_INC: + return "mov.l %1,%0\n\tmov.l %1,%T0"; + default: + gcc_unreachable (); + } + + /* Work out the safe way to copy. Copy into the second half first. */ + if (dreg == ptrreg) + return "mov.l %T1,%T0\n\tmov.l %1,%0"; + } + + return "mov.l %1,%0\n\tmov.l %T1,%T0"; +} + +/* Print an instruction which would have gone into a delay slot after + another instruction, but couldn't because the other instruction expanded + into a sequence where putting the slot insn at the end wouldn't work. */ + +static void +print_slot (rtx insn) +{ + final_scan_insn (XVECEXP (insn, 0, 1), asm_out_file, optimize, 1, NULL); + + INSN_DELETED_P (XVECEXP (insn, 0, 1)) = 1; +} + +const char * +output_far_jump (rtx insn, rtx op) +{ + struct { rtx lab, reg, op; } this_jmp; + rtx braf_base_lab = NULL_RTX; + const char *jump; + int far; + int offset = branch_dest (insn) - INSN_ADDRESSES (INSN_UID (insn)); + rtx prev; + + this_jmp.lab = gen_label_rtx (); + + if (TARGET_SH2 + && offset >= -32764 + && offset - get_attr_length (insn) <= 32766) + { + far = 0; + jump = "mov.w %O0,%1; braf %1"; + } + else + { + far = 1; + if (flag_pic) + { + if (TARGET_SH2) + jump = "mov.l %O0,%1; braf %1"; + else + jump = "mov.l r0,@-r15; mova %O0,r0; mov.l @r0,%1; add r0,%1; mov.l @r15+,r0; jmp @%1"; + } + else + jump = "mov.l %O0,%1; jmp @%1"; + } + /* If we have a scratch register available, use it. */ + if (NONJUMP_INSN_P ((prev = prev_nonnote_insn (insn))) + && INSN_CODE (prev) == CODE_FOR_indirect_jump_scratch) + { + this_jmp.reg = SET_DEST (XVECEXP (PATTERN (prev), 0, 0)); + if (REGNO (this_jmp.reg) == R0_REG && flag_pic && ! TARGET_SH2) + jump = "mov.l r1,@-r15; mova %O0,r0; mov.l @r0,r1; add r1,r0; mov.l @r15+,r1; jmp @%1"; + output_asm_insn (jump, &this_jmp.lab); + if (dbr_sequence_length ()) + print_slot (final_sequence); + else + output_asm_insn ("nop", 0); + } + else + { + /* Output the delay slot insn first if any. */ + if (dbr_sequence_length ()) + print_slot (final_sequence); + + this_jmp.reg = gen_rtx_REG (SImode, 13); + /* We must keep the stack aligned to 8-byte boundaries on SH5. + Fortunately, MACL is fixed and call-clobbered, and we never + need its value across jumps, so save r13 in it instead of in + the stack. */ + if (TARGET_SH5) + output_asm_insn ("lds r13, macl", 0); + else + output_asm_insn ("mov.l r13,@-r15", 0); + output_asm_insn (jump, &this_jmp.lab); + if (TARGET_SH5) + output_asm_insn ("sts macl, r13", 0); + else + output_asm_insn ("mov.l @r15+,r13", 0); + } + if (far && flag_pic && TARGET_SH2) + { + braf_base_lab = gen_label_rtx (); + (*targetm.asm_out.internal_label) (asm_out_file, "L", + CODE_LABEL_NUMBER (braf_base_lab)); + } + if (far) + output_asm_insn (".align 2", 0); + (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (this_jmp.lab)); + this_jmp.op = op; + if (far && flag_pic) + { + if (TARGET_SH2) + this_jmp.lab = braf_base_lab; + output_asm_insn (".long %O2-%O0", &this_jmp.lab); + } + else + output_asm_insn (far ? ".long %O2" : ".word %O2-%O0", &this_jmp.lab); + return ""; +} + +/* Local label counter, used for constants in the pool and inside + pattern branches. */ + +static int lf = 100; + +/* Output code for ordinary branches. */ + +const char * +output_branch (int logic, rtx insn, rtx *operands) +{ + switch (get_attr_length (insn)) + { + case 6: + /* This can happen if filling the delay slot has caused a forward + branch to exceed its range (we could reverse it, but only + when we know we won't overextend other branches; this should + best be handled by relaxation). + It can also happen when other condbranches hoist delay slot insn + from their destination, thus leading to code size increase. + But the branch will still be in the range -4092..+4098 bytes. */ + + if (! TARGET_RELAX) + { + int label = lf++; + /* The call to print_slot will clobber the operands. */ + rtx op0 = operands[0]; + + /* If the instruction in the delay slot is annulled (true), then + there is no delay slot where we can put it now. The only safe + place for it is after the label. final will do that by default. */ + + if (final_sequence + && ! INSN_ANNULLED_BRANCH_P (XVECEXP (final_sequence, 0, 0)) + && get_attr_length (XVECEXP (final_sequence, 0, 1))) + { + asm_fprintf (asm_out_file, "\tb%s%ss\t%LLF%d\n", logic ? "f" : "t", + ASSEMBLER_DIALECT ? "/" : ".", label); + print_slot (final_sequence); + } + else + asm_fprintf (asm_out_file, "\tb%s\t%LLF%d\n", logic ? "f" : "t", label); + + output_asm_insn ("bra\t%l0", &op0); + fprintf (asm_out_file, "\tnop\n"); + (*targetm.asm_out.internal_label) (asm_out_file, "LF", label); + + return ""; + } + /* When relaxing, handle this like a short branch. The linker + will fix it up if it still doesn't fit after relaxation. */ + case 2: + return logic ? "bt%.\t%l0" : "bf%.\t%l0"; + + /* These are for SH2e, in which we have to account for the + extra nop because of the hardware bug in annulled branches. */ + case 8: + if (! TARGET_RELAX) + { + int label = lf++; + + gcc_assert (!final_sequence + || !(INSN_ANNULLED_BRANCH_P + (XVECEXP (final_sequence, 0, 0)))); + asm_fprintf (asm_out_file, "b%s%ss\t%LLF%d\n", + logic ? "f" : "t", + ASSEMBLER_DIALECT ? "/" : ".", label); + fprintf (asm_out_file, "\tnop\n"); + output_asm_insn ("bra\t%l0", operands); + fprintf (asm_out_file, "\tnop\n"); + (*targetm.asm_out.internal_label) (asm_out_file, "LF", label); + + return ""; + } + /* When relaxing, fall through. */ + case 4: + { + char buffer[10]; + + sprintf (buffer, "b%s%ss\t%%l0", + logic ? "t" : "f", + ASSEMBLER_DIALECT ? "/" : "."); + output_asm_insn (buffer, &operands[0]); + return "nop"; + } + + default: + /* There should be no longer branches now - that would + indicate that something has destroyed the branches set + up in machine_dependent_reorg. */ + gcc_unreachable (); + } +} + +/* Output a code sequence for INSN using TEMPL with OPERANDS; but before, + fill in operands 9 as a label to the successor insn. + We try to use jump threading where possible. + IF CODE matches the comparison in the IF_THEN_ELSE of a following jump, + we assume the jump is taken. I.e. EQ means follow jmp and bf, NE means + follow jmp and bt, if the address is in range. */ +const char * +output_branchy_insn (enum rtx_code code, const char *templ, + rtx insn, rtx *operands) +{ + rtx next_insn = NEXT_INSN (insn); + + if (next_insn && JUMP_P (next_insn) && condjump_p (next_insn)) + { + rtx src = SET_SRC (PATTERN (next_insn)); + if (GET_CODE (src) == IF_THEN_ELSE && GET_CODE (XEXP (src, 0)) != code) + { + /* Following branch not taken */ + operands[9] = gen_label_rtx (); + emit_label_after (operands[9], next_insn); + INSN_ADDRESSES_NEW (operands[9], + INSN_ADDRESSES (INSN_UID (next_insn)) + + get_attr_length (next_insn)); + return templ; + } + else + { + int offset = (branch_dest (next_insn) + - INSN_ADDRESSES (INSN_UID (next_insn)) + 4); + if (offset >= -252 && offset <= 258) + { + if (GET_CODE (src) == IF_THEN_ELSE) + /* branch_true */ + src = XEXP (src, 1); + operands[9] = src; + return templ; + } + } + } + operands[9] = gen_label_rtx (); + emit_label_after (operands[9], insn); + INSN_ADDRESSES_NEW (operands[9], + INSN_ADDRESSES (INSN_UID (insn)) + + get_attr_length (insn)); + return templ; +} + +const char * +output_ieee_ccmpeq (rtx insn, rtx *operands) +{ + return output_branchy_insn (NE, "bt\t%l9\n\tfcmp/eq\t%1,%0", + insn, operands); +} + +/* Output the start of the assembler file. */ + +static void +sh_file_start (void) +{ + default_file_start (); + +#ifdef SYMBIAN + /* Declare the .directive section before it is used. */ + fputs ("\t.section .directive, \"SM\", @progbits, 1\n", asm_out_file); + fputs ("\t.asciz \"#<SYMEDIT>#\\n\"\n", asm_out_file); +#endif + + if (TARGET_ELF) + /* We need to show the text section with the proper + attributes as in TEXT_SECTION_ASM_OP, before dwarf2out + emits it without attributes in TEXT_SECTION_ASM_OP, else GAS + will complain. We can teach GAS specifically about the + default attributes for our choice of text section, but + then we would have to change GAS again if/when we change + the text section name. */ + fprintf (asm_out_file, "%s\n", TEXT_SECTION_ASM_OP); + else + /* Switch to the data section so that the coffsem symbol + isn't in the text section. */ + switch_to_section (data_section); + + if (TARGET_LITTLE_ENDIAN) + fputs ("\t.little\n", asm_out_file); + + if (!TARGET_ELF) + { + if (TARGET_SHCOMPACT) + fputs ("\t.mode\tSHcompact\n", asm_out_file); + else if (TARGET_SHMEDIA) + fprintf (asm_out_file, "\t.mode\tSHmedia\n\t.abi\t%i\n", + TARGET_SHMEDIA64 ? 64 : 32); + } +} + +/* Check if PAT includes UNSPEC_CALLER unspec pattern. */ + +static bool +unspec_caller_rtx_p (rtx pat) +{ + rtx base, offset; + int i; + + split_const (pat, &base, &offset); + if (GET_CODE (base) == UNSPEC) + { + if (XINT (base, 1) == UNSPEC_CALLER) + return true; + for (i = 0; i < XVECLEN (base, 0); i++) + if (unspec_caller_rtx_p (XVECEXP (base, 0, i))) + return true; + } + return false; +} + +/* Indicate that INSN cannot be duplicated. This is true for insn + that generates a unique label. */ + +static bool +sh_cannot_copy_insn_p (rtx insn) +{ + rtx pat; + + if (!reload_completed || !flag_pic) + return false; + + if (!NONJUMP_INSN_P (insn)) + return false; + if (asm_noperands (insn) >= 0) + return false; + + pat = PATTERN (insn); + if (GET_CODE (pat) != SET) + return false; + pat = SET_SRC (pat); + + if (unspec_caller_rtx_p (pat)) + return true; + + return false; +} + +/* Actual number of instructions used to make a shift by N. */ +static const char ashiftrt_insns[] = + { 0,1,2,3,4,5,8,8,8,8,8,8,8,8,8,8,2,3,4,5,8,8,8,8,8,8,8,8,8,8,8,2}; + +/* Left shift and logical right shift are the same. */ +static const char shift_insns[] = + { 0,1,1,2,2,3,3,4,1,2,2,3,3,4,3,3,1,2,2,3,3,4,3,3,2,3,3,4,4,4,3,3}; + +/* Individual shift amounts needed to get the above length sequences. + One bit right shifts clobber the T bit, so when possible, put one bit + shifts in the middle of the sequence, so the ends are eligible for + branch delay slots. */ +static const short shift_amounts[32][5] = { + {0}, {1}, {2}, {2, 1}, + {2, 2}, {2, 1, 2}, {2, 2, 2}, {2, 2, 1, 2}, + {8}, {8, 1}, {8, 2}, {8, 1, 2}, + {8, 2, 2}, {8, 2, 1, 2}, {8, -2, 8}, {8, -1, 8}, + {16}, {16, 1}, {16, 2}, {16, 1, 2}, + {16, 2, 2}, {16, 2, 1, 2}, {16, -2, 8}, {16, -1, 8}, + {16, 8}, {16, 1, 8}, {16, 8, 2}, {16, 8, 1, 2}, + {16, 8, 2, 2}, {16, -1, -2, 16}, {16, -2, 16}, {16, -1, 16}}; + +/* Likewise, but for shift amounts < 16, up to three highmost bits + might be clobbered. This is typically used when combined with some + kind of sign or zero extension. */ + +static const char ext_shift_insns[] = + { 0,1,1,2,2,3,2,2,1,2,2,3,3,3,2,2,1,2,2,3,3,4,3,3,2,3,3,4,4,4,3,3}; + +static const short ext_shift_amounts[32][4] = { + {0}, {1}, {2}, {2, 1}, + {2, 2}, {2, 1, 2}, {8, -2}, {8, -1}, + {8}, {8, 1}, {8, 2}, {8, 1, 2}, + {8, 2, 2}, {16, -2, -1}, {16, -2}, {16, -1}, + {16}, {16, 1}, {16, 2}, {16, 1, 2}, + {16, 2, 2}, {16, 2, 1, 2}, {16, -2, 8}, {16, -1, 8}, + {16, 8}, {16, 1, 8}, {16, 8, 2}, {16, 8, 1, 2}, + {16, 8, 2, 2}, {16, -1, -2, 16}, {16, -2, 16}, {16, -1, 16}}; + +/* Assuming we have a value that has been sign-extended by at least one bit, + can we use the ext_shift_amounts with the last shift turned to an arithmetic shift + to shift it by N without data loss, and quicker than by other means? */ +#define EXT_SHIFT_SIGNED(n) (((n) | 8) == 15) + +/* This is used in length attributes in sh.md to help compute the length + of arbitrary constant shift instructions. */ + +int +shift_insns_rtx (rtx insn) +{ + rtx set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0)); + int shift_count = INTVAL (XEXP (set_src, 1)) & 31; + enum rtx_code shift_code = GET_CODE (set_src); + + switch (shift_code) + { + case ASHIFTRT: + return ashiftrt_insns[shift_count]; + case LSHIFTRT: + case ASHIFT: + return shift_insns[shift_count]; + default: + gcc_unreachable (); + } +} + +/* Return the cost of a shift. */ + +static inline int +shiftcosts (rtx x) +{ + int value; + + if (TARGET_SHMEDIA) + return 1; + + if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) + { + if (GET_MODE (x) == DImode + && CONST_INT_P (XEXP (x, 1)) + && INTVAL (XEXP (x, 1)) == 1) + return 2; + + /* Everything else is invalid, because there is no pattern for it. */ + return MAX_COST; + } + /* If shift by a non constant, then this will be expensive. */ + if (!CONST_INT_P (XEXP (x, 1))) + return SH_DYNAMIC_SHIFT_COST; + + /* Otherwise, return the true cost in instructions. Cope with out of range + shift counts more or less arbitrarily. */ + value = INTVAL (XEXP (x, 1)) & 31; + + if (GET_CODE (x) == ASHIFTRT) + { + int cost = ashiftrt_insns[value]; + /* If SH3, then we put the constant in a reg and use shad. */ + if (cost > 1 + SH_DYNAMIC_SHIFT_COST) + cost = 1 + SH_DYNAMIC_SHIFT_COST; + return cost; + } + else + return shift_insns[value]; +} + +/* Return the cost of an AND operation. */ + +static inline int +andcosts (rtx x) +{ + int i; + + /* Anding with a register is a single cycle and instruction. */ + if (!CONST_INT_P (XEXP (x, 1))) + return 1; + + i = INTVAL (XEXP (x, 1)); + + if (TARGET_SHMEDIA) + { + if (satisfies_constraint_I10 (XEXP (x, 1)) + || satisfies_constraint_J16 (XEXP (x, 1))) + return 1; + else + return 1 + rtx_cost (XEXP (x, 1), AND, !optimize_size); + } + + /* These constants are single cycle extu.[bw] instructions. */ + if (i == 0xff || i == 0xffff) + return 1; + /* Constants that can be used in an and immediate instruction in a single + cycle, but this requires r0, so make it a little more expensive. */ + if (CONST_OK_FOR_K08 (i)) + return 2; + /* Constants that can be loaded with a mov immediate and an and. + This case is probably unnecessary. */ + if (CONST_OK_FOR_I08 (i)) + return 2; + /* Any other constants requires a 2 cycle pc-relative load plus an and. + This case is probably unnecessary. */ + return 3; +} + +/* Return the cost of an addition or a subtraction. */ + +static inline int +addsubcosts (rtx x) +{ + /* Adding a register is a single cycle insn. */ + if (REG_P (XEXP (x, 1)) + || GET_CODE (XEXP (x, 1)) == SUBREG) + return 1; + + /* Likewise for small constants. */ + if (CONST_INT_P (XEXP (x, 1)) + && CONST_OK_FOR_ADD (INTVAL (XEXP (x, 1)))) + return 1; + + if (TARGET_SHMEDIA) + switch (GET_CODE (XEXP (x, 1))) + { + case CONST: + case LABEL_REF: + case SYMBOL_REF: + return TARGET_SHMEDIA64 ? 5 : 3; + + case CONST_INT: + if (CONST_OK_FOR_I16 (INTVAL (XEXP (x, 1)))) + return 2; + else if (CONST_OK_FOR_I16 (INTVAL (XEXP (x, 1)) >> 16)) + return 3; + else if (CONST_OK_FOR_I16 ((INTVAL (XEXP (x, 1)) >> 16) >> 16)) + return 4; + + /* Fall through. */ + default: + return 5; + } + + /* Any other constant requires a 2 cycle pc-relative load plus an + addition. */ + return 3; +} + +/* Return the cost of a multiply. */ +static inline int +multcosts (rtx x ATTRIBUTE_UNUSED) +{ + if (sh_multcost >= 0) + return sh_multcost; + if (TARGET_SHMEDIA) + /* ??? We have a mul insn, but it has a latency of three, and doesn't + accept constants. Ideally, we would use a cost of one or two and + add the cost of the operand, but disregard the latter when inside loops + and loop invariant code motion is still to follow. + Using a multiply first and splitting it later if it's a loss + doesn't work because of different sign / zero extension semantics + of multiplies vs. shifts. */ + return optimize_size ? 2 : 3; + + if (TARGET_SH2) + { + /* We have a mul insn, so we can never take more than the mul and the + read of the mac reg, but count more because of the latency and extra + reg usage. */ + if (optimize_size) + return 2; + return 3; + } + + /* If we're aiming at small code, then just count the number of + insns in a multiply call sequence. */ + if (optimize_size) + return 5; + + /* Otherwise count all the insns in the routine we'd be calling too. */ + return 20; +} + +/* Compute a (partial) cost for rtx X. Return true if the complete + cost has been computed, and false if subexpressions should be + scanned. In either case, *TOTAL contains the cost result. */ + +static bool +sh_rtx_costs (rtx x, int code, int outer_code, int *total, + bool speed ATTRIBUTE_UNUSED) +{ + switch (code) + { + case CONST_INT: + if (TARGET_SHMEDIA) + { + if (INTVAL (x) == 0) + *total = 0; + else if (outer_code == AND && and_operand ((x), DImode)) + *total = 0; + else if ((outer_code == IOR || outer_code == XOR + || outer_code == PLUS) + && CONST_OK_FOR_I10 (INTVAL (x))) + *total = 0; + else if (CONST_OK_FOR_I16 (INTVAL (x))) + *total = COSTS_N_INSNS (outer_code != SET); + else if (CONST_OK_FOR_I16 (INTVAL (x) >> 16)) + *total = COSTS_N_INSNS ((outer_code != SET) + 1); + else if (CONST_OK_FOR_I16 ((INTVAL (x) >> 16) >> 16)) + *total = COSTS_N_INSNS ((outer_code != SET) + 2); + else + *total = COSTS_N_INSNS ((outer_code != SET) + 3); + return true; + } + if (CONST_OK_FOR_I08 (INTVAL (x))) + *total = 0; + else if ((outer_code == AND || outer_code == IOR || outer_code == XOR) + && CONST_OK_FOR_K08 (INTVAL (x))) + *total = 1; + /* prepare_cmp_insn will force costly constants int registers before + the cbranch[sd]i4 patterns can see them, so preserve potentially + interesting ones not covered by I08 above. */ + else if (outer_code == COMPARE + && ((unsigned HOST_WIDE_INT) INTVAL (x) + == (unsigned HOST_WIDE_INT) 0x7fffffff + 1 + || INTVAL (x) == 0x7fffffff + || INTVAL (x) == 0x80 || INTVAL (x) == -0x81)) + *total = 1; + else + *total = 8; + return true; + + case CONST: + case LABEL_REF: + case SYMBOL_REF: + if (TARGET_SHMEDIA64) + *total = COSTS_N_INSNS (4); + else if (TARGET_SHMEDIA32) + *total = COSTS_N_INSNS (2); + else + *total = 5; + return true; + + case CONST_DOUBLE: + if (TARGET_SHMEDIA) + *total = COSTS_N_INSNS (4); + /* prepare_cmp_insn will force costly constants int registers before + the cbranchdi4 pattern can see them, so preserve potentially + interesting ones. */ + else if (outer_code == COMPARE && GET_MODE (x) == DImode) + *total = 1; + else + *total = 10; + return true; + case CONST_VECTOR: + if (x == CONST0_RTX (GET_MODE (x))) + *total = 0; + else if (sh_1el_vec (x, VOIDmode)) + *total = outer_code != SET; + if (sh_rep_vec (x, VOIDmode)) + *total = ((GET_MODE_UNIT_SIZE (GET_MODE (x)) + 3) / 4 + + (outer_code != SET)); + *total = COSTS_N_INSNS (3) + (outer_code != SET); + return true; + + case PLUS: + case MINUS: + *total = COSTS_N_INSNS (addsubcosts (x)); + return true; + + case AND: + *total = COSTS_N_INSNS (andcosts (x)); + return true; + + case MULT: + *total = COSTS_N_INSNS (multcosts (x)); + return true; + + case ASHIFT: + case ASHIFTRT: + case LSHIFTRT: + *total = COSTS_N_INSNS (shiftcosts (x)); + return true; + + case DIV: + case UDIV: + case MOD: + case UMOD: + *total = COSTS_N_INSNS (20); + return true; + + case PARALLEL: + if (sh_1el_vec (x, VOIDmode)) + *total = outer_code != SET; + if (sh_rep_vec (x, VOIDmode)) + *total = ((GET_MODE_UNIT_SIZE (GET_MODE (x)) + 3) / 4 + + (outer_code != SET)); + *total = COSTS_N_INSNS (3) + (outer_code != SET); + return true; + + case FLOAT: + case FIX: + *total = 100; + return true; + + default: + return false; + } +} + +/* Compute the cost of an address. For the SH, all valid addresses are + the same cost. Use a slightly higher cost for reg + reg addressing, + since it increases pressure on r0. */ + +static int +sh_address_cost (rtx X, + bool speed ATTRIBUTE_UNUSED) +{ + return (GET_CODE (X) == PLUS + && ! CONSTANT_P (XEXP (X, 1)) + && ! TARGET_SHMEDIA ? 1 : 0); +} + +/* Code to expand a shift. */ + +void +gen_ashift (int type, int n, rtx reg) +{ + /* Negative values here come from the shift_amounts array. */ + if (n < 0) + { + if (type == ASHIFT) + type = LSHIFTRT; + else + type = ASHIFT; + n = -n; + } + + switch (type) + { + case ASHIFTRT: + emit_insn (gen_ashrsi3_k (reg, reg, GEN_INT (n))); + break; + case LSHIFTRT: + if (n == 1) + emit_insn (gen_lshrsi3_m (reg, reg, GEN_INT (n))); + else + emit_insn (gen_lshrsi3_k (reg, reg, GEN_INT (n))); + break; + case ASHIFT: + emit_insn (gen_ashlsi3_std (reg, reg, GEN_INT (n))); + break; + } +} + +/* Same for HImode */ + +void +gen_ashift_hi (int type, int n, rtx reg) +{ + /* Negative values here come from the shift_amounts array. */ + if (n < 0) + { + if (type == ASHIFT) + type = LSHIFTRT; + else + type = ASHIFT; + n = -n; + } + + switch (type) + { + case ASHIFTRT: + case LSHIFTRT: + /* We don't have HImode right shift operations because using the + ordinary 32 bit shift instructions for that doesn't generate proper + zero/sign extension. + gen_ashift_hi is only called in contexts where we know that the + sign extension works out correctly. */ + { + int offset = 0; + if (GET_CODE (reg) == SUBREG) + { + offset = SUBREG_BYTE (reg); + reg = SUBREG_REG (reg); + } + gen_ashift (type, n, gen_rtx_SUBREG (SImode, reg, offset)); + break; + } + case ASHIFT: + emit_insn (gen_ashlhi3_k (reg, reg, GEN_INT (n))); + break; + } +} + +/* Output RTL to split a constant shift into its component SH constant + shift instructions. */ + +void +gen_shifty_op (int code, rtx *operands) +{ + int value = INTVAL (operands[2]); + int max, i; + + /* Truncate the shift count in case it is out of bounds. */ + value = value & 31; + + if (value == 31) + { + if (code == LSHIFTRT) + { + emit_insn (gen_rotlsi3_1 (operands[0], operands[0])); + emit_insn (gen_movt (operands[0])); + return; + } + else if (code == ASHIFT) + { + /* There is a two instruction sequence for 31 bit left shifts, + but it requires r0. */ + if (REG_P (operands[0]) && REGNO (operands[0]) == 0) + { + emit_insn (gen_andsi3 (operands[0], operands[0], const1_rtx)); + emit_insn (gen_rotlsi3_31 (operands[0], operands[0])); + return; + } + } + } + else if (value == 0) + { + /* This can happen even when optimizing, if there were subregs before + reload. Don't output a nop here, as this is never optimized away; + use a no-op move instead. */ + emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[0])); + return; + } + + max = shift_insns[value]; + for (i = 0; i < max; i++) + gen_ashift (code, shift_amounts[value][i], operands[0]); +} + +/* Same as above, but optimized for values where the topmost bits don't + matter. */ + +void +gen_shifty_hi_op (int code, rtx *operands) +{ + int value = INTVAL (operands[2]); + int max, i; + void (*gen_fun) (int, int, rtx); + + /* This operation is used by and_shl for SImode values with a few + high bits known to be cleared. */ + value &= 31; + if (value == 0) + { + emit_insn (gen_nop ()); + return; + } + + gen_fun = GET_MODE (operands[0]) == HImode ? gen_ashift_hi : gen_ashift; + if (code == ASHIFT) + { + max = ext_shift_insns[value]; + for (i = 0; i < max; i++) + gen_fun (code, ext_shift_amounts[value][i], operands[0]); + } + else + /* When shifting right, emit the shifts in reverse order, so that + solitary negative values come first. */ + for (i = ext_shift_insns[value] - 1; i >= 0; i--) + gen_fun (code, ext_shift_amounts[value][i], operands[0]); +} + +/* Output RTL for an arithmetic right shift. */ + +/* ??? Rewrite to use super-optimizer sequences. */ + +int +expand_ashiftrt (rtx *operands) +{ + rtx wrk; + char func[18]; + int value; + + if (TARGET_SH3) + { + if (!CONST_INT_P (operands[2])) + { + rtx count = copy_to_mode_reg (SImode, operands[2]); + emit_insn (gen_negsi2 (count, count)); + emit_insn (gen_ashrsi3_d (operands[0], operands[1], count)); + return 1; + } + else if (ashiftrt_insns[INTVAL (operands[2]) & 31] + > 1 + SH_DYNAMIC_SHIFT_COST) + { + rtx count + = force_reg (SImode, GEN_INT (- (INTVAL (operands[2]) & 31))); + emit_insn (gen_ashrsi3_d (operands[0], operands[1], count)); + return 1; + } + } + if (!CONST_INT_P (operands[2])) + return 0; + + value = INTVAL (operands[2]) & 31; + + if (value == 31) + { + /* If we are called from abs expansion, arrange things so that we + we can use a single MT instruction that doesn't clobber the source, + if LICM can hoist out the load of the constant zero. */ + if (currently_expanding_to_rtl) + { + emit_insn (gen_cmpgtsi_t (force_reg (SImode, CONST0_RTX (SImode)), + operands[1])); + emit_insn (gen_mov_neg_si_t (operands[0])); + return 1; + } + emit_insn (gen_ashrsi2_31 (operands[0], operands[1])); + return 1; + } + else if (value >= 16 && value <= 19) + { + wrk = gen_reg_rtx (SImode); + emit_insn (gen_ashrsi2_16 (wrk, operands[1])); + value -= 16; + while (value--) + gen_ashift (ASHIFTRT, 1, wrk); + emit_move_insn (operands[0], wrk); + return 1; + } + /* Expand a short sequence inline, longer call a magic routine. */ + else if (value <= 5) + { + wrk = gen_reg_rtx (SImode); + emit_move_insn (wrk, operands[1]); + while (value--) + gen_ashift (ASHIFTRT, 1, wrk); + emit_move_insn (operands[0], wrk); + return 1; + } + + wrk = gen_reg_rtx (Pmode); + + /* Load the value into an arg reg and call a helper. */ + emit_move_insn (gen_rtx_REG (SImode, 4), operands[1]); + sprintf (func, "__ashiftrt_r4_%d", value); + function_symbol (wrk, func, SFUNC_STATIC); + emit_insn (gen_ashrsi3_n (GEN_INT (value), wrk)); + emit_move_insn (operands[0], gen_rtx_REG (SImode, 4)); + return 1; +} + +int +sh_dynamicalize_shift_p (rtx count) +{ + return shift_insns[INTVAL (count) & 31] > 1 + SH_DYNAMIC_SHIFT_COST; +} + +/* Try to find a good way to implement the combiner pattern + [(set (match_operand:SI 0 "register_operand" "r") + (and:SI (ashift:SI (match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "const_int_operand" "n")) + (match_operand:SI 3 "const_int_operand" "n"))) . + LEFT_RTX is operand 2 in the above pattern, and MASK_RTX is operand 3. + return 0 for simple right / left or left/right shift combination. + return 1 for a combination of shifts with zero_extend. + return 2 for a combination of shifts with an AND that needs r0. + return 3 for a combination of shifts with an AND that needs an extra + scratch register, when the three highmost bits of the AND mask are clear. + return 4 for a combination of shifts with an AND that needs an extra + scratch register, when any of the three highmost bits of the AND mask + is set. + If ATTRP is set, store an initial right shift width in ATTRP[0], + and the instruction length in ATTRP[1] . These values are not valid + when returning 0. + When ATTRP is set and returning 1, ATTRP[2] gets set to the index into + shift_amounts for the last shift value that is to be used before the + sign extend. */ +int +shl_and_kind (rtx left_rtx, rtx mask_rtx, int *attrp) +{ + unsigned HOST_WIDE_INT mask, lsb, mask2, lsb2; + int left = INTVAL (left_rtx), right; + int best = 0; + int cost, best_cost = 10000; + int best_right = 0, best_len = 0; + int i; + int can_ext; + + if (left < 0 || left > 31) + return 0; + if (CONST_INT_P (mask_rtx)) + mask = (unsigned HOST_WIDE_INT) INTVAL (mask_rtx) >> left; + else + mask = (unsigned HOST_WIDE_INT) GET_MODE_MASK (SImode) >> left; + /* Can this be expressed as a right shift / left shift pair? */ + lsb = ((mask ^ (mask - 1)) >> 1) + 1; + right = exact_log2 (lsb); + mask2 = ~(mask + lsb - 1); + lsb2 = ((mask2 ^ (mask2 - 1)) >> 1) + 1; + /* mask has no zeroes but trailing zeroes <==> ! mask2 */ + if (! mask2) + best_cost = shift_insns[right] + shift_insns[right + left]; + /* mask has no trailing zeroes <==> ! right */ + else if (! right && mask2 == ~(lsb2 - 1)) + { + int late_right = exact_log2 (lsb2); + best_cost = shift_insns[left + late_right] + shift_insns[late_right]; + } + /* Try to use zero extend. */ + if (mask2 == ~(lsb2 - 1)) + { + int width, first; + + for (width = 8; width <= 16; width += 8) + { + /* Can we zero-extend right away? */ + if (lsb2 == (unsigned HOST_WIDE_INT) 1 << width) + { + cost + = 1 + ext_shift_insns[right] + ext_shift_insns[left + right]; + if (cost < best_cost) + { + best = 1; + best_cost = cost; + best_right = right; + best_len = cost; + if (attrp) + attrp[2] = -1; + } + continue; + } + /* ??? Could try to put zero extend into initial right shift, + or even shift a bit left before the right shift. */ + /* Determine value of first part of left shift, to get to the + zero extend cut-off point. */ + first = width - exact_log2 (lsb2) + right; + if (first >= 0 && right + left - first >= 0) + { + cost = ext_shift_insns[right] + ext_shift_insns[first] + 1 + + ext_shift_insns[right + left - first]; + if (cost < best_cost) + { + best = 1; + best_cost = cost; + best_right = right; + best_len = cost; + if (attrp) + attrp[2] = first; + } + } + } + } + /* Try to use r0 AND pattern */ + for (i = 0; i <= 2; i++) + { + if (i > right) + break; + if (! CONST_OK_FOR_K08 (mask >> i)) + continue; + cost = (i != 0) + 2 + ext_shift_insns[left + i]; + if (cost < best_cost) + { + best = 2; + best_cost = cost; + best_right = i; + best_len = cost - 1; + } + } + /* Try to use a scratch register to hold the AND operand. */ + can_ext = ((mask << left) & ((unsigned HOST_WIDE_INT) 3 << 30)) == 0; + for (i = 0; i <= 2; i++) + { + if (i > right) + break; + cost = (i != 0) + (CONST_OK_FOR_I08 (mask >> i) ? 2 : 3) + + (can_ext ? ext_shift_insns : shift_insns)[left + i]; + if (cost < best_cost) + { + best = 4 - can_ext; + best_cost = cost; + best_right = i; + best_len = cost - 1 - ! CONST_OK_FOR_I08 (mask >> i); + } + } + + if (attrp) + { + attrp[0] = best_right; + attrp[1] = best_len; + } + return best; +} + +/* This is used in length attributes of the unnamed instructions + corresponding to shl_and_kind return values of 1 and 2. */ +int +shl_and_length (rtx insn) +{ + rtx set_src, left_rtx, mask_rtx; + int attributes[3]; + + set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0)); + left_rtx = XEXP (XEXP (set_src, 0), 1); + mask_rtx = XEXP (set_src, 1); + shl_and_kind (left_rtx, mask_rtx, attributes); + return attributes[1]; +} + +/* This is used in length attribute of the and_shl_scratch instruction. */ + +int +shl_and_scr_length (rtx insn) +{ + rtx set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0)); + int len = shift_insns[INTVAL (XEXP (set_src, 1)) & 31]; + rtx op = XEXP (set_src, 0); + len += shift_insns[INTVAL (XEXP (op, 1)) & 31] + 1; + op = XEXP (XEXP (op, 0), 0); + return len + shift_insns[INTVAL (XEXP (op, 1)) & 31]; +} + +/* Generate rtl for instructions for which shl_and_kind advised a particular + method of generating them, i.e. returned zero. */ + +int +gen_shl_and (rtx dest, rtx left_rtx, rtx mask_rtx, rtx source) +{ + int attributes[3]; + unsigned HOST_WIDE_INT mask; + int kind = shl_and_kind (left_rtx, mask_rtx, attributes); + int right, total_shift; + void (*shift_gen_fun) (int, rtx *) = gen_shifty_hi_op; + + right = attributes[0]; + total_shift = INTVAL (left_rtx) + right; + mask = (unsigned HOST_WIDE_INT) INTVAL (mask_rtx) >> total_shift; + switch (kind) + { + default: + return -1; + case 1: + { + int first = attributes[2]; + rtx operands[3]; + + if (first < 0) + { + emit_insn ((mask << right) <= 0xff + ? gen_zero_extendqisi2 (dest, + gen_lowpart (QImode, source)) + : gen_zero_extendhisi2 (dest, + gen_lowpart (HImode, source))); + source = dest; + } + if (source != dest) + emit_insn (gen_movsi (dest, source)); + operands[0] = dest; + if (right) + { + operands[2] = GEN_INT (right); + gen_shifty_hi_op (LSHIFTRT, operands); + } + if (first > 0) + { + operands[2] = GEN_INT (first); + gen_shifty_hi_op (ASHIFT, operands); + total_shift -= first; + mask <<= first; + } + if (first >= 0) + emit_insn (mask <= 0xff + ? gen_zero_extendqisi2 (dest, gen_lowpart (QImode, dest)) + : gen_zero_extendhisi2 (dest, gen_lowpart (HImode, dest))); + if (total_shift > 0) + { + operands[2] = GEN_INT (total_shift); + gen_shifty_hi_op (ASHIFT, operands); + } + break; + } + case 4: + shift_gen_fun = gen_shifty_op; + case 3: + /* If the topmost bit that matters is set, set the topmost bits + that don't matter. This way, we might be able to get a shorter + signed constant. */ + if (mask & ((HOST_WIDE_INT) 1 << (31 - total_shift))) + mask |= (HOST_WIDE_INT) ~0 << (31 - total_shift); + case 2: + /* Don't expand fine-grained when combining, because that will + make the pattern fail. */ + if (currently_expanding_to_rtl + || reload_in_progress || reload_completed) + { + rtx operands[3]; + + /* Cases 3 and 4 should be handled by this split + only while combining */ + gcc_assert (kind <= 2); + if (right) + { + emit_insn (gen_lshrsi3 (dest, source, GEN_INT (right))); + source = dest; + } + emit_insn (gen_andsi3 (dest, source, GEN_INT (mask))); + if (total_shift) + { + operands[0] = dest; + operands[1] = dest; + operands[2] = GEN_INT (total_shift); + shift_gen_fun (ASHIFT, operands); + } + break; + } + else + { + int neg = 0; + if (kind != 4 && total_shift < 16) + { + neg = -ext_shift_amounts[total_shift][1]; + if (neg > 0) + neg -= ext_shift_amounts[total_shift][2]; + else + neg = 0; + } + emit_insn (gen_and_shl_scratch (dest, source, + GEN_INT (right), + GEN_INT (mask), + GEN_INT (total_shift + neg), + GEN_INT (neg))); + emit_insn (gen_movsi (dest, dest)); + break; + } + } + return 0; +} + +/* Try to find a good way to implement the combiner pattern + [(set (match_operand:SI 0 "register_operand" "=r") + (sign_extract:SI (ashift:SI (match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "const_int_operand" "n") + (match_operand:SI 3 "const_int_operand" "n") + (const_int 0))) + (clobber (reg:SI T_REG))] + LEFT_RTX is operand 2 in the above pattern, and SIZE_RTX is operand 3. + return 0 for simple left / right shift combination. + return 1 for left shift / 8 bit sign extend / left shift. + return 2 for left shift / 16 bit sign extend / left shift. + return 3 for left shift / 8 bit sign extend / shift / sign extend. + return 4 for left shift / 16 bit sign extend / shift / sign extend. + return 5 for left shift / 16 bit sign extend / right shift + return 6 for < 8 bit sign extend / left shift. + return 7 for < 8 bit sign extend / left shift / single right shift. + If COSTP is nonzero, assign the calculated cost to *COSTP. */ + +int +shl_sext_kind (rtx left_rtx, rtx size_rtx, int *costp) +{ + int left, size, insize, ext; + int cost = 0, best_cost; + int kind; + + left = INTVAL (left_rtx); + size = INTVAL (size_rtx); + insize = size - left; + gcc_assert (insize > 0); + /* Default to left / right shift. */ + kind = 0; + best_cost = shift_insns[32 - insize] + ashiftrt_insns[32 - size]; + if (size <= 16) + { + /* 16 bit shift / sign extend / 16 bit shift */ + cost = shift_insns[16 - insize] + 1 + ashiftrt_insns[16 - size]; + /* If ashiftrt_insns[16 - size] is 8, this choice will be overridden + below, by alternative 3 or something even better. */ + if (cost < best_cost) + { + kind = 5; + best_cost = cost; + } + } + /* Try a plain sign extend between two shifts. */ + for (ext = 16; ext >= insize; ext -= 8) + { + if (ext <= size) + { + cost = ext_shift_insns[ext - insize] + 1 + shift_insns[size - ext]; + if (cost < best_cost) + { + kind = ext / (unsigned) 8; + best_cost = cost; + } + } + /* Check if we can do a sloppy shift with a final signed shift + restoring the sign. */ + if (EXT_SHIFT_SIGNED (size - ext)) + cost = ext_shift_insns[ext - insize] + ext_shift_insns[size - ext] + 1; + /* If not, maybe it's still cheaper to do the second shift sloppy, + and do a final sign extend? */ + else if (size <= 16) + cost = ext_shift_insns[ext - insize] + 1 + + ext_shift_insns[size > ext ? size - ext : ext - size] + 1; + else + continue; + if (cost < best_cost) + { + kind = ext / (unsigned) 8 + 2; + best_cost = cost; + } + } + /* Check if we can sign extend in r0 */ + if (insize < 8) + { + cost = 3 + shift_insns[left]; + if (cost < best_cost) + { + kind = 6; + best_cost = cost; + } + /* Try the same with a final signed shift. */ + if (left < 31) + { + cost = 3 + ext_shift_insns[left + 1] + 1; + if (cost < best_cost) + { + kind = 7; + best_cost = cost; + } + } + } + if (TARGET_SH3) + { + /* Try to use a dynamic shift. */ + cost = shift_insns[32 - insize] + 1 + SH_DYNAMIC_SHIFT_COST; + if (cost < best_cost) + { + kind = 0; + best_cost = cost; + } + } + if (costp) + *costp = cost; + return kind; +} + +/* Function to be used in the length attribute of the instructions + implementing this pattern. */ + +int +shl_sext_length (rtx insn) +{ + rtx set_src, left_rtx, size_rtx; + int cost; + + set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0)); + left_rtx = XEXP (XEXP (set_src, 0), 1); + size_rtx = XEXP (set_src, 1); + shl_sext_kind (left_rtx, size_rtx, &cost); + return cost; +} + +/* Generate rtl for this pattern */ + +int +gen_shl_sext (rtx dest, rtx left_rtx, rtx size_rtx, rtx source) +{ + int kind; + int left, size, insize, cost; + rtx operands[3]; + + kind = shl_sext_kind (left_rtx, size_rtx, &cost); + left = INTVAL (left_rtx); + size = INTVAL (size_rtx); + insize = size - left; + switch (kind) + { + case 1: + case 2: + case 3: + case 4: + { + int ext = kind & 1 ? 8 : 16; + int shift2 = size - ext; + + /* Don't expand fine-grained when combining, because that will + make the pattern fail. */ + if (! currently_expanding_to_rtl + && ! reload_in_progress && ! reload_completed) + { + emit_insn (gen_shl_sext_ext (dest, source, left_rtx, size_rtx)); + emit_insn (gen_movsi (dest, source)); + break; + } + if (dest != source) + emit_insn (gen_movsi (dest, source)); + operands[0] = dest; + if (ext - insize) + { + operands[2] = GEN_INT (ext - insize); + gen_shifty_hi_op (ASHIFT, operands); + } + emit_insn (kind & 1 + ? gen_extendqisi2 (dest, gen_lowpart (QImode, dest)) + : gen_extendhisi2 (dest, gen_lowpart (HImode, dest))); + if (kind <= 2) + { + if (shift2) + { + operands[2] = GEN_INT (shift2); + gen_shifty_op (ASHIFT, operands); + } + } + else + { + if (shift2 > 0) + { + if (EXT_SHIFT_SIGNED (shift2)) + { + operands[2] = GEN_INT (shift2 + 1); + gen_shifty_op (ASHIFT, operands); + operands[2] = const1_rtx; + gen_shifty_op (ASHIFTRT, operands); + break; + } + operands[2] = GEN_INT (shift2); + gen_shifty_hi_op (ASHIFT, operands); + } + else if (shift2) + { + operands[2] = GEN_INT (-shift2); + gen_shifty_hi_op (LSHIFTRT, operands); + } + emit_insn (size <= 8 + ? gen_extendqisi2 (dest, gen_lowpart (QImode, dest)) + : gen_extendhisi2 (dest, gen_lowpart (HImode, dest))); + } + break; + } + case 5: + { + int i = 16 - size; + if (! currently_expanding_to_rtl + && ! reload_in_progress && ! reload_completed) + emit_insn (gen_shl_sext_ext (dest, source, left_rtx, size_rtx)); + else + { + operands[0] = dest; + operands[2] = GEN_INT (16 - insize); + gen_shifty_hi_op (ASHIFT, operands); + emit_insn (gen_extendhisi2 (dest, gen_lowpart (HImode, dest))); + } + /* Don't use gen_ashrsi3 because it generates new pseudos. */ + while (--i >= 0) + gen_ashift (ASHIFTRT, 1, dest); + break; + } + case 6: + case 7: + /* Don't expand fine-grained when combining, because that will + make the pattern fail. */ + if (! currently_expanding_to_rtl + && ! reload_in_progress && ! reload_completed) + { + emit_insn (gen_shl_sext_ext (dest, source, left_rtx, size_rtx)); + emit_insn (gen_movsi (dest, source)); + break; + } + emit_insn (gen_andsi3 (dest, source, GEN_INT ((1 << insize) - 1))); + emit_insn (gen_xorsi3 (dest, dest, GEN_INT (1 << (insize - 1)))); + emit_insn (gen_addsi3 (dest, dest, GEN_INT (-1 << (insize - 1)))); + operands[0] = dest; + operands[2] = kind == 7 ? GEN_INT (left + 1) : left_rtx; + gen_shifty_op (ASHIFT, operands); + if (kind == 7) + emit_insn (gen_ashrsi3_k (dest, dest, const1_rtx)); + break; + default: + return -1; + } + return 0; +} + +/* Prefix a symbol_ref name with "datalabel". */ + +rtx +gen_datalabel_ref (rtx sym) +{ + const char *str; + + if (GET_CODE (sym) == LABEL_REF) + return gen_rtx_CONST (GET_MODE (sym), + gen_rtx_UNSPEC (GET_MODE (sym), + gen_rtvec (1, sym), + UNSPEC_DATALABEL)); + + gcc_assert (GET_CODE (sym) == SYMBOL_REF); + + str = XSTR (sym, 0); + /* Share all SYMBOL_REF strings with the same value - that is important + for cse. */ + str = IDENTIFIER_POINTER (get_identifier (str)); + XSTR (sym, 0) = str; + + return sym; +} + + +static alloc_pool label_ref_list_pool; + +typedef struct label_ref_list_d +{ + rtx label; + struct label_ref_list_d *next; +} *label_ref_list_t; + +/* The SH cannot load a large constant into a register, constants have to + come from a pc relative load. The reference of a pc relative load + instruction must be less than 1k in front of the instruction. This + means that we often have to dump a constant inside a function, and + generate code to branch around it. + + It is important to minimize this, since the branches will slow things + down and make things bigger. + + Worst case code looks like: + + mov.l L1,rn + bra L2 + nop + align + L1: .long value + L2: + .. + + mov.l L3,rn + bra L4 + nop + align + L3: .long value + L4: + .. + + We fix this by performing a scan before scheduling, which notices which + instructions need to have their operands fetched from the constant table + and builds the table. + + The algorithm is: + + scan, find an instruction which needs a pcrel move. Look forward, find the + last barrier which is within MAX_COUNT bytes of the requirement. + If there isn't one, make one. Process all the instructions between + the find and the barrier. + + In the above example, we can tell that L3 is within 1k of L1, so + the first move can be shrunk from the 3 insn+constant sequence into + just 1 insn, and the constant moved to L3 to make: + + mov.l L1,rn + .. + mov.l L3,rn + bra L4 + nop + align + L3:.long value + L4:.long value + + Then the second move becomes the target for the shortening process. */ + +typedef struct +{ + rtx value; /* Value in table. */ + rtx label; /* Label of value. */ + label_ref_list_t wend; /* End of window. */ + enum machine_mode mode; /* Mode of value. */ + + /* True if this constant is accessed as part of a post-increment + sequence. Note that HImode constants are never accessed in this way. */ + bool part_of_sequence_p; +} pool_node; + +/* The maximum number of constants that can fit into one pool, since + constants in the range 0..510 are at least 2 bytes long, and in the + range from there to 1018 at least 4 bytes. */ + +#define MAX_POOL_SIZE 372 +static pool_node pool_vector[MAX_POOL_SIZE]; +static int pool_size; +static rtx pool_window_label; +static int pool_window_last; + +static int max_labelno_before_reorg; + +/* ??? If we need a constant in HImode which is the truncated value of a + constant we need in SImode, we could combine the two entries thus saving + two bytes. Is this common enough to be worth the effort of implementing + it? */ + +/* ??? This stuff should be done at the same time that we shorten branches. + As it is now, we must assume that all branches are the maximum size, and + this causes us to almost always output constant pools sooner than + necessary. */ + +/* Add a constant to the pool and return its label. */ + +static rtx +add_constant (rtx x, enum machine_mode mode, rtx last_value) +{ + int i; + rtx lab, new_rtx; + label_ref_list_t ref, newref; + + /* First see if we've already got it. */ + for (i = 0; i < pool_size; i++) + { + if (x->code == pool_vector[i].value->code + && mode == pool_vector[i].mode) + { + if (x->code == CODE_LABEL) + { + if (XINT (x, 3) != XINT (pool_vector[i].value, 3)) + continue; + } + if (rtx_equal_p (x, pool_vector[i].value)) + { + lab = new_rtx = 0; + if (! last_value + || ! i + || ! rtx_equal_p (last_value, pool_vector[i-1].value)) + { + new_rtx = gen_label_rtx (); + LABEL_REFS (new_rtx) = pool_vector[i].label; + pool_vector[i].label = lab = new_rtx; + } + if (lab && pool_window_label) + { + newref = (label_ref_list_t) pool_alloc (label_ref_list_pool); + newref->label = pool_window_label; + ref = pool_vector[pool_window_last].wend; + newref->next = ref; + pool_vector[pool_window_last].wend = newref; + } + if (new_rtx) + pool_window_label = new_rtx; + pool_window_last = i; + return lab; + } + } + } + + /* Need a new one. */ + pool_vector[pool_size].value = x; + if (last_value && rtx_equal_p (last_value, pool_vector[pool_size - 1].value)) + { + lab = 0; + pool_vector[pool_size - 1].part_of_sequence_p = true; + } + else + lab = gen_label_rtx (); + pool_vector[pool_size].mode = mode; + pool_vector[pool_size].label = lab; + pool_vector[pool_size].wend = NULL; + pool_vector[pool_size].part_of_sequence_p = (lab == 0); + if (lab && pool_window_label) + { + newref = (label_ref_list_t) pool_alloc (label_ref_list_pool); + newref->label = pool_window_label; + ref = pool_vector[pool_window_last].wend; + newref->next = ref; + pool_vector[pool_window_last].wend = newref; + } + if (lab) + pool_window_label = lab; + pool_window_last = pool_size; + pool_size++; + return lab; +} + +/* Output the literal table. START, if nonzero, is the first instruction + this table is needed for, and also indicates that there is at least one + casesi_worker_2 instruction; We have to emit the operand3 labels from + these insns at a 4-byte aligned position. BARRIER is the barrier + after which we are to place the table. */ + +static void +dump_table (rtx start, rtx barrier) +{ + rtx scan = barrier; + int i; + int need_align = 1; + rtx lab; + label_ref_list_t ref; + int have_df = 0; + + /* Do two passes, first time dump out the HI sized constants. */ + + for (i = 0; i < pool_size; i++) + { + pool_node *p = &pool_vector[i]; + + if (p->mode == HImode) + { + if (need_align) + { + scan = emit_insn_after (gen_align_2 (), scan); + need_align = 0; + } + for (lab = p->label; lab; lab = LABEL_REFS (lab)) + scan = emit_label_after (lab, scan); + scan = emit_insn_after (gen_consttable_2 (p->value, const0_rtx), + scan); + for (ref = p->wend; ref; ref = ref->next) + { + lab = ref->label; + scan = emit_insn_after (gen_consttable_window_end (lab), scan); + } + } + else if (p->mode == DFmode) + have_df = 1; + } + + need_align = 1; + + if (start) + { + scan = emit_insn_after (gen_align_4 (), scan); + need_align = 0; + for (; start != barrier; start = NEXT_INSN (start)) + if (NONJUMP_INSN_P (start) + && recog_memoized (start) == CODE_FOR_casesi_worker_2) + { + rtx src = SET_SRC (XVECEXP (PATTERN (start), 0, 0)); + rtx lab = XEXP (XVECEXP (src, 0, 3), 0); + + scan = emit_label_after (lab, scan); + } + } + if (TARGET_FMOVD && TARGET_ALIGN_DOUBLE && have_df) + { + rtx align_insn = NULL_RTX; + + scan = emit_label_after (gen_label_rtx (), scan); + scan = emit_insn_after (gen_align_log (GEN_INT (3)), scan); + need_align = 0; + + for (i = 0; i < pool_size; i++) + { + pool_node *p = &pool_vector[i]; + + switch (p->mode) + { + case HImode: + break; + case SImode: + case SFmode: + if (align_insn && !p->part_of_sequence_p) + { + for (lab = p->label; lab; lab = LABEL_REFS (lab)) + emit_label_before (lab, align_insn); + emit_insn_before (gen_consttable_4 (p->value, const0_rtx), + align_insn); + for (ref = p->wend; ref; ref = ref->next) + { + lab = ref->label; + emit_insn_before (gen_consttable_window_end (lab), + align_insn); + } + delete_insn (align_insn); + align_insn = NULL_RTX; + continue; + } + else + { + for (lab = p->label; lab; lab = LABEL_REFS (lab)) + scan = emit_label_after (lab, scan); + scan = emit_insn_after (gen_consttable_4 (p->value, + const0_rtx), scan); + need_align = ! need_align; + } + break; + case DFmode: + if (need_align) + { + scan = emit_insn_after (gen_align_log (GEN_INT (3)), scan); + align_insn = scan; + need_align = 0; + } + case DImode: + for (lab = p->label; lab; lab = LABEL_REFS (lab)) + scan = emit_label_after (lab, scan); + scan = emit_insn_after (gen_consttable_8 (p->value, const0_rtx), + scan); + break; + default: + gcc_unreachable (); + } + + if (p->mode != HImode) + { + for (ref = p->wend; ref; ref = ref->next) + { + lab = ref->label; + scan = emit_insn_after (gen_consttable_window_end (lab), + scan); + } + } + } + + pool_size = 0; + } + + for (i = 0; i < pool_size; i++) + { + pool_node *p = &pool_vector[i]; + + switch (p->mode) + { + case HImode: + break; + case SImode: + case SFmode: + if (need_align) + { + need_align = 0; + scan = emit_label_after (gen_label_rtx (), scan); + scan = emit_insn_after (gen_align_4 (), scan); + } + for (lab = p->label; lab; lab = LABEL_REFS (lab)) + scan = emit_label_after (lab, scan); + scan = emit_insn_after (gen_consttable_4 (p->value, const0_rtx), + scan); + break; + case DFmode: + case DImode: + if (need_align) + { + need_align = 0; + scan = emit_label_after (gen_label_rtx (), scan); + scan = emit_insn_after (gen_align_4 (), scan); + } + for (lab = p->label; lab; lab = LABEL_REFS (lab)) + scan = emit_label_after (lab, scan); + scan = emit_insn_after (gen_consttable_8 (p->value, const0_rtx), + scan); + break; + default: + gcc_unreachable (); + } + + if (p->mode != HImode) + { + for (ref = p->wend; ref; ref = ref->next) + { + lab = ref->label; + scan = emit_insn_after (gen_consttable_window_end (lab), scan); + } + } + } + + scan = emit_insn_after (gen_consttable_end (), scan); + scan = emit_barrier_after (scan); + pool_size = 0; + pool_window_label = NULL_RTX; + pool_window_last = 0; +} + +/* Return nonzero if constant would be an ok source for a + mov.w instead of a mov.l. */ + +static int +hi_const (rtx src) +{ + return (CONST_INT_P (src) + && INTVAL (src) >= -32768 + && INTVAL (src) <= 32767); +} + +#define MOVA_LABELREF(mova) XVECEXP (SET_SRC (PATTERN (mova)), 0, 0) + +/* Nonzero if the insn is a move instruction which needs to be fixed. */ + +/* ??? For a DImode/DFmode moves, we don't need to fix it if each half of the + CONST_DOUBLE input value is CONST_OK_FOR_I08. For a SFmode move, we don't + need to fix it if the input value is CONST_OK_FOR_I08. */ + +static int +broken_move (rtx insn) +{ + if (NONJUMP_INSN_P (insn)) + { + rtx pat = PATTERN (insn); + if (GET_CODE (pat) == PARALLEL) + pat = XVECEXP (pat, 0, 0); + if (GET_CODE (pat) == SET + /* We can load any 8-bit value if we don't care what the high + order bits end up as. */ + && GET_MODE (SET_DEST (pat)) != QImode + && (CONSTANT_P (SET_SRC (pat)) + /* Match mova_const. */ + || (GET_CODE (SET_SRC (pat)) == UNSPEC + && XINT (SET_SRC (pat), 1) == UNSPEC_MOVA + && GET_CODE (XVECEXP (SET_SRC (pat), 0, 0)) == CONST)) + && ! (TARGET_SH2E + && GET_CODE (SET_SRC (pat)) == CONST_DOUBLE + && (fp_zero_operand (SET_SRC (pat)) + || fp_one_operand (SET_SRC (pat))) + /* In general we don't know the current setting of fpscr, so disable fldi. + There is an exception if this was a register-register move + before reload - and hence it was ascertained that we have + single precision setting - and in a post-reload optimization + we changed this to do a constant load. In that case + we don't have an r0 clobber, hence we must use fldi. */ + && (TARGET_FMOVD + || (GET_CODE (XEXP (XVECEXP (PATTERN (insn), 0, 2), 0)) + == SCRATCH)) + && REG_P (SET_DEST (pat)) + && FP_REGISTER_P (REGNO (SET_DEST (pat)))) + && ! (TARGET_SH2A + && GET_MODE (SET_DEST (pat)) == SImode + && (satisfies_constraint_I20 (SET_SRC (pat)) + || satisfies_constraint_I28 (SET_SRC (pat)))) + && ! satisfies_constraint_I08 (SET_SRC (pat))) + return 1; + } + + return 0; +} + +static int +mova_p (rtx insn) +{ + return (NONJUMP_INSN_P (insn) + && GET_CODE (PATTERN (insn)) == SET + && GET_CODE (SET_SRC (PATTERN (insn))) == UNSPEC + && XINT (SET_SRC (PATTERN (insn)), 1) == UNSPEC_MOVA + /* Don't match mova_const. */ + && GET_CODE (MOVA_LABELREF (insn)) == LABEL_REF); +} + +/* Fix up a mova from a switch that went out of range. */ +static void +fixup_mova (rtx mova) +{ + PUT_MODE (XEXP (MOVA_LABELREF (mova), 0), QImode); + if (! flag_pic) + { + SET_SRC (PATTERN (mova)) = MOVA_LABELREF (mova); + INSN_CODE (mova) = -1; + } + else + { + rtx worker = mova; + rtx lab = gen_label_rtx (); + rtx wpat, wpat0, wpat1, wsrc, target, base, diff; + + do + { + worker = NEXT_INSN (worker); + gcc_assert (worker + && !LABEL_P (worker) + && !JUMP_P (worker)); + } while (NOTE_P (worker) + || recog_memoized (worker) != CODE_FOR_casesi_worker_1); + wpat = PATTERN (worker); + wpat0 = XVECEXP (wpat, 0, 0); + wpat1 = XVECEXP (wpat, 0, 1); + wsrc = SET_SRC (wpat0); + PATTERN (worker) = (gen_casesi_worker_2 + (SET_DEST (wpat0), XVECEXP (wsrc, 0, 1), + XEXP (XVECEXP (wsrc, 0, 2), 0), lab, + XEXP (wpat1, 0))); + INSN_CODE (worker) = -1; + target = XVECEXP (SET_SRC (PATTERN (mova)), 0, 0); + base = gen_rtx_LABEL_REF (Pmode, lab); + diff = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, target, base), UNSPEC_SYMOFF); + SET_SRC (PATTERN (mova)) = gen_rtx_CONST (Pmode, diff); + INSN_CODE (mova) = -1; + } +} + +/* NEW_MOVA is a mova we've just encountered while scanning forward. Update + *num_mova, and check if the new mova is not nested within the first one. + return 0 if *first_mova was replaced, 1 if new_mova was replaced, + 2 if new_mova has been assigned to *first_mova, -1 otherwise.. */ +static int +untangle_mova (int *num_mova, rtx *first_mova, rtx new_mova) +{ + int n_addr = 0; /* Initialization to shut up spurious warning. */ + int f_target, n_target = 0; /* Likewise. */ + + if (optimize) + { + /* If NEW_MOVA has no address yet, it will be handled later. */ + if (INSN_ADDRESSES_SIZE() <= (unsigned) INSN_UID (new_mova)) + return -1; + + n_addr = INSN_ADDRESSES (INSN_UID (new_mova)); + n_target = INSN_ADDRESSES (INSN_UID (XEXP (MOVA_LABELREF (new_mova), 0))); + if (n_addr > n_target || n_addr + 1022 < n_target) + { + /* Change the mova into a load. + broken_move will then return true for it. */ + fixup_mova (new_mova); + return 1; + } + } + if (!(*num_mova)++) + { + *first_mova = new_mova; + return 2; + } + if (!optimize + || ((f_target + = INSN_ADDRESSES (INSN_UID (XEXP (MOVA_LABELREF (*first_mova), 0)))) + >= n_target)) + return -1; + + (*num_mova)--; + if (f_target - INSN_ADDRESSES (INSN_UID (*first_mova)) + > n_target - n_addr) + { + fixup_mova (*first_mova); + return 0; + } + else + { + fixup_mova (new_mova); + return 1; + } +} + +/* Find the last barrier from insn FROM which is close enough to hold the + constant pool. If we can't find one, then create one near the end of + the range. */ + +static rtx +find_barrier (int num_mova, rtx mova, rtx from) +{ + int count_si = 0; + int count_hi = 0; + int found_hi = 0; + int found_si = 0; + int found_di = 0; + int hi_align = 2; + int si_align = 2; + int leading_mova = num_mova; + rtx barrier_before_mova = 0, found_barrier = 0, good_barrier = 0; + int si_limit; + int hi_limit; + rtx orig = from; + rtx last_got = NULL_RTX; + rtx last_symoff = NULL_RTX; + + /* For HImode: range is 510, add 4 because pc counts from address of + second instruction after this one, subtract 2 for the jump instruction + that we may need to emit before the table, subtract 2 for the instruction + that fills the jump delay slot (in very rare cases, reorg will take an + instruction from after the constant pool or will leave the delay slot + empty). This gives 510. + For SImode: range is 1020, add 4 because pc counts from address of + second instruction after this one, subtract 2 in case pc is 2 byte + aligned, subtract 2 for the jump instruction that we may need to emit + before the table, subtract 2 for the instruction that fills the jump + delay slot. This gives 1018. */ + + /* The branch will always be shortened now that the reference address for + forward branches is the successor address, thus we need no longer make + adjustments to the [sh]i_limit for -O0. */ + + si_limit = 1018; + hi_limit = 510; + + while (from && count_si < si_limit && count_hi < hi_limit) + { + int inc = get_attr_length (from); + int new_align = 1; + + /* If this is a label that existed at the time of the compute_alignments + call, determine the alignment. N.B. When find_barrier recurses for + an out-of-reach mova, we might see labels at the start of previously + inserted constant tables. */ + if (LABEL_P (from) + && CODE_LABEL_NUMBER (from) <= max_labelno_before_reorg) + { + if (optimize) + new_align = 1 << label_to_alignment (from); + else if (BARRIER_P (prev_nonnote_insn (from))) + new_align = 1 << barrier_align (from); + else + new_align = 1; + inc = 0; + } + /* In case we are scanning a constant table because of recursion, check + for explicit alignments. If the table is long, we might be forced + to emit the new table in front of it; the length of the alignment + might be the last straw. */ + else if (NONJUMP_INSN_P (from) + && GET_CODE (PATTERN (from)) == UNSPEC_VOLATILE + && XINT (PATTERN (from), 1) == UNSPECV_ALIGN) + new_align = INTVAL (XVECEXP (PATTERN (from), 0, 0)); + /* When we find the end of a constant table, paste the new constant + at the end. That is better than putting it in front because + this way, we don't need extra alignment for adding a 4-byte-aligned + mov(a) label to a 2/4 or 8/4 byte aligned table. */ + else if (NONJUMP_INSN_P (from) + && GET_CODE (PATTERN (from)) == UNSPEC_VOLATILE + && XINT (PATTERN (from), 1) == UNSPECV_CONST_END) + return from; + + if (BARRIER_P (from)) + { + rtx next; + + found_barrier = from; + + /* If we are at the end of the function, or in front of an alignment + instruction, we need not insert an extra alignment. We prefer + this kind of barrier. */ + if (barrier_align (from) > 2) + good_barrier = from; + + /* If we are at the end of a hot/cold block, dump the constants + here. */ + next = NEXT_INSN (from); + if (next + && NOTE_P (next) + && NOTE_KIND (next) == NOTE_INSN_SWITCH_TEXT_SECTIONS) + break; + } + + if (broken_move (from)) + { + rtx pat, src, dst; + enum machine_mode mode; + + pat = PATTERN (from); + if (GET_CODE (pat) == PARALLEL) + pat = XVECEXP (pat, 0, 0); + src = SET_SRC (pat); + dst = SET_DEST (pat); + mode = GET_MODE (dst); + + /* GOT pcrelat setting comes in pair of + mova .L8,r0 + mov.l .L8,r12 + instructions. (plus add r0,r12). + Remember if we see one without the other. */ + if (GET_CODE (src) == UNSPEC && PIC_ADDR_P (XVECEXP (src, 0, 0))) + last_got = last_got ? NULL_RTX : from; + else if (PIC_ADDR_P (src)) + last_got = last_got ? NULL_RTX : from; + + /* We must explicitly check the mode, because sometimes the + front end will generate code to load unsigned constants into + HImode targets without properly sign extending them. */ + if (mode == HImode + || (mode == SImode && hi_const (src) && REGNO (dst) != FPUL_REG)) + { + found_hi += 2; + /* We put the short constants before the long constants, so + we must count the length of short constants in the range + for the long constants. */ + /* ??? This isn't optimal, but is easy to do. */ + si_limit -= 2; + } + else + { + /* We dump DF/DI constants before SF/SI ones, because + the limit is the same, but the alignment requirements + are higher. We may waste up to 4 additional bytes + for alignment, and the DF/DI constant may have + another SF/SI constant placed before it. */ + if (TARGET_SHCOMPACT + && ! found_di + && (mode == DFmode || mode == DImode)) + { + found_di = 1; + si_limit -= 8; + } + while (si_align > 2 && found_si + si_align - 2 > count_si) + si_align >>= 1; + if (found_si > count_si) + count_si = found_si; + found_si += GET_MODE_SIZE (mode); + if (num_mova) + si_limit -= GET_MODE_SIZE (mode); + } + } + + if (mova_p (from)) + { + switch (untangle_mova (&num_mova, &mova, from)) + { + case 1: + if (flag_pic) + { + rtx src = SET_SRC (PATTERN (from)); + if (GET_CODE (src) == CONST + && GET_CODE (XEXP (src, 0)) == UNSPEC + && XINT (XEXP (src, 0), 1) == UNSPEC_SYMOFF) + last_symoff = from; + } + break; + case 0: return find_barrier (0, 0, mova); + case 2: + { + leading_mova = 0; + barrier_before_mova + = good_barrier ? good_barrier : found_barrier; + } + default: break; + } + if (found_si > count_si) + count_si = found_si; + } + else if (JUMP_TABLE_DATA_P (from)) + { + if ((num_mova > 1 && GET_MODE (prev_nonnote_insn (from)) == VOIDmode) + || (num_mova + && (prev_nonnote_insn (from) + == XEXP (MOVA_LABELREF (mova), 0)))) + num_mova--; + if (barrier_align (next_real_insn (from)) == align_jumps_log) + { + /* We have just passed the barrier in front of the + ADDR_DIFF_VEC, which is stored in found_barrier. Since + the ADDR_DIFF_VEC is accessed as data, just like our pool + constants, this is a good opportunity to accommodate what + we have gathered so far. + If we waited any longer, we could end up at a barrier in + front of code, which gives worse cache usage for separated + instruction / data caches. */ + good_barrier = found_barrier; + break; + } + else + { + rtx body = PATTERN (from); + inc = XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)); + } + } + /* For the SH1, we generate alignments even after jumps-around-jumps. */ + else if (JUMP_P (from) + && ! TARGET_SH2 + && ! optimize_size) + new_align = 4; + + /* There is a possibility that a bf is transformed into a bf/s by the + delay slot scheduler. */ + if (JUMP_P (from) && !JUMP_TABLE_DATA_P (from) + && get_attr_type (from) == TYPE_CBRANCH + && GET_CODE (PATTERN (NEXT_INSN (PREV_INSN (from)))) != SEQUENCE) + inc += 2; + + if (found_si) + { + count_si += inc; + if (new_align > si_align) + { + si_limit -= (count_si - 1) & (new_align - si_align); + si_align = new_align; + } + count_si = (count_si + new_align - 1) & -new_align; + } + if (found_hi) + { + count_hi += inc; + if (new_align > hi_align) + { + hi_limit -= (count_hi - 1) & (new_align - hi_align); + hi_align = new_align; + } + count_hi = (count_hi + new_align - 1) & -new_align; + } + from = NEXT_INSN (from); + } + + if (num_mova) + { + if (leading_mova) + { + /* Try as we might, the leading mova is out of range. Change + it into a load (which will become a pcload) and retry. */ + fixup_mova (mova); + return find_barrier (0, 0, mova); + } + else + { + /* Insert the constant pool table before the mova instruction, + to prevent the mova label reference from going out of range. */ + from = mova; + good_barrier = found_barrier = barrier_before_mova; + } + } + + if (found_barrier) + { + if (good_barrier && next_real_insn (found_barrier)) + found_barrier = good_barrier; + } + else + { + /* We didn't find a barrier in time to dump our stuff, + so we'll make one. */ + rtx label = gen_label_rtx (); + + /* Don't emit a constant table in the middle of insns for + casesi_worker_2. This is a bit overkill but is enough + because casesi_worker_2 wouldn't appear so frequently. */ + if (last_symoff) + from = last_symoff; + + /* If we exceeded the range, then we must back up over the last + instruction we looked at. Otherwise, we just need to undo the + NEXT_INSN at the end of the loop. */ + if (PREV_INSN (from) != orig + && (count_hi > hi_limit || count_si > si_limit)) + from = PREV_INSN (PREV_INSN (from)); + else + from = PREV_INSN (from); + + /* Don't emit a constant table int the middle of global pointer setting, + since that that would move the addressing base GOT into another table. + We need the first mov instruction before the _GLOBAL_OFFSET_TABLE_ + in the pool anyway, so just move up the whole constant pool. */ + if (last_got) + from = PREV_INSN (last_got); + + /* Don't insert the constant pool table at the position which + may be the landing pad. */ + if (flag_exceptions + && CALL_P (from) + && find_reg_note (from, REG_EH_REGION, NULL_RTX)) + from = PREV_INSN (from); + + /* Walk back to be just before any jump or label. + Putting it before a label reduces the number of times the branch + around the constant pool table will be hit. Putting it before + a jump makes it more likely that the bra delay slot will be + filled. */ + while (NOTE_P (from) || JUMP_P (from) + || LABEL_P (from)) + from = PREV_INSN (from); + + from = emit_jump_insn_after (gen_jump (label), from); + JUMP_LABEL (from) = label; + LABEL_NUSES (label) = 1; + found_barrier = emit_barrier_after (from); + emit_label_after (label, found_barrier); + } + + return found_barrier; +} + +/* If the instruction INSN is implemented by a special function, and we can + positively find the register that is used to call the sfunc, and this + register is not used anywhere else in this instruction - except as the + destination of a set, return this register; else, return 0. */ +rtx +sfunc_uses_reg (rtx insn) +{ + int i; + rtx pattern, part, reg_part, reg; + + if (!NONJUMP_INSN_P (insn)) + return 0; + pattern = PATTERN (insn); + if (GET_CODE (pattern) != PARALLEL || get_attr_type (insn) != TYPE_SFUNC) + return 0; + + for (reg_part = 0, i = XVECLEN (pattern, 0) - 1; i >= 1; i--) + { + part = XVECEXP (pattern, 0, i); + if (GET_CODE (part) == USE && GET_MODE (XEXP (part, 0)) == SImode) + reg_part = part; + } + if (! reg_part) + return 0; + reg = XEXP (reg_part, 0); + for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--) + { + part = XVECEXP (pattern, 0, i); + if (part == reg_part || GET_CODE (part) == CLOBBER) + continue; + if (reg_mentioned_p (reg, ((GET_CODE (part) == SET + && REG_P (SET_DEST (part))) + ? SET_SRC (part) : part))) + return 0; + } + return reg; +} + +/* See if the only way in which INSN uses REG is by calling it, or by + setting it while calling it. Set *SET to a SET rtx if the register + is set by INSN. */ + +static int +noncall_uses_reg (rtx reg, rtx insn, rtx *set) +{ + rtx pattern, reg2; + + *set = NULL_RTX; + + reg2 = sfunc_uses_reg (insn); + if (reg2 && REGNO (reg2) == REGNO (reg)) + { + pattern = single_set (insn); + if (pattern + && REG_P (SET_DEST (pattern)) + && REGNO (reg) == REGNO (SET_DEST (pattern))) + *set = pattern; + return 0; + } + if (!CALL_P (insn)) + { + /* We don't use rtx_equal_p because we don't care if the mode is + different. */ + pattern = single_set (insn); + if (pattern + && REG_P (SET_DEST (pattern)) + && REGNO (reg) == REGNO (SET_DEST (pattern))) + { + rtx par, part; + int i; + + *set = pattern; + par = PATTERN (insn); + if (GET_CODE (par) == PARALLEL) + for (i = XVECLEN (par, 0) - 1; i >= 0; i--) + { + part = XVECEXP (par, 0, i); + if (GET_CODE (part) != SET && reg_mentioned_p (reg, part)) + return 1; + } + return reg_mentioned_p (reg, SET_SRC (pattern)); + } + + return 1; + } + + pattern = PATTERN (insn); + + if (GET_CODE (pattern) == PARALLEL) + { + int i; + + for (i = XVECLEN (pattern, 0) - 1; i >= 1; i--) + if (reg_mentioned_p (reg, XVECEXP (pattern, 0, i))) + return 1; + pattern = XVECEXP (pattern, 0, 0); + } + + if (GET_CODE (pattern) == SET) + { + if (reg_mentioned_p (reg, SET_DEST (pattern))) + { + /* We don't use rtx_equal_p, because we don't care if the + mode is different. */ + if (!REG_P (SET_DEST (pattern)) + || REGNO (reg) != REGNO (SET_DEST (pattern))) + return 1; + + *set = pattern; + } + + pattern = SET_SRC (pattern); + } + + if (GET_CODE (pattern) != CALL + || !MEM_P (XEXP (pattern, 0)) + || ! rtx_equal_p (reg, XEXP (XEXP (pattern, 0), 0))) + return 1; + + return 0; +} + +/* Given a X, a pattern of an insn or a part of it, return a mask of used + general registers. Bits 0..15 mean that the respective registers + are used as inputs in the instruction. Bits 16..31 mean that the + registers 0..15, respectively, are used as outputs, or are clobbered. + IS_DEST should be set to 16 if X is the destination of a SET, else to 0. */ +int +regs_used (rtx x, int is_dest) +{ + enum rtx_code code; + const char *fmt; + int i, used = 0; + + if (! x) + return used; + code = GET_CODE (x); + switch (code) + { + case REG: + if (REGNO (x) < 16) + return (((1 << HARD_REGNO_NREGS (0, GET_MODE (x))) - 1) + << (REGNO (x) + is_dest)); + return 0; + case SUBREG: + { + rtx y = SUBREG_REG (x); + + if (!REG_P (y)) + break; + if (REGNO (y) < 16) + return (((1 << HARD_REGNO_NREGS (0, GET_MODE (x))) - 1) + << (REGNO (y) + + subreg_regno_offset (REGNO (y), + GET_MODE (y), + SUBREG_BYTE (x), + GET_MODE (x)) + is_dest)); + return 0; + } + case SET: + return regs_used (SET_SRC (x), 0) | regs_used (SET_DEST (x), 16); + case RETURN: + /* If there was a return value, it must have been indicated with USE. */ + return 0x00ffff00; + case CLOBBER: + is_dest = 1; + break; + case MEM: + is_dest = 0; + break; + case CALL: + used |= 0x00ff00f0; + break; + default: + break; + } + + fmt = GET_RTX_FORMAT (code); + + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'E') + { + register int j; + for (j = XVECLEN (x, i) - 1; j >= 0; j--) + used |= regs_used (XVECEXP (x, i, j), is_dest); + } + else if (fmt[i] == 'e') + used |= regs_used (XEXP (x, i), is_dest); + } + return used; +} + +/* Create an instruction that prevents redirection of a conditional branch + to the destination of the JUMP with address ADDR. + If the branch needs to be implemented as an indirect jump, try to find + a scratch register for it. + If NEED_BLOCK is 0, don't do anything unless we need a scratch register. + If any preceding insn that doesn't fit into a delay slot is good enough, + pass 1. Pass 2 if a definite blocking insn is needed. + -1 is used internally to avoid deep recursion. + If a blocking instruction is made or recognized, return it. */ + +static rtx +gen_block_redirect (rtx jump, int addr, int need_block) +{ + int dead = 0; + rtx prev = prev_nonnote_insn (jump); + rtx dest; + + /* First, check if we already have an instruction that satisfies our need. */ + if (prev && NONJUMP_INSN_P (prev) && ! INSN_DELETED_P (prev)) + { + if (INSN_CODE (prev) == CODE_FOR_indirect_jump_scratch) + return prev; + if (GET_CODE (PATTERN (prev)) == USE + || GET_CODE (PATTERN (prev)) == CLOBBER + || get_attr_in_delay_slot (prev) == IN_DELAY_SLOT_YES) + prev = jump; + else if ((need_block &= ~1) < 0) + return prev; + else if (recog_memoized (prev) == CODE_FOR_block_branch_redirect) + need_block = 0; + } + if (GET_CODE (PATTERN (jump)) == RETURN) + { + if (! need_block) + return prev; + /* Reorg even does nasty things with return insns that cause branches + to go out of range - see find_end_label and callers. */ + return emit_insn_before (gen_block_branch_redirect (const0_rtx) , jump); + } + /* We can't use JUMP_LABEL here because it might be undefined + when not optimizing. */ + dest = XEXP (SET_SRC (PATTERN (jump)), 0); + /* If the branch is out of range, try to find a scratch register for it. */ + if (optimize + && (INSN_ADDRESSES (INSN_UID (dest)) - addr + (unsigned) 4092 + > 4092 + 4098)) + { + rtx scan; + /* Don't look for the stack pointer as a scratch register, + it would cause trouble if an interrupt occurred. */ + unsigned attempt = 0x7fff, used; + int jump_left = flag_expensive_optimizations + 1; + + /* It is likely that the most recent eligible instruction is wanted for + the delay slot. Therefore, find out which registers it uses, and + try to avoid using them. */ + + for (scan = jump; (scan = PREV_INSN (scan)); ) + { + enum rtx_code code; + + if (INSN_DELETED_P (scan)) + continue; + code = GET_CODE (scan); + if (code == CODE_LABEL || code == JUMP_INSN) + break; + if (code == INSN + && GET_CODE (PATTERN (scan)) != USE + && GET_CODE (PATTERN (scan)) != CLOBBER + && get_attr_in_delay_slot (scan) == IN_DELAY_SLOT_YES) + { + attempt &= ~regs_used (PATTERN (scan), 0); + break; + } + } + for (used = dead = 0, scan = JUMP_LABEL (jump); + (scan = NEXT_INSN (scan)); ) + { + enum rtx_code code; + + if (INSN_DELETED_P (scan)) + continue; + code = GET_CODE (scan); + if (INSN_P (scan)) + { + used |= regs_used (PATTERN (scan), 0); + if (code == CALL_INSN) + used |= regs_used (CALL_INSN_FUNCTION_USAGE (scan), 0); + dead |= (used >> 16) & ~used; + if (dead & attempt) + { + dead &= attempt; + break; + } + if (code == JUMP_INSN) + { + if (jump_left-- && simplejump_p (scan)) + scan = JUMP_LABEL (scan); + else + break; + } + } + } + /* Mask out the stack pointer again, in case it was + the only 'free' register we have found. */ + dead &= 0x7fff; + } + /* If the immediate destination is still in range, check for possible + threading with a jump beyond the delay slot insn. + Don't check if we are called recursively; the jump has been or will be + checked in a different invocation then. */ + + else if (optimize && need_block >= 0) + { + rtx next = next_active_insn (next_active_insn (dest)); + if (next && JUMP_P (next) + && GET_CODE (PATTERN (next)) == SET + && recog_memoized (next) == CODE_FOR_jump_compact) + { + dest = JUMP_LABEL (next); + if (dest + && (INSN_ADDRESSES (INSN_UID (dest)) - addr + (unsigned) 4092 + > 4092 + 4098)) + gen_block_redirect (next, INSN_ADDRESSES (INSN_UID (next)), -1); + } + } + + if (dead) + { + rtx reg = gen_rtx_REG (SImode, exact_log2 (dead & -dead)); + + /* It would be nice if we could convert the jump into an indirect + jump / far branch right now, and thus exposing all constituent + instructions to further optimization. However, reorg uses + simplejump_p to determine if there is an unconditional jump where + it should try to schedule instructions from the target of the + branch; simplejump_p fails for indirect jumps even if they have + a JUMP_LABEL. */ + rtx insn = emit_insn_before (gen_indirect_jump_scratch + (reg, GEN_INT (unspec_bbr_uid++)), + jump); + /* ??? We would like this to have the scope of the jump, but that + scope will change when a delay slot insn of an inner scope is added. + Hence, after delay slot scheduling, we'll have to expect + NOTE_INSN_BLOCK_END notes between the indirect_jump_scratch and + the jump. */ + + INSN_LOCATOR (insn) = INSN_LOCATOR (jump); + INSN_CODE (insn) = CODE_FOR_indirect_jump_scratch; + return insn; + } + else if (need_block) + /* We can't use JUMP_LABEL here because it might be undefined + when not optimizing. */ + return emit_insn_before (gen_block_branch_redirect + (GEN_INT (unspec_bbr_uid++)), + jump); + return prev; +} + +#define CONDJUMP_MIN -252 +#define CONDJUMP_MAX 262 +struct far_branch +{ + /* A label (to be placed) in front of the jump + that jumps to our ultimate destination. */ + rtx near_label; + /* Where we are going to insert it if we cannot move the jump any farther, + or the jump itself if we have picked up an existing jump. */ + rtx insert_place; + /* The ultimate destination. */ + rtx far_label; + struct far_branch *prev; + /* If the branch has already been created, its address; + else the address of its first prospective user. */ + int address; +}; + +static void gen_far_branch (struct far_branch *); +enum mdep_reorg_phase_e mdep_reorg_phase; +static void +gen_far_branch (struct far_branch *bp) +{ + rtx insn = bp->insert_place; + rtx jump; + rtx label = gen_label_rtx (); + int ok; + + emit_label_after (label, insn); + if (bp->far_label) + { + jump = emit_jump_insn_after (gen_jump (bp->far_label), insn); + LABEL_NUSES (bp->far_label)++; + } + else + jump = emit_jump_insn_after (gen_return (), insn); + /* Emit a barrier so that reorg knows that any following instructions + are not reachable via a fall-through path. + But don't do this when not optimizing, since we wouldn't suppress the + alignment for the barrier then, and could end up with out-of-range + pc-relative loads. */ + if (optimize) + emit_barrier_after (jump); + emit_label_after (bp->near_label, insn); + JUMP_LABEL (jump) = bp->far_label; + ok = invert_jump (insn, label, 1); + gcc_assert (ok); + + /* If we are branching around a jump (rather than a return), prevent + reorg from using an insn from the jump target as the delay slot insn - + when reorg did this, it pessimized code (we rather hide the delay slot) + and it could cause branches to go out of range. */ + if (bp->far_label) + (emit_insn_after + (gen_stuff_delay_slot + (GEN_INT (unspec_bbr_uid++), + GEN_INT (recog_memoized (insn) == CODE_FOR_branch_false)), + insn)); + /* Prevent reorg from undoing our splits. */ + gen_block_redirect (jump, bp->address += 2, 2); +} + +/* Fix up ADDR_DIFF_VECs. */ +void +fixup_addr_diff_vecs (rtx first) +{ + rtx insn; + + for (insn = first; insn; insn = NEXT_INSN (insn)) + { + rtx vec_lab, pat, prev, prevpat, x, braf_label; + + if (!JUMP_P (insn) + || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC) + continue; + pat = PATTERN (insn); + vec_lab = XEXP (XEXP (pat, 0), 0); + + /* Search the matching casesi_jump_2. */ + for (prev = vec_lab; ; prev = PREV_INSN (prev)) + { + if (!JUMP_P (prev)) + continue; + prevpat = PATTERN (prev); + if (GET_CODE (prevpat) != PARALLEL || XVECLEN (prevpat, 0) != 2) + continue; + x = XVECEXP (prevpat, 0, 1); + if (GET_CODE (x) != USE) + continue; + x = XEXP (x, 0); + if (GET_CODE (x) == LABEL_REF && XEXP (x, 0) == vec_lab) + break; + } + /* FIXME: This is a bug in the optimizer, but it seems harmless + to just avoid panicing. */ + if (!prev) + continue; + + /* Emit the reference label of the braf where it belongs, right after + the casesi_jump_2 (i.e. braf). */ + braf_label = XEXP (XEXP (SET_SRC (XVECEXP (prevpat, 0, 0)), 1), 0); + emit_label_after (braf_label, prev); + + /* Fix up the ADDR_DIF_VEC to be relative + to the reference address of the braf. */ + XEXP (XEXP (pat, 0), 0) = braf_label; + } +} + +/* BARRIER_OR_LABEL is either a BARRIER or a CODE_LABEL immediately following + a barrier. Return the base 2 logarithm of the desired alignment. */ +int +barrier_align (rtx barrier_or_label) +{ + rtx next = next_real_insn (barrier_or_label), pat, prev; + int slot, credit, jump_to_next = 0; + + if (! next) + return 0; + + pat = PATTERN (next); + + if (GET_CODE (pat) == ADDR_DIFF_VEC) + return 2; + + if (GET_CODE (pat) == UNSPEC_VOLATILE && XINT (pat, 1) == UNSPECV_ALIGN) + /* This is a barrier in front of a constant table. */ + return 0; + + prev = prev_real_insn (barrier_or_label); + if (GET_CODE (PATTERN (prev)) == ADDR_DIFF_VEC) + { + pat = PATTERN (prev); + /* If this is a very small table, we want to keep the alignment after + the table to the minimum for proper code alignment. */ + return ((optimize_size + || ((unsigned) XVECLEN (pat, 1) * GET_MODE_SIZE (GET_MODE (pat)) + <= (unsigned) 1 << (CACHE_LOG - 2))) + ? 1 << TARGET_SHMEDIA : align_jumps_log); + } + + if (optimize_size) + return 0; + + if (! TARGET_SH2 || ! optimize) + return align_jumps_log; + + /* When fixing up pcloads, a constant table might be inserted just before + the basic block that ends with the barrier. Thus, we can't trust the + instruction lengths before that. */ + if (mdep_reorg_phase > SH_FIXUP_PCLOAD) + { + /* Check if there is an immediately preceding branch to the insn beyond + the barrier. We must weight the cost of discarding useful information + from the current cache line when executing this branch and there is + an alignment, against that of fetching unneeded insn in front of the + branch target when there is no alignment. */ + + /* There are two delay_slot cases to consider. One is the simple case + where the preceding branch is to the insn beyond the barrier (simple + delay slot filling), and the other is where the preceding branch has + a delay slot that is a duplicate of the insn after the barrier + (fill_eager_delay_slots) and the branch is to the insn after the insn + after the barrier. */ + + /* PREV is presumed to be the JUMP_INSN for the barrier under + investigation. Skip to the insn before it. */ + prev = prev_real_insn (prev); + + for (slot = 2, credit = (1 << (CACHE_LOG - 2)) + 2; + credit >= 0 && prev && NONJUMP_INSN_P (prev); + prev = prev_real_insn (prev)) + { + jump_to_next = 0; + if (GET_CODE (PATTERN (prev)) == USE + || GET_CODE (PATTERN (prev)) == CLOBBER) + continue; + if (GET_CODE (PATTERN (prev)) == SEQUENCE) + { + prev = XVECEXP (PATTERN (prev), 0, 1); + if (INSN_UID (prev) == INSN_UID (next)) + { + /* Delay slot was filled with insn at jump target. */ + jump_to_next = 1; + continue; + } + } + + if (slot && + get_attr_in_delay_slot (prev) == IN_DELAY_SLOT_YES) + slot = 0; + credit -= get_attr_length (prev); + } + if (prev + && JUMP_P (prev) + && JUMP_LABEL (prev)) + { + rtx x; + if (jump_to_next + || next_real_insn (JUMP_LABEL (prev)) == next + /* If relax_delay_slots() decides NEXT was redundant + with some previous instruction, it will have + redirected PREV's jump to the following insn. */ + || JUMP_LABEL (prev) == next_nonnote_insn (next) + /* There is no upper bound on redundant instructions + that might have been skipped, but we must not put an + alignment where none had been before. */ + || (x = (NEXT_INSN (NEXT_INSN (PREV_INSN (prev)))), + (INSN_P (x) + && (INSN_CODE (x) == CODE_FOR_block_branch_redirect + || INSN_CODE (x) == CODE_FOR_indirect_jump_scratch + || INSN_CODE (x) == CODE_FOR_stuff_delay_slot)))) + { + rtx pat = PATTERN (prev); + if (GET_CODE (pat) == PARALLEL) + pat = XVECEXP (pat, 0, 0); + if (credit - slot >= (GET_CODE (SET_SRC (pat)) == PC ? 2 : 0)) + return 0; + } + } + } + + return align_jumps_log; +} + +/* If we are inside a phony loop, almost any kind of label can turn up as the + first one in the loop. Aligning a braf label causes incorrect switch + destination addresses; we can detect braf labels because they are + followed by a BARRIER. + Applying loop alignment to small constant or switch tables is a waste + of space, so we suppress this too. */ +int +sh_loop_align (rtx label) +{ + rtx next = label; + + do + next = next_nonnote_insn (next); + while (next && LABEL_P (next)); + + if (! next + || ! INSN_P (next) + || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC + || recog_memoized (next) == CODE_FOR_consttable_2) + return 0; + + return align_loops_log; +} + +/* Do a final pass over the function, just before delayed branch + scheduling. */ + +static void +sh_reorg (void) +{ + rtx first, insn, mova = NULL_RTX; + int num_mova; + rtx r0_rtx = gen_rtx_REG (Pmode, 0); + rtx r0_inc_rtx = gen_rtx_POST_INC (Pmode, r0_rtx); + + first = get_insns (); + max_labelno_before_reorg = max_label_num (); + + /* We must split call insns before introducing `mova's. If we're + optimizing, they'll have already been split. Otherwise, make + sure we don't split them too late. */ + if (! optimize) + split_all_insns_noflow (); + + if (TARGET_SHMEDIA) + return; + + /* If relaxing, generate pseudo-ops to associate function calls with + the symbols they call. It does no harm to not generate these + pseudo-ops. However, when we can generate them, it enables to + linker to potentially relax the jsr to a bsr, and eliminate the + register load and, possibly, the constant pool entry. */ + + mdep_reorg_phase = SH_INSERT_USES_LABELS; + if (TARGET_RELAX) + { + /* Remove all REG_LABEL_OPERAND notes. We want to use them for our + own purposes. This works because none of the remaining passes + need to look at them. + + ??? But it may break in the future. We should use a machine + dependent REG_NOTE, or some other approach entirely. */ + for (insn = first; insn; insn = NEXT_INSN (insn)) + { + if (INSN_P (insn)) + { + rtx note; + + while ((note = find_reg_note (insn, REG_LABEL_OPERAND, + NULL_RTX)) != 0) + remove_note (insn, note); + } + } + + for (insn = first; insn; insn = NEXT_INSN (insn)) + { + rtx pattern, reg, link, set, scan, dies, label; + int rescan = 0, foundinsn = 0; + + if (CALL_P (insn)) + { + pattern = PATTERN (insn); + + if (GET_CODE (pattern) == PARALLEL) + pattern = XVECEXP (pattern, 0, 0); + if (GET_CODE (pattern) == SET) + pattern = SET_SRC (pattern); + + if (GET_CODE (pattern) != CALL + || !MEM_P (XEXP (pattern, 0))) + continue; + + reg = XEXP (XEXP (pattern, 0), 0); + } + else + { + reg = sfunc_uses_reg (insn); + if (! reg) + continue; + } + + if (!REG_P (reg)) + continue; + + /* Try scanning backward to find where the register is set. */ + link = NULL; + for (scan = PREV_INSN (insn); + scan && !LABEL_P (scan); + scan = PREV_INSN (scan)) + { + if (! INSN_P (scan)) + continue; + + if (! reg_mentioned_p (reg, scan)) + continue; + + if (noncall_uses_reg (reg, scan, &set)) + break; + + if (set) + { + link = scan; + break; + } + } + + if (! link) + continue; + + /* The register is set at LINK. */ + + /* We can only optimize the function call if the register is + being set to a symbol. In theory, we could sometimes + optimize calls to a constant location, but the assembler + and linker do not support that at present. */ + if (GET_CODE (SET_SRC (set)) != SYMBOL_REF + && GET_CODE (SET_SRC (set)) != LABEL_REF) + continue; + + /* Scan forward from LINK to the place where REG dies, and + make sure that the only insns which use REG are + themselves function calls. */ + + /* ??? This doesn't work for call targets that were allocated + by reload, since there may not be a REG_DEAD note for the + register. */ + + dies = NULL_RTX; + for (scan = NEXT_INSN (link); scan; scan = NEXT_INSN (scan)) + { + rtx scanset; + + /* Don't try to trace forward past a CODE_LABEL if we haven't + seen INSN yet. Ordinarily, we will only find the setting insn + if it is in the same basic block. However, + cross-jumping can insert code labels in between the load and + the call, and can result in situations where a single call + insn may have two targets depending on where we came from. */ + + if (LABEL_P (scan) && ! foundinsn) + break; + + if (! INSN_P (scan)) + continue; + + /* Don't try to trace forward past a JUMP. To optimize + safely, we would have to check that all the + instructions at the jump destination did not use REG. */ + + if (JUMP_P (scan)) + break; + + if (! reg_mentioned_p (reg, scan)) + continue; + + if (noncall_uses_reg (reg, scan, &scanset)) + break; + + if (scan == insn) + foundinsn = 1; + + if (scan != insn + && (CALL_P (scan) || sfunc_uses_reg (scan))) + { + /* There is a function call to this register other + than the one we are checking. If we optimize + this call, we need to rescan again below. */ + rescan = 1; + } + + /* ??? We shouldn't have to worry about SCANSET here. + We should just be able to check for a REG_DEAD note + on a function call. However, the REG_DEAD notes are + apparently not dependable around libcalls; c-torture + execute/920501-2 is a test case. If SCANSET is set, + then this insn sets the register, so it must have + died earlier. Unfortunately, this will only handle + the cases in which the register is, in fact, set in a + later insn. */ + + /* ??? We shouldn't have to use FOUNDINSN here. + This dates back to when we used LOG_LINKS to find + the most recent insn which sets the register. */ + + if (foundinsn + && (scanset + || find_reg_note (scan, REG_DEAD, reg))) + { + dies = scan; + break; + } + } + + if (! dies) + { + /* Either there was a branch, or some insn used REG + other than as a function call address. */ + continue; + } + + /* Create a code label, and put it in a REG_LABEL_OPERAND note + on the insn which sets the register, and on each call insn + which uses the register. In final_prescan_insn we look for + the REG_LABEL_OPERAND notes, and output the appropriate label + or pseudo-op. */ + + label = gen_label_rtx (); + add_reg_note (link, REG_LABEL_OPERAND, label); + add_reg_note (insn, REG_LABEL_OPERAND, label); + if (rescan) + { + scan = link; + do + { + rtx reg2; + + scan = NEXT_INSN (scan); + if (scan != insn + && ((CALL_P (scan) + && reg_mentioned_p (reg, scan)) + || ((reg2 = sfunc_uses_reg (scan)) + && REGNO (reg2) == REGNO (reg)))) + add_reg_note (scan, REG_LABEL_OPERAND, label); + } + while (scan != dies); + } + } + } + + if (TARGET_SH2) + fixup_addr_diff_vecs (first); + + if (optimize) + { + mdep_reorg_phase = SH_SHORTEN_BRANCHES0; + shorten_branches (first); + } + + /* Scan the function looking for move instructions which have to be + changed to pc-relative loads and insert the literal tables. */ + label_ref_list_pool = create_alloc_pool ("label references list", + sizeof (struct label_ref_list_d), + 30); + mdep_reorg_phase = SH_FIXUP_PCLOAD; + for (insn = first, num_mova = 0; insn; insn = NEXT_INSN (insn)) + { + if (mova_p (insn)) + { + /* ??? basic block reordering can move a switch table dispatch + below the switch table. Check if that has happened. + We only have the addresses available when optimizing; but then, + this check shouldn't be needed when not optimizing. */ + if (!untangle_mova (&num_mova, &mova, insn)) + { + insn = mova; + num_mova = 0; + } + } + else if (JUMP_P (insn) + && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC + && num_mova + /* ??? loop invariant motion can also move a mova out of a + loop. Since loop does this code motion anyway, maybe we + should wrap UNSPEC_MOVA into a CONST, so that reload can + move it back. */ + && ((num_mova > 1 + && GET_MODE (prev_nonnote_insn (insn)) == VOIDmode) + || (prev_nonnote_insn (insn) + == XEXP (MOVA_LABELREF (mova), 0)))) + { + rtx scan; + int total; + + num_mova--; + + /* Some code might have been inserted between the mova and + its ADDR_DIFF_VEC. Check if the mova is still in range. */ + for (scan = mova, total = 0; scan != insn; scan = NEXT_INSN (scan)) + total += get_attr_length (scan); + + /* range of mova is 1020, add 4 because pc counts from address of + second instruction after this one, subtract 2 in case pc is 2 + byte aligned. Possible alignment needed for the ADDR_DIFF_VEC + cancels out with alignment effects of the mova itself. */ + if (total > 1022) + { + /* Change the mova into a load, and restart scanning + there. broken_move will then return true for mova. */ + fixup_mova (mova); + insn = mova; + } + } + if (broken_move (insn) + || (NONJUMP_INSN_P (insn) + && recog_memoized (insn) == CODE_FOR_casesi_worker_2)) + { + rtx scan; + /* Scan ahead looking for a barrier to stick the constant table + behind. */ + rtx barrier = find_barrier (num_mova, mova, insn); + rtx last_float_move = NULL_RTX, last_float = 0, *last_float_addr = NULL; + int need_aligned_label = 0; + + if (num_mova && ! mova_p (mova)) + { + /* find_barrier had to change the first mova into a + pcload; thus, we have to start with this new pcload. */ + insn = mova; + num_mova = 0; + } + /* Now find all the moves between the points and modify them. */ + for (scan = insn; scan != barrier; scan = NEXT_INSN (scan)) + { + if (LABEL_P (scan)) + last_float = 0; + if (NONJUMP_INSN_P (scan) + && recog_memoized (scan) == CODE_FOR_casesi_worker_2) + need_aligned_label = 1; + if (broken_move (scan)) + { + rtx *patp = &PATTERN (scan), pat = *patp; + rtx src, dst; + rtx lab; + rtx newsrc; + enum machine_mode mode; + + if (GET_CODE (pat) == PARALLEL) + patp = &XVECEXP (pat, 0, 0), pat = *patp; + src = SET_SRC (pat); + dst = SET_DEST (pat); + mode = GET_MODE (dst); + + if (mode == SImode && hi_const (src) + && REGNO (dst) != FPUL_REG) + { + int offset = 0; + + mode = HImode; + while (GET_CODE (dst) == SUBREG) + { + offset += subreg_regno_offset (REGNO (SUBREG_REG (dst)), + GET_MODE (SUBREG_REG (dst)), + SUBREG_BYTE (dst), + GET_MODE (dst)); + dst = SUBREG_REG (dst); + } + dst = gen_rtx_REG (HImode, REGNO (dst) + offset); + } + if (REG_P (dst) && FP_ANY_REGISTER_P (REGNO (dst))) + { + /* This must be an insn that clobbers r0. */ + rtx *clobberp = &XVECEXP (PATTERN (scan), 0, + XVECLEN (PATTERN (scan), 0) + - 1); + rtx clobber = *clobberp; + + gcc_assert (GET_CODE (clobber) == CLOBBER + && rtx_equal_p (XEXP (clobber, 0), r0_rtx)); + + if (last_float + && reg_set_between_p (r0_rtx, last_float_move, scan)) + last_float = 0; + if (last_float + && TARGET_SHCOMPACT + && GET_MODE_SIZE (mode) != 4 + && GET_MODE_SIZE (GET_MODE (last_float)) == 4) + last_float = 0; + lab = add_constant (src, mode, last_float); + if (lab) + emit_insn_before (gen_mova (lab), scan); + else + { + /* There will be a REG_UNUSED note for r0 on + LAST_FLOAT_MOVE; we have to change it to REG_INC, + lest reorg:mark_target_live_regs will not + consider r0 to be used, and we end up with delay + slot insn in front of SCAN that clobbers r0. */ + rtx note + = find_regno_note (last_float_move, REG_UNUSED, 0); + + /* If we are not optimizing, then there may not be + a note. */ + if (note) + PUT_REG_NOTE_KIND (note, REG_INC); + + *last_float_addr = r0_inc_rtx; + } + last_float_move = scan; + last_float = src; + newsrc = gen_const_mem (mode, + (((TARGET_SH4 && ! TARGET_FMOVD) + || REGNO (dst) == FPUL_REG) + ? r0_inc_rtx + : r0_rtx)); + last_float_addr = &XEXP (newsrc, 0); + + /* Remove the clobber of r0. */ + *clobberp = gen_rtx_CLOBBER (GET_MODE (clobber), + gen_rtx_SCRATCH (Pmode)); + } + /* This is a mova needing a label. Create it. */ + else if (GET_CODE (src) == UNSPEC + && XINT (src, 1) == UNSPEC_MOVA + && GET_CODE (XVECEXP (src, 0, 0)) == CONST) + { + lab = add_constant (XVECEXP (src, 0, 0), mode, 0); + newsrc = gen_rtx_LABEL_REF (VOIDmode, lab); + newsrc = gen_rtx_UNSPEC (SImode, + gen_rtvec (1, newsrc), + UNSPEC_MOVA); + } + else + { + lab = add_constant (src, mode, 0); + newsrc = gen_rtx_LABEL_REF (VOIDmode, lab); + newsrc = gen_const_mem (mode, newsrc); + } + *patp = gen_rtx_SET (VOIDmode, dst, newsrc); + INSN_CODE (scan) = -1; + } + } + dump_table (need_aligned_label ? insn : 0, barrier); + insn = barrier; + } + } + free_alloc_pool (label_ref_list_pool); + for (insn = first; insn; insn = NEXT_INSN (insn)) + PUT_MODE (insn, VOIDmode); + + mdep_reorg_phase = SH_SHORTEN_BRANCHES1; + INSN_ADDRESSES_FREE (); + split_branches (first); + + /* The INSN_REFERENCES_ARE_DELAYED in sh.h is problematic because it + also has an effect on the register that holds the address of the sfunc. + Insert an extra dummy insn in front of each sfunc that pretends to + use this register. */ + if (flag_delayed_branch) + { + for (insn = first; insn; insn = NEXT_INSN (insn)) + { + rtx reg = sfunc_uses_reg (insn); + + if (! reg) + continue; + emit_insn_before (gen_use_sfunc_addr (reg), insn); + } + } +#if 0 + /* fpscr is not actually a user variable, but we pretend it is for the + sake of the previous optimization passes, since we want it handled like + one. However, we don't have any debugging information for it, so turn + it into a non-user variable now. */ + if (TARGET_SH4) + REG_USERVAR_P (get_fpscr_rtx ()) = 0; +#endif + mdep_reorg_phase = SH_AFTER_MDEP_REORG; +} + +int +get_dest_uid (rtx label, int max_uid) +{ + rtx dest = next_real_insn (label); + int dest_uid; + if (! dest) + /* This can happen for an undefined label. */ + return 0; + dest_uid = INSN_UID (dest); + /* If this is a newly created branch redirection blocking instruction, + we cannot index the branch_uid or insn_addresses arrays with its + uid. But then, we won't need to, because the actual destination is + the following branch. */ + while (dest_uid >= max_uid) + { + dest = NEXT_INSN (dest); + dest_uid = INSN_UID (dest); + } + if (JUMP_P (dest) && GET_CODE (PATTERN (dest)) == RETURN) + return 0; + return dest_uid; +} + +/* Split condbranches that are out of range. Also add clobbers for + scratch registers that are needed in far jumps. + We do this before delay slot scheduling, so that it can take our + newly created instructions into account. It also allows us to + find branches with common targets more easily. */ + +static void +split_branches (rtx first) +{ + rtx insn; + struct far_branch **uid_branch, *far_branch_list = 0; + int max_uid = get_max_uid (); + int ok; + + /* Find out which branches are out of range. */ + shorten_branches (first); + + uid_branch = (struct far_branch **) alloca (max_uid * sizeof *uid_branch); + memset ((char *) uid_branch, 0, max_uid * sizeof *uid_branch); + + for (insn = first; insn; insn = NEXT_INSN (insn)) + if (! INSN_P (insn)) + continue; + else if (INSN_DELETED_P (insn)) + { + /* Shorten_branches would split this instruction again, + so transform it into a note. */ + SET_INSN_DELETED (insn); + } + else if (JUMP_P (insn) + /* Don't mess with ADDR_DIFF_VEC */ + && (GET_CODE (PATTERN (insn)) == SET + || GET_CODE (PATTERN (insn)) == RETURN)) + { + enum attr_type type = get_attr_type (insn); + if (type == TYPE_CBRANCH) + { + rtx next, beyond; + + if (get_attr_length (insn) > 4) + { + rtx src = SET_SRC (PATTERN (insn)); + rtx olabel = XEXP (XEXP (src, 1), 0); + int addr = INSN_ADDRESSES (INSN_UID (insn)); + rtx label = 0; + int dest_uid = get_dest_uid (olabel, max_uid); + struct far_branch *bp = uid_branch[dest_uid]; + + /* redirect_jump needs a valid JUMP_LABEL, and it might delete + the label if the LABEL_NUSES count drops to zero. There is + always a jump_optimize pass that sets these values, but it + proceeds to delete unreferenced code, and then if not + optimizing, to un-delete the deleted instructions, thus + leaving labels with too low uses counts. */ + if (! optimize) + { + JUMP_LABEL (insn) = olabel; + LABEL_NUSES (olabel)++; + } + if (! bp) + { + bp = (struct far_branch *) alloca (sizeof *bp); + uid_branch[dest_uid] = bp; + bp->prev = far_branch_list; + far_branch_list = bp; + bp->far_label + = XEXP (XEXP (SET_SRC (PATTERN (insn)), 1), 0); + LABEL_NUSES (bp->far_label)++; + } + else + { + label = bp->near_label; + if (! label && bp->address - addr >= CONDJUMP_MIN) + { + rtx block = bp->insert_place; + + if (GET_CODE (PATTERN (block)) == RETURN) + block = PREV_INSN (block); + else + block = gen_block_redirect (block, + bp->address, 2); + label = emit_label_after (gen_label_rtx (), + PREV_INSN (block)); + bp->near_label = label; + } + else if (label && ! NEXT_INSN (label)) + { + if (addr + 2 - bp->address <= CONDJUMP_MAX) + bp->insert_place = insn; + else + gen_far_branch (bp); + } + } + if (! label + || (NEXT_INSN (label) && bp->address - addr < CONDJUMP_MIN)) + { + bp->near_label = label = gen_label_rtx (); + bp->insert_place = insn; + bp->address = addr; + } + ok = redirect_jump (insn, label, 0); + gcc_assert (ok); + } + else + { + /* get_attr_length (insn) == 2 */ + /* Check if we have a pattern where reorg wants to redirect + the branch to a label from an unconditional branch that + is too far away. */ + /* We can't use JUMP_LABEL here because it might be undefined + when not optimizing. */ + /* A syntax error might cause beyond to be NULL_RTX. */ + beyond + = next_active_insn (XEXP (XEXP (SET_SRC (PATTERN (insn)), 1), + 0)); + + if (beyond + && (JUMP_P (beyond) + || ((beyond = next_active_insn (beyond)) + && JUMP_P (beyond))) + && GET_CODE (PATTERN (beyond)) == SET + && recog_memoized (beyond) == CODE_FOR_jump_compact + && ((INSN_ADDRESSES + (INSN_UID (XEXP (SET_SRC (PATTERN (beyond)), 0))) + - INSN_ADDRESSES (INSN_UID (insn)) + (unsigned) 252) + > 252 + 258 + 2)) + gen_block_redirect (beyond, + INSN_ADDRESSES (INSN_UID (beyond)), 1); + } + + next = next_active_insn (insn); + + if (next + && (JUMP_P (next) + || ((next = next_active_insn (next)) + && JUMP_P (next))) + && GET_CODE (PATTERN (next)) == SET + && recog_memoized (next) == CODE_FOR_jump_compact + && ((INSN_ADDRESSES + (INSN_UID (XEXP (SET_SRC (PATTERN (next)), 0))) + - INSN_ADDRESSES (INSN_UID (insn)) + (unsigned) 252) + > 252 + 258 + 2)) + gen_block_redirect (next, INSN_ADDRESSES (INSN_UID (next)), 1); + } + else if (type == TYPE_JUMP || type == TYPE_RETURN) + { + int addr = INSN_ADDRESSES (INSN_UID (insn)); + rtx far_label = 0; + int dest_uid = 0; + struct far_branch *bp; + + if (type == TYPE_JUMP) + { + far_label = XEXP (SET_SRC (PATTERN (insn)), 0); + dest_uid = get_dest_uid (far_label, max_uid); + if (! dest_uid) + { + /* Parse errors can lead to labels outside + the insn stream. */ + if (! NEXT_INSN (far_label)) + continue; + + if (! optimize) + { + JUMP_LABEL (insn) = far_label; + LABEL_NUSES (far_label)++; + } + redirect_jump (insn, NULL_RTX, 1); + far_label = 0; + } + } + bp = uid_branch[dest_uid]; + if (! bp) + { + bp = (struct far_branch *) alloca (sizeof *bp); + uid_branch[dest_uid] = bp; + bp->prev = far_branch_list; + far_branch_list = bp; + bp->near_label = 0; + bp->far_label = far_label; + if (far_label) + LABEL_NUSES (far_label)++; + } + else if (bp->near_label && ! NEXT_INSN (bp->near_label)) + if (addr - bp->address <= CONDJUMP_MAX) + emit_label_after (bp->near_label, PREV_INSN (insn)); + else + { + gen_far_branch (bp); + bp->near_label = 0; + } + else + bp->near_label = 0; + bp->address = addr; + bp->insert_place = insn; + if (! far_label) + emit_insn_before (gen_block_branch_redirect (const0_rtx), insn); + else + gen_block_redirect (insn, addr, bp->near_label ? 2 : 0); + } + } + /* Generate all pending far branches, + and free our references to the far labels. */ + while (far_branch_list) + { + if (far_branch_list->near_label + && ! NEXT_INSN (far_branch_list->near_label)) + gen_far_branch (far_branch_list); + if (optimize + && far_branch_list->far_label + && ! --LABEL_NUSES (far_branch_list->far_label)) + delete_insn (far_branch_list->far_label); + far_branch_list = far_branch_list->prev; + } + + /* Instruction length information is no longer valid due to the new + instructions that have been generated. */ + init_insn_lengths (); +} + +/* Dump out instruction addresses, which is useful for debugging the + constant pool table stuff. + + If relaxing, output the label and pseudo-ops used to link together + calls and the instruction which set the registers. */ + +/* ??? The addresses printed by this routine for insns are nonsense for + insns which are inside of a sequence where none of the inner insns have + variable length. This is because the second pass of shorten_branches + does not bother to update them. */ + +void +final_prescan_insn (rtx insn, rtx *opvec ATTRIBUTE_UNUSED, + int noperands ATTRIBUTE_UNUSED) +{ + if (TARGET_DUMPISIZE) + fprintf (asm_out_file, "\n! at %04x\n", INSN_ADDRESSES (INSN_UID (insn))); + + if (TARGET_RELAX) + { + rtx note; + + note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX); + if (note) + { + rtx pattern; + + pattern = PATTERN (insn); + if (GET_CODE (pattern) == PARALLEL) + pattern = XVECEXP (pattern, 0, 0); + switch (GET_CODE (pattern)) + { + case SET: + if (GET_CODE (SET_SRC (pattern)) != CALL + && get_attr_type (insn) != TYPE_SFUNC) + { + targetm.asm_out.internal_label + (asm_out_file, "L", CODE_LABEL_NUMBER (XEXP (note, 0))); + break; + } + /* else FALLTHROUGH */ + case CALL: + asm_fprintf (asm_out_file, "\t.uses %LL%d\n", + CODE_LABEL_NUMBER (XEXP (note, 0))); + break; + + default: + gcc_unreachable (); + } + } + } +} + +/* Dump out any constants accumulated in the final pass. These will + only be labels. */ + +const char * +output_jump_label_table (void) +{ + int i; + + if (pool_size) + { + fprintf (asm_out_file, "\t.align 2\n"); + for (i = 0; i < pool_size; i++) + { + pool_node *p = &pool_vector[i]; + + (*targetm.asm_out.internal_label) (asm_out_file, "L", + CODE_LABEL_NUMBER (p->label)); + output_asm_insn (".long %O0", &p->value); + } + pool_size = 0; + } + + return ""; +} + +/* A full frame looks like: + + arg-5 + arg-4 + [ if current_function_anonymous_args + arg-3 + arg-2 + arg-1 + arg-0 ] + saved-fp + saved-r10 + saved-r11 + saved-r12 + saved-pr + local-n + .. + local-1 + local-0 <- fp points here. */ + +/* Number of bytes pushed for anonymous args, used to pass information + between expand_prologue and expand_epilogue. */ + +/* Adjust the stack by SIZE bytes. REG holds the rtl of the register to be + adjusted. If epilogue_p is zero, this is for a prologue; otherwise, it's + for an epilogue and a negative value means that it's for a sibcall + epilogue. If LIVE_REGS_MASK is nonzero, it points to a HARD_REG_SET of + all the registers that are about to be restored, and hence dead. */ + +static void +output_stack_adjust (int size, rtx reg, int epilogue_p, + HARD_REG_SET *live_regs_mask, bool frame_p) +{ + rtx (*emit_fn) (rtx) = frame_p ? &frame_insn : &emit_insn; + if (size) + { + HOST_WIDE_INT align = STACK_BOUNDARY / BITS_PER_UNIT; + +/* This test is bogus, as output_stack_adjust is used to re-align the + stack. */ +#if 0 + gcc_assert (!(size % align)); +#endif + + if (CONST_OK_FOR_ADD (size)) + emit_fn (GEN_ADD3 (reg, reg, GEN_INT (size))); + /* Try to do it with two partial adjustments; however, we must make + sure that the stack is properly aligned at all times, in case + an interrupt occurs between the two partial adjustments. */ + else if (CONST_OK_FOR_ADD (size / 2 & -align) + && CONST_OK_FOR_ADD (size - (size / 2 & -align))) + { + emit_fn (GEN_ADD3 (reg, reg, GEN_INT (size / 2 & -align))); + emit_fn (GEN_ADD3 (reg, reg, GEN_INT (size - (size / 2 & -align)))); + } + else + { + rtx const_reg; + rtx insn; + int temp = epilogue_p ? 7 : (TARGET_SH5 ? 0 : 1); + int i; + + /* If TEMP is invalid, we could temporarily save a general + register to MACL. However, there is currently no need + to handle this case, so just die when we see it. */ + if (epilogue_p < 0 + || current_function_interrupt + || ! call_really_used_regs[temp] || fixed_regs[temp]) + temp = -1; + if (temp < 0 && ! current_function_interrupt + && (TARGET_SHMEDIA || epilogue_p >= 0)) + { + HARD_REG_SET temps; + COPY_HARD_REG_SET (temps, call_used_reg_set); + AND_COMPL_HARD_REG_SET (temps, call_fixed_reg_set); + if (epilogue_p > 0) + { + int nreg = 0; + if (crtl->return_rtx) + { + enum machine_mode mode; + mode = GET_MODE (crtl->return_rtx); + if (BASE_RETURN_VALUE_REG (mode) == FIRST_RET_REG) + nreg = HARD_REGNO_NREGS (FIRST_RET_REG, mode); + } + for (i = 0; i < nreg; i++) + CLEAR_HARD_REG_BIT (temps, FIRST_RET_REG + i); + if (crtl->calls_eh_return) + { + CLEAR_HARD_REG_BIT (temps, EH_RETURN_STACKADJ_REGNO); + for (i = 0; i <= 3; i++) + CLEAR_HARD_REG_BIT (temps, EH_RETURN_DATA_REGNO (i)); + } + } + if (TARGET_SHMEDIA && epilogue_p < 0) + for (i = FIRST_TARGET_REG; i <= LAST_TARGET_REG; i++) + CLEAR_HARD_REG_BIT (temps, i); + if (epilogue_p <= 0) + { + for (i = FIRST_PARM_REG; + i < FIRST_PARM_REG + NPARM_REGS (SImode); i++) + CLEAR_HARD_REG_BIT (temps, i); + if (cfun->static_chain_decl != NULL) + CLEAR_HARD_REG_BIT (temps, STATIC_CHAIN_REGNUM); + } + temp = scavenge_reg (&temps); + } + if (temp < 0 && live_regs_mask) + { + HARD_REG_SET temps; + + COPY_HARD_REG_SET (temps, *live_regs_mask); + CLEAR_HARD_REG_BIT (temps, REGNO (reg)); + temp = scavenge_reg (&temps); + } + if (temp < 0) + { + rtx adj_reg, tmp_reg, mem; + + /* If we reached here, the most likely case is the (sibcall) + epilogue for non SHmedia. Put a special push/pop sequence + for such case as the last resort. This looks lengthy but + would not be problem because it seems to be very + rare. */ + + gcc_assert (!TARGET_SHMEDIA && epilogue_p); + + + /* ??? There is still the slight possibility that r4 or + r5 have been reserved as fixed registers or assigned + as global registers, and they change during an + interrupt. There are possible ways to handle this: + + - If we are adjusting the frame pointer (r14), we can do + with a single temp register and an ordinary push / pop + on the stack. + - Grab any call-used or call-saved registers (i.e. not + fixed or globals) for the temps we need. We might + also grab r14 if we are adjusting the stack pointer. + If we can't find enough available registers, issue + a diagnostic and die - the user must have reserved + way too many registers. + But since all this is rather unlikely to happen and + would require extra testing, we just die if r4 / r5 + are not available. */ + gcc_assert (!fixed_regs[4] && !fixed_regs[5] + && !global_regs[4] && !global_regs[5]); + + adj_reg = gen_rtx_REG (GET_MODE (reg), 4); + tmp_reg = gen_rtx_REG (GET_MODE (reg), 5); + emit_move_insn (gen_tmp_stack_mem (Pmode, reg), adj_reg); + emit_insn (GEN_MOV (adj_reg, GEN_INT (size))); + emit_insn (GEN_ADD3 (adj_reg, adj_reg, reg)); + mem = gen_tmp_stack_mem (Pmode, gen_rtx_PRE_DEC (Pmode, adj_reg)); + emit_move_insn (mem, tmp_reg); + emit_move_insn (tmp_reg, gen_tmp_stack_mem (Pmode, reg)); + mem = gen_tmp_stack_mem (Pmode, gen_rtx_PRE_DEC (Pmode, adj_reg)); + emit_move_insn (mem, tmp_reg); + emit_move_insn (reg, adj_reg); + mem = gen_tmp_stack_mem (Pmode, gen_rtx_POST_INC (Pmode, reg)); + emit_move_insn (adj_reg, mem); + mem = gen_tmp_stack_mem (Pmode, gen_rtx_POST_INC (Pmode, reg)); + emit_move_insn (tmp_reg, mem); + /* Tell flow the insns that pop r4/r5 aren't dead. */ + emit_use (tmp_reg); + emit_use (adj_reg); + return; + } + const_reg = gen_rtx_REG (GET_MODE (reg), temp); + + /* If SIZE is negative, subtract the positive value. + This sometimes allows a constant pool entry to be shared + between prologue and epilogue code. */ + if (size < 0) + { + emit_insn (GEN_MOV (const_reg, GEN_INT (-size))); + insn = emit_fn (GEN_SUB3 (reg, reg, const_reg)); + } + else + { + emit_insn (GEN_MOV (const_reg, GEN_INT (size))); + insn = emit_fn (GEN_ADD3 (reg, reg, const_reg)); + } + if (! epilogue_p) + add_reg_note (insn, REG_FRAME_RELATED_EXPR, + gen_rtx_SET (VOIDmode, reg, + gen_rtx_PLUS (SImode, reg, + GEN_INT (size)))); + } + } +} + +static rtx +frame_insn (rtx x) +{ + x = emit_insn (x); + RTX_FRAME_RELATED_P (x) = 1; + return x; +} + +/* Output RTL to push register RN onto the stack. */ + +static rtx +push (int rn) +{ + rtx x; + if (rn == FPUL_REG) + x = gen_push_fpul (); + else if (rn == FPSCR_REG) + x = gen_push_fpscr (); + else if ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && TARGET_FMOVD && ! TARGET_FPU_SINGLE + && FP_OR_XD_REGISTER_P (rn)) + { + if (FP_REGISTER_P (rn) && (rn - FIRST_FP_REG) & 1) + return NULL_RTX; + x = gen_push_4 (gen_rtx_REG (DFmode, rn)); + } + else if (TARGET_SH2E && FP_REGISTER_P (rn)) + x = gen_push_e (gen_rtx_REG (SFmode, rn)); + else + x = gen_push (gen_rtx_REG (SImode, rn)); + + x = frame_insn (x); + add_reg_note (x, REG_INC, gen_rtx_REG (SImode, STACK_POINTER_REGNUM)); + return x; +} + +/* Output RTL to pop register RN from the stack. */ + +static void +pop (int rn) +{ + rtx x; + if (rn == FPUL_REG) + x = gen_pop_fpul (); + else if (rn == FPSCR_REG) + x = gen_pop_fpscr (); + else if ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && TARGET_FMOVD && ! TARGET_FPU_SINGLE + && FP_OR_XD_REGISTER_P (rn)) + { + if (FP_REGISTER_P (rn) && (rn - FIRST_FP_REG) & 1) + return; + x = gen_pop_4 (gen_rtx_REG (DFmode, rn)); + } + else if (TARGET_SH2E && FP_REGISTER_P (rn)) + x = gen_pop_e (gen_rtx_REG (SFmode, rn)); + else + x = gen_pop (gen_rtx_REG (SImode, rn)); + + x = emit_insn (x); + add_reg_note (x, REG_INC, gen_rtx_REG (SImode, STACK_POINTER_REGNUM)); +} + +/* Generate code to push the regs specified in the mask. */ + +static void +push_regs (HARD_REG_SET *mask, int interrupt_handler) +{ + int i = interrupt_handler ? LAST_BANKED_REG + 1 : 0; + int skip_fpscr = 0; + + /* Push PR last; this gives better latencies after the prologue, and + candidates for the return delay slot when there are no general + registers pushed. */ + for (; i < FIRST_PSEUDO_REGISTER; i++) + { + /* If this is an interrupt handler, and the SZ bit varies, + and we have to push any floating point register, we need + to switch to the correct precision first. */ + if (i == FIRST_FP_REG && interrupt_handler && TARGET_FMOVD + && hard_reg_set_intersect_p (*mask, reg_class_contents[DF_REGS])) + { + HARD_REG_SET unsaved; + + push (FPSCR_REG); + COMPL_HARD_REG_SET (unsaved, *mask); + fpscr_set_from_mem (NORMAL_MODE (FP_MODE), unsaved); + skip_fpscr = 1; + } + if (i != PR_REG + && (i != FPSCR_REG || ! skip_fpscr) + && TEST_HARD_REG_BIT (*mask, i)) + { + /* If the ISR has RESBANK attribute assigned, don't push any of + the following registers - R0-R14, MACH, MACL and GBR. */ + if (! (sh_cfun_resbank_handler_p () + && ((i >= FIRST_GENERAL_REG && i < LAST_GENERAL_REG) + || i == MACH_REG + || i == MACL_REG + || i == GBR_REG))) + push (i); + } + } + + /* Push banked registers last to improve delay slot opportunities. */ + if (interrupt_handler) + { + bool use_movml = false; + + if (TARGET_SH2A) + { + unsigned int count = 0; + + for (i = FIRST_BANKED_REG; i <= LAST_BANKED_REG; i++) + if (TEST_HARD_REG_BIT (*mask, i)) + count++; + else + break; + + /* Use movml when all banked registers are pushed. */ + if (count == LAST_BANKED_REG - FIRST_BANKED_REG + 1) + use_movml = true; + } + + if (use_movml) + { + rtx x, mem, reg, set; + rtx sp_reg = gen_rtx_REG (SImode, STACK_POINTER_REGNUM); + + /* We must avoid scheduling multiple store insn with another + insns. */ + emit_insn (gen_blockage ()); + x = gen_movml_push_banked (sp_reg); + x = frame_insn (x); + for (i = FIRST_BANKED_REG; i <= LAST_BANKED_REG; i++) + { + mem = gen_rtx_MEM (SImode, plus_constant (sp_reg, i * 4)); + reg = gen_rtx_REG (SImode, i); + add_reg_note (x, REG_CFA_OFFSET, gen_rtx_SET (SImode, mem, reg)); + } + + set = gen_rtx_SET (SImode, sp_reg, plus_constant (sp_reg, - 32)); + add_reg_note (x, REG_CFA_ADJUST_CFA, set); + emit_insn (gen_blockage ()); + } + else + for (i = FIRST_BANKED_REG; i <= LAST_BANKED_REG; i++) + if (TEST_HARD_REG_BIT (*mask, i)) + push (i); + } + + /* Don't push PR register for an ISR with RESBANK attribute assigned. */ + if (TEST_HARD_REG_BIT (*mask, PR_REG) && !sh_cfun_resbank_handler_p ()) + push (PR_REG); +} + +/* Calculate how much extra space is needed to save all callee-saved + target registers. + LIVE_REGS_MASK is the register mask calculated by calc_live_regs. */ + +static int +shmedia_target_regs_stack_space (HARD_REG_SET *live_regs_mask) +{ + int reg; + int stack_space = 0; + int interrupt_handler = sh_cfun_interrupt_handler_p (); + + for (reg = LAST_TARGET_REG; reg >= FIRST_TARGET_REG; reg--) + if ((! call_really_used_regs[reg] || interrupt_handler) + && ! TEST_HARD_REG_BIT (*live_regs_mask, reg)) + /* Leave space to save this target register on the stack, + in case target register allocation wants to use it. */ + stack_space += GET_MODE_SIZE (REGISTER_NATURAL_MODE (reg)); + return stack_space; +} + +/* Decide whether we should reserve space for callee-save target registers, + in case target register allocation wants to use them. REGS_SAVED is + the space, in bytes, that is already required for register saves. + LIVE_REGS_MASK is the register mask calculated by calc_live_regs. */ + +static int +shmedia_reserve_space_for_target_registers_p (int regs_saved, + HARD_REG_SET *live_regs_mask) +{ + if (optimize_size) + return 0; + return shmedia_target_regs_stack_space (live_regs_mask) <= regs_saved; +} + +/* Decide how much space to reserve for callee-save target registers + in case target register allocation wants to use them. + LIVE_REGS_MASK is the register mask calculated by calc_live_regs. */ + +static int +shmedia_target_regs_stack_adjust (HARD_REG_SET *live_regs_mask) +{ + if (shmedia_space_reserved_for_target_registers) + return shmedia_target_regs_stack_space (live_regs_mask); + else + return 0; +} + +/* Work out the registers which need to be saved, both as a mask and a + count of saved words. Return the count. + + If doing a pragma interrupt function, then push all regs used by the + function, and if we call another function (we can tell by looking at PR), + make sure that all the regs it clobbers are safe too. */ + +static int +calc_live_regs (HARD_REG_SET *live_regs_mask) +{ + unsigned int reg; + int count; + tree attrs; + bool interrupt_or_trapa_handler, trapa_handler, interrupt_handler; + bool nosave_low_regs; + int pr_live, has_call; + + attrs = DECL_ATTRIBUTES (current_function_decl); + interrupt_or_trapa_handler = sh_cfun_interrupt_handler_p (); + trapa_handler = lookup_attribute ("trapa_handler", attrs) != NULL_TREE; + interrupt_handler = interrupt_or_trapa_handler && ! trapa_handler; + nosave_low_regs = lookup_attribute ("nosave_low_regs", attrs) != NULL_TREE; + + CLEAR_HARD_REG_SET (*live_regs_mask); + if ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && TARGET_FMOVD && interrupt_handler + && df_regs_ever_live_p (FPSCR_REG)) + target_flags &= ~MASK_FPU_SINGLE; + /* If we can save a lot of saves by switching to double mode, do that. */ + else if ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && TARGET_FMOVD && TARGET_FPU_SINGLE) + for (count = 0, reg = FIRST_FP_REG; reg <= LAST_FP_REG; reg += 2) + if (df_regs_ever_live_p (reg) && df_regs_ever_live_p (reg+1) + && (! call_really_used_regs[reg] + || interrupt_handler) + && ++count > 2) + { + target_flags &= ~MASK_FPU_SINGLE; + break; + } + /* PR_MEDIA_REG is a general purpose register, thus global_alloc already + knows how to use it. That means the pseudo originally allocated for + the initial value can become the PR_MEDIA_REG hard register, as seen for + execute/20010122-1.c:test9. */ + if (TARGET_SHMEDIA) + /* ??? this function is called from initial_elimination_offset, hence we + can't use the result of sh_media_register_for_return here. */ + pr_live = sh_pr_n_sets (); + else + { + rtx pr_initial = has_hard_reg_initial_val (Pmode, PR_REG); + pr_live = (pr_initial + ? (!REG_P (pr_initial) + || REGNO (pr_initial) != (PR_REG)) + : df_regs_ever_live_p (PR_REG)); + /* For Shcompact, if not optimizing, we end up with a memory reference + using the return address pointer for __builtin_return_address even + though there is no actual need to put the PR register on the stack. */ + pr_live |= df_regs_ever_live_p (RETURN_ADDRESS_POINTER_REGNUM); + } + /* Force PR to be live if the prologue has to call the SHmedia + argument decoder or register saver. */ + if (TARGET_SHCOMPACT + && ((crtl->args.info.call_cookie + & ~ CALL_COOKIE_RET_TRAMP (1)) + || crtl->saves_all_registers)) + pr_live = 1; + has_call = TARGET_SHMEDIA ? ! leaf_function_p () : pr_live; + for (count = 0, reg = FIRST_PSEUDO_REGISTER; reg-- != 0; ) + { + if (reg == (TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG) + ? pr_live + : interrupt_handler + ? (/* Need to save all the regs ever live. */ + (df_regs_ever_live_p (reg) + || (call_really_used_regs[reg] + && (! fixed_regs[reg] || reg == MACH_REG || reg == MACL_REG + || reg == PIC_OFFSET_TABLE_REGNUM) + && has_call) + || (TARGET_SHMEDIA && has_call + && REGISTER_NATURAL_MODE (reg) == SImode + && (GENERAL_REGISTER_P (reg) || TARGET_REGISTER_P (reg)))) + && reg != STACK_POINTER_REGNUM && reg != ARG_POINTER_REGNUM + && reg != RETURN_ADDRESS_POINTER_REGNUM + && reg != T_REG && reg != GBR_REG + /* Push fpscr only on targets which have FPU */ + && (reg != FPSCR_REG || TARGET_FPU_ANY)) + : (/* Only push those regs which are used and need to be saved. */ + (TARGET_SHCOMPACT + && flag_pic + && crtl->args.info.call_cookie + && reg == PIC_OFFSET_TABLE_REGNUM) + || (df_regs_ever_live_p (reg) + && ((!call_really_used_regs[reg] + && !(reg != PIC_OFFSET_TABLE_REGNUM + && fixed_regs[reg] && call_used_regs[reg])) + || (trapa_handler && reg == FPSCR_REG && TARGET_FPU_ANY))) + || (crtl->calls_eh_return + && (reg == EH_RETURN_DATA_REGNO (0) + || reg == EH_RETURN_DATA_REGNO (1) + || reg == EH_RETURN_DATA_REGNO (2) + || reg == EH_RETURN_DATA_REGNO (3))) + || ((reg == MACL_REG || reg == MACH_REG) + && df_regs_ever_live_p (reg) + && sh_cfun_attr_renesas_p ()) + )) + { + SET_HARD_REG_BIT (*live_regs_mask, reg); + count += GET_MODE_SIZE (REGISTER_NATURAL_MODE (reg)); + + if ((TARGET_SH4 || TARGET_SH2A_DOUBLE || TARGET_SH5) && TARGET_FMOVD + && GET_MODE_CLASS (REGISTER_NATURAL_MODE (reg)) == MODE_FLOAT) + { + if (FP_REGISTER_P (reg)) + { + if (! TARGET_FPU_SINGLE && ! df_regs_ever_live_p (reg ^ 1)) + { + SET_HARD_REG_BIT (*live_regs_mask, (reg ^ 1)); + count += GET_MODE_SIZE (REGISTER_NATURAL_MODE (reg ^ 1)); + } + } + else if (XD_REGISTER_P (reg)) + { + /* Must switch to double mode to access these registers. */ + target_flags &= ~MASK_FPU_SINGLE; + } + } + } + if (nosave_low_regs && reg == R8_REG) + break; + } + /* If we have a target register optimization pass after prologue / epilogue + threading, we need to assume all target registers will be live even if + they aren't now. */ + if (flag_branch_target_load_optimize2 + && TARGET_SAVE_ALL_TARGET_REGS + && shmedia_space_reserved_for_target_registers) + for (reg = LAST_TARGET_REG; reg >= FIRST_TARGET_REG; reg--) + if ((! call_really_used_regs[reg] || interrupt_handler) + && ! TEST_HARD_REG_BIT (*live_regs_mask, reg)) + { + SET_HARD_REG_BIT (*live_regs_mask, reg); + count += GET_MODE_SIZE (REGISTER_NATURAL_MODE (reg)); + } + /* If this is an interrupt handler, we don't have any call-clobbered + registers we can conveniently use for target register save/restore. + Make sure we save at least one general purpose register when we need + to save target registers. */ + if (interrupt_handler + && hard_reg_set_intersect_p (*live_regs_mask, + reg_class_contents[TARGET_REGS]) + && ! hard_reg_set_intersect_p (*live_regs_mask, + reg_class_contents[GENERAL_REGS])) + { + SET_HARD_REG_BIT (*live_regs_mask, R0_REG); + count += GET_MODE_SIZE (REGISTER_NATURAL_MODE (R0_REG)); + } + + return count; +} + +/* Code to generate prologue and epilogue sequences */ + +/* PUSHED is the number of bytes that are being pushed on the + stack for register saves. Return the frame size, padded + appropriately so that the stack stays properly aligned. */ +static HOST_WIDE_INT +rounded_frame_size (int pushed) +{ + HOST_WIDE_INT size = get_frame_size (); + HOST_WIDE_INT align = STACK_BOUNDARY / BITS_PER_UNIT; + + if (ACCUMULATE_OUTGOING_ARGS) + size += crtl->outgoing_args_size; + + return ((size + pushed + align - 1) & -align) - pushed; +} + +/* Choose a call-clobbered target-branch register that remains + unchanged along the whole function. We set it up as the return + value in the prologue. */ +int +sh_media_register_for_return (void) +{ + int regno; + int tr0_used; + + if (! current_function_is_leaf) + return -1; + if (lookup_attribute ("interrupt_handler", + DECL_ATTRIBUTES (current_function_decl))) + return -1; + if (sh_cfun_interrupt_handler_p ()) + return -1; + + tr0_used = flag_pic && df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM); + + for (regno = FIRST_TARGET_REG + tr0_used; regno <= LAST_TARGET_REG; regno++) + if (call_really_used_regs[regno] && ! df_regs_ever_live_p (regno)) + return regno; + + return -1; +} + +/* The maximum registers we need to save are: + - 62 general purpose registers (r15 is stack pointer, r63 is zero) + - 32 floating point registers (for each pair, we save none, + one single precision value, or a double precision value). + - 8 target registers + - add 1 entry for a delimiter. */ +#define MAX_SAVED_REGS (62+32+8) + +typedef struct save_entry_s +{ + unsigned char reg; + unsigned char mode; + short offset; +} save_entry; + +#define MAX_TEMPS 4 + +/* There will be a delimiter entry with VOIDmode both at the start and the + end of a filled in schedule. The end delimiter has the offset of the + save with the smallest (i.e. most negative) offset. */ +typedef struct save_schedule_s +{ + save_entry entries[MAX_SAVED_REGS + 2]; + int temps[MAX_TEMPS+1]; +} save_schedule; + +/* Fill in SCHEDULE according to LIVE_REGS_MASK. If RESTORE is nonzero, + use reverse order. Returns the last entry written to (not counting + the delimiter). OFFSET_BASE is a number to be added to all offset + entries. */ + +static save_entry * +sh5_schedule_saves (HARD_REG_SET *live_regs_mask, save_schedule *schedule, + int offset_base) +{ + int align, i; + save_entry *entry = schedule->entries; + int tmpx = 0; + int offset; + + if (! current_function_interrupt) + for (i = FIRST_GENERAL_REG; tmpx < MAX_TEMPS && i <= LAST_GENERAL_REG; i++) + if (call_really_used_regs[i] && ! fixed_regs[i] && i != PR_MEDIA_REG + && ! FUNCTION_ARG_REGNO_P (i) + && i != FIRST_RET_REG + && ! (cfun->static_chain_decl != NULL && i == STATIC_CHAIN_REGNUM) + && ! (crtl->calls_eh_return + && (i == EH_RETURN_STACKADJ_REGNO + || ((unsigned) i >= EH_RETURN_DATA_REGNO (0) + && (unsigned) i <= EH_RETURN_DATA_REGNO (3))))) + schedule->temps[tmpx++] = i; + entry->reg = -1; + entry->mode = VOIDmode; + entry->offset = offset_base; + entry++; + /* We loop twice: first, we save 8-byte aligned registers in the + higher addresses, that are known to be aligned. Then, we + proceed to saving 32-bit registers that don't need 8-byte + alignment. + If this is an interrupt function, all registers that need saving + need to be saved in full. moreover, we need to postpone saving + target registers till we have saved some general purpose registers + we can then use as scratch registers. */ + offset = offset_base; + for (align = 1; align >= 0; align--) + { + for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--) + if (TEST_HARD_REG_BIT (*live_regs_mask, i)) + { + enum machine_mode mode = REGISTER_NATURAL_MODE (i); + int reg = i; + + if (current_function_interrupt) + { + if (TARGET_REGISTER_P (i)) + continue; + if (GENERAL_REGISTER_P (i)) + mode = DImode; + } + if (mode == SFmode && (i % 2) == 1 + && ! TARGET_FPU_SINGLE && FP_REGISTER_P (i) + && (TEST_HARD_REG_BIT (*live_regs_mask, (i ^ 1)))) + { + mode = DFmode; + i--; + reg--; + } + + /* If we're doing the aligned pass and this is not aligned, + or we're doing the unaligned pass and this is aligned, + skip it. */ + if ((GET_MODE_SIZE (mode) % (STACK_BOUNDARY / BITS_PER_UNIT) == 0) + != align) + continue; + + if (current_function_interrupt + && GENERAL_REGISTER_P (i) + && tmpx < MAX_TEMPS) + schedule->temps[tmpx++] = i; + + offset -= GET_MODE_SIZE (mode); + entry->reg = i; + entry->mode = mode; + entry->offset = offset; + entry++; + } + if (align && current_function_interrupt) + for (i = LAST_TARGET_REG; i >= FIRST_TARGET_REG; i--) + if (TEST_HARD_REG_BIT (*live_regs_mask, i)) + { + offset -= GET_MODE_SIZE (DImode); + entry->reg = i; + entry->mode = DImode; + entry->offset = offset; + entry++; + } + } + entry->reg = -1; + entry->mode = VOIDmode; + entry->offset = offset; + schedule->temps[tmpx] = -1; + return entry - 1; +} + +void +sh_expand_prologue (void) +{ + HARD_REG_SET live_regs_mask; + int d, i; + int d_rounding = 0; + int save_flags = target_flags; + int pretend_args; + int stack_usage; + tree sp_switch_attr + = lookup_attribute ("sp_switch", DECL_ATTRIBUTES (current_function_decl)); + + current_function_interrupt = sh_cfun_interrupt_handler_p (); + + /* We have pretend args if we had an object sent partially in registers + and partially on the stack, e.g. a large structure. */ + pretend_args = crtl->args.pretend_args_size; + if (TARGET_VARARGS_PRETEND_ARGS (current_function_decl) + && (NPARM_REGS(SImode) + > crtl->args.info.arg_count[(int) SH_ARG_INT])) + pretend_args = 0; + + output_stack_adjust (-pretend_args + - crtl->args.info.stack_regs * 8, + stack_pointer_rtx, 0, NULL, true); + stack_usage = pretend_args + crtl->args.info.stack_regs * 8; + + if (TARGET_SHCOMPACT && flag_pic && crtl->args.info.call_cookie) + /* We're going to use the PIC register to load the address of the + incoming-argument decoder and/or of the return trampoline from + the GOT, so make sure the PIC register is preserved and + initialized. */ + df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); + + if (TARGET_SHCOMPACT + && (crtl->args.info.call_cookie & ~ CALL_COOKIE_RET_TRAMP(1))) + { + int reg; + + /* First, make all registers with incoming arguments that will + be pushed onto the stack live, so that register renaming + doesn't overwrite them. */ + for (reg = 0; reg < NPARM_REGS (SImode); reg++) + if (CALL_COOKIE_STACKSEQ_GET (crtl->args.info.call_cookie) + >= NPARM_REGS (SImode) - reg) + for (; reg < NPARM_REGS (SImode); reg++) + emit_insn (gen_shcompact_preserve_incoming_args + (gen_rtx_REG (SImode, FIRST_PARM_REG + reg))); + else if (CALL_COOKIE_INT_REG_GET + (crtl->args.info.call_cookie, reg) == 1) + emit_insn (gen_shcompact_preserve_incoming_args + (gen_rtx_REG (SImode, FIRST_PARM_REG + reg))); + + emit_move_insn (gen_rtx_REG (Pmode, MACL_REG), + stack_pointer_rtx); + emit_move_insn (gen_rtx_REG (SImode, R0_REG), + GEN_INT (crtl->args.info.call_cookie)); + emit_move_insn (gen_rtx_REG (SImode, MACH_REG), + gen_rtx_REG (SImode, R0_REG)); + } + else if (TARGET_SHMEDIA) + { + int tr = sh_media_register_for_return (); + + if (tr >= 0) + emit_move_insn (gen_rtx_REG (DImode, tr), + gen_rtx_REG (DImode, PR_MEDIA_REG)); + } + + /* Emit the code for SETUP_VARARGS. */ + if (cfun->stdarg) + { + if (TARGET_VARARGS_PRETEND_ARGS (current_function_decl)) + { + /* Push arg regs as if they'd been provided by caller in stack. */ + for (i = 0; i < NPARM_REGS(SImode); i++) + { + int rn = NPARM_REGS(SImode) + FIRST_PARM_REG - i - 1; + + if (i >= (NPARM_REGS(SImode) + - crtl->args.info.arg_count[(int) SH_ARG_INT] + )) + break; + push (rn); + stack_usage += GET_MODE_SIZE (SImode); + } + } + } + + /* If we're supposed to switch stacks at function entry, do so now. */ + if (sp_switch_attr) + { + rtx lab, newsrc; + /* The argument specifies a variable holding the address of the + stack the interrupt function should switch to/from at entry/exit. */ + tree arg = TREE_VALUE ( TREE_VALUE (sp_switch_attr)); + const char *s + = ggc_strdup (TREE_STRING_POINTER (arg)); + rtx sp_switch = gen_rtx_SYMBOL_REF (Pmode, s); + + lab = add_constant (sp_switch, SImode, 0); + newsrc = gen_rtx_LABEL_REF (VOIDmode, lab); + newsrc = gen_const_mem (SImode, newsrc); + + emit_insn (gen_sp_switch_1 (newsrc)); + } + + d = calc_live_regs (&live_regs_mask); + /* ??? Maybe we could save some switching if we can move a mode switch + that already happens to be at the function start into the prologue. */ + if (target_flags != save_flags && ! current_function_interrupt) + emit_insn (gen_toggle_sz ()); + + if (TARGET_SH5) + { + int offset_base, offset; + rtx r0 = NULL_RTX; + int offset_in_r0 = -1; + int sp_in_r0 = 0; + int tregs_space = shmedia_target_regs_stack_adjust (&live_regs_mask); + int total_size, save_size; + save_schedule schedule; + save_entry *entry; + int *tmp_pnt; + + if (call_really_used_regs[R0_REG] && ! fixed_regs[R0_REG] + && ! current_function_interrupt) + r0 = gen_rtx_REG (Pmode, R0_REG); + + /* D is the actual number of bytes that we need for saving registers, + however, in initial_elimination_offset we have committed to using + an additional TREGS_SPACE amount of bytes - in order to keep both + addresses to arguments supplied by the caller and local variables + valid, we must keep this gap. Place it between the incoming + arguments and the actually saved registers in a bid to optimize + locality of reference. */ + total_size = d + tregs_space; + total_size += rounded_frame_size (total_size); + save_size = total_size - rounded_frame_size (d); + if (save_size % (STACK_BOUNDARY / BITS_PER_UNIT)) + d_rounding = ((STACK_BOUNDARY / BITS_PER_UNIT) + - save_size % (STACK_BOUNDARY / BITS_PER_UNIT)); + + /* If adjusting the stack in a single step costs nothing extra, do so. + I.e. either if a single addi is enough, or we need a movi anyway, + and we don't exceed the maximum offset range (the test for the + latter is conservative for simplicity). */ + if (TARGET_SHMEDIA + && (CONST_OK_FOR_I10 (-total_size) + || (! CONST_OK_FOR_I10 (-(save_size + d_rounding)) + && total_size <= 2044))) + d_rounding = total_size - save_size; + + offset_base = d + d_rounding; + + output_stack_adjust (-(save_size + d_rounding), stack_pointer_rtx, + 0, NULL, true); + stack_usage += save_size + d_rounding; + + sh5_schedule_saves (&live_regs_mask, &schedule, offset_base); + tmp_pnt = schedule.temps; + for (entry = &schedule.entries[1]; entry->mode != VOIDmode; entry++) + { + enum machine_mode mode = (enum machine_mode) entry->mode; + unsigned int reg = entry->reg; + rtx reg_rtx, mem_rtx, pre_dec = NULL_RTX; + rtx orig_reg_rtx; + + offset = entry->offset; + + reg_rtx = gen_rtx_REG (mode, reg); + + mem_rtx = gen_frame_mem (mode, + gen_rtx_PLUS (Pmode, + stack_pointer_rtx, + GEN_INT (offset))); + + if (!memory_address_p (mode, XEXP (mem_rtx, 0))) + { + gcc_assert (r0); + mem_rtx = NULL_RTX; + } + + if (HAVE_PRE_DECREMENT + && (offset_in_r0 - offset == GET_MODE_SIZE (mode) + || mem_rtx == NULL_RTX + || reg == PR_REG || SPECIAL_REGISTER_P (reg))) + { + pre_dec = gen_frame_mem (mode, gen_rtx_PRE_DEC (Pmode, r0)); + + if (!memory_address_p (mode, XEXP (pre_dec, 0))) + pre_dec = NULL_RTX; + else + { + mem_rtx = NULL_RTX; + offset += GET_MODE_SIZE (mode); + } + } + + if (mem_rtx != NULL_RTX) + goto addr_ok; + + if (offset_in_r0 == -1) + { + emit_move_insn (r0, GEN_INT (offset)); + offset_in_r0 = offset; + } + else if (offset != offset_in_r0) + { + emit_move_insn (r0, + gen_rtx_PLUS + (Pmode, r0, + GEN_INT (offset - offset_in_r0))); + offset_in_r0 += offset - offset_in_r0; + } + + if (pre_dec != NULL_RTX) + { + if (! sp_in_r0) + { + emit_move_insn (r0, + gen_rtx_PLUS + (Pmode, r0, stack_pointer_rtx)); + sp_in_r0 = 1; + } + + offset -= GET_MODE_SIZE (mode); + offset_in_r0 -= GET_MODE_SIZE (mode); + + mem_rtx = pre_dec; + } + else if (sp_in_r0) + mem_rtx = gen_frame_mem (mode, r0); + else + mem_rtx = gen_frame_mem (mode, + gen_rtx_PLUS (Pmode, + stack_pointer_rtx, + r0)); + + /* We must not use an r0-based address for target-branch + registers or for special registers without pre-dec + memory addresses, since we store their values in r0 + first. */ + gcc_assert (!TARGET_REGISTER_P (reg) + && ((reg != PR_REG && !SPECIAL_REGISTER_P (reg)) + || mem_rtx == pre_dec)); + + addr_ok: + orig_reg_rtx = reg_rtx; + if (TARGET_REGISTER_P (reg) + || ((reg == PR_REG || SPECIAL_REGISTER_P (reg)) + && mem_rtx != pre_dec)) + { + rtx tmp_reg = gen_rtx_REG (GET_MODE (reg_rtx), *tmp_pnt); + + emit_move_insn (tmp_reg, reg_rtx); + + if (REGNO (tmp_reg) == R0_REG) + { + offset_in_r0 = -1; + sp_in_r0 = 0; + gcc_assert (!refers_to_regno_p + (R0_REG, R0_REG+1, mem_rtx, (rtx *) 0)); + } + + if (*++tmp_pnt <= 0) + tmp_pnt = schedule.temps; + + reg_rtx = tmp_reg; + } + { + rtx insn; + + /* Mark as interesting for dwarf cfi generator */ + insn = emit_move_insn (mem_rtx, reg_rtx); + RTX_FRAME_RELATED_P (insn) = 1; + /* If we use an intermediate register for the save, we can't + describe this exactly in cfi as a copy of the to-be-saved + register into the temporary register and then the temporary + register on the stack, because the temporary register can + have a different natural size than the to-be-saved register. + Thus, we gloss over the intermediate copy and pretend we do + a direct save from the to-be-saved register. */ + if (REGNO (reg_rtx) != reg) + { + rtx set; + + set = gen_rtx_SET (VOIDmode, mem_rtx, orig_reg_rtx); + add_reg_note (insn, REG_FRAME_RELATED_EXPR, set); + } + + if (TARGET_SHCOMPACT && (offset_in_r0 != -1)) + { + rtx reg_rtx = gen_rtx_REG (mode, reg); + rtx set; + rtx mem_rtx = gen_frame_mem (mode, + gen_rtx_PLUS (Pmode, + stack_pointer_rtx, + GEN_INT (offset))); + + set = gen_rtx_SET (VOIDmode, mem_rtx, reg_rtx); + add_reg_note (insn, REG_FRAME_RELATED_EXPR, set); + } + } + } + + gcc_assert (entry->offset == d_rounding); + } + else + { + push_regs (&live_regs_mask, current_function_interrupt); + stack_usage += d; + } + + if (flag_pic && df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM)) + emit_insn (gen_GOTaddr2picreg ()); + + if (SHMEDIA_REGS_STACK_ADJUST ()) + { + /* This must NOT go through the PLT, otherwise mach and macl + may be clobbered. */ + function_symbol (gen_rtx_REG (Pmode, R0_REG), + (TARGET_FPU_ANY + ? "__GCC_push_shmedia_regs" + : "__GCC_push_shmedia_regs_nofpu"), SFUNC_GOT); + emit_insn (gen_shmedia_save_restore_regs_compact + (GEN_INT (-SHMEDIA_REGS_STACK_ADJUST ()))); + } + + if (target_flags != save_flags && ! current_function_interrupt) + emit_insn (gen_toggle_sz ()); + + target_flags = save_flags; + + output_stack_adjust (-rounded_frame_size (d) + d_rounding, + stack_pointer_rtx, 0, NULL, true); + stack_usage += rounded_frame_size (d) - d_rounding; + + if (frame_pointer_needed) + frame_insn (GEN_MOV (hard_frame_pointer_rtx, stack_pointer_rtx)); + + if (TARGET_SHCOMPACT + && (crtl->args.info.call_cookie & ~ CALL_COOKIE_RET_TRAMP(1))) + { + /* This must NOT go through the PLT, otherwise mach and macl + may be clobbered. */ + function_symbol (gen_rtx_REG (Pmode, R0_REG), + "__GCC_shcompact_incoming_args", SFUNC_GOT); + emit_insn (gen_shcompact_incoming_args ()); + } + + if (flag_stack_usage) + current_function_static_stack_size = stack_usage; +} + +void +sh_expand_epilogue (bool sibcall_p) +{ + HARD_REG_SET live_regs_mask; + int d, i; + int d_rounding = 0; + + int save_flags = target_flags; + int frame_size, save_size; + int fpscr_deferred = 0; + int e = sibcall_p ? -1 : 1; + + d = calc_live_regs (&live_regs_mask); + + save_size = d; + frame_size = rounded_frame_size (d); + + if (TARGET_SH5) + { + int tregs_space = shmedia_target_regs_stack_adjust (&live_regs_mask); + int total_size; + if (d % (STACK_BOUNDARY / BITS_PER_UNIT)) + d_rounding = ((STACK_BOUNDARY / BITS_PER_UNIT) + - d % (STACK_BOUNDARY / BITS_PER_UNIT)); + + total_size = d + tregs_space; + total_size += rounded_frame_size (total_size); + save_size = total_size - frame_size; + + /* If adjusting the stack in a single step costs nothing extra, do so. + I.e. either if a single addi is enough, or we need a movi anyway, + and we don't exceed the maximum offset range (the test for the + latter is conservative for simplicity). */ + if (TARGET_SHMEDIA + && ! frame_pointer_needed + && (CONST_OK_FOR_I10 (total_size) + || (! CONST_OK_FOR_I10 (save_size + d_rounding) + && total_size <= 2044))) + d_rounding = frame_size; + + frame_size -= d_rounding; + } + + if (frame_pointer_needed) + { + /* We must avoid scheduling the epilogue with previous basic blocks. + See PR/18032 and PR/40313. */ + emit_insn (gen_blockage ()); + output_stack_adjust (frame_size, hard_frame_pointer_rtx, e, + &live_regs_mask, false); + + /* We must avoid moving the stack pointer adjustment past code + which reads from the local frame, else an interrupt could + occur after the SP adjustment and clobber data in the local + frame. */ + emit_insn (gen_blockage ()); + emit_insn (GEN_MOV (stack_pointer_rtx, hard_frame_pointer_rtx)); + } + else if (frame_size) + { + /* We must avoid moving the stack pointer adjustment past code + which reads from the local frame, else an interrupt could + occur after the SP adjustment and clobber data in the local + frame. */ + emit_insn (gen_blockage ()); + output_stack_adjust (frame_size, stack_pointer_rtx, e, + &live_regs_mask, false); + } + + if (SHMEDIA_REGS_STACK_ADJUST ()) + { + function_symbol (gen_rtx_REG (Pmode, R0_REG), + (TARGET_FPU_ANY + ? "__GCC_pop_shmedia_regs" + : "__GCC_pop_shmedia_regs_nofpu"), SFUNC_GOT); + /* This must NOT go through the PLT, otherwise mach and macl + may be clobbered. */ + emit_insn (gen_shmedia_save_restore_regs_compact + (GEN_INT (SHMEDIA_REGS_STACK_ADJUST ()))); + } + + /* Pop all the registers. */ + + if (target_flags != save_flags && ! current_function_interrupt) + emit_insn (gen_toggle_sz ()); + if (TARGET_SH5) + { + int offset_base, offset; + int offset_in_r0 = -1; + int sp_in_r0 = 0; + rtx r0 = gen_rtx_REG (Pmode, R0_REG); + save_schedule schedule; + save_entry *entry; + int *tmp_pnt; + + entry = sh5_schedule_saves (&live_regs_mask, &schedule, d_rounding); + offset_base = -entry[1].offset + d_rounding; + tmp_pnt = schedule.temps; + for (; entry->mode != VOIDmode; entry--) + { + enum machine_mode mode = (enum machine_mode) entry->mode; + int reg = entry->reg; + rtx reg_rtx, mem_rtx, post_inc = NULL_RTX; + + offset = offset_base + entry->offset; + reg_rtx = gen_rtx_REG (mode, reg); + + mem_rtx = gen_frame_mem (mode, + gen_rtx_PLUS (Pmode, + stack_pointer_rtx, + GEN_INT (offset))); + + if (!memory_address_p (mode, XEXP (mem_rtx, 0))) + mem_rtx = NULL_RTX; + + if (HAVE_POST_INCREMENT + && (offset == offset_in_r0 + || (offset + GET_MODE_SIZE (mode) != d + d_rounding + && mem_rtx == NULL_RTX) + || reg == PR_REG || SPECIAL_REGISTER_P (reg))) + { + post_inc = gen_frame_mem (mode, gen_rtx_POST_INC (Pmode, r0)); + + if (!memory_address_p (mode, XEXP (post_inc, 0))) + post_inc = NULL_RTX; + else + mem_rtx = NULL_RTX; + } + + if (mem_rtx != NULL_RTX) + goto addr_ok; + + if (offset_in_r0 == -1) + { + emit_move_insn (r0, GEN_INT (offset)); + offset_in_r0 = offset; + } + else if (offset != offset_in_r0) + { + emit_move_insn (r0, + gen_rtx_PLUS + (Pmode, r0, + GEN_INT (offset - offset_in_r0))); + offset_in_r0 += offset - offset_in_r0; + } + + if (post_inc != NULL_RTX) + { + if (! sp_in_r0) + { + emit_move_insn (r0, + gen_rtx_PLUS + (Pmode, r0, stack_pointer_rtx)); + sp_in_r0 = 1; + } + + mem_rtx = post_inc; + + offset_in_r0 += GET_MODE_SIZE (mode); + } + else if (sp_in_r0) + mem_rtx = gen_frame_mem (mode, r0); + else + mem_rtx = gen_frame_mem (mode, + gen_rtx_PLUS (Pmode, + stack_pointer_rtx, + r0)); + + gcc_assert ((reg != PR_REG && !SPECIAL_REGISTER_P (reg)) + || mem_rtx == post_inc); + + addr_ok: + if ((reg == PR_REG || SPECIAL_REGISTER_P (reg)) + && mem_rtx != post_inc) + { + emit_move_insn (r0, mem_rtx); + mem_rtx = r0; + } + else if (TARGET_REGISTER_P (reg)) + { + rtx tmp_reg = gen_rtx_REG (mode, *tmp_pnt); + + /* Give the scheduler a bit of freedom by using up to + MAX_TEMPS registers in a round-robin fashion. */ + emit_move_insn (tmp_reg, mem_rtx); + mem_rtx = tmp_reg; + if (*++tmp_pnt < 0) + tmp_pnt = schedule.temps; + } + + emit_move_insn (reg_rtx, mem_rtx); + } + + gcc_assert (entry->offset + offset_base == d + d_rounding); + } + else /* ! TARGET_SH5 */ + { + int last_reg; + + save_size = 0; + /* For an ISR with RESBANK attribute assigned, don't pop PR + register. */ + if (TEST_HARD_REG_BIT (live_regs_mask, PR_REG) + && !sh_cfun_resbank_handler_p ()) + { + if (!frame_pointer_needed) + emit_insn (gen_blockage ()); + pop (PR_REG); + } + + /* Banked registers are popped first to avoid being scheduled in the + delay slot. RTE switches banks before the ds instruction. */ + if (current_function_interrupt) + { + bool use_movml = false; + + if (TARGET_SH2A) + { + unsigned int count = 0; + + for (i = FIRST_BANKED_REG; i <= LAST_BANKED_REG; i++) + if (TEST_HARD_REG_BIT (live_regs_mask, i)) + count++; + else + break; + + /* Use movml when all banked register are poped. */ + if (count == LAST_BANKED_REG - FIRST_BANKED_REG + 1) + use_movml = true; + } + + if (use_movml) + { + rtx sp_reg = gen_rtx_REG (SImode, STACK_POINTER_REGNUM); + + /* We must avoid scheduling multiple load insn with another + insns. */ + emit_insn (gen_blockage ()); + emit_insn (gen_movml_pop_banked (sp_reg)); + emit_insn (gen_blockage ()); + } + else + for (i = LAST_BANKED_REG; i >= FIRST_BANKED_REG; i--) + if (TEST_HARD_REG_BIT (live_regs_mask, i)) + pop (i); + + last_reg = FIRST_PSEUDO_REGISTER - LAST_BANKED_REG - 1; + } + else + last_reg = FIRST_PSEUDO_REGISTER; + + for (i = 0; i < last_reg; i++) + { + int j = (FIRST_PSEUDO_REGISTER - 1) - i; + + if (j == FPSCR_REG && current_function_interrupt && TARGET_FMOVD + && hard_reg_set_intersect_p (live_regs_mask, + reg_class_contents[DF_REGS])) + fpscr_deferred = 1; + /* For an ISR with RESBANK attribute assigned, don't pop + following registers, R0-R14, MACH, MACL and GBR. */ + else if (j != PR_REG && TEST_HARD_REG_BIT (live_regs_mask, j) + && ! (sh_cfun_resbank_handler_p () + && ((j >= FIRST_GENERAL_REG + && j < LAST_GENERAL_REG) + || j == MACH_REG + || j == MACL_REG + || j == GBR_REG))) + pop (j); + + if (j == FIRST_FP_REG && fpscr_deferred) + pop (FPSCR_REG); + } + } + if (target_flags != save_flags && ! current_function_interrupt) + emit_insn (gen_toggle_sz ()); + target_flags = save_flags; + + output_stack_adjust (crtl->args.pretend_args_size + + save_size + d_rounding + + crtl->args.info.stack_regs * 8, + stack_pointer_rtx, e, NULL, false); + + if (crtl->calls_eh_return) + emit_insn (GEN_ADD3 (stack_pointer_rtx, stack_pointer_rtx, + EH_RETURN_STACKADJ_RTX)); + + /* Switch back to the normal stack if necessary. */ + if (lookup_attribute ("sp_switch", DECL_ATTRIBUTES (current_function_decl))) + emit_insn (gen_sp_switch_2 ()); + + /* Tell flow the insn that pops PR isn't dead. */ + /* PR_REG will never be live in SHmedia mode, and we don't need to + USE PR_MEDIA_REG, since it will be explicitly copied to TR0_REG + by the return pattern. */ + if (TEST_HARD_REG_BIT (live_regs_mask, PR_REG)) + emit_use (gen_rtx_REG (SImode, PR_REG)); +} + +static int sh_need_epilogue_known = 0; + +int +sh_need_epilogue (void) +{ + if (! sh_need_epilogue_known) + { + rtx epilogue; + + start_sequence (); + sh_expand_epilogue (0); + epilogue = get_insns (); + end_sequence (); + sh_need_epilogue_known = (epilogue == NULL ? -1 : 1); + } + return sh_need_epilogue_known > 0; +} + +/* Emit code to change the current function's return address to RA. + TEMP is available as a scratch register, if needed. */ + +void +sh_set_return_address (rtx ra, rtx tmp) +{ + HARD_REG_SET live_regs_mask; + int d; + int pr_reg = TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG; + int pr_offset; + + d = calc_live_regs (&live_regs_mask); + + /* If pr_reg isn't life, we can set it (or the register given in + sh_media_register_for_return) directly. */ + if (! TEST_HARD_REG_BIT (live_regs_mask, pr_reg)) + { + rtx rr; + + if (TARGET_SHMEDIA) + { + int rr_regno = sh_media_register_for_return (); + + if (rr_regno < 0) + rr_regno = pr_reg; + + rr = gen_rtx_REG (DImode, rr_regno); + } + else + rr = gen_rtx_REG (SImode, pr_reg); + + emit_insn (GEN_MOV (rr, ra)); + /* Tell flow the register for return isn't dead. */ + emit_use (rr); + return; + } + + if (TARGET_SH5) + { + int offset; + save_schedule schedule; + save_entry *entry; + + entry = sh5_schedule_saves (&live_regs_mask, &schedule, 0); + offset = entry[1].offset; + for (; entry->mode != VOIDmode; entry--) + if (entry->reg == pr_reg) + goto found; + + /* We can't find pr register. */ + gcc_unreachable (); + + found: + offset = entry->offset - offset; + pr_offset = (rounded_frame_size (d) + offset + + SHMEDIA_REGS_STACK_ADJUST ()); + } + else + pr_offset = rounded_frame_size (d); + + emit_insn (GEN_MOV (tmp, GEN_INT (pr_offset))); + + if (frame_pointer_needed) + emit_insn (GEN_ADD3 (tmp, tmp, hard_frame_pointer_rtx)); + else + emit_insn (GEN_ADD3 (tmp, tmp, stack_pointer_rtx)); + + tmp = gen_frame_mem (Pmode, tmp); + emit_insn (GEN_MOV (tmp, ra)); + /* Tell this store isn't dead. */ + emit_use (tmp); +} + +/* Clear variables at function end. */ + +static void +sh_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED, + HOST_WIDE_INT size ATTRIBUTE_UNUSED) +{ + sh_need_epilogue_known = 0; +} + +static rtx +sh_builtin_saveregs (void) +{ + /* First unnamed integer register. */ + int first_intreg = crtl->args.info.arg_count[(int) SH_ARG_INT]; + /* Number of integer registers we need to save. */ + int n_intregs = MAX (0, NPARM_REGS (SImode) - first_intreg); + /* First unnamed SFmode float reg */ + int first_floatreg = crtl->args.info.arg_count[(int) SH_ARG_FLOAT]; + /* Number of SFmode float regs to save. */ + int n_floatregs = MAX (0, NPARM_REGS (SFmode) - first_floatreg); + rtx regbuf, fpregs; + int bufsize, regno; + alias_set_type alias_set; + + if (TARGET_SH5) + { + if (n_intregs) + { + int pushregs = n_intregs; + + while (pushregs < NPARM_REGS (SImode) - 1 + && (CALL_COOKIE_INT_REG_GET + (crtl->args.info.call_cookie, + NPARM_REGS (SImode) - pushregs) + == 1)) + { + crtl->args.info.call_cookie + &= ~ CALL_COOKIE_INT_REG (NPARM_REGS (SImode) + - pushregs, 1); + pushregs++; + } + + if (pushregs == NPARM_REGS (SImode)) + crtl->args.info.call_cookie + |= (CALL_COOKIE_INT_REG (0, 1) + | CALL_COOKIE_STACKSEQ (pushregs - 1)); + else + crtl->args.info.call_cookie + |= CALL_COOKIE_STACKSEQ (pushregs); + + crtl->args.pretend_args_size += 8 * n_intregs; + } + if (TARGET_SHCOMPACT) + return const0_rtx; + } + + if (! TARGET_SH2E && ! TARGET_SH4 && ! TARGET_SH5) + { + error ("__builtin_saveregs not supported by this subtarget"); + return const0_rtx; + } + + if (TARGET_SHMEDIA) + n_floatregs = 0; + + /* Allocate block of memory for the regs. */ + /* ??? If n_intregs + n_floatregs == 0, should we allocate at least 1 byte? + Or can assign_stack_local accept a 0 SIZE argument? */ + bufsize = (n_intregs * UNITS_PER_WORD) + (n_floatregs * UNITS_PER_WORD); + + if (TARGET_SHMEDIA) + regbuf = gen_frame_mem (BLKmode, gen_rtx_REG (Pmode, ARG_POINTER_REGNUM)); + else if (n_floatregs & 1) + { + rtx addr; + + regbuf = assign_stack_local (BLKmode, bufsize + UNITS_PER_WORD, 0); + addr = copy_to_mode_reg (Pmode, XEXP (regbuf, 0)); + emit_insn (gen_iorsi3 (addr, addr, GEN_INT (UNITS_PER_WORD))); + regbuf = change_address (regbuf, BLKmode, addr); + } + else if (STACK_BOUNDARY < 64 && TARGET_FPU_DOUBLE && n_floatregs) + { + rtx addr, mask; + + regbuf = assign_stack_local (BLKmode, bufsize + UNITS_PER_WORD, 0); + addr = copy_to_mode_reg (Pmode, plus_constant (XEXP (regbuf, 0), 4)); + mask = copy_to_mode_reg (Pmode, GEN_INT (-8)); + emit_insn (gen_andsi3 (addr, addr, mask)); + regbuf = change_address (regbuf, BLKmode, addr); + } + else + regbuf = assign_stack_local (BLKmode, bufsize, TARGET_FPU_DOUBLE ? 64 : 0); + alias_set = get_varargs_alias_set (); + set_mem_alias_set (regbuf, alias_set); + + /* Save int args. + This is optimized to only save the regs that are necessary. Explicitly + named args need not be saved. */ + if (n_intregs > 0) + move_block_from_reg (BASE_ARG_REG (SImode) + first_intreg, + adjust_address (regbuf, BLKmode, + n_floatregs * UNITS_PER_WORD), + n_intregs); + + if (TARGET_SHMEDIA) + /* Return the address of the regbuf. */ + return XEXP (regbuf, 0); + + /* Save float args. + This is optimized to only save the regs that are necessary. Explicitly + named args need not be saved. + We explicitly build a pointer to the buffer because it halves the insn + count when not optimizing (otherwise the pointer is built for each reg + saved). + We emit the moves in reverse order so that we can use predecrement. */ + + fpregs = copy_to_mode_reg (Pmode, + plus_constant (XEXP (regbuf, 0), + n_floatregs * UNITS_PER_WORD)); + if (TARGET_SH4 || TARGET_SH2A_DOUBLE) + { + rtx mem; + for (regno = NPARM_REGS (DFmode) - 2; regno >= first_floatreg; regno -= 2) + { + emit_insn (gen_addsi3 (fpregs, fpregs, + GEN_INT (-2 * UNITS_PER_WORD))); + mem = change_address (regbuf, DFmode, fpregs); + emit_move_insn (mem, + gen_rtx_REG (DFmode, BASE_ARG_REG (DFmode) + regno)); + } + regno = first_floatreg; + if (regno & 1) + { + emit_insn (gen_addsi3 (fpregs, fpregs, GEN_INT (-UNITS_PER_WORD))); + mem = change_address (regbuf, SFmode, fpregs); + emit_move_insn (mem, + gen_rtx_REG (SFmode, BASE_ARG_REG (SFmode) + regno + - (TARGET_LITTLE_ENDIAN != 0))); + } + } + else + for (regno = NPARM_REGS (SFmode) - 1; regno >= first_floatreg; regno--) + { + rtx mem; + + emit_insn (gen_addsi3 (fpregs, fpregs, GEN_INT (-UNITS_PER_WORD))); + mem = change_address (regbuf, SFmode, fpregs); + emit_move_insn (mem, + gen_rtx_REG (SFmode, BASE_ARG_REG (SFmode) + regno)); + } + + /* Return the address of the regbuf. */ + return XEXP (regbuf, 0); +} + +/* Define the `__builtin_va_list' type for the ABI. */ + +static tree +sh_build_builtin_va_list (void) +{ + tree f_next_o, f_next_o_limit, f_next_fp, f_next_fp_limit, f_next_stack; + tree record, type_decl; + + if (TARGET_SH5 || (! TARGET_SH2E && ! TARGET_SH4) + || TARGET_HITACHI || sh_cfun_attr_renesas_p ()) + return ptr_type_node; + + record = (*lang_hooks.types.make_type) (RECORD_TYPE); + type_decl = build_decl (BUILTINS_LOCATION, + TYPE_DECL, get_identifier ("__va_list_tag"), record); + + f_next_o = build_decl (BUILTINS_LOCATION, + FIELD_DECL, get_identifier ("__va_next_o"), + ptr_type_node); + f_next_o_limit = build_decl (BUILTINS_LOCATION, + FIELD_DECL, + get_identifier ("__va_next_o_limit"), + ptr_type_node); + f_next_fp = build_decl (BUILTINS_LOCATION, + FIELD_DECL, get_identifier ("__va_next_fp"), + ptr_type_node); + f_next_fp_limit = build_decl (BUILTINS_LOCATION, + FIELD_DECL, + get_identifier ("__va_next_fp_limit"), + ptr_type_node); + f_next_stack = build_decl (BUILTINS_LOCATION, + FIELD_DECL, get_identifier ("__va_next_stack"), + ptr_type_node); + + DECL_FIELD_CONTEXT (f_next_o) = record; + DECL_FIELD_CONTEXT (f_next_o_limit) = record; + DECL_FIELD_CONTEXT (f_next_fp) = record; + DECL_FIELD_CONTEXT (f_next_fp_limit) = record; + DECL_FIELD_CONTEXT (f_next_stack) = record; + + TYPE_STUB_DECL (record) = type_decl; + TYPE_NAME (record) = type_decl; + TYPE_FIELDS (record) = f_next_o; + DECL_CHAIN (f_next_o) = f_next_o_limit; + DECL_CHAIN (f_next_o_limit) = f_next_fp; + DECL_CHAIN (f_next_fp) = f_next_fp_limit; + DECL_CHAIN (f_next_fp_limit) = f_next_stack; + + layout_type (record); + + return record; +} + +/* Implement `va_start' for varargs and stdarg. */ + +static void +sh_va_start (tree valist, rtx nextarg) +{ + tree f_next_o, f_next_o_limit, f_next_fp, f_next_fp_limit, f_next_stack; + tree next_o, next_o_limit, next_fp, next_fp_limit, next_stack; + tree t, u; + int nfp, nint; + + if (TARGET_SH5) + { + expand_builtin_saveregs (); + std_expand_builtin_va_start (valist, nextarg); + return; + } + + if ((! TARGET_SH2E && ! TARGET_SH4) + || TARGET_HITACHI || sh_cfun_attr_renesas_p ()) + { + std_expand_builtin_va_start (valist, nextarg); + return; + } + + f_next_o = TYPE_FIELDS (va_list_type_node); + f_next_o_limit = DECL_CHAIN (f_next_o); + f_next_fp = DECL_CHAIN (f_next_o_limit); + f_next_fp_limit = DECL_CHAIN (f_next_fp); + f_next_stack = DECL_CHAIN (f_next_fp_limit); + + next_o = build3 (COMPONENT_REF, TREE_TYPE (f_next_o), valist, f_next_o, + NULL_TREE); + next_o_limit = build3 (COMPONENT_REF, TREE_TYPE (f_next_o_limit), + valist, f_next_o_limit, NULL_TREE); + next_fp = build3 (COMPONENT_REF, TREE_TYPE (f_next_fp), valist, f_next_fp, + NULL_TREE); + next_fp_limit = build3 (COMPONENT_REF, TREE_TYPE (f_next_fp_limit), + valist, f_next_fp_limit, NULL_TREE); + next_stack = build3 (COMPONENT_REF, TREE_TYPE (f_next_stack), + valist, f_next_stack, NULL_TREE); + + /* Call __builtin_saveregs. */ + u = make_tree (sizetype, expand_builtin_saveregs ()); + u = fold_convert (ptr_type_node, u); + t = build2 (MODIFY_EXPR, ptr_type_node, next_fp, u); + TREE_SIDE_EFFECTS (t) = 1; + expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); + + nfp = crtl->args.info.arg_count[SH_ARG_FLOAT]; + if (nfp < 8) + nfp = 8 - nfp; + else + nfp = 0; + u = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node, u, + size_int (UNITS_PER_WORD * nfp)); + t = build2 (MODIFY_EXPR, ptr_type_node, next_fp_limit, u); + TREE_SIDE_EFFECTS (t) = 1; + expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); + + t = build2 (MODIFY_EXPR, ptr_type_node, next_o, u); + TREE_SIDE_EFFECTS (t) = 1; + expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); + + nint = crtl->args.info.arg_count[SH_ARG_INT]; + if (nint < 4) + nint = 4 - nint; + else + nint = 0; + u = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node, u, + size_int (UNITS_PER_WORD * nint)); + t = build2 (MODIFY_EXPR, ptr_type_node, next_o_limit, u); + TREE_SIDE_EFFECTS (t) = 1; + expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); + + u = make_tree (ptr_type_node, nextarg); + t = build2 (MODIFY_EXPR, ptr_type_node, next_stack, u); + TREE_SIDE_EFFECTS (t) = 1; + expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); +} + +/* TYPE is a RECORD_TYPE. If there is only a single nonzero-sized + member, return it. */ +static tree +find_sole_member (tree type) +{ + tree field, member = NULL_TREE; + + for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + { + if (TREE_CODE (field) != FIELD_DECL) + continue; + if (!DECL_SIZE (field)) + return NULL_TREE; + if (integer_zerop (DECL_SIZE (field))) + continue; + if (member) + return NULL_TREE; + member = field; + } + return member; +} +/* Implement `va_arg'. */ + +static tree +sh_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p, + gimple_seq *post_p ATTRIBUTE_UNUSED) +{ + HOST_WIDE_INT size, rsize; + tree tmp, pptr_type_node; + tree addr, lab_over = NULL, result = NULL; + int pass_by_ref = targetm.calls.must_pass_in_stack (TYPE_MODE (type), type); + tree eff_type; + + if (pass_by_ref) + type = build_pointer_type (type); + + size = int_size_in_bytes (type); + rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD; + pptr_type_node = build_pointer_type (ptr_type_node); + + if (! TARGET_SH5 && (TARGET_SH2E || TARGET_SH4) + && ! (TARGET_HITACHI || sh_cfun_attr_renesas_p ())) + { + tree f_next_o, f_next_o_limit, f_next_fp, f_next_fp_limit, f_next_stack; + tree next_o, next_o_limit, next_fp, next_fp_limit, next_stack; + int pass_as_float; + tree lab_false; + tree member; + + f_next_o = TYPE_FIELDS (va_list_type_node); + f_next_o_limit = DECL_CHAIN (f_next_o); + f_next_fp = DECL_CHAIN (f_next_o_limit); + f_next_fp_limit = DECL_CHAIN (f_next_fp); + f_next_stack = DECL_CHAIN (f_next_fp_limit); + + next_o = build3 (COMPONENT_REF, TREE_TYPE (f_next_o), valist, f_next_o, + NULL_TREE); + next_o_limit = build3 (COMPONENT_REF, TREE_TYPE (f_next_o_limit), + valist, f_next_o_limit, NULL_TREE); + next_fp = build3 (COMPONENT_REF, TREE_TYPE (f_next_fp), + valist, f_next_fp, NULL_TREE); + next_fp_limit = build3 (COMPONENT_REF, TREE_TYPE (f_next_fp_limit), + valist, f_next_fp_limit, NULL_TREE); + next_stack = build3 (COMPONENT_REF, TREE_TYPE (f_next_stack), + valist, f_next_stack, NULL_TREE); + + /* Structures with a single member with a distinct mode are passed + like their member. This is relevant if the latter has a REAL_TYPE + or COMPLEX_TYPE type. */ + eff_type = type; + while (TREE_CODE (eff_type) == RECORD_TYPE + && (member = find_sole_member (eff_type)) + && (TREE_CODE (TREE_TYPE (member)) == REAL_TYPE + || TREE_CODE (TREE_TYPE (member)) == COMPLEX_TYPE + || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)) + { + tree field_type = TREE_TYPE (member); + + if (TYPE_MODE (eff_type) == TYPE_MODE (field_type)) + eff_type = field_type; + else + { + gcc_assert ((TYPE_ALIGN (eff_type) + < GET_MODE_ALIGNMENT (TYPE_MODE (field_type))) + || (TYPE_ALIGN (eff_type) + > GET_MODE_BITSIZE (TYPE_MODE (field_type)))); + break; + } + } + + if (TARGET_SH4 || TARGET_SH2A_DOUBLE) + { + pass_as_float = ((TREE_CODE (eff_type) == REAL_TYPE && size <= 8) + || (TREE_CODE (eff_type) == COMPLEX_TYPE + && TREE_CODE (TREE_TYPE (eff_type)) == REAL_TYPE + && size <= 16)); + } + else + { + pass_as_float = (TREE_CODE (eff_type) == REAL_TYPE && size == 4); + } + + addr = create_tmp_var (pptr_type_node, NULL); + lab_false = create_artificial_label (UNKNOWN_LOCATION); + lab_over = create_artificial_label (UNKNOWN_LOCATION); + + valist = build_simple_mem_ref (addr); + + if (pass_as_float) + { + tree next_fp_tmp = create_tmp_var (TREE_TYPE (f_next_fp), NULL); + tree cmp; + bool is_double = size == 8 && TREE_CODE (eff_type) == REAL_TYPE; + + tmp = build1 (ADDR_EXPR, pptr_type_node, unshare_expr (next_fp)); + gimplify_assign (unshare_expr (addr), tmp, pre_p); + + gimplify_assign (unshare_expr (next_fp_tmp), valist, pre_p); + tmp = next_fp_limit; + if (size > 4 && !is_double) + tmp = build2 (POINTER_PLUS_EXPR, TREE_TYPE (tmp), + unshare_expr (tmp), size_int (4 - size)); + tmp = build2 (GE_EXPR, boolean_type_node, + unshare_expr (next_fp_tmp), unshare_expr (tmp)); + cmp = build3 (COND_EXPR, void_type_node, tmp, + build1 (GOTO_EXPR, void_type_node, + unshare_expr (lab_false)), NULL_TREE); + if (!is_double) + gimplify_and_add (cmp, pre_p); + + if (TYPE_ALIGN (eff_type) > BITS_PER_WORD + || (is_double || size == 16)) + { + tmp = fold_convert (sizetype, next_fp_tmp); + tmp = build2 (BIT_AND_EXPR, sizetype, tmp, + size_int (UNITS_PER_WORD)); + tmp = build2 (POINTER_PLUS_EXPR, ptr_type_node, + unshare_expr (next_fp_tmp), tmp); + gimplify_assign (unshare_expr (next_fp_tmp), tmp, pre_p); + } + if (is_double) + gimplify_and_add (cmp, pre_p); + +#ifdef FUNCTION_ARG_SCmode_WART + if (TYPE_MODE (eff_type) == SCmode + && TARGET_SH4 && TARGET_LITTLE_ENDIAN) + { + tree subtype = TREE_TYPE (eff_type); + tree real, imag; + + imag + = std_gimplify_va_arg_expr (next_fp_tmp, subtype, pre_p, NULL); + imag = get_initialized_tmp_var (imag, pre_p, NULL); + + real + = std_gimplify_va_arg_expr (next_fp_tmp, subtype, pre_p, NULL); + real = get_initialized_tmp_var (real, pre_p, NULL); + + result = build2 (COMPLEX_EXPR, eff_type, real, imag); + if (type != eff_type) + result = build1 (VIEW_CONVERT_EXPR, type, result); + result = get_initialized_tmp_var (result, pre_p, NULL); + } +#endif /* FUNCTION_ARG_SCmode_WART */ + + tmp = build1 (GOTO_EXPR, void_type_node, unshare_expr (lab_over)); + gimplify_and_add (tmp, pre_p); + + tmp = build1 (LABEL_EXPR, void_type_node, unshare_expr (lab_false)); + gimplify_and_add (tmp, pre_p); + + tmp = build1 (ADDR_EXPR, pptr_type_node, unshare_expr (next_stack)); + gimplify_assign (unshare_expr (addr), tmp, pre_p); + gimplify_assign (unshare_expr (next_fp_tmp), + unshare_expr (valist), pre_p); + + gimplify_assign (unshare_expr (valist), + unshare_expr (next_fp_tmp), post_p); + valist = next_fp_tmp; + } + else + { + tmp = build2 (POINTER_PLUS_EXPR, ptr_type_node, + unshare_expr (next_o), size_int (rsize)); + tmp = build2 (GT_EXPR, boolean_type_node, tmp, + unshare_expr (next_o_limit)); + tmp = build3 (COND_EXPR, void_type_node, tmp, + build1 (GOTO_EXPR, void_type_node, + unshare_expr (lab_false)), + NULL_TREE); + gimplify_and_add (tmp, pre_p); + + tmp = build1 (ADDR_EXPR, pptr_type_node, unshare_expr (next_o)); + gimplify_assign (unshare_expr (addr), tmp, pre_p); + + tmp = build1 (GOTO_EXPR, void_type_node, unshare_expr (lab_over)); + gimplify_and_add (tmp, pre_p); + + tmp = build1 (LABEL_EXPR, void_type_node, unshare_expr (lab_false)); + gimplify_and_add (tmp, pre_p); + + if (size > 4 && ! (TARGET_SH4 || TARGET_SH2A)) + gimplify_assign (unshare_expr (next_o), + unshare_expr (next_o_limit), pre_p); + + tmp = build1 (ADDR_EXPR, pptr_type_node, unshare_expr (next_stack)); + gimplify_assign (unshare_expr (addr), tmp, pre_p); + } + + if (!result) + { + tmp = build1 (LABEL_EXPR, void_type_node, unshare_expr (lab_over)); + gimplify_and_add (tmp, pre_p); + } + } + + /* ??? In va-sh.h, there had been code to make values larger than + size 8 indirect. This does not match the FUNCTION_ARG macros. */ + + tmp = std_gimplify_va_arg_expr (valist, type, pre_p, NULL); + if (result) + { + gimplify_assign (result, tmp, pre_p); + result = build1 (NOP_EXPR, TREE_TYPE (result), result); + tmp = build1 (LABEL_EXPR, void_type_node, unshare_expr (lab_over)); + gimplify_and_add (tmp, pre_p); + } + else + result = tmp; + + if (pass_by_ref) + result = build_va_arg_indirect_ref (result); + + return result; +} + +/* 64 bit floating points memory transfers are paired single precision loads + or store. So DWARF information needs fixing in little endian (unless + PR=SZ=1 in FPSCR). */ +rtx +sh_dwarf_register_span (rtx reg) +{ + unsigned regno = REGNO (reg); + + if (WORDS_BIG_ENDIAN || GET_MODE (reg) != DFmode) + return NULL_RTX; + + return + gen_rtx_PARALLEL (VOIDmode, + gen_rtvec (2, + gen_rtx_REG (SFmode, + DBX_REGISTER_NUMBER (regno+1)), + gen_rtx_REG (SFmode, + DBX_REGISTER_NUMBER (regno)))); +} + +static enum machine_mode +sh_promote_function_mode (const_tree type, enum machine_mode mode, + int *punsignedp, const_tree funtype, + int for_return) +{ + if (sh_promote_prototypes (funtype)) + return promote_mode (type, mode, punsignedp); + else + return default_promote_function_mode (type, mode, punsignedp, funtype, + for_return); +} + +static bool +sh_promote_prototypes (const_tree type) +{ + if (TARGET_HITACHI) + return 0; + if (! type) + return 1; + return ! sh_attr_renesas_p (type); +} + +/* Whether an argument must be passed by reference. On SHcompact, we + pretend arguments wider than 32-bits that would have been passed in + registers are passed by reference, so that an SHmedia trampoline + loads them into the full 64-bits registers. */ + +static int +shcompact_byref (const CUMULATIVE_ARGS *cum, enum machine_mode mode, + const_tree type, bool named) +{ + unsigned HOST_WIDE_INT size; + + if (type) + size = int_size_in_bytes (type); + else + size = GET_MODE_SIZE (mode); + + if (cum->arg_count[SH_ARG_INT] < NPARM_REGS (SImode) + && (!named + || GET_SH_ARG_CLASS (mode) == SH_ARG_INT + || (GET_SH_ARG_CLASS (mode) == SH_ARG_FLOAT + && cum->arg_count[SH_ARG_FLOAT] >= NPARM_REGS (SFmode))) + && size > 4 + && !SHCOMPACT_FORCE_ON_STACK (mode, type) + && !SH5_WOULD_BE_PARTIAL_NREGS (*cum, mode, type, named)) + return size; + else + return 0; +} + +static bool +sh_pass_by_reference (CUMULATIVE_ARGS *cum, enum machine_mode mode, + const_tree type, bool named) +{ + if (targetm.calls.must_pass_in_stack (mode, type)) + return true; + + /* ??? std_gimplify_va_arg_expr passes NULL for cum. That function + wants to know about pass-by-reference semantics for incoming + arguments. */ + if (! cum) + return false; + + if (TARGET_SHCOMPACT) + { + cum->byref = shcompact_byref (cum, mode, type, named); + return cum->byref != 0; + } + + return false; +} + +static bool +sh_callee_copies (CUMULATIVE_ARGS *cum, enum machine_mode mode, + const_tree type, bool named ATTRIBUTE_UNUSED) +{ + /* ??? How can it possibly be correct to return true only on the + caller side of the equation? Is there someplace else in the + sh backend that's magically producing the copies? */ + return (cum->outgoing + && ((mode == BLKmode ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode)) + % SH_MIN_ALIGN_FOR_CALLEE_COPY == 0)); +} + +static int +sh_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode, + tree type, bool named ATTRIBUTE_UNUSED) +{ + int words = 0; + + if (!TARGET_SH5 + && PASS_IN_REG_P (*cum, mode, type) + && !(TARGET_SH4 || TARGET_SH2A_DOUBLE) + && (ROUND_REG (*cum, mode) + + (mode != BLKmode + ? ROUND_ADVANCE (GET_MODE_SIZE (mode)) + : ROUND_ADVANCE (int_size_in_bytes (type))) + > NPARM_REGS (mode))) + words = NPARM_REGS (mode) - ROUND_REG (*cum, mode); + + else if (!TARGET_SHCOMPACT + && SH5_WOULD_BE_PARTIAL_NREGS (*cum, mode, type, named)) + words = NPARM_REGS (SImode) - cum->arg_count[SH_ARG_INT]; + + return words * UNITS_PER_WORD; +} + + +/* Define where to put the arguments to a function. + Value is zero to push the argument on the stack, + or a hard register in which to store the argument. + + MODE is the argument's machine mode. + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + CUM is a variable of type CUMULATIVE_ARGS which gives info about + the preceding args and about the function being called. + NAMED is nonzero if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). + + On SH the first args are normally in registers + and the rest are pushed. Any arg that starts within the first + NPARM_REGS words is at least partially passed in a register unless + its data type forbids. */ + +static rtx +sh_function_arg (CUMULATIVE_ARGS *ca, enum machine_mode mode, + const_tree type, bool named) +{ + if (! TARGET_SH5 && mode == VOIDmode) + return GEN_INT (ca->renesas_abi ? 1 : 0); + + if (! TARGET_SH5 + && PASS_IN_REG_P (*ca, mode, type) + && (named || ! (TARGET_HITACHI || ca->renesas_abi))) + { + int regno; + + if (mode == SCmode && TARGET_SH4 && TARGET_LITTLE_ENDIAN + && (! FUNCTION_ARG_SCmode_WART || (ROUND_REG (*ca, mode) & 1))) + { + rtx r1 = gen_rtx_EXPR_LIST (VOIDmode, + gen_rtx_REG (SFmode, + BASE_ARG_REG (mode) + + (ROUND_REG (*ca, mode) ^ 1)), + const0_rtx); + rtx r2 = gen_rtx_EXPR_LIST (VOIDmode, + gen_rtx_REG (SFmode, + BASE_ARG_REG (mode) + + ((ROUND_REG (*ca, mode) + 1) ^ 1)), + GEN_INT (4)); + return gen_rtx_PARALLEL(SCmode, gen_rtvec(2, r1, r2)); + } + + /* If the alignment of a DF value causes an SF register to be + skipped, we will use that skipped register for the next SF + value. */ + if ((TARGET_HITACHI || ca->renesas_abi) + && ca->free_single_fp_reg + && mode == SFmode) + return gen_rtx_REG (mode, ca->free_single_fp_reg); + + regno = (BASE_ARG_REG (mode) + ROUND_REG (*ca, mode)) + ^ (mode == SFmode && TARGET_SH4 + && TARGET_LITTLE_ENDIAN != 0 + && ! TARGET_HITACHI && ! ca->renesas_abi); + return gen_rtx_REG (mode, regno); + + } + + if (TARGET_SH5) + { + if (mode == VOIDmode && TARGET_SHCOMPACT) + return GEN_INT (ca->call_cookie); + + /* The following test assumes unnamed arguments are promoted to + DFmode. */ + if (mode == SFmode && ca->free_single_fp_reg) + return SH5_PROTOTYPED_FLOAT_ARG (*ca, mode, ca->free_single_fp_reg); + + if ((GET_SH_ARG_CLASS (mode) == SH_ARG_FLOAT) + && (named || ! ca->prototype_p) + && ca->arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (SFmode)) + { + if (! ca->prototype_p && TARGET_SHMEDIA) + return SH5_PROTOTYPELESS_FLOAT_ARG (*ca, mode); + + return SH5_PROTOTYPED_FLOAT_ARG (*ca, mode, + FIRST_FP_PARM_REG + + ca->arg_count[(int) SH_ARG_FLOAT]); + } + + if (ca->arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) + && (! TARGET_SHCOMPACT + || (! SHCOMPACT_FORCE_ON_STACK (mode, type) + && ! SH5_WOULD_BE_PARTIAL_NREGS (*ca, mode, + type, named)))) + { + return gen_rtx_REG (mode, (FIRST_PARM_REG + + ca->arg_count[(int) SH_ARG_INT])); + } + + return 0; + } + + return 0; +} + +/* Update the data in CUM to advance over an argument + of mode MODE and data type TYPE. + (TYPE is null for libcalls where that information may not be + available.) */ + +static void +sh_function_arg_advance (CUMULATIVE_ARGS *ca, enum machine_mode mode, + const_tree type, bool named) +{ + if (ca->force_mem) + ca->force_mem = 0; + else if (TARGET_SH5) + { + const_tree type2 = (ca->byref && type + ? TREE_TYPE (type) + : type); + enum machine_mode mode2 = (ca->byref && type + ? TYPE_MODE (type2) + : mode); + int dwords = ((ca->byref + ? ca->byref + : mode2 == BLKmode + ? int_size_in_bytes (type2) + : GET_MODE_SIZE (mode2)) + 7) / 8; + int numregs = MIN (dwords, NPARM_REGS (SImode) + - ca->arg_count[(int) SH_ARG_INT]); + + if (numregs) + { + ca->arg_count[(int) SH_ARG_INT] += numregs; + if (TARGET_SHCOMPACT + && SHCOMPACT_FORCE_ON_STACK (mode2, type2)) + { + ca->call_cookie + |= CALL_COOKIE_INT_REG (ca->arg_count[(int) SH_ARG_INT] + - numregs, 1); + /* N.B. We want this also for outgoing. */ + ca->stack_regs += numregs; + } + else if (ca->byref) + { + if (! ca->outgoing) + ca->stack_regs += numregs; + ca->byref_regs += numregs; + ca->byref = 0; + do + ca->call_cookie + |= CALL_COOKIE_INT_REG (ca->arg_count[(int) SH_ARG_INT] + - numregs, 2); + while (--numregs); + ca->call_cookie + |= CALL_COOKIE_INT_REG (ca->arg_count[(int) SH_ARG_INT] + - 1, 1); + } + else if (dwords > numregs) + { + int pushregs = numregs; + + if (TARGET_SHCOMPACT) + ca->stack_regs += numregs; + while (pushregs < NPARM_REGS (SImode) - 1 + && (CALL_COOKIE_INT_REG_GET + (ca->call_cookie, + NPARM_REGS (SImode) - pushregs) + == 1)) + { + ca->call_cookie + &= ~ CALL_COOKIE_INT_REG (NPARM_REGS (SImode) + - pushregs, 1); + pushregs++; + } + if (numregs == NPARM_REGS (SImode)) + ca->call_cookie + |= CALL_COOKIE_INT_REG (0, 1) + | CALL_COOKIE_STACKSEQ (numregs - 1); + else + ca->call_cookie + |= CALL_COOKIE_STACKSEQ (numregs); + } + } + if (GET_SH_ARG_CLASS (mode2) == SH_ARG_FLOAT + && (named || ! ca->prototype_p)) + { + if (mode2 == SFmode && ca->free_single_fp_reg) + ca->free_single_fp_reg = 0; + else if (ca->arg_count[(int) SH_ARG_FLOAT] + < NPARM_REGS (SFmode)) + { + int numfpregs + = MIN ((GET_MODE_SIZE (mode2) + 7) / 8 * 2, + NPARM_REGS (SFmode) + - ca->arg_count[(int) SH_ARG_FLOAT]); + + ca->arg_count[(int) SH_ARG_FLOAT] += numfpregs; + + if (TARGET_SHCOMPACT && ! ca->prototype_p) + { + if (ca->outgoing && numregs > 0) + do + { + ca->call_cookie + |= (CALL_COOKIE_INT_REG + (ca->arg_count[(int) SH_ARG_INT] + - numregs + ((numfpregs - 2) / 2), + 4 + (ca->arg_count[(int) SH_ARG_FLOAT] + - numfpregs) / 2)); + } + while (numfpregs -= 2); + } + else if (mode2 == SFmode && (named) + && (ca->arg_count[(int) SH_ARG_FLOAT] + < NPARM_REGS (SFmode))) + ca->free_single_fp_reg + = FIRST_FP_PARM_REG - numfpregs + + ca->arg_count[(int) SH_ARG_FLOAT] + 1; + } + } + return; + } + + if ((TARGET_HITACHI || ca->renesas_abi) && TARGET_FPU_DOUBLE) + { + /* Note that we've used the skipped register. */ + if (mode == SFmode && ca->free_single_fp_reg) + { + ca->free_single_fp_reg = 0; + return; + } + /* When we have a DF after an SF, there's an SF register that get + skipped in order to align the DF value. We note this skipped + register, because the next SF value will use it, and not the + SF that follows the DF. */ + if (mode == DFmode + && ROUND_REG (*ca, DFmode) != ROUND_REG (*ca, SFmode)) + { + ca->free_single_fp_reg = (ROUND_REG (*ca, SFmode) + + BASE_ARG_REG (mode)); + } + } + + if (! ((TARGET_SH4 || TARGET_SH2A) || ca->renesas_abi) + || PASS_IN_REG_P (*ca, mode, type)) + (ca->arg_count[(int) GET_SH_ARG_CLASS (mode)] + = (ROUND_REG (*ca, mode) + + (mode == BLKmode + ? ROUND_ADVANCE (int_size_in_bytes (type)) + : ROUND_ADVANCE (GET_MODE_SIZE (mode))))); +} + +/* The Renesas calling convention doesn't quite fit into this scheme since + the address is passed like an invisible argument, but one that is always + passed in memory. */ +static rtx +sh_struct_value_rtx (tree fndecl, int incoming ATTRIBUTE_UNUSED) +{ + if (TARGET_HITACHI || sh_attr_renesas_p (fndecl)) + return 0; + return gen_rtx_REG (Pmode, 2); +} + +/* Worker function for TARGET_FUNCTION_VALUE. + + For the SH, this is like LIBCALL_VALUE, except that we must change the + mode like PROMOTE_MODE does. + ??? PROMOTE_MODE is ignored for non-scalar types. The set of types + tested here has to be kept in sync with the one in explow.c:promote_mode. +*/ + +static rtx +sh_function_value (const_tree valtype, + const_tree fn_decl_or_type, + bool outgoing ATTRIBUTE_UNUSED) +{ + if (fn_decl_or_type + && !DECL_P (fn_decl_or_type)) + fn_decl_or_type = NULL; + + return gen_rtx_REG ( + ((GET_MODE_CLASS (TYPE_MODE (valtype)) == MODE_INT + && GET_MODE_SIZE (TYPE_MODE (valtype)) < 4 + && (TREE_CODE (valtype) == INTEGER_TYPE + || TREE_CODE (valtype) == ENUMERAL_TYPE + || TREE_CODE (valtype) == BOOLEAN_TYPE + || TREE_CODE (valtype) == REAL_TYPE + || TREE_CODE (valtype) == OFFSET_TYPE)) + && sh_promote_prototypes (fn_decl_or_type) + ? (TARGET_SHMEDIA64 ? DImode : SImode) : TYPE_MODE (valtype)), + BASE_RETURN_VALUE_REG (TYPE_MODE (valtype))); +} + +/* Worker function for TARGET_LIBCALL_VALUE. */ + +static rtx +sh_libcall_value (enum machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED) +{ + return gen_rtx_REG (mode, BASE_RETURN_VALUE_REG (mode)); +} + +/* Return true if N is a possible register number of function value. */ + +static bool +sh_function_value_regno_p (const unsigned int regno) +{ + return ((regno) == FIRST_RET_REG + || (TARGET_SH2E && (regno) == FIRST_FP_RET_REG) + || (TARGET_SHMEDIA_FPU && (regno) == FIRST_FP_RET_REG)); +} + +/* Worker function for TARGET_RETURN_IN_MEMORY. */ + +static bool +sh_return_in_memory (const_tree type, const_tree fndecl) +{ + if (TARGET_SH5) + { + if (TYPE_MODE (type) == BLKmode) + return ((unsigned HOST_WIDE_INT) int_size_in_bytes (type)) > 8; + else + return GET_MODE_SIZE (TYPE_MODE (type)) > 8; + } + else + { + return (TYPE_MODE (type) == BLKmode + || ((TARGET_HITACHI || sh_attr_renesas_p (fndecl)) + && TREE_CODE (type) == RECORD_TYPE)); + } +} + +/* We actually emit the code in sh_expand_prologue. We used to use + a static variable to flag that we need to emit this code, but that + doesn't when inlining, when functions are deferred and then emitted + later. Fortunately, we already have two flags that are part of struct + function that tell if a function uses varargs or stdarg. */ +static void +sh_setup_incoming_varargs (CUMULATIVE_ARGS *ca, + enum machine_mode mode, + tree type, + int *pretend_arg_size, + int second_time ATTRIBUTE_UNUSED) +{ + gcc_assert (cfun->stdarg); + if (TARGET_VARARGS_PRETEND_ARGS (current_function_decl)) + { + int named_parm_regs, anon_parm_regs; + + named_parm_regs = (ROUND_REG (*ca, mode) + + (mode == BLKmode + ? ROUND_ADVANCE (int_size_in_bytes (type)) + : ROUND_ADVANCE (GET_MODE_SIZE (mode)))); + anon_parm_regs = NPARM_REGS (SImode) - named_parm_regs; + if (anon_parm_regs > 0) + *pretend_arg_size = anon_parm_regs * 4; + } +} + +static bool +sh_strict_argument_naming (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED) +{ + return TARGET_SH5; +} + +static bool +sh_pretend_outgoing_varargs_named (CUMULATIVE_ARGS *ca) +{ + return ! (TARGET_HITACHI || ca->renesas_abi) && ! TARGET_SH5; +} + + +/* Define the offset between two registers, one to be eliminated, and + the other its replacement, at the start of a routine. */ + +int +initial_elimination_offset (int from, int to) +{ + int regs_saved; + int regs_saved_rounding = 0; + int total_saved_regs_space; + int total_auto_space; + int save_flags = target_flags; + int copy_flags; + HARD_REG_SET live_regs_mask; + + shmedia_space_reserved_for_target_registers = false; + regs_saved = calc_live_regs (&live_regs_mask); + regs_saved += SHMEDIA_REGS_STACK_ADJUST (); + + if (shmedia_reserve_space_for_target_registers_p (regs_saved, &live_regs_mask)) + { + shmedia_space_reserved_for_target_registers = true; + regs_saved += shmedia_target_regs_stack_adjust (&live_regs_mask); + } + + if (TARGET_SH5 && regs_saved % (STACK_BOUNDARY / BITS_PER_UNIT)) + regs_saved_rounding = ((STACK_BOUNDARY / BITS_PER_UNIT) + - regs_saved % (STACK_BOUNDARY / BITS_PER_UNIT)); + + total_auto_space = rounded_frame_size (regs_saved) - regs_saved_rounding; + copy_flags = target_flags; + target_flags = save_flags; + + total_saved_regs_space = regs_saved + regs_saved_rounding; + + if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) + return total_saved_regs_space + total_auto_space + + crtl->args.info.byref_regs * 8; + + if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM) + return total_saved_regs_space + total_auto_space + + crtl->args.info.byref_regs * 8; + + /* Initial gap between fp and sp is 0. */ + if (from == HARD_FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM) + return 0; + + if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM) + return rounded_frame_size (0); + + if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) + return rounded_frame_size (0); + + gcc_assert (from == RETURN_ADDRESS_POINTER_REGNUM + && (to == HARD_FRAME_POINTER_REGNUM + || to == STACK_POINTER_REGNUM)); + if (TARGET_SH5) + { + int n = total_saved_regs_space; + int pr_reg = TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG; + save_schedule schedule; + save_entry *entry; + + n += total_auto_space; + + /* If it wasn't saved, there's not much we can do. */ + if (! TEST_HARD_REG_BIT (live_regs_mask, pr_reg)) + return n; + + target_flags = copy_flags; + + sh5_schedule_saves (&live_regs_mask, &schedule, n); + for (entry = &schedule.entries[1]; entry->mode != VOIDmode; entry++) + if (entry->reg == pr_reg) + { + target_flags = save_flags; + return entry->offset; + } + gcc_unreachable (); + } + else + return total_auto_space; +} + +/* Parse the -mfixed-range= option string. */ +void +sh_fix_range (const char *const_str) +{ + int i, first, last; + char *str, *dash, *comma; + + /* str must be of the form REG1'-'REG2{,REG1'-'REG} where REG1 and + REG2 are either register names or register numbers. The effect + of this option is to mark the registers in the range from REG1 to + REG2 as ``fixed'' so they won't be used by the compiler. */ + + i = strlen (const_str); + str = (char *) alloca (i + 1); + memcpy (str, const_str, i + 1); + + while (1) + { + dash = strchr (str, '-'); + if (!dash) + { + warning (0, "value of -mfixed-range must have form REG1-REG2"); + return; + } + *dash = '\0'; + comma = strchr (dash + 1, ','); + if (comma) + *comma = '\0'; + + first = decode_reg_name (str); + if (first < 0) + { + warning (0, "unknown register name: %s", str); + return; + } + + last = decode_reg_name (dash + 1); + if (last < 0) + { + warning (0, "unknown register name: %s", dash + 1); + return; + } + + *dash = '-'; + + if (first > last) + { + warning (0, "%s-%s is an empty range", str, dash + 1); + return; + } + + for (i = first; i <= last; ++i) + fixed_regs[i] = call_used_regs[i] = 1; + + if (!comma) + break; + + *comma = ','; + str = comma + 1; + } +} + +/* Insert any deferred function attributes from earlier pragmas. */ +static void +sh_insert_attributes (tree node, tree *attributes) +{ + tree attrs; + + if (TREE_CODE (node) != FUNCTION_DECL) + return; + + /* We are only interested in fields. */ + if (!DECL_P (node)) + return; + + /* Append the attributes to the deferred attributes. */ + *sh_deferred_function_attributes_tail = *attributes; + attrs = sh_deferred_function_attributes; + if (!attrs) + return; + + /* Some attributes imply or require the interrupt attribute. */ + if (!lookup_attribute ("interrupt_handler", attrs) + && !lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (node))) + { + /* If we have a trapa_handler, but no interrupt_handler attribute, + insert an interrupt_handler attribute. */ + if (lookup_attribute ("trapa_handler", attrs) != NULL_TREE) + /* We can't use sh_pr_interrupt here because that's not in the + java frontend. */ + attrs + = tree_cons (get_identifier("interrupt_handler"), NULL_TREE, attrs); + /* However, for sp_switch, trap_exit, nosave_low_regs and resbank, + if the interrupt attribute is missing, we ignore the attribute + and warn. */ + else if (lookup_attribute ("sp_switch", attrs) + || lookup_attribute ("trap_exit", attrs) + || lookup_attribute ("nosave_low_regs", attrs) + || lookup_attribute ("resbank", attrs)) + { + tree *tail; + + for (tail = attributes; attrs; attrs = TREE_CHAIN (attrs)) + { + if (is_attribute_p ("sp_switch", TREE_PURPOSE (attrs)) + || is_attribute_p ("trap_exit", TREE_PURPOSE (attrs)) + || is_attribute_p ("nosave_low_regs", TREE_PURPOSE (attrs)) + || is_attribute_p ("resbank", TREE_PURPOSE (attrs))) + warning (OPT_Wattributes, + "%qE attribute only applies to interrupt functions", + TREE_PURPOSE (attrs)); + else + { + *tail = tree_cons (TREE_PURPOSE (attrs), NULL_TREE, + NULL_TREE); + tail = &TREE_CHAIN (*tail); + } + } + attrs = *attributes; + } + } + + /* Install the processed list. */ + *attributes = attrs; + + /* Clear deferred attributes. */ + sh_deferred_function_attributes = NULL_TREE; + sh_deferred_function_attributes_tail = &sh_deferred_function_attributes; + + return; +} + +/* Supported attributes: + + interrupt_handler -- specifies this function is an interrupt handler. + + trapa_handler - like above, but don't save all registers. + + sp_switch -- specifies an alternate stack for an interrupt handler + to run on. + + trap_exit -- use a trapa to exit an interrupt function instead of + an rte instruction. + + nosave_low_regs - don't save r0..r7 in an interrupt handler. + This is useful on the SH3 and upwards, + which has a separate set of low regs for User and Supervisor modes. + This should only be used for the lowest level of interrupts. Higher levels + of interrupts must save the registers in case they themselves are + interrupted. + + renesas -- use Renesas calling/layout conventions (functions and + structures). + + resbank -- In case of an ISR, use a register bank to save registers + R0-R14, MACH, MACL, GBR and PR. This is useful only on SH2A targets. +*/ + +/* Handle a 'resbank' attribute. */ +static tree +sh_handle_resbank_handler_attribute (tree * node, tree name, + tree args ATTRIBUTE_UNUSED, + int flags ATTRIBUTE_UNUSED, + bool * no_add_attrs) +{ + if (!TARGET_SH2A) + { + warning (OPT_Wattributes, "%qE attribute is supported only for SH2A", + name); + *no_add_attrs = true; + } + if (TREE_CODE (*node) != FUNCTION_DECL) + { + warning (OPT_Wattributes, "%qE attribute only applies to functions", + name); + *no_add_attrs = true; + } + + return NULL_TREE; +} + +/* Handle an "interrupt_handler" attribute; arguments as in + struct attribute_spec.handler. */ +static tree +sh_handle_interrupt_handler_attribute (tree *node, tree name, + tree args ATTRIBUTE_UNUSED, + int flags ATTRIBUTE_UNUSED, + bool *no_add_attrs) +{ + if (TREE_CODE (*node) != FUNCTION_DECL) + { + warning (OPT_Wattributes, "%qE attribute only applies to functions", + name); + *no_add_attrs = true; + } + else if (TARGET_SHCOMPACT) + { + error ("attribute interrupt_handler is not compatible with -m5-compact"); + *no_add_attrs = true; + } + + return NULL_TREE; +} + +/* Handle an 'function_vector' attribute; arguments as in + struct attribute_spec.handler. */ +static tree +sh2a_handle_function_vector_handler_attribute (tree * node, tree name, + tree args ATTRIBUTE_UNUSED, + int flags ATTRIBUTE_UNUSED, + bool * no_add_attrs) +{ + if (!TARGET_SH2A) + { + warning (OPT_Wattributes, "%qE attribute only applies to SH2A", + name); + *no_add_attrs = true; + } + else if (TREE_CODE (*node) != FUNCTION_DECL) + { + warning (OPT_Wattributes, "%qE attribute only applies to functions", + name); + *no_add_attrs = true; + } + else if (TREE_CODE (TREE_VALUE (args)) != INTEGER_CST) + { + /* The argument must be a constant integer. */ + warning (OPT_Wattributes, + "%qE attribute argument not an integer constant", + name); + *no_add_attrs = true; + } + else if (TREE_INT_CST_LOW (TREE_VALUE (args)) > 255) + { + /* The argument value must be between 0 to 255. */ + warning (OPT_Wattributes, + "%qE attribute argument should be between 0 to 255", + name); + *no_add_attrs = true; + } + return NULL_TREE; +} + +/* Returns 1 if current function has been assigned the attribute + 'function_vector'. */ +int +sh2a_is_function_vector_call (rtx x) +{ + if (GET_CODE (x) == SYMBOL_REF + && (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_FUNCVEC_FUNCTION)) + { + tree tr = SYMBOL_REF_DECL (x); + + if (sh2a_function_vector_p (tr)) + return 1; + } + + return 0; +} + +/* Returns the function vector number, if the the attribute + 'function_vector' is assigned, otherwise returns zero. */ +int +sh2a_get_function_vector_number (rtx x) +{ + int num; + tree list, t; + + if ((GET_CODE (x) == SYMBOL_REF) + && (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_FUNCVEC_FUNCTION)) + { + t = SYMBOL_REF_DECL (x); + + if (TREE_CODE (t) != FUNCTION_DECL) + return 0; + + list = SH_ATTRIBUTES (t); + while (list) + { + if (is_attribute_p ("function_vector", TREE_PURPOSE (list))) + { + num = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (list))); + return num; + } + + list = TREE_CHAIN (list); + } + + return 0; + } + else + return 0; +} + +/* Handle an "sp_switch" attribute; arguments as in + struct attribute_spec.handler. */ +static tree +sh_handle_sp_switch_attribute (tree *node, tree name, tree args, + int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) +{ + if (TREE_CODE (*node) != FUNCTION_DECL) + { + warning (OPT_Wattributes, "%qE attribute only applies to functions", + name); + *no_add_attrs = true; + } + else if (TREE_CODE (TREE_VALUE (args)) != STRING_CST) + { + /* The argument must be a constant string. */ + warning (OPT_Wattributes, "%qE attribute argument not a string constant", + name); + *no_add_attrs = true; + } + + return NULL_TREE; +} + +/* Handle an "trap_exit" attribute; arguments as in + struct attribute_spec.handler. */ +static tree +sh_handle_trap_exit_attribute (tree *node, tree name, tree args, + int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) +{ + if (TREE_CODE (*node) != FUNCTION_DECL) + { + warning (OPT_Wattributes, "%qE attribute only applies to functions", + name); + *no_add_attrs = true; + } + /* The argument specifies a trap number to be used in a trapa instruction + at function exit (instead of an rte instruction). */ + else if (TREE_CODE (TREE_VALUE (args)) != INTEGER_CST) + { + /* The argument must be a constant integer. */ + warning (OPT_Wattributes, "%qE attribute argument not an " + "integer constant", name); + *no_add_attrs = true; + } + + return NULL_TREE; +} + +static tree +sh_handle_renesas_attribute (tree *node ATTRIBUTE_UNUSED, + tree name ATTRIBUTE_UNUSED, + tree args ATTRIBUTE_UNUSED, + int flags ATTRIBUTE_UNUSED, + bool *no_add_attrs ATTRIBUTE_UNUSED) +{ + return NULL_TREE; +} + +/* True if __attribute__((renesas)) or -mrenesas. */ +int +sh_attr_renesas_p (const_tree td) +{ + if (TARGET_HITACHI) + return 1; + if (td == 0) + return 0; + if (DECL_P (td)) + td = TREE_TYPE (td); + if (td == error_mark_node) + return 0; + return (lookup_attribute ("renesas", TYPE_ATTRIBUTES (td)) + != NULL_TREE); +} + +/* True if __attribute__((renesas)) or -mrenesas, for the current + function. */ +int +sh_cfun_attr_renesas_p (void) +{ + return sh_attr_renesas_p (current_function_decl); +} + +int +sh_cfun_interrupt_handler_p (void) +{ + return (lookup_attribute ("interrupt_handler", + DECL_ATTRIBUTES (current_function_decl)) + != NULL_TREE); +} + +/* Returns 1 if FUNC has been assigned the attribute + "function_vector". */ +int +sh2a_function_vector_p (tree func) +{ + tree list; + if (TREE_CODE (func) != FUNCTION_DECL) + return 0; + + list = SH_ATTRIBUTES (func); + while (list) + { + if (is_attribute_p ("function_vector", TREE_PURPOSE (list))) + return 1; + + list = TREE_CHAIN (list); + } + return 0; +} + +/* Returns TRUE if given tree has the "resbank" attribute. */ + +int +sh_cfun_resbank_handler_p (void) +{ + return ((lookup_attribute ("resbank", + DECL_ATTRIBUTES (current_function_decl)) + != NULL_TREE) + && (lookup_attribute ("interrupt_handler", + DECL_ATTRIBUTES (current_function_decl)) + != NULL_TREE) && TARGET_SH2A); +} + +/* Implement TARGET_CHECK_PCH_TARGET_FLAGS. */ + +static const char * +sh_check_pch_target_flags (int old_flags) +{ + if ((old_flags ^ target_flags) & (MASK_SH1 | MASK_SH2 | MASK_SH3 + | MASK_SH_E | MASK_HARD_SH4 + | MASK_FPU_SINGLE | MASK_SH4)) + return _("created and used with different architectures / ABIs"); + if ((old_flags ^ target_flags) & MASK_HITACHI) + return _("created and used with different ABIs"); + if ((old_flags ^ target_flags) & MASK_LITTLE_ENDIAN) + return _("created and used with different endianness"); + return NULL; +} + +/* Predicates used by the templates. */ + +/* Returns 1 if OP is MACL, MACH or PR. The input must be a REG rtx. + Used only in general_movsrc_operand. */ + +int +system_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) +{ + switch (REGNO (op)) + { + case PR_REG: + case MACL_REG: + case MACH_REG: + return 1; + } + return 0; +} + +/* Nonzero if OP is a floating point value with value 0.0. */ + +int +fp_zero_operand (rtx op) +{ + REAL_VALUE_TYPE r; + + if (GET_MODE (op) != SFmode) + return 0; + + REAL_VALUE_FROM_CONST_DOUBLE (r, op); + return REAL_VALUES_EQUAL (r, dconst0) && ! REAL_VALUE_MINUS_ZERO (r); +} + +/* Nonzero if OP is a floating point value with value 1.0. */ + +int +fp_one_operand (rtx op) +{ + REAL_VALUE_TYPE r; + + if (GET_MODE (op) != SFmode) + return 0; + + REAL_VALUE_FROM_CONST_DOUBLE (r, op); + return REAL_VALUES_EQUAL (r, dconst1); +} + +/* In general mode switching is used. If we are + compiling without -mfmovd, movsf_ie isn't taken into account for + mode switching. We could check in machine_dependent_reorg for + cases where we know we are in single precision mode, but there is + interface to find that out during reload, so we must avoid + choosing an fldi alternative during reload and thus failing to + allocate a scratch register for the constant loading. */ +int +fldi_ok (void) +{ + return 1; +} + +int +tertiary_reload_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) +{ + enum rtx_code code = GET_CODE (op); + return code == MEM || (TARGET_SH4 && code == CONST_DOUBLE); +} + +/* Return the TLS type for TLS symbols, 0 for otherwise. */ +enum tls_model +tls_symbolic_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) +{ + if (GET_CODE (op) != SYMBOL_REF) + return TLS_MODEL_NONE; + return SYMBOL_REF_TLS_MODEL (op); +} + +/* Return the destination address of a branch. */ + +static int +branch_dest (rtx branch) +{ + rtx dest = SET_SRC (PATTERN (branch)); + int dest_uid; + + if (GET_CODE (dest) == IF_THEN_ELSE) + dest = XEXP (dest, 1); + dest = XEXP (dest, 0); + dest_uid = INSN_UID (dest); + return INSN_ADDRESSES (dest_uid); +} + +/* Return nonzero if REG is not used after INSN. + We assume REG is a reload reg, and therefore does + not live past labels. It may live past calls or jumps though. */ +int +reg_unused_after (rtx reg, rtx insn) +{ + enum rtx_code code; + rtx set; + + /* If the reg is set by this instruction, then it is safe for our + case. Disregard the case where this is a store to memory, since + we are checking a register used in the store address. */ + set = single_set (insn); + if (set && !MEM_P (SET_DEST (set)) + && reg_overlap_mentioned_p (reg, SET_DEST (set))) + return 1; + + while ((insn = NEXT_INSN (insn))) + { + rtx set; + if (!INSN_P (insn)) + continue; + + code = GET_CODE (insn); + +#if 0 + /* If this is a label that existed before reload, then the register + if dead here. However, if this is a label added by reorg, then + the register may still be live here. We can't tell the difference, + so we just ignore labels completely. */ + if (code == CODE_LABEL) + return 1; + /* else */ +#endif + + if (code == JUMP_INSN) + return 0; + + /* If this is a sequence, we must handle them all at once. + We could have for instance a call that sets the target register, + and an insn in a delay slot that uses the register. In this case, + we must return 0. */ + else if (code == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE) + { + int i; + int retval = 0; + + for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++) + { + rtx this_insn = XVECEXP (PATTERN (insn), 0, i); + rtx set = single_set (this_insn); + + if (CALL_P (this_insn)) + code = CALL_INSN; + else if (JUMP_P (this_insn)) + { + if (INSN_ANNULLED_BRANCH_P (this_insn)) + return 0; + code = JUMP_INSN; + } + + if (set && reg_overlap_mentioned_p (reg, SET_SRC (set))) + return 0; + if (set && reg_overlap_mentioned_p (reg, SET_DEST (set))) + { + if (!MEM_P (SET_DEST (set))) + retval = 1; + else + return 0; + } + if (set == 0 + && reg_overlap_mentioned_p (reg, PATTERN (this_insn))) + return 0; + } + if (retval == 1) + return 1; + else if (code == JUMP_INSN) + return 0; + } + + set = single_set (insn); + if (set && reg_overlap_mentioned_p (reg, SET_SRC (set))) + return 0; + if (set && reg_overlap_mentioned_p (reg, SET_DEST (set))) + return !MEM_P (SET_DEST (set)); + if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (insn))) + return 0; + + if (code == CALL_INSN && call_really_used_regs[REGNO (reg)]) + return 1; + } + return 1; +} + +#include "ggc.h" + +static GTY(()) rtx fpscr_rtx; +rtx +get_fpscr_rtx (void) +{ + if (! fpscr_rtx) + { + fpscr_rtx = gen_rtx_REG (PSImode, FPSCR_REG); + REG_USERVAR_P (fpscr_rtx) = 1; + mark_user_reg (fpscr_rtx); + } + if (! reload_completed || mdep_reorg_phase != SH_AFTER_MDEP_REORG) + mark_user_reg (fpscr_rtx); + return fpscr_rtx; +} + +static GTY(()) tree fpscr_values; + +static void +emit_fpu_switch (rtx scratch, int index) +{ + rtx dst, src; + + if (fpscr_values == NULL) + { + tree t; + + t = build_index_type (integer_one_node); + t = build_array_type (integer_type_node, t); + t = build_decl (BUILTINS_LOCATION, + VAR_DECL, get_identifier ("__fpscr_values"), t); + DECL_ARTIFICIAL (t) = 1; + DECL_IGNORED_P (t) = 1; + DECL_EXTERNAL (t) = 1; + TREE_STATIC (t) = 1; + TREE_PUBLIC (t) = 1; + TREE_USED (t) = 1; + + fpscr_values = t; + } + + src = DECL_RTL (fpscr_values); + if (!can_create_pseudo_p ()) + { + emit_move_insn (scratch, XEXP (src, 0)); + if (index != 0) + emit_insn (gen_addsi3 (scratch, scratch, GEN_INT (index * 4))); + src = adjust_automodify_address (src, PSImode, scratch, index * 4); + } + else + src = adjust_address (src, PSImode, index * 4); + + dst = get_fpscr_rtx (); + emit_move_insn (dst, src); +} + +void +emit_sf_insn (rtx pat) +{ + emit_insn (pat); +} + +void +emit_df_insn (rtx pat) +{ + emit_insn (pat); +} + +void +expand_sf_unop (rtx (*fun) (rtx, rtx, rtx), rtx *operands) +{ + emit_sf_insn ((*fun) (operands[0], operands[1], get_fpscr_rtx ())); +} + +void +expand_sf_binop (rtx (*fun) (rtx, rtx, rtx, rtx), rtx *operands) +{ + emit_sf_insn ((*fun) (operands[0], operands[1], operands[2], + get_fpscr_rtx ())); +} + +void +expand_df_unop (rtx (*fun) (rtx, rtx, rtx), rtx *operands) +{ + emit_df_insn ((*fun) (operands[0], operands[1], get_fpscr_rtx ())); +} + +void +expand_df_binop (rtx (*fun) (rtx, rtx, rtx, rtx), rtx *operands) +{ + emit_df_insn ((*fun) (operands[0], operands[1], operands[2], + get_fpscr_rtx ())); +} + +static rtx get_free_reg (HARD_REG_SET); + +/* This function returns a register to use to load the address to load + the fpscr from. Currently it always returns r1 or r7, but when we are + able to use pseudo registers after combine, or have a better mechanism + for choosing a register, it should be done here. */ +/* REGS_LIVE is the liveness information for the point for which we + need this allocation. In some bare-bones exit blocks, r1 is live at the + start. We can even have all of r0..r3 being live: +__complex__ long long f (double d) { if (d == 0) return 2; else return 3; } + INSN before which new insns are placed with will clobber the register + we return. If a basic block consists only of setting the return value + register to a pseudo and using that register, the return value is not + live before or after this block, yet we we'll insert our insns right in + the middle. */ + +static rtx +get_free_reg (HARD_REG_SET regs_live) +{ + if (! TEST_HARD_REG_BIT (regs_live, 1)) + return gen_rtx_REG (Pmode, 1); + + /* Hard reg 1 is live; since this is a small register classes target, + there shouldn't be anything but a jump before the function end. */ + gcc_assert (!TEST_HARD_REG_BIT (regs_live, 7)); + return gen_rtx_REG (Pmode, 7); +} + +/* This function will set the fpscr from memory. + MODE is the mode we are setting it to. */ +void +fpscr_set_from_mem (int mode, HARD_REG_SET regs_live) +{ + enum attr_fp_mode fp_mode = (enum attr_fp_mode) mode; + enum attr_fp_mode norm_mode = ACTUAL_NORMAL_MODE (FP_MODE); + rtx addr_reg; + + addr_reg = !can_create_pseudo_p () ? get_free_reg (regs_live) : NULL_RTX; + emit_fpu_switch (addr_reg, fp_mode == norm_mode); +} + +/* Is the given character a logical line separator for the assembler? */ +#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR +#define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';') +#endif + +int +sh_insn_length_adjustment (rtx insn) +{ + /* Instructions with unfilled delay slots take up an extra two bytes for + the nop in the delay slot. */ + if (((NONJUMP_INSN_P (insn) + && GET_CODE (PATTERN (insn)) != USE + && GET_CODE (PATTERN (insn)) != CLOBBER) + || CALL_P (insn) + || (JUMP_P (insn) && !JUMP_TABLE_DATA_P (insn))) + && GET_CODE (PATTERN (NEXT_INSN (PREV_INSN (insn)))) != SEQUENCE + && get_attr_needs_delay_slot (insn) == NEEDS_DELAY_SLOT_YES) + return 2; + + /* SH2e has a bug that prevents the use of annulled branches, so if + the delay slot is not filled, we'll have to put a NOP in it. */ + if (sh_cpu_attr == CPU_SH2E + && JUMP_P (insn) && !JUMP_TABLE_DATA_P (insn) + && get_attr_type (insn) == TYPE_CBRANCH + && GET_CODE (PATTERN (NEXT_INSN (PREV_INSN (insn)))) != SEQUENCE) + return 2; + + /* sh-dsp parallel processing insn take four bytes instead of two. */ + + if (NONJUMP_INSN_P (insn)) + { + int sum = 0; + rtx body = PATTERN (insn); + const char *templ; + char c; + int maybe_label = 1; + + if (GET_CODE (body) == ASM_INPUT) + templ = XSTR (body, 0); + else if (asm_noperands (body) >= 0) + templ + = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL); + else + return 0; + do + { + int ppi_adjust = 0; + + do + c = *templ++; + while (c == ' ' || c == '\t'); + /* all sh-dsp parallel-processing insns start with p. + The only non-ppi sh insn starting with p is pref. + The only ppi starting with pr is prnd. */ + if ((c == 'p' || c == 'P') && strncasecmp ("re", templ, 2)) + ppi_adjust = 2; + /* The repeat pseudo-insn expands two three insns, a total of + six bytes in size. */ + else if ((c == 'r' || c == 'R') + && ! strncasecmp ("epeat", templ, 5)) + ppi_adjust = 4; + while (c && c != '\n' + && ! IS_ASM_LOGICAL_LINE_SEPARATOR (c, templ)) + { + /* If this is a label, it is obviously not a ppi insn. */ + if (c == ':' && maybe_label) + { + ppi_adjust = 0; + break; + } + else if (c == '\'' || c == '"') + maybe_label = 0; + c = *templ++; + } + sum += ppi_adjust; + maybe_label = c != ':'; + } + while (c); + return sum; + } + return 0; +} + +/* Return TRUE for a valid displacement for the REG+disp addressing + with MODE. */ + +/* ??? The SH2e does not have the REG+disp addressing mode when loading values + into the FRx registers. We implement this by setting the maximum offset + to zero when the value is SFmode. This also restricts loading of SFmode + values into the integer registers, but that can't be helped. */ + +/* The SH allows a displacement in a QI or HI amode, but only when the + other operand is R0. GCC doesn't handle this very well, so we forgot + all of that. + + A legitimate index for a QI or HI is 0, SI can be any number 0..63, + DI can be any number 0..60. */ + +bool +sh_legitimate_index_p (enum machine_mode mode, rtx op) +{ + if (CONST_INT_P (op)) + { + if (TARGET_SHMEDIA) + { + int size; + + /* Check if this the address of an unaligned load / store. */ + if (mode == VOIDmode) + return CONST_OK_FOR_I06 (INTVAL (op)); + + size = GET_MODE_SIZE (mode); + return (!(INTVAL (op) & (size - 1)) + && INTVAL (op) >= -512 * size + && INTVAL (op) < 512 * size); + } + + if (TARGET_SH2A) + { + if (GET_MODE_SIZE (mode) == 1 + && (unsigned) INTVAL (op) < 4096) + return true; + } + + if ((GET_MODE_SIZE (mode) == 4 + && (unsigned) INTVAL (op) < 64 + && !(INTVAL (op) & 3) + && !(TARGET_SH2E && mode == SFmode)) + || (GET_MODE_SIZE (mode) == 4 + && (unsigned) INTVAL (op) < 16383 + && !(INTVAL (op) & 3) && TARGET_SH2A)) + return true; + + if ((GET_MODE_SIZE (mode) == 8 + && (unsigned) INTVAL (op) < 60 + && !(INTVAL (op) & 3) + && !((TARGET_SH4 || TARGET_SH2A) && mode == DFmode)) + || ((GET_MODE_SIZE (mode)==8) + && (unsigned) INTVAL (op) < 8192 + && !(INTVAL (op) & (TARGET_SH2A_DOUBLE ? 7 : 3)) + && (TARGET_SH2A && mode == DFmode))) + return true; + } + + return false; +} + +/* Recognize an RTL expression that is a valid memory address for + an instruction. + The MODE argument is the machine mode for the MEM expression + that wants to use this address. + Allow REG + REG+disp + REG+r0 + REG++ + --REG */ + +static bool +sh_legitimate_address_p (enum machine_mode mode, rtx x, bool strict) +{ + if (MAYBE_BASE_REGISTER_RTX_P (x, strict)) + return true; + else if ((GET_CODE (x) == POST_INC || GET_CODE (x) == PRE_DEC) + && ! TARGET_SHMEDIA + && MAYBE_BASE_REGISTER_RTX_P (XEXP (x, 0), strict)) + return true; + else if (GET_CODE (x) == PLUS + && (mode != PSImode || reload_completed)) + { + rtx xop0 = XEXP (x, 0); + rtx xop1 = XEXP (x, 1); + + if (GET_MODE_SIZE (mode) <= 8 + && MAYBE_BASE_REGISTER_RTX_P (xop0, strict) + && sh_legitimate_index_p (mode, xop1)) + return true; + + if ((ALLOW_INDEXED_ADDRESS || GET_MODE (x) == DImode + || ((xop0 == stack_pointer_rtx + || xop0 == hard_frame_pointer_rtx) + && REG_P (xop1) && REGNO (xop1) == R0_REG) + || ((xop1 == stack_pointer_rtx + || xop1 == hard_frame_pointer_rtx) + && REG_P (xop0) && REGNO (xop0) == R0_REG)) + && ((!TARGET_SHMEDIA && GET_MODE_SIZE (mode) <= 4) + || (TARGET_SHMEDIA && GET_MODE_SIZE (mode) <= 8) + || ((TARGET_SH4 || TARGET_SH2A_DOUBLE) + && TARGET_FMOVD && mode == DFmode))) + { + if (MAYBE_BASE_REGISTER_RTX_P (xop1, strict) + && MAYBE_INDEX_REGISTER_RTX_P (xop0, strict)) + return true; + if (MAYBE_INDEX_REGISTER_RTX_P (xop1, strict) + && MAYBE_BASE_REGISTER_RTX_P (xop0, strict)) + return true; + } + } + + return false; +} + +/* Return TRUE if X references a SYMBOL_REF or LABEL_REF whose symbol + isn't protected by a PIC unspec. */ +int +nonpic_symbol_mentioned_p (rtx x) +{ + register const char *fmt; + register int i; + + if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF + || GET_CODE (x) == PC) + return 1; + + /* We don't want to look into the possible MEM location of a + CONST_DOUBLE, since we're not going to use it, in general. */ + if (GET_CODE (x) == CONST_DOUBLE) + return 0; + + if (GET_CODE (x) == UNSPEC + && (XINT (x, 1) == UNSPEC_PIC + || XINT (x, 1) == UNSPEC_GOT + || XINT (x, 1) == UNSPEC_GOTOFF + || XINT (x, 1) == UNSPEC_GOTPLT + || XINT (x, 1) == UNSPEC_GOTTPOFF + || XINT (x, 1) == UNSPEC_DTPOFF + || XINT (x, 1) == UNSPEC_TPOFF + || XINT (x, 1) == UNSPEC_PLT + || XINT (x, 1) == UNSPEC_SYMOFF + || XINT (x, 1) == UNSPEC_PCREL_SYMOFF)) + return 0; + + fmt = GET_RTX_FORMAT (GET_CODE (x)); + for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) + { + if (fmt[i] == 'E') + { + register int j; + + for (j = XVECLEN (x, i) - 1; j >= 0; j--) + if (nonpic_symbol_mentioned_p (XVECEXP (x, i, j))) + return 1; + } + else if (fmt[i] == 'e' && nonpic_symbol_mentioned_p (XEXP (x, i))) + return 1; + } + + return 0; +} + +/* Convert a non-PIC address in `orig' to a PIC address using @GOT or + @GOTOFF in `reg'. */ +rtx +legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED, + rtx reg) +{ + if (tls_symbolic_operand (orig, Pmode) != TLS_MODEL_NONE) + return orig; + + if (GET_CODE (orig) == LABEL_REF + || (GET_CODE (orig) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (orig))) + { + if (reg == 0) + reg = gen_reg_rtx (Pmode); + + emit_insn (gen_symGOTOFF2reg (reg, orig)); + return reg; + } + else if (GET_CODE (orig) == SYMBOL_REF) + { + if (reg == 0) + reg = gen_reg_rtx (Pmode); + + emit_insn (gen_symGOT2reg (reg, orig)); + return reg; + } + return orig; +} + +/* Try machine-dependent ways of modifying an illegitimate address + to be legitimate. If we find one, return the new, valid address. + Otherwise, return X. + + For the SH, if X is almost suitable for indexing, but the offset is + out of range, convert it into a normal form so that CSE has a chance + of reducing the number of address registers used. */ + +static rtx +sh_legitimize_address (rtx x, rtx oldx, enum machine_mode mode) +{ + if (flag_pic) + x = legitimize_pic_address (oldx, mode, NULL_RTX); + + if (GET_CODE (x) == PLUS + && (GET_MODE_SIZE (mode) == 4 + || GET_MODE_SIZE (mode) == 8) + && CONST_INT_P (XEXP (x, 1)) + && BASE_REGISTER_RTX_P (XEXP (x, 0)) + && ! TARGET_SHMEDIA + && ! ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && mode == DFmode) + && ! (TARGET_SH2E && mode == SFmode)) + { + rtx index_rtx = XEXP (x, 1); + HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; + rtx sum; + + /* On rare occasions, we might get an unaligned pointer + that is indexed in a way to give an aligned address. + Therefore, keep the lower two bits in offset_base. */ + /* Instead of offset_base 128..131 use 124..127, so that + simple add suffices. */ + if (offset > 127) + offset_base = ((offset + 4) & ~60) - 4; + else + offset_base = offset & ~60; + + /* Sometimes the normal form does not suit DImode. We + could avoid that by using smaller ranges, but that + would give less optimized code when SImode is + prevalent. */ + if (GET_MODE_SIZE (mode) + offset - offset_base <= 64) + { + sum = expand_binop (Pmode, add_optab, XEXP (x, 0), + GEN_INT (offset_base), NULL_RTX, 0, + OPTAB_LIB_WIDEN); + + return gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base)); + } + } + + return x; +} + +/* Attempt to replace *P, which is an address that needs reloading, with + a valid memory address for an operand of mode MODE. + Like for sh_legitimize_address, for the SH we try to get a normal form + of the address. That will allow inheritance of the address reloads. */ + +bool +sh_legitimize_reload_address (rtx *p, enum machine_mode mode, int opnum, + int itype) +{ + enum reload_type type = (enum reload_type) itype; + + if (GET_CODE (*p) == PLUS + && (GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8) + && CONST_INT_P (XEXP (*p, 1)) + && MAYBE_BASE_REGISTER_RTX_P (XEXP (*p, 0), true) + && ! TARGET_SHMEDIA + && ! (TARGET_SH4 && mode == DFmode) + && ! (mode == PSImode && type == RELOAD_FOR_INPUT_ADDRESS) + && (ALLOW_INDEXED_ADDRESS + || XEXP (*p, 0) == stack_pointer_rtx + || XEXP (*p, 0) == hard_frame_pointer_rtx)) + { + rtx index_rtx = XEXP (*p, 1); + HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; + rtx sum; + + if (TARGET_SH2A && mode == DFmode && (offset & 0x7)) + { + push_reload (*p, NULL_RTX, p, NULL, + BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum, type); + goto win; + } + if (TARGET_SH2E && mode == SFmode) + { + *p = copy_rtx (*p); + push_reload (*p, NULL_RTX, p, NULL, + BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum, type); + goto win; + } + /* Instead of offset_base 128..131 use 124..127, so that + simple add suffices. */ + if (offset > 127) + offset_base = ((offset + 4) & ~60) - 4; + else + offset_base = offset & ~60; + /* Sometimes the normal form does not suit DImode. We could avoid + that by using smaller ranges, but that would give less optimized + code when SImode is prevalent. */ + if (GET_MODE_SIZE (mode) + offset - offset_base <= 64) + { + sum = gen_rtx_PLUS (Pmode, XEXP (*p, 0), GEN_INT (offset_base)); + *p = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base)); + push_reload (sum, NULL_RTX, &XEXP (*p, 0), NULL, + BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum, type); + goto win; + } + } + /* We must re-recognize what we created before. */ + else if (GET_CODE (*p) == PLUS + && (GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8) + && GET_CODE (XEXP (*p, 0)) == PLUS + && CONST_INT_P (XEXP (XEXP (*p, 0), 1)) + && MAYBE_BASE_REGISTER_RTX_P (XEXP (XEXP (*p, 0), 0), true) + && CONST_INT_P (XEXP (*p, 1)) + && ! TARGET_SHMEDIA + && ! (TARGET_SH2E && mode == SFmode)) + { + /* Because this address is so complex, we know it must have + been created by LEGITIMIZE_RELOAD_ADDRESS before; thus, + it is already unshared, and needs no further unsharing. */ + push_reload (XEXP (*p, 0), NULL_RTX, &XEXP (*p, 0), NULL, + BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, opnum, type); + goto win; + } + + return false; + + win: + return true; +} + +/* In the name of slightly smaller debug output, and to cater to + general assembler lossage, recognize various UNSPEC sequences + and turn them back into a direct symbol reference. */ + +static rtx +sh_delegitimize_address (rtx orig_x) +{ + rtx x, y; + + orig_x = delegitimize_mem_from_attrs (orig_x); + + x = orig_x; + if (MEM_P (x)) + x = XEXP (x, 0); + if (GET_CODE (x) == CONST) + { + y = XEXP (x, 0); + if (GET_CODE (y) == UNSPEC) + { + if (XINT (y, 1) == UNSPEC_GOT + || XINT (y, 1) == UNSPEC_GOTOFF) + return XVECEXP (y, 0, 0); + else if (TARGET_SHMEDIA + && (XINT (y, 1) == UNSPEC_EXTRACT_S16 + || XINT (y, 1) == UNSPEC_EXTRACT_U16)) + { + rtx offset = XVECEXP (y, 0, 1); + + x = gen_rtx_PLUS (Pmode, XVECEXP (y, 0, 0), offset); + if (MEM_P (orig_x)) + x = replace_equiv_address_nv (orig_x, x); + return x; + } + } + } + + return orig_x; +} + +/* Mark the use of a constant in the literal table. If the constant + has multiple labels, make it unique. */ +static rtx +mark_constant_pool_use (rtx x) +{ + rtx insn, lab, pattern; + + if (x == NULL) + return x; + + switch (GET_CODE (x)) + { + case LABEL_REF: + x = XEXP (x, 0); + case CODE_LABEL: + break; + default: + return x; + } + + /* Get the first label in the list of labels for the same constant + and delete another labels in the list. */ + lab = x; + for (insn = PREV_INSN (x); insn; insn = PREV_INSN (insn)) + { + if (!LABEL_P (insn) + || LABEL_REFS (insn) != NEXT_INSN (insn)) + break; + lab = insn; + } + + for (insn = LABEL_REFS (lab); insn; insn = LABEL_REFS (insn)) + INSN_DELETED_P (insn) = 1; + + /* Mark constants in a window. */ + for (insn = NEXT_INSN (x); insn; insn = NEXT_INSN (insn)) + { + if (!NONJUMP_INSN_P (insn)) + continue; + + pattern = PATTERN (insn); + if (GET_CODE (pattern) != UNSPEC_VOLATILE) + continue; + + switch (XINT (pattern, 1)) + { + case UNSPECV_CONST2: + case UNSPECV_CONST4: + case UNSPECV_CONST8: + XVECEXP (pattern, 0, 1) = const1_rtx; + break; + case UNSPECV_WINDOW_END: + if (XVECEXP (pattern, 0, 0) == x) + return lab; + break; + case UNSPECV_CONST_END: + return lab; + default: + break; + } + } + + return lab; +} + +/* Return true if it's possible to redirect BRANCH1 to the destination + of an unconditional jump BRANCH2. We only want to do this if the + resulting branch will have a short displacement. */ +int +sh_can_redirect_branch (rtx branch1, rtx branch2) +{ + if (flag_expensive_optimizations && simplejump_p (branch2)) + { + rtx dest = XEXP (SET_SRC (single_set (branch2)), 0); + rtx insn; + int distance; + + for (distance = 0, insn = NEXT_INSN (branch1); + insn && distance < 256; + insn = PREV_INSN (insn)) + { + if (insn == dest) + return 1; + else + distance += get_attr_length (insn); + } + for (distance = 0, insn = NEXT_INSN (branch1); + insn && distance < 256; + insn = NEXT_INSN (insn)) + { + if (insn == dest) + return 1; + else + distance += get_attr_length (insn); + } + } + return 0; +} + +/* Return nonzero if register old_reg can be renamed to register new_reg. */ +int +sh_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED, + unsigned int new_reg) +{ + /* Interrupt functions can only use registers that have already been + saved by the prologue, even if they would normally be + call-clobbered. */ + + if (sh_cfun_interrupt_handler_p () && !df_regs_ever_live_p (new_reg)) + return 0; + + return 1; +} + +/* Function to update the integer COST + based on the relationship between INSN that is dependent on + DEP_INSN through the dependence LINK. The default is to make no + adjustment to COST. This can be used for example to specify to + the scheduler that an output- or anti-dependence does not incur + the same cost as a data-dependence. The return value should be + the new value for COST. */ +static int +sh_adjust_cost (rtx insn, rtx link ATTRIBUTE_UNUSED, rtx dep_insn, int cost) +{ + rtx reg, use_pat; + + if (TARGET_SHMEDIA) + { + /* On SHmedia, if the dependence is an anti-dependence or + output-dependence, there is no cost. */ + if (REG_NOTE_KIND (link) != 0) + { + /* However, dependencies between target register loads and + uses of the register in a subsequent block that are separated + by a conditional branch are not modelled - we have to do with + the anti-dependency between the target register load and the + conditional branch that ends the current block. */ + if (REG_NOTE_KIND (link) == REG_DEP_ANTI + && GET_CODE (PATTERN (dep_insn)) == SET + && (get_attr_type (dep_insn) == TYPE_PT_MEDIA + || get_attr_type (dep_insn) == TYPE_PTABS_MEDIA) + && get_attr_type (insn) == TYPE_CBRANCH_MEDIA) + { + int orig_cost = cost; + rtx note = find_reg_note (insn, REG_BR_PROB, 0); + rtx target = ((! note + || INTVAL (XEXP (note, 0)) * 2 < REG_BR_PROB_BASE) + ? insn : JUMP_LABEL (insn)); + /* On the likely path, the branch costs 1, on the unlikely path, + it costs 3. */ + cost--; + do + target = next_active_insn (target); + while (target && ! flow_dependent_p (target, dep_insn) + && --cost > 0); + /* If two branches are executed in immediate succession, with the + first branch properly predicted, this causes a stall at the + second branch, hence we won't need the target for the + second branch for two cycles after the launch of the first + branch. */ + if (cost > orig_cost - 2) + cost = orig_cost - 2; + } + else + cost = 0; + } + + else if (get_attr_is_mac_media (insn) + && get_attr_is_mac_media (dep_insn)) + cost = 1; + + else if (! reload_completed + && GET_CODE (PATTERN (insn)) == SET + && GET_CODE (SET_SRC (PATTERN (insn))) == FLOAT + && GET_CODE (PATTERN (dep_insn)) == SET + && fp_arith_reg_operand (SET_SRC (PATTERN (dep_insn)), VOIDmode) + && cost < 4) + cost = 4; + /* Schedule the ptabs for a casesi_jump_media in preference to stuff + that is needed at the target. */ + else if (get_attr_type (insn) == TYPE_JUMP_MEDIA + && ! flow_dependent_p (insn, dep_insn)) + cost--; + } + else if (REG_NOTE_KIND (link) == 0) + { + enum attr_type type; + rtx dep_set; + + if (recog_memoized (insn) < 0 + || recog_memoized (dep_insn) < 0) + return cost; + + dep_set = single_set (dep_insn); + + /* The latency that we specify in the scheduling description refers + to the actual output, not to an auto-increment register; for that, + the latency is one. */ + if (dep_set && MEM_P (SET_SRC (dep_set)) && cost > 1) + { + rtx set = single_set (insn); + + if (set + && !reg_mentioned_p (SET_DEST (dep_set), SET_SRC (set)) + && (!MEM_P (SET_DEST (set)) + || !reg_mentioned_p (SET_DEST (dep_set), + XEXP (SET_DEST (set), 0)))) + cost = 1; + } + /* The only input for a call that is timing-critical is the + function's address. */ + if (CALL_P (insn)) + { + rtx call = PATTERN (insn); + + if (GET_CODE (call) == PARALLEL) + call = XVECEXP (call, 0 ,0); + if (GET_CODE (call) == SET) + call = SET_SRC (call); + if (GET_CODE (call) == CALL && MEM_P (XEXP (call, 0)) + /* sibcalli_thunk uses a symbol_ref in an unspec. */ + && (GET_CODE (XEXP (XEXP (call, 0), 0)) == UNSPEC + || ! reg_set_p (XEXP (XEXP (call, 0), 0), dep_insn))) + cost -= TARGET_SH4_300 ? 3 : 6; + } + /* Likewise, the most timing critical input for an sfuncs call + is the function address. However, sfuncs typically start + using their arguments pretty quickly. + Assume a four cycle delay for SH4 before they are needed. + Cached ST40-300 calls are quicker, so assume only a one + cycle delay there. + ??? Maybe we should encode the delays till input registers + are needed by sfuncs into the sfunc call insn. */ + /* All sfunc calls are parallels with at least four components. + Exploit this to avoid unnecessary calls to sfunc_uses_reg. */ + else if (GET_CODE (PATTERN (insn)) == PARALLEL + && XVECLEN (PATTERN (insn), 0) >= 4 + && (reg = sfunc_uses_reg (insn))) + { + if (! reg_set_p (reg, dep_insn)) + cost -= TARGET_SH4_300 ? 1 : 4; + } + if (TARGET_HARD_SH4 && !TARGET_SH4_300) + { + enum attr_type dep_type = get_attr_type (dep_insn); + + if (dep_type == TYPE_FLOAD || dep_type == TYPE_PCFLOAD) + cost--; + else if ((dep_type == TYPE_LOAD_SI || dep_type == TYPE_PCLOAD_SI) + && (type = get_attr_type (insn)) != TYPE_CALL + && type != TYPE_SFUNC) + cost--; + /* When the preceding instruction loads the shift amount of + the following SHAD/SHLD, the latency of the load is increased + by 1 cycle. */ + if (get_attr_type (insn) == TYPE_DYN_SHIFT + && get_attr_any_int_load (dep_insn) == ANY_INT_LOAD_YES + && reg_overlap_mentioned_p (SET_DEST (dep_set), + XEXP (SET_SRC (single_set (insn)), + 1))) + cost++; + /* When an LS group instruction with a latency of less than + 3 cycles is followed by a double-precision floating-point + instruction, FIPR, or FTRV, the latency of the first + instruction is increased to 3 cycles. */ + else if (cost < 3 + && get_attr_insn_class (dep_insn) == INSN_CLASS_LS_GROUP + && get_attr_dfp_comp (insn) == DFP_COMP_YES) + cost = 3; + /* The lsw register of a double-precision computation is ready one + cycle earlier. */ + else if (reload_completed + && get_attr_dfp_comp (dep_insn) == DFP_COMP_YES + && (use_pat = single_set (insn)) + && ! regno_use_in (REGNO (SET_DEST (single_set (dep_insn))), + SET_SRC (use_pat))) + cost -= 1; + + if (get_attr_any_fp_comp (dep_insn) == ANY_FP_COMP_YES + && get_attr_late_fp_use (insn) == LATE_FP_USE_YES) + cost -= 1; + } + else if (TARGET_SH4_300) + { + /* Stores need their input register two cycles later. */ + if (dep_set && cost >= 1 + && ((type = get_attr_type (insn)) == TYPE_STORE + || type == TYPE_PSTORE + || type == TYPE_FSTORE || type == TYPE_MAC_MEM)) + { + rtx set = single_set (insn); + + if (!reg_mentioned_p (SET_SRC (set), XEXP (SET_DEST (set), 0)) + && rtx_equal_p (SET_SRC (set), SET_DEST (dep_set))) + { + cost -= 2; + /* But don't reduce the cost below 1 if the address depends + on a side effect of dep_insn. */ + if (cost < 1 + && modified_in_p (XEXP (SET_DEST (set), 0), dep_insn)) + cost = 1; + } + } + } + } + /* An anti-dependence penalty of two applies if the first insn is a double + precision fadd / fsub / fmul. */ + else if (!TARGET_SH4_300 + && REG_NOTE_KIND (link) == REG_DEP_ANTI + && recog_memoized (dep_insn) >= 0 + && (get_attr_type (dep_insn) == TYPE_DFP_ARITH + || get_attr_type (dep_insn) == TYPE_DFP_MUL) + /* A lot of alleged anti-flow dependences are fake, + so check this one is real. */ + && flow_dependent_p (dep_insn, insn)) + cost = 2; + + return cost; +} + +/* Check if INSN is flow-dependent on DEP_INSN. Can also be used to check + if DEP_INSN is anti-flow dependent on INSN. */ +static int +flow_dependent_p (rtx insn, rtx dep_insn) +{ + rtx tmp = PATTERN (insn); + + note_stores (PATTERN (dep_insn), flow_dependent_p_1, &tmp); + return tmp == NULL_RTX; +} + +/* A helper function for flow_dependent_p called through note_stores. */ +static void +flow_dependent_p_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data) +{ + rtx * pinsn = (rtx *) data; + + if (*pinsn && reg_referenced_p (x, *pinsn)) + *pinsn = NULL_RTX; +} + +/* For use by sh_allocate_initial_value. Note that sh.md contains some + 'special function' patterns (type sfunc) that clobber pr, but that + do not look like function calls to leaf_function_p. Hence we must + do this extra check. */ +static int +sh_pr_n_sets (void) +{ + return DF_REG_DEF_COUNT (TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG); +} + +/* Return where to allocate pseudo for a given hard register initial + value. */ +static rtx +sh_allocate_initial_value (rtx hard_reg) +{ + rtx x; + + if (REGNO (hard_reg) == (TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG)) + { + if (current_function_is_leaf + && ! sh_pr_n_sets () + && ! (TARGET_SHCOMPACT + && ((crtl->args.info.call_cookie + & ~ CALL_COOKIE_RET_TRAMP (1)) + || crtl->saves_all_registers))) + x = hard_reg; + else + x = gen_frame_mem (Pmode, return_address_pointer_rtx); + } + else + x = NULL_RTX; + + return x; +} + +/* This function returns "2" to indicate dual issue for the SH4 + processor. To be used by the DFA pipeline description. */ +static int +sh_issue_rate (void) +{ + if (TARGET_SUPERSCALAR) + return 2; + else + return 1; +} + +/* Functions for ready queue reordering for sched1. */ + +/* Get weight for mode for a set x. */ +static short +find_set_regmode_weight (rtx x, enum machine_mode mode) +{ + if (GET_CODE (x) == CLOBBER && register_operand (SET_DEST (x), mode)) + return 1; + if (GET_CODE (x) == SET && register_operand (SET_DEST (x), mode)) + { + if (REG_P (SET_DEST (x))) + { + if (!reg_mentioned_p (SET_DEST (x), SET_SRC (x))) + return 1; + else + return 0; + } + return 1; + } + return 0; +} + +/* Get regmode weight for insn. */ +static short +find_insn_regmode_weight (rtx insn, enum machine_mode mode) +{ + short reg_weight = 0; + rtx x; + + /* Increment weight for each register born here. */ + x = PATTERN (insn); + reg_weight += find_set_regmode_weight (x, mode); + if (GET_CODE (x) == PARALLEL) + { + int j; + for (j = XVECLEN (x, 0) - 1; j >= 0; j--) + { + x = XVECEXP (PATTERN (insn), 0, j); + reg_weight += find_set_regmode_weight (x, mode); + } + } + /* Decrement weight for each register that dies here. */ + for (x = REG_NOTES (insn); x; x = XEXP (x, 1)) + { + if (REG_NOTE_KIND (x) == REG_DEAD || REG_NOTE_KIND (x) == REG_UNUSED) + { + rtx note = XEXP (x, 0); + if (REG_P (note) && GET_MODE (note) == mode) + reg_weight--; + } + } + return reg_weight; +} + +/* Calculate regmode weights for all insns of a basic block. */ +static void +find_regmode_weight (basic_block b, enum machine_mode mode) +{ + rtx insn, next_tail, head, tail; + + get_ebb_head_tail (b, b, &head, &tail); + next_tail = NEXT_INSN (tail); + + for (insn = head; insn != next_tail; insn = NEXT_INSN (insn)) + { + /* Handle register life information. */ + if (!INSN_P (insn)) + continue; + + if (mode == SFmode) + INSN_REGMODE_WEIGHT (insn, mode) = + find_insn_regmode_weight (insn, mode) + 2 * find_insn_regmode_weight (insn, DFmode); + else if (mode == SImode) + INSN_REGMODE_WEIGHT (insn, mode) = + find_insn_regmode_weight (insn, mode) + 2 * find_insn_regmode_weight (insn, DImode); + } +} + +/* Comparison function for ready queue sorting. */ +static int +rank_for_reorder (const void *x, const void *y) +{ + rtx tmp = *(const rtx *) y; + rtx tmp2 = *(const rtx *) x; + + /* The insn in a schedule group should be issued the first. */ + if (SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2)) + return SCHED_GROUP_P (tmp2) ? 1 : -1; + + /* If insns are equally good, sort by INSN_LUID (original insn order), This + minimizes instruction movement, thus minimizing sched's effect on + register pressure. */ + return INSN_LUID (tmp) - INSN_LUID (tmp2); +} + +/* Resort the array A in which only element at index N may be out of order. */ +static void +swap_reorder (rtx *a, int n) +{ + rtx insn = a[n - 1]; + int i = n - 2; + + while (i >= 0 && rank_for_reorder (a + i, &insn) >= 0) + { + a[i + 1] = a[i]; + i -= 1; + } + a[i + 1] = insn; +} + +#define SCHED_REORDER(READY, N_READY) \ + do \ + { \ + if ((N_READY) == 2) \ + swap_reorder (READY, N_READY); \ + else if ((N_READY) > 2) \ + qsort (READY, N_READY, sizeof (rtx), rank_for_reorder); \ + } \ + while (0) + +/* Sort the ready list READY by ascending priority, using the SCHED_REORDER + macro. */ +static void +ready_reorder (rtx *ready, int nready) +{ + SCHED_REORDER (ready, nready); +} + +/* Count life regions of r0 for a block. */ +static int +find_r0_life_regions (basic_block b) +{ + rtx end, insn; + rtx pset; + rtx r0_reg; + int live; + int set; + int death = 0; + + if (REGNO_REG_SET_P (df_get_live_in (b), R0_REG)) + { + set = 1; + live = 1; + } + else + { + set = 0; + live = 0; + } + + insn = BB_HEAD (b); + end = BB_END (b); + r0_reg = gen_rtx_REG (SImode, R0_REG); + while (1) + { + if (INSN_P (insn)) + { + if (find_regno_note (insn, REG_DEAD, R0_REG)) + { + death++; + live = 0; + } + if (!live + && (pset = single_set (insn)) + && reg_overlap_mentioned_p (r0_reg, SET_DEST (pset)) + && !find_regno_note (insn, REG_UNUSED, R0_REG)) + { + set++; + live = 1; + } + } + if (insn == end) + break; + insn = NEXT_INSN (insn); + } + return set - death; +} + +/* Calculate regmode weights for all insns of all basic block. */ +static void +sh_md_init_global (FILE *dump ATTRIBUTE_UNUSED, + int verbose ATTRIBUTE_UNUSED, + int old_max_uid) +{ + basic_block b; + + regmode_weight[0] = (short *) xcalloc (old_max_uid, sizeof (short)); + regmode_weight[1] = (short *) xcalloc (old_max_uid, sizeof (short)); + r0_life_regions = 0; + + FOR_EACH_BB_REVERSE (b) + { + find_regmode_weight (b, SImode); + find_regmode_weight (b, SFmode); + if (!reload_completed) + r0_life_regions += find_r0_life_regions (b); + } + + CURR_REGMODE_PRESSURE (SImode) = 0; + CURR_REGMODE_PRESSURE (SFmode) = 0; + +} + +/* Cleanup. */ +static void +sh_md_finish_global (FILE *dump ATTRIBUTE_UNUSED, + int verbose ATTRIBUTE_UNUSED) +{ + if (regmode_weight[0]) + { + free (regmode_weight[0]); + regmode_weight[0] = NULL; + } + if (regmode_weight[1]) + { + free (regmode_weight[1]); + regmode_weight[1] = NULL; + } +} + +/* The scalar modes supported differs from the default version in TImode + for 32-bit SHMEDIA. */ +static bool +sh_scalar_mode_supported_p (enum machine_mode mode) +{ + if (TARGET_SHMEDIA32 && mode == TImode) + return false; + + return default_scalar_mode_supported_p (mode); +} + +/* Cache the can_issue_more so that we can return it from reorder2. Also, + keep count of register pressures on SImode and SFmode. */ +static int +sh_variable_issue (FILE *dump ATTRIBUTE_UNUSED, + int sched_verbose ATTRIBUTE_UNUSED, + rtx insn, + int can_issue_more) +{ + if (GET_CODE (PATTERN (insn)) != USE + && GET_CODE (PATTERN (insn)) != CLOBBER) + cached_can_issue_more = can_issue_more - 1; + else + cached_can_issue_more = can_issue_more; + + if (reload_completed) + return cached_can_issue_more; + + CURR_REGMODE_PRESSURE (SImode) += INSN_REGMODE_WEIGHT (insn, SImode); + CURR_REGMODE_PRESSURE (SFmode) += INSN_REGMODE_WEIGHT (insn, SFmode); + + return cached_can_issue_more; +} + +static void +sh_md_init (FILE *dump ATTRIBUTE_UNUSED, + int verbose ATTRIBUTE_UNUSED, + int veclen ATTRIBUTE_UNUSED) +{ + CURR_REGMODE_PRESSURE (SImode) = 0; + CURR_REGMODE_PRESSURE (SFmode) = 0; +} + +/* Some magic numbers. */ +/* Pressure on register r0 can lead to spill failures. so avoid sched1 for + functions that already have high pressure on r0. */ +#define R0_MAX_LIFE_REGIONS 2 +/* Register Pressure thresholds for SImode and SFmode registers. */ +#define SIMODE_MAX_WEIGHT 5 +#define SFMODE_MAX_WEIGHT 10 + +/* Return true if the pressure is high for MODE. */ +static short +high_pressure (enum machine_mode mode) +{ + /* Pressure on register r0 can lead to spill failures. so avoid sched1 for + functions that already have high pressure on r0. */ + if (r0_life_regions >= R0_MAX_LIFE_REGIONS) + return 1; + + if (mode == SFmode) + return (CURR_REGMODE_PRESSURE (SFmode) > SFMODE_MAX_WEIGHT); + else + return (CURR_REGMODE_PRESSURE (SImode) > SIMODE_MAX_WEIGHT); +} + +/* Reorder ready queue if register pressure is high. */ +static int +sh_reorder (FILE *dump ATTRIBUTE_UNUSED, + int sched_verbose ATTRIBUTE_UNUSED, + rtx *ready, + int *n_readyp, + int clock_var ATTRIBUTE_UNUSED) +{ + if (reload_completed) + return sh_issue_rate (); + + if (high_pressure (SFmode) || high_pressure (SImode)) + { + ready_reorder (ready, *n_readyp); + } + + return sh_issue_rate (); +} + +/* Skip cycles if the current register pressure is high. */ +static int +sh_reorder2 (FILE *dump ATTRIBUTE_UNUSED, + int sched_verbose ATTRIBUTE_UNUSED, + rtx *ready ATTRIBUTE_UNUSED, + int *n_readyp ATTRIBUTE_UNUSED, + int clock_var ATTRIBUTE_UNUSED) +{ + if (reload_completed) + return cached_can_issue_more; + + if (high_pressure(SFmode) || high_pressure (SImode)) + skip_cycles = 1; + + return cached_can_issue_more; +} + +/* Skip cycles without sorting the ready queue. This will move insn from + Q->R. If this is the last cycle we are skipping; allow sorting of ready + queue by sh_reorder. */ + +/* Generally, skipping these many cycles are sufficient for all insns to move + from Q -> R. */ +#define MAX_SKIPS 8 + +static int +sh_dfa_new_cycle (FILE *sched_dump ATTRIBUTE_UNUSED, + int sched_verbose ATTRIBUTE_UNUSED, + rtx insn ATTRIBUTE_UNUSED, + int last_clock_var, + int clock_var, + int *sort_p) +{ + if (reload_completed) + return 0; + + if (skip_cycles) + { + if ((clock_var - last_clock_var) < MAX_SKIPS) + { + *sort_p = 0; + return 1; + } + /* If this is the last cycle we are skipping, allow reordering of R. */ + if ((clock_var - last_clock_var) == MAX_SKIPS) + { + *sort_p = 1; + return 1; + } + } + + skip_cycles = 0; + + return 0; +} + +/* SHmedia requires registers for branches, so we can't generate new + branches past reload. */ +static bool +sh_cannot_modify_jumps_p (void) +{ + return (TARGET_SHMEDIA && (reload_in_progress || reload_completed)); +} + +static reg_class_t +sh_target_reg_class (void) +{ + return TARGET_SHMEDIA ? TARGET_REGS : NO_REGS; +} + +static bool +sh_optimize_target_register_callee_saved (bool after_prologue_epilogue_gen) +{ + HARD_REG_SET dummy; +#if 0 + rtx insn; +#endif + + if (! shmedia_space_reserved_for_target_registers) + return 0; + if (after_prologue_epilogue_gen && ! TARGET_SAVE_ALL_TARGET_REGS) + return 0; + if (calc_live_regs (&dummy) >= 6 * 8) + return 1; + return 0; +} + +static bool +sh_ms_bitfield_layout_p (const_tree record_type ATTRIBUTE_UNUSED) +{ + return (TARGET_SH5 || TARGET_HITACHI || sh_attr_renesas_p (record_type)); +} + +/* + On the SH1..SH4, the trampoline looks like + 2 0002 D202 mov.l l2,r2 + 1 0000 D301 mov.l l1,r3 + 3 0004 422B jmp @r2 + 4 0006 0009 nop + 5 0008 00000000 l1: .long area + 6 000c 00000000 l2: .long function + + SH5 (compact) uses r1 instead of r3 for the static chain. */ + + +/* Emit RTL insns to initialize the variable parts of a trampoline. + FNADDR is an RTX for the address of the function's pure code. + CXT is an RTX for the static chain value for the function. */ + +static void +sh_trampoline_init (rtx tramp_mem, tree fndecl, rtx cxt) +{ + rtx fnaddr = XEXP (DECL_RTL (fndecl), 0); + rtx tramp = force_reg (Pmode, XEXP (tramp_mem, 0)); + + if (TARGET_SHMEDIA64) + { + rtx tramp_templ; + int fixed_len; + + rtx movi1 = GEN_INT (0xcc000010); + rtx shori1 = GEN_INT (0xc8000010); + rtx src, dst; + + /* The following trampoline works within a +- 128 KB range for cxt: + ptb/u cxt,tr1; movi fnaddr >> 48,r0; shori fnaddr >> 32,r0; + shori fnaddr >> 16,r0; shori fnaddr,r0; ptabs/l r0,tr0 + gettr tr1,r1; blink tr0,r63 */ + /* Address rounding makes it hard to compute the exact bounds of the + offset for this trampoline, but we have a rather generous offset + range, so frame_offset should do fine as an upper bound. */ + if (cxt == virtual_stack_vars_rtx && frame_offset < 0x20000) + { + /* ??? could optimize this trampoline initialization + by writing DImode words with two insns each. */ + rtx mask = force_reg (DImode, GEN_INT (0x3fffc00)); + rtx insn = gen_rtx_MINUS (DImode, cxt, tramp); + insn = gen_rtx_ASHIFT (DImode, insn, GEN_INT (10-2)); + insn = gen_rtx_AND (DImode, insn, mask); + /* Or in ptb/u .,tr1 pattern */ + insn = gen_rtx_IOR (DImode, insn, gen_int_mode (0xec000010, SImode)); + insn = force_operand (insn, NULL_RTX); + insn = gen_lowpart (SImode, insn); + emit_move_insn (change_address (tramp_mem, SImode, NULL_RTX), insn); + insn = gen_rtx_LSHIFTRT (DImode, fnaddr, GEN_INT (38)); + insn = gen_rtx_AND (DImode, insn, mask); + insn = force_operand (gen_rtx_IOR (DImode, movi1, insn), NULL_RTX); + insn = gen_lowpart (SImode, insn); + emit_move_insn (adjust_address (tramp_mem, SImode, 4), insn); + insn = gen_rtx_LSHIFTRT (DImode, fnaddr, GEN_INT (22)); + insn = gen_rtx_AND (DImode, insn, mask); + insn = force_operand (gen_rtx_IOR (DImode, shori1, insn), NULL_RTX); + insn = gen_lowpart (SImode, insn); + emit_move_insn (adjust_address (tramp_mem, SImode, 8), insn); + insn = gen_rtx_LSHIFTRT (DImode, fnaddr, GEN_INT (6)); + insn = gen_rtx_AND (DImode, insn, mask); + insn = force_operand (gen_rtx_IOR (DImode, shori1, insn), NULL_RTX); + insn = gen_lowpart (SImode, insn); + emit_move_insn (adjust_address (tramp_mem, SImode, 12), insn); + insn = gen_rtx_ASHIFT (DImode, fnaddr, GEN_INT (10)); + insn = gen_rtx_AND (DImode, insn, mask); + insn = force_operand (gen_rtx_IOR (DImode, shori1, insn), NULL_RTX); + insn = gen_lowpart (SImode, insn); + emit_move_insn (adjust_address (tramp_mem, SImode, 16), insn); + emit_move_insn (adjust_address (tramp_mem, SImode, 20), + GEN_INT (0x6bf10600)); + emit_move_insn (adjust_address (tramp_mem, SImode, 24), + GEN_INT (0x4415fc10)); + emit_move_insn (adjust_address (tramp_mem, SImode, 28), + GEN_INT (0x4401fff0)); + emit_insn (gen_ic_invalidate_line (tramp)); + return; + } + tramp_templ = gen_rtx_SYMBOL_REF (Pmode,"__GCC_nested_trampoline"); + fixed_len = TRAMPOLINE_SIZE - 2 * GET_MODE_SIZE (Pmode); + + tramp_templ = gen_datalabel_ref (tramp_templ); + dst = tramp_mem; + src = gen_const_mem (BLKmode, tramp_templ); + set_mem_align (dst, 256); + set_mem_align (src, 64); + emit_block_move (dst, src, GEN_INT (fixed_len), BLOCK_OP_NORMAL); + + emit_move_insn (adjust_address (tramp_mem, Pmode, fixed_len), fnaddr); + emit_move_insn (adjust_address (tramp_mem, Pmode, + fixed_len + GET_MODE_SIZE (Pmode)), + cxt); + emit_insn (gen_ic_invalidate_line (tramp)); + return; + } + else if (TARGET_SHMEDIA) + { + /* movi fnaddr >> 16,r1; shori fnaddr,r1; ptabs/l r1,tr0 + movi cxt >> 16,r1; shori cxt,r1; blink tr0,r63 */ + rtx quad0 = gen_reg_rtx (DImode), cxtload = gen_reg_rtx (DImode); + rtx quad1 = gen_reg_rtx (DImode), quad2 = gen_reg_rtx (DImode); + /* movi 0,r1: 0xcc000010 shori 0,r1: c8000010 concatenated, + rotated 10 right, and higher 16 bit of every 32 selected. */ + rtx movishori + = force_reg (V2HImode, (simplify_gen_subreg + (V2HImode, GEN_INT (0x4330432), SImode, 0))); + rtx ptabs = force_reg (DImode, GEN_INT (0x6bf10600)); + rtx blink = force_reg (DImode, GEN_INT (0x4401fff0)); + + fnaddr = force_reg (SImode, fnaddr); + cxt = force_reg (SImode, cxt); + emit_insn (gen_mshflo_w_x (gen_rtx_SUBREG (V4HImode, quad0, 0), + gen_rtx_SUBREG (V2HImode, fnaddr, 0), + movishori)); + emit_insn (gen_rotrdi3_mextr (quad0, quad0, + GEN_INT (TARGET_LITTLE_ENDIAN ? 24 : 56))); + emit_insn (gen_ashldi3_media (quad0, quad0, const2_rtx)); + emit_move_insn (change_address (tramp_mem, DImode, NULL_RTX), quad0); + emit_insn (gen_mshflo_w_x (gen_rtx_SUBREG (V4HImode, cxtload, 0), + gen_rtx_SUBREG (V2HImode, cxt, 0), + movishori)); + emit_insn (gen_rotrdi3_mextr (cxtload, cxtload, + GEN_INT (TARGET_LITTLE_ENDIAN ? 24 : 56))); + emit_insn (gen_ashldi3_media (cxtload, cxtload, const2_rtx)); + if (TARGET_LITTLE_ENDIAN) + { + emit_insn (gen_mshflo_l_di (quad1, ptabs, cxtload)); + emit_insn (gen_mextr4 (quad2, cxtload, blink)); + } + else + { + emit_insn (gen_mextr4 (quad1, cxtload, ptabs)); + emit_insn (gen_mshflo_l_di (quad2, blink, cxtload)); + } + emit_move_insn (adjust_address (tramp_mem, DImode, 8), quad1); + emit_move_insn (adjust_address (tramp_mem, DImode, 16), quad2); + emit_insn (gen_ic_invalidate_line (tramp)); + return; + } + else if (TARGET_SHCOMPACT) + { + emit_insn (gen_initialize_trampoline (tramp, cxt, fnaddr)); + return; + } + emit_move_insn (change_address (tramp_mem, SImode, NULL_RTX), + gen_int_mode (TARGET_LITTLE_ENDIAN ? 0xd301d202 : 0xd202d301, + SImode)); + emit_move_insn (adjust_address (tramp_mem, SImode, 4), + gen_int_mode (TARGET_LITTLE_ENDIAN ? 0x0009422b : 0x422b0009, + SImode)); + emit_move_insn (adjust_address (tramp_mem, SImode, 8), cxt); + emit_move_insn (adjust_address (tramp_mem, SImode, 12), fnaddr); + if (TARGET_HARVARD) + { + if (!TARGET_INLINE_IC_INVALIDATE + || (!(TARGET_SH4A_ARCH || TARGET_SH4_300) && TARGET_USERMODE)) + emit_library_call (function_symbol (NULL, "__ic_invalidate", + FUNCTION_ORDINARY), + LCT_NORMAL, VOIDmode, 1, tramp, SImode); + else + emit_insn (gen_ic_invalidate_line (tramp)); + } +} + +/* On SH5, trampolines are SHmedia code, so add 1 to the address. */ + +static rtx +sh_trampoline_adjust_address (rtx tramp) +{ + if (TARGET_SHMEDIA) + tramp = expand_simple_binop (Pmode, PLUS, tramp, const1_rtx, + gen_reg_rtx (Pmode), 0, OPTAB_LIB_WIDEN); + return tramp; +} + +/* FIXME: This is overly conservative. A SHcompact function that + receives arguments ``by reference'' will have them stored in its + own stack frame, so it must not pass pointers or references to + these arguments to other functions by means of sibling calls. */ +/* If PIC, we cannot make sibling calls to global functions + because the PLT requires r12 to be live. */ +static bool +sh_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED) +{ + return (1 + && (! TARGET_SHCOMPACT + || crtl->args.info.stack_regs == 0) + && ! sh_cfun_interrupt_handler_p () + && (! flag_pic + || (decl && ! TREE_PUBLIC (decl)) + || (decl && DECL_VISIBILITY (decl) != VISIBILITY_DEFAULT))); +} + +/* Machine specific built-in functions. */ + +struct builtin_description +{ + const enum insn_code icode; + const char *const name; + int signature; + tree fndecl; +}; + +/* describe number and signedness of arguments; arg[0] == result + (1: unsigned, 2: signed, 4: don't care, 8: pointer 0: no argument */ +/* 9: 64-bit pointer, 10: 32-bit pointer */ +static const char signature_args[][4] = +{ +#define SH_BLTIN_V2SI2 0 + { 4, 4 }, +#define SH_BLTIN_V4HI2 1 + { 4, 4 }, +#define SH_BLTIN_V2SI3 2 + { 4, 4, 4 }, +#define SH_BLTIN_V4HI3 3 + { 4, 4, 4 }, +#define SH_BLTIN_V8QI3 4 + { 4, 4, 4 }, +#define SH_BLTIN_MAC_HISI 5 + { 1, 4, 4, 1 }, +#define SH_BLTIN_SH_HI 6 + { 4, 4, 1 }, +#define SH_BLTIN_SH_SI 7 + { 4, 4, 1 }, +#define SH_BLTIN_V4HI2V2SI 8 + { 4, 4, 4 }, +#define SH_BLTIN_V4HI2V8QI 9 + { 4, 4, 4 }, +#define SH_BLTIN_SISF 10 + { 4, 2 }, +#define SH_BLTIN_LDUA_L 11 + { 2, 10 }, +#define SH_BLTIN_LDUA_Q 12 + { 1, 10 }, +#define SH_BLTIN_STUA_L 13 + { 0, 10, 2 }, +#define SH_BLTIN_STUA_Q 14 + { 0, 10, 1 }, +#define SH_BLTIN_LDUA_L64 15 + { 2, 9 }, +#define SH_BLTIN_LDUA_Q64 16 + { 1, 9 }, +#define SH_BLTIN_STUA_L64 17 + { 0, 9, 2 }, +#define SH_BLTIN_STUA_Q64 18 + { 0, 9, 1 }, +#define SH_BLTIN_NUM_SHARED_SIGNATURES 19 +#define SH_BLTIN_2 19 +#define SH_BLTIN_SU 19 + { 1, 2 }, +#define SH_BLTIN_3 20 +#define SH_BLTIN_SUS 20 + { 2, 2, 1 }, +#define SH_BLTIN_PSSV 21 + { 0, 8, 2, 2 }, +#define SH_BLTIN_XXUU 22 +#define SH_BLTIN_UUUU 22 + { 1, 1, 1, 1 }, +#define SH_BLTIN_PV 23 + { 0, 8 }, +}; +/* mcmv: operands considered unsigned. */ +/* mmulsum_wq, msad_ubq: result considered unsigned long long. */ +/* mperm: control value considered unsigned int. */ +/* mshalds, mshard, mshards, mshlld, mshlrd: shift count is unsigned int. */ +/* mshards_q: returns signed short. */ +/* nsb: takes long long arg, returns unsigned char. */ +static struct builtin_description bdesc[] = +{ + { CODE_FOR_absv2si2, "__builtin_absv2si2", SH_BLTIN_V2SI2, 0 }, + { CODE_FOR_absv4hi2, "__builtin_absv4hi2", SH_BLTIN_V4HI2, 0 }, + { CODE_FOR_addv2si3, "__builtin_addv2si3", SH_BLTIN_V2SI3, 0 }, + { CODE_FOR_addv4hi3, "__builtin_addv4hi3", SH_BLTIN_V4HI3, 0 }, + { CODE_FOR_ssaddv2si3,"__builtin_ssaddv2si3", SH_BLTIN_V2SI3, 0 }, + { CODE_FOR_usaddv8qi3,"__builtin_usaddv8qi3", SH_BLTIN_V8QI3, 0 }, + { CODE_FOR_ssaddv4hi3,"__builtin_ssaddv4hi3", SH_BLTIN_V4HI3, 0 }, + { CODE_FOR_alloco_i, "__builtin_sh_media_ALLOCO", SH_BLTIN_PV, 0 }, + { CODE_FOR_negcmpeqv8qi,"__builtin_sh_media_MCMPEQ_B", SH_BLTIN_V8QI3, 0 }, + { CODE_FOR_negcmpeqv2si,"__builtin_sh_media_MCMPEQ_L", SH_BLTIN_V2SI3, 0 }, + { CODE_FOR_negcmpeqv4hi,"__builtin_sh_media_MCMPEQ_W", SH_BLTIN_V4HI3, 0 }, + { CODE_FOR_negcmpgtuv8qi,"__builtin_sh_media_MCMPGT_UB", SH_BLTIN_V8QI3, 0 }, + { CODE_FOR_negcmpgtv2si,"__builtin_sh_media_MCMPGT_L", SH_BLTIN_V2SI3, 0 }, + { CODE_FOR_negcmpgtv4hi,"__builtin_sh_media_MCMPGT_W", SH_BLTIN_V4HI3, 0 }, + { CODE_FOR_mcmv, "__builtin_sh_media_MCMV", SH_BLTIN_UUUU, 0 }, + { CODE_FOR_mcnvs_lw, "__builtin_sh_media_MCNVS_LW", SH_BLTIN_3, 0 }, + { CODE_FOR_mcnvs_wb, "__builtin_sh_media_MCNVS_WB", SH_BLTIN_V4HI2V8QI, 0 }, + { CODE_FOR_mcnvs_wub, "__builtin_sh_media_MCNVS_WUB", SH_BLTIN_V4HI2V8QI, 0 }, + { CODE_FOR_mextr1, "__builtin_sh_media_MEXTR1", SH_BLTIN_V8QI3, 0 }, + { CODE_FOR_mextr2, "__builtin_sh_media_MEXTR2", SH_BLTIN_V8QI3, 0 }, + { CODE_FOR_mextr3, "__builtin_sh_media_MEXTR3", SH_BLTIN_V8QI3, 0 }, + { CODE_FOR_mextr4, "__builtin_sh_media_MEXTR4", SH_BLTIN_V8QI3, 0 }, + { CODE_FOR_mextr5, "__builtin_sh_media_MEXTR5", SH_BLTIN_V8QI3, 0 }, + { CODE_FOR_mextr6, "__builtin_sh_media_MEXTR6", SH_BLTIN_V8QI3, 0 }, + { CODE_FOR_mextr7, "__builtin_sh_media_MEXTR7", SH_BLTIN_V8QI3, 0 }, + { CODE_FOR_mmacfx_wl, "__builtin_sh_media_MMACFX_WL", SH_BLTIN_MAC_HISI, 0 }, + { CODE_FOR_mmacnfx_wl,"__builtin_sh_media_MMACNFX_WL", SH_BLTIN_MAC_HISI, 0 }, + { CODE_FOR_mulv2si3, "__builtin_mulv2si3", SH_BLTIN_V2SI3, 0 }, + { CODE_FOR_mulv4hi3, "__builtin_mulv4hi3", SH_BLTIN_V4HI3, 0 }, + { CODE_FOR_mmulfx_l, "__builtin_sh_media_MMULFX_L", SH_BLTIN_V2SI3, 0 }, + { CODE_FOR_mmulfx_w, "__builtin_sh_media_MMULFX_W", SH_BLTIN_V4HI3, 0 }, + { CODE_FOR_mmulfxrp_w,"__builtin_sh_media_MMULFXRP_W", SH_BLTIN_V4HI3, 0 }, + { CODE_FOR_mmulhi_wl, "__builtin_sh_media_MMULHI_WL", SH_BLTIN_V4HI2V2SI, 0 }, + { CODE_FOR_mmullo_wl, "__builtin_sh_media_MMULLO_WL", SH_BLTIN_V4HI2V2SI, 0 }, + { CODE_FOR_mmulsum_wq,"__builtin_sh_media_MMULSUM_WQ", SH_BLTIN_XXUU, 0 }, + { CODE_FOR_mperm_w, "__builtin_sh_media_MPERM_W", SH_BLTIN_SH_HI, 0 }, + { CODE_FOR_msad_ubq, "__builtin_sh_media_MSAD_UBQ", SH_BLTIN_XXUU, 0 }, + { CODE_FOR_mshalds_l, "__builtin_sh_media_MSHALDS_L", SH_BLTIN_SH_SI, 0 }, + { CODE_FOR_mshalds_w, "__builtin_sh_media_MSHALDS_W", SH_BLTIN_SH_HI, 0 }, + { CODE_FOR_ashrv2si3, "__builtin_ashrv2si3", SH_BLTIN_SH_SI, 0 }, + { CODE_FOR_ashrv4hi3, "__builtin_ashrv4hi3", SH_BLTIN_SH_HI, 0 }, + { CODE_FOR_mshards_q, "__builtin_sh_media_MSHARDS_Q", SH_BLTIN_SUS, 0 }, + { CODE_FOR_mshfhi_b, "__builtin_sh_media_MSHFHI_B", SH_BLTIN_V8QI3, 0 }, + { CODE_FOR_mshfhi_l, "__builtin_sh_media_MSHFHI_L", SH_BLTIN_V2SI3, 0 }, + { CODE_FOR_mshfhi_w, "__builtin_sh_media_MSHFHI_W", SH_BLTIN_V4HI3, 0 }, + { CODE_FOR_mshflo_b, "__builtin_sh_media_MSHFLO_B", SH_BLTIN_V8QI3, 0 }, + { CODE_FOR_mshflo_l, "__builtin_sh_media_MSHFLO_L", SH_BLTIN_V2SI3, 0 }, + { CODE_FOR_mshflo_w, "__builtin_sh_media_MSHFLO_W", SH_BLTIN_V4HI3, 0 }, + { CODE_FOR_ashlv2si3, "__builtin_ashlv2si3", SH_BLTIN_SH_SI, 0 }, + { CODE_FOR_ashlv4hi3, "__builtin_ashlv4hi3", SH_BLTIN_SH_HI, 0 }, + { CODE_FOR_lshrv2si3, "__builtin_lshrv2si3", SH_BLTIN_SH_SI, 0 }, + { CODE_FOR_lshrv4hi3, "__builtin_lshrv4hi3", SH_BLTIN_SH_HI, 0 }, + { CODE_FOR_subv2si3, "__builtin_subv2si3", SH_BLTIN_V2SI3, 0 }, + { CODE_FOR_subv4hi3, "__builtin_subv4hi3", SH_BLTIN_V4HI3, 0 }, + { CODE_FOR_sssubv2si3,"__builtin_sssubv2si3", SH_BLTIN_V2SI3, 0 }, + { CODE_FOR_ussubv8qi3,"__builtin_ussubv8qi3", SH_BLTIN_V8QI3, 0 }, + { CODE_FOR_sssubv4hi3,"__builtin_sssubv4hi3", SH_BLTIN_V4HI3, 0 }, + { CODE_FOR_fcosa_s, "__builtin_sh_media_FCOSA_S", SH_BLTIN_SISF, 0 }, + { CODE_FOR_fsina_s, "__builtin_sh_media_FSINA_S", SH_BLTIN_SISF, 0 }, + { CODE_FOR_fipr, "__builtin_sh_media_FIPR_S", SH_BLTIN_3, 0 }, + { CODE_FOR_ftrv, "__builtin_sh_media_FTRV_S", SH_BLTIN_3, 0 }, + { CODE_FOR_mac_media, "__builtin_sh_media_FMAC_S", SH_BLTIN_3, 0 }, + { CODE_FOR_sqrtdf2, "__builtin_sh_media_FSQRT_D", SH_BLTIN_2, 0 }, + { CODE_FOR_sqrtsf2, "__builtin_sh_media_FSQRT_S", SH_BLTIN_2, 0 }, + { CODE_FOR_fsrra_s, "__builtin_sh_media_FSRRA_S", SH_BLTIN_2, 0 }, + { CODE_FOR_ldhi_l, "__builtin_sh_media_LDHI_L", SH_BLTIN_LDUA_L, 0 }, + { CODE_FOR_ldhi_q, "__builtin_sh_media_LDHI_Q", SH_BLTIN_LDUA_Q, 0 }, + { CODE_FOR_ldlo_l, "__builtin_sh_media_LDLO_L", SH_BLTIN_LDUA_L, 0 }, + { CODE_FOR_ldlo_q, "__builtin_sh_media_LDLO_Q", SH_BLTIN_LDUA_Q, 0 }, + { CODE_FOR_sthi_l, "__builtin_sh_media_STHI_L", SH_BLTIN_STUA_L, 0 }, + { CODE_FOR_sthi_q, "__builtin_sh_media_STHI_Q", SH_BLTIN_STUA_Q, 0 }, + { CODE_FOR_stlo_l, "__builtin_sh_media_STLO_L", SH_BLTIN_STUA_L, 0 }, + { CODE_FOR_stlo_q, "__builtin_sh_media_STLO_Q", SH_BLTIN_STUA_Q, 0 }, + { CODE_FOR_ldhi_l64, "__builtin_sh_media_LDHI_L", SH_BLTIN_LDUA_L64, 0 }, + { CODE_FOR_ldhi_q64, "__builtin_sh_media_LDHI_Q", SH_BLTIN_LDUA_Q64, 0 }, + { CODE_FOR_ldlo_l64, "__builtin_sh_media_LDLO_L", SH_BLTIN_LDUA_L64, 0 }, + { CODE_FOR_ldlo_q64, "__builtin_sh_media_LDLO_Q", SH_BLTIN_LDUA_Q64, 0 }, + { CODE_FOR_sthi_l64, "__builtin_sh_media_STHI_L", SH_BLTIN_STUA_L64, 0 }, + { CODE_FOR_sthi_q64, "__builtin_sh_media_STHI_Q", SH_BLTIN_STUA_Q64, 0 }, + { CODE_FOR_stlo_l64, "__builtin_sh_media_STLO_L", SH_BLTIN_STUA_L64, 0 }, + { CODE_FOR_stlo_q64, "__builtin_sh_media_STLO_Q", SH_BLTIN_STUA_Q64, 0 }, + { CODE_FOR_nsb, "__builtin_sh_media_NSB", SH_BLTIN_SU, 0 }, + { CODE_FOR_byterev, "__builtin_sh_media_BYTEREV", SH_BLTIN_2, 0 }, + { CODE_FOR_prefetch, "__builtin_sh_media_PREFO", SH_BLTIN_PSSV, 0 }, +}; + +static void +sh_media_init_builtins (void) +{ + tree shared[SH_BLTIN_NUM_SHARED_SIGNATURES]; + struct builtin_description *d; + + memset (shared, 0, sizeof shared); + for (d = bdesc; d - bdesc < (int) ARRAY_SIZE (bdesc); d++) + { + tree type, arg_type = 0; + int signature = d->signature; + int i; + + if (signature < SH_BLTIN_NUM_SHARED_SIGNATURES && shared[signature]) + type = shared[signature]; + else + { + int has_result = signature_args[signature][0] != 0; + + if ((signature_args[signature][1] & 8) + && (((signature_args[signature][1] & 1) && TARGET_SHMEDIA32) + || ((signature_args[signature][1] & 2) && TARGET_SHMEDIA64))) + continue; + if (! TARGET_FPU_ANY + && FLOAT_MODE_P (insn_data[d->icode].operand[0].mode)) + continue; + type = void_list_node; + for (i = 3; ; i--) + { + int arg = signature_args[signature][i]; + int opno = i - 1 + has_result; + + if (arg & 8) + arg_type = ptr_type_node; + else if (arg) + arg_type = (*lang_hooks.types.type_for_mode) + (insn_data[d->icode].operand[opno].mode, + (arg & 1)); + else if (i) + continue; + else + arg_type = void_type_node; + if (i == 0) + break; + type = tree_cons (NULL_TREE, arg_type, type); + } + type = build_function_type (arg_type, type); + if (signature < SH_BLTIN_NUM_SHARED_SIGNATURES) + shared[signature] = type; + } + d->fndecl = + add_builtin_function (d->name, type, d - bdesc, BUILT_IN_MD, + NULL, NULL_TREE); + } +} + +/* Returns the shmedia builtin decl for CODE. */ + +static tree +sh_media_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED) +{ + if (code >= ARRAY_SIZE (bdesc)) + return error_mark_node; + + return bdesc[code].fndecl; +} + +/* Implements target hook vector_mode_supported_p. */ +bool +sh_vector_mode_supported_p (enum machine_mode mode) +{ + if (TARGET_FPU_ANY + && ((mode == V2SFmode) + || (mode == V4SFmode) + || (mode == V16SFmode))) + return true; + + else if (TARGET_SHMEDIA + && ((mode == V8QImode) + || (mode == V2HImode) + || (mode == V4HImode) + || (mode == V2SImode))) + return true; + + return false; +} + +bool +sh_frame_pointer_required (void) +{ +/* If needed override this in other tm.h files to cope with various OS + lossage requiring a frame pointer. */ + if (SUBTARGET_FRAME_POINTER_REQUIRED) + return true; + + if (crtl->profile) + return true; + + return false; +} + +/* Implements target hook dwarf_calling_convention. Return an enum + of dwarf_calling_convention. */ +int +sh_dwarf_calling_convention (const_tree func) +{ + if (sh_attr_renesas_p (func)) + return DW_CC_GNU_renesas_sh; + + return DW_CC_normal; +} + +static void +sh_init_builtins (void) +{ + if (TARGET_SHMEDIA) + sh_media_init_builtins (); +} + +/* Returns the sh builtin decl for CODE. */ + +static tree +sh_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED) +{ + if (TARGET_SHMEDIA) + return sh_media_builtin_decl (code, initialize_p); + + return error_mark_node; +} + +/* Expand an expression EXP that calls a built-in function, + with result going to TARGET if that's convenient + (and in mode MODE if that's convenient). + SUBTARGET may be used as the target for computing one of EXP's operands. + IGNORE is nonzero if the value is to be ignored. */ + +static rtx +sh_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED, + enum machine_mode mode ATTRIBUTE_UNUSED, int ignore) +{ + tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); + unsigned int fcode = DECL_FUNCTION_CODE (fndecl); + const struct builtin_description *d = &bdesc[fcode]; + enum insn_code icode = d->icode; + int signature = d->signature; + enum machine_mode tmode = VOIDmode; + int nop = 0, i; + rtx op[4]; + rtx pat = 0; + + if (signature_args[signature][0]) + { + if (ignore) + return 0; + + tmode = insn_data[icode].operand[0].mode; + if (! target + || GET_MODE (target) != tmode + || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) + target = gen_reg_rtx (tmode); + op[nop++] = target; + } + else + target = 0; + + for (i = 1; i <= 3; i++, nop++) + { + tree arg; + enum machine_mode opmode, argmode; + tree optype; + + if (! signature_args[signature][i]) + break; + arg = CALL_EXPR_ARG (exp, i - 1); + if (arg == error_mark_node) + return const0_rtx; + if (signature_args[signature][i] & 8) + { + opmode = ptr_mode; + optype = ptr_type_node; + } + else + { + opmode = insn_data[icode].operand[nop].mode; + optype = (*lang_hooks.types.type_for_mode) (opmode, 0); + } + argmode = TYPE_MODE (TREE_TYPE (arg)); + if (argmode != opmode) + arg = build1 (NOP_EXPR, optype, arg); + op[nop] = expand_expr (arg, NULL_RTX, opmode, EXPAND_NORMAL); + if (! (*insn_data[icode].operand[nop].predicate) (op[nop], opmode)) + op[nop] = copy_to_mode_reg (opmode, op[nop]); + } + + switch (nop) + { + case 1: + pat = (*insn_data[d->icode].genfun) (op[0]); + break; + case 2: + pat = (*insn_data[d->icode].genfun) (op[0], op[1]); + break; + case 3: + pat = (*insn_data[d->icode].genfun) (op[0], op[1], op[2]); + break; + case 4: + pat = (*insn_data[d->icode].genfun) (op[0], op[1], op[2], op[3]); + break; + default: + gcc_unreachable (); + } + if (! pat) + return 0; + emit_insn (pat); + return target; +} + +void +sh_expand_unop_v2sf (enum rtx_code code, rtx op0, rtx op1) +{ + rtx sel0 = const0_rtx; + rtx sel1 = const1_rtx; + rtx (*fn) (rtx, rtx, rtx, rtx, rtx) = gen_unary_sf_op; + rtx op = gen_rtx_fmt_e (code, SFmode, op1); + + emit_insn ((*fn) (op0, op1, op, sel0, sel0)); + emit_insn ((*fn) (op0, op1, op, sel1, sel1)); +} + +void +sh_expand_binop_v2sf (enum rtx_code code, rtx op0, rtx op1, rtx op2) +{ + rtx op = gen_rtx_fmt_ee (code, SFmode, op1, op2); + + emit_insn (gen_binary_sf_op0 (op0, op1, op2, op)); + emit_insn (gen_binary_sf_op1 (op0, op1, op2, op)); +} + +/* Return true if hard register REGNO can hold a value of machine-mode MODE. + We can allow any mode in any general register. The special registers + only allow SImode. Don't allow any mode in the PR. + + We cannot hold DCmode values in the XD registers because alter_reg + handles subregs of them incorrectly. We could work around this by + spacing the XD registers like the DR registers, but this would require + additional memory in every compilation to hold larger register vectors. + We could hold SFmode / SCmode values in XD registers, but that + would require a tertiary reload when reloading from / to memory, + and a secondary reload to reload from / to general regs; that + seems to be a loosing proposition. + + We want to allow TImode FP regs so that when V4SFmode is loaded as TImode, + it won't be ferried through GP registers first. */ + +bool +sh_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode) +{ + if (SPECIAL_REGISTER_P (regno)) + return mode == SImode; + + if (regno == FPUL_REG) + return (mode == SImode || mode == SFmode); + + if (FP_REGISTER_P (regno) && mode == SFmode) + return true; + + if (mode == V2SFmode) + { + if (((FP_REGISTER_P (regno) && (regno - FIRST_FP_REG) % 2 == 0) + || GENERAL_REGISTER_P (regno))) + return true; + else + return false; + } + + if (mode == V4SFmode) + { + if ((FP_REGISTER_P (regno) && (regno - FIRST_FP_REG) % 4 == 0) + || GENERAL_REGISTER_P (regno)) + return true; + else + return false; + } + + if (mode == V16SFmode) + { + if (TARGET_SHMEDIA) + { + if (FP_REGISTER_P (regno) && (regno - FIRST_FP_REG) % 16 == 0) + return true; + else + return false; + } + else + return regno == FIRST_XD_REG; + } + + if (FP_REGISTER_P (regno)) + { + if (mode == SFmode + || mode == SImode + || ((TARGET_SH2E || TARGET_SHMEDIA) && mode == SCmode) + || ((((TARGET_SH4 || TARGET_SH2A_DOUBLE) && mode == DFmode) + || mode == DCmode + || (TARGET_SHMEDIA + && (mode == DFmode || mode == DImode + || mode == V2SFmode || mode == TImode))) + && ((regno - FIRST_FP_REG) & 1) == 0) + || ((TARGET_SH4 || TARGET_SHMEDIA) && mode == TImode + && ((regno - FIRST_FP_REG) & 3) == 0)) + return true; + else + return false; + } + + if (XD_REGISTER_P (regno)) + return mode == DFmode; + + if (TARGET_REGISTER_P (regno)) + return (mode == DImode || mode == SImode || mode == PDImode); + + if (regno == PR_REG) + return mode == SImode; + + if (regno == FPSCR_REG) + return mode == PSImode; + + /* FIXME. This works around PR target/37633 for -O0. */ + if (!optimize && TARGET_SHMEDIA32 && GET_MODE_SIZE (mode) > 4) + { + unsigned int n = GET_MODE_SIZE (mode) / 8; + + if (regno >= FIRST_GENERAL_REG + 10 - n + 1 + && regno <= FIRST_GENERAL_REG + 14) + return false; + } + + return true; +} + +/* Return the class of registers for which a mode change from FROM to TO + is invalid. */ +bool +sh_cannot_change_mode_class (enum machine_mode from, enum machine_mode to, + enum reg_class rclass) +{ + /* We want to enable the use of SUBREGs as a means to + VEC_SELECT a single element of a vector. */ + if (to == SFmode && VECTOR_MODE_P (from) && GET_MODE_INNER (from) == SFmode) + return (reg_classes_intersect_p (GENERAL_REGS, rclass)); + + if (GET_MODE_SIZE (from) != GET_MODE_SIZE (to)) + { + if (TARGET_LITTLE_ENDIAN) + { + if (GET_MODE_SIZE (to) < 8 || GET_MODE_SIZE (from) < 8) + return reg_classes_intersect_p (DF_REGS, rclass); + } + else + { + if (GET_MODE_SIZE (from) < 8) + return reg_classes_intersect_p (DF_HI_REGS, rclass); + } + } + return 0; +} + +/* Return true if registers in machine mode MODE will likely be + allocated to registers in small register classes. */ + +bool +sh_small_register_classes_for_mode_p (enum machine_mode mode ATTRIBUTE_UNUSED) +{ + return (! TARGET_SHMEDIA); +} + +/* If ADDRESS refers to a CODE_LABEL, add NUSES to the number of times + that label is used. */ + +void +sh_mark_label (rtx address, int nuses) +{ + if (GOTOFF_P (address)) + { + /* Extract the label or symbol. */ + address = XEXP (address, 0); + if (GET_CODE (address) == PLUS) + address = XEXP (address, 0); + address = XVECEXP (address, 0, 0); + } + if (GET_CODE (address) == LABEL_REF + && LABEL_P (XEXP (address, 0))) + LABEL_NUSES (XEXP (address, 0)) += nuses; +} + +/* Compute extra cost of moving data between one register class + and another. */ + +/* If SECONDARY*_RELOAD_CLASS says something about the src/dst pair, regclass + uses this information. Hence, the general register <-> floating point + register information here is not used for SFmode. */ + +static int +sh_register_move_cost (enum machine_mode mode, + reg_class_t srcclass, reg_class_t dstclass) +{ + if (dstclass == T_REGS || dstclass == PR_REGS) + return 10; + + if (dstclass == MAC_REGS && srcclass == MAC_REGS) + return 4; + + if (mode == SImode && ! TARGET_SHMEDIA && TARGET_FMOVD + && REGCLASS_HAS_FP_REG (srcclass) + && REGCLASS_HAS_FP_REG (dstclass)) + return 4; + + if (REGCLASS_HAS_FP_REG (dstclass) && srcclass == T_REGS) + return ((TARGET_HARD_SH4 && !optimize_size) ? 10 : 7); + + if ((REGCLASS_HAS_FP_REG (dstclass) && srcclass == MAC_REGS) + || (dstclass == MAC_REGS && REGCLASS_HAS_FP_REG (srcclass))) + return 9; + + if ((REGCLASS_HAS_FP_REG (dstclass) + && REGCLASS_HAS_GENERAL_REG (srcclass)) + || (REGCLASS_HAS_GENERAL_REG (dstclass) + && REGCLASS_HAS_FP_REG (srcclass))) + return ((TARGET_SHMEDIA ? 4 : TARGET_FMOVD ? 8 : 12) + * ((GET_MODE_SIZE (mode) + 7) / 8U)); + + if ((dstclass == FPUL_REGS + && REGCLASS_HAS_GENERAL_REG (srcclass)) + || (srcclass == FPUL_REGS + && REGCLASS_HAS_GENERAL_REG (dstclass))) + return 5; + + if ((dstclass == FPUL_REGS + && (srcclass == PR_REGS || srcclass == MAC_REGS || srcclass == T_REGS)) + || (srcclass == FPUL_REGS + && (dstclass == PR_REGS || dstclass == MAC_REGS))) + return 7; + + if ((srcclass == TARGET_REGS && ! REGCLASS_HAS_GENERAL_REG (dstclass)) + || ((dstclass) == TARGET_REGS && ! REGCLASS_HAS_GENERAL_REG (srcclass))) + return 20; + + /* ??? ptabs faults on (value & 0x3) == 0x3 */ + if (TARGET_SHMEDIA + && ((srcclass) == TARGET_REGS || (srcclass) == SIBCALL_REGS)) + { + if (sh_gettrcost >= 0) + return sh_gettrcost; + else if (!TARGET_PT_FIXED) + return 100; + } + + if ((srcclass == FPSCR_REGS && ! REGCLASS_HAS_GENERAL_REG (dstclass)) + || (dstclass == FPSCR_REGS && ! REGCLASS_HAS_GENERAL_REG (srcclass))) + return 4; + + if (TARGET_SHMEDIA + || (TARGET_FMOVD + && ! REGCLASS_HAS_GENERAL_REG (srcclass) + && ! REGCLASS_HAS_GENERAL_REG (dstclass))) + return 2 * ((GET_MODE_SIZE (mode) + 7) / 8U); + + return 2 * ((GET_MODE_SIZE (mode) + 3) / 4U); +} + +static rtx emit_load_ptr (rtx, rtx); + +static rtx +emit_load_ptr (rtx reg, rtx addr) +{ + rtx mem = gen_const_mem (ptr_mode, addr); + + if (Pmode != ptr_mode) + mem = gen_rtx_SIGN_EXTEND (Pmode, mem); + return emit_move_insn (reg, mem); +} + +static void +sh_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED, + HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, + tree function) +{ + CUMULATIVE_ARGS cum; + int structure_value_byref = 0; + rtx this_rtx, this_value, sibcall, insns, funexp; + tree funtype = TREE_TYPE (function); + int simple_add = CONST_OK_FOR_ADD (delta); + int did_load = 0; + rtx scratch0, scratch1, scratch2; + unsigned i; + + reload_completed = 1; + epilogue_completed = 1; + current_function_uses_only_leaf_regs = 1; + + emit_note (NOTE_INSN_PROLOGUE_END); + + /* Find the "this" pointer. We have such a wide range of ABIs for the + SH that it's best to do this completely machine independently. + "this" is passed as first argument, unless a structure return pointer + comes first, in which case "this" comes second. */ + INIT_CUMULATIVE_ARGS (cum, funtype, NULL_RTX, 0, 1); +#ifndef PCC_STATIC_STRUCT_RETURN + if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)) + structure_value_byref = 1; +#endif /* not PCC_STATIC_STRUCT_RETURN */ + if (structure_value_byref && sh_struct_value_rtx (function, 0) == 0) + { + tree ptype = build_pointer_type (TREE_TYPE (funtype)); + + sh_function_arg_advance (&cum, Pmode, ptype, true); + } + this_rtx = sh_function_arg (&cum, Pmode, ptr_type_node, true); + + /* For SHcompact, we only have r0 for a scratch register: r1 is the + static chain pointer (even if you can't have nested virtual functions + right now, someone might implement them sometime), and the rest of the + registers are used for argument passing, are callee-saved, or reserved. */ + /* We need to check call_used_regs / fixed_regs in case -fcall_saved-reg / + -ffixed-reg has been used. */ + if (! call_used_regs[0] || fixed_regs[0]) + error ("r0 needs to be available as a call-clobbered register"); + scratch0 = scratch1 = scratch2 = gen_rtx_REG (Pmode, 0); + if (! TARGET_SH5) + { + if (call_used_regs[1] && ! fixed_regs[1]) + scratch1 = gen_rtx_REG (ptr_mode, 1); + /* N.B., if not TARGET_HITACHI, register 2 is used to pass the pointer + pointing where to return struct values. */ + if (call_used_regs[3] && ! fixed_regs[3]) + scratch2 = gen_rtx_REG (Pmode, 3); + } + else if (TARGET_SHMEDIA) + { + for (i = FIRST_GENERAL_REG; i <= LAST_GENERAL_REG; i++) + if (i != REGNO (scratch0) && + call_used_regs[i] && ! fixed_regs[i] && ! FUNCTION_ARG_REGNO_P (i)) + { + scratch1 = gen_rtx_REG (ptr_mode, i); + break; + } + if (scratch1 == scratch0) + error ("need a second call-clobbered general purpose register"); + for (i = FIRST_TARGET_REG; i <= LAST_TARGET_REG; i++) + if (call_used_regs[i] && ! fixed_regs[i]) + { + scratch2 = gen_rtx_REG (Pmode, i); + break; + } + if (scratch2 == scratch0) + error ("need a call-clobbered target register"); + } + + this_value = plus_constant (this_rtx, delta); + if (vcall_offset + && (simple_add || scratch0 != scratch1) + && strict_memory_address_p (ptr_mode, this_value)) + { + emit_load_ptr (scratch0, this_value); + did_load = 1; + } + + if (!delta) + ; /* Do nothing. */ + else if (simple_add) + emit_move_insn (this_rtx, this_value); + else + { + emit_move_insn (scratch1, GEN_INT (delta)); + emit_insn (gen_add2_insn (this_rtx, scratch1)); + } + + if (vcall_offset) + { + rtx offset_addr; + + if (!did_load) + emit_load_ptr (scratch0, this_rtx); + + offset_addr = plus_constant (scratch0, vcall_offset); + if (strict_memory_address_p (ptr_mode, offset_addr)) + ; /* Do nothing. */ + else if (! TARGET_SH5 && scratch0 != scratch1) + { + /* scratch0 != scratch1, and we have indexed loads. Get better + schedule by loading the offset into r1 and using an indexed + load - then the load of r1 can issue before the load from + (this_rtx + delta) finishes. */ + emit_move_insn (scratch1, GEN_INT (vcall_offset)); + offset_addr = gen_rtx_PLUS (Pmode, scratch0, scratch1); + } + else if (CONST_OK_FOR_ADD (vcall_offset)) + { + emit_insn (gen_add2_insn (scratch0, GEN_INT (vcall_offset))); + offset_addr = scratch0; + } + else if (scratch0 != scratch1) + { + emit_move_insn (scratch1, GEN_INT (vcall_offset)); + emit_insn (gen_add2_insn (scratch0, scratch1)); + offset_addr = scratch0; + } + else + gcc_unreachable (); /* FIXME */ + emit_load_ptr (scratch0, offset_addr); + + if (Pmode != ptr_mode) + scratch0 = gen_rtx_TRUNCATE (ptr_mode, scratch0); + emit_insn (gen_add2_insn (this_rtx, scratch0)); + } + + /* Generate a tail call to the target function. */ + if (! TREE_USED (function)) + { + assemble_external (function); + TREE_USED (function) = 1; + } + funexp = XEXP (DECL_RTL (function), 0); + /* If the function is overridden, so is the thunk, hence we don't + need GOT addressing even if this is a public symbol. */ +#if 0 + if (TARGET_SH1 && ! flag_weak) + sibcall = gen_sibcalli_thunk (funexp, const0_rtx); + else +#endif + if (TARGET_SH2 && flag_pic) + { + sibcall = gen_sibcall_pcrel (funexp, const0_rtx); + XEXP (XVECEXP (sibcall, 0, 2), 0) = scratch2; + } + else + { + if (TARGET_SHMEDIA && flag_pic) + { + funexp = gen_sym2PIC (funexp); + PUT_MODE (funexp, Pmode); + } + emit_move_insn (scratch2, funexp); + funexp = gen_rtx_MEM (FUNCTION_MODE, scratch2); + sibcall = gen_sibcall (funexp, const0_rtx, NULL_RTX); + } + sibcall = emit_call_insn (sibcall); + SIBLING_CALL_P (sibcall) = 1; + use_reg (&CALL_INSN_FUNCTION_USAGE (sibcall), this_rtx); + emit_barrier (); + + /* Run just enough of rest_of_compilation to do scheduling and get + the insns emitted. Note that use_thunk calls + assemble_start_function and assemble_end_function. */ + + insn_locators_alloc (); + insns = get_insns (); + + if (optimize > 0) + { + if (! cfun->cfg) + init_flow (cfun); + split_all_insns_noflow (); + } + + sh_reorg (); + + if (optimize > 0 && flag_delayed_branch) + dbr_schedule (insns); + + shorten_branches (insns); + final_start_function (insns, file, 1); + final (insns, file, 1); + final_end_function (); + + reload_completed = 0; + epilogue_completed = 0; +} + +rtx +function_symbol (rtx target, const char *name, enum sh_function_kind kind) +{ + rtx sym; + + /* If this is not an ordinary function, the name usually comes from a + string literal or an sprintf buffer. Make sure we use the same + string consistently, so that cse will be able to unify address loads. */ + if (kind != FUNCTION_ORDINARY) + name = IDENTIFIER_POINTER (get_identifier (name)); + sym = gen_rtx_SYMBOL_REF (Pmode, name); + SYMBOL_REF_FLAGS (sym) = SYMBOL_FLAG_FUNCTION; + if (flag_pic) + switch (kind) + { + case FUNCTION_ORDINARY: + break; + case SFUNC_GOT: + { + rtx reg = target ? target : gen_reg_rtx (Pmode); + + emit_insn (gen_symGOT2reg (reg, sym)); + sym = reg; + break; + } + case SFUNC_STATIC: + { + /* ??? To allow cse to work, we use GOTOFF relocations. + we could add combiner patterns to transform this into + straight pc-relative calls with sym2PIC / bsrf when + label load and function call are still 1:1 and in the + same basic block during combine. */ + rtx reg = target ? target : gen_reg_rtx (Pmode); + + emit_insn (gen_symGOTOFF2reg (reg, sym)); + sym = reg; + break; + } + } + if (target && sym != target) + { + emit_move_insn (target, sym); + return target; + } + return sym; +} + +/* Find the number of a general purpose register in S. */ +static int +scavenge_reg (HARD_REG_SET *s) +{ + int r; + for (r = FIRST_GENERAL_REG; r <= LAST_GENERAL_REG; r++) + if (TEST_HARD_REG_BIT (*s, r)) + return r; + return -1; +} + +rtx +sh_get_pr_initial_val (void) +{ + rtx val; + + /* ??? Unfortunately, get_hard_reg_initial_val doesn't always work for the + PR register on SHcompact, because it might be clobbered by the prologue. + We check first if that is known to be the case. */ + if (TARGET_SHCOMPACT + && ((crtl->args.info.call_cookie + & ~ CALL_COOKIE_RET_TRAMP (1)) + || crtl->saves_all_registers)) + return gen_frame_mem (SImode, return_address_pointer_rtx); + + /* If we haven't finished rtl generation, there might be a nonlocal label + that we haven't seen yet. + ??? get_hard_reg_initial_val fails if it is called after register + allocation has started, unless it has been called before for the + same register. And even then, we end in trouble if we didn't use + the register in the same basic block before. So call + get_hard_reg_initial_val now and wrap it in an unspec if we might + need to replace it. */ + /* ??? We also must do this for TARGET_SH1 in general, because otherwise + combine can put the pseudo returned by get_hard_reg_initial_val into + instructions that need a general purpose registers, which will fail to + be recognized when the pseudo becomes allocated to PR. */ + val + = get_hard_reg_initial_val (Pmode, TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG); + if (TARGET_SH1) + return gen_rtx_UNSPEC (SImode, gen_rtvec (1, val), UNSPEC_RA); + return val; +} + +int +sh_expand_t_scc (rtx operands[]) +{ + enum rtx_code code = GET_CODE (operands[1]); + rtx target = operands[0]; + rtx op0 = operands[2]; + rtx op1 = operands[3]; + rtx result = target; + HOST_WIDE_INT val; + + if (!REG_P (op0) || REGNO (op0) != T_REG + || !CONST_INT_P (op1)) + return 0; + if (!REG_P (result)) + result = gen_reg_rtx (SImode); + val = INTVAL (op1); + if ((code == EQ && val == 1) || (code == NE && val == 0)) + emit_insn (gen_movt (result)); + else if (TARGET_SH2A && ((code == EQ && val == 0) + || (code == NE && val == 1))) + emit_insn (gen_xorsi3_movrt (result)); + else if ((code == EQ && val == 0) || (code == NE && val == 1)) + { + emit_clobber (result); + emit_insn (gen_subc (result, result, result)); + emit_insn (gen_addsi3 (result, result, const1_rtx)); + } + else if (code == EQ || code == NE) + emit_insn (gen_move_insn (result, GEN_INT (code == NE))); + else + return 0; + if (result != target) + emit_move_insn (target, result); + return 1; +} + +/* INSN is an sfunc; return the rtx that describes the address used. */ +static rtx +extract_sfunc_addr (rtx insn) +{ + rtx pattern, part = NULL_RTX; + int len, i; + + pattern = PATTERN (insn); + len = XVECLEN (pattern, 0); + for (i = 0; i < len; i++) + { + part = XVECEXP (pattern, 0, i); + if (GET_CODE (part) == USE && GET_MODE (XEXP (part, 0)) == Pmode + && GENERAL_REGISTER_P (true_regnum (XEXP (part, 0)))) + return XEXP (part, 0); + } + gcc_assert (GET_CODE (XVECEXP (pattern, 0, 0)) == UNSPEC_VOLATILE); + return XVECEXP (XVECEXP (pattern, 0, 0), 0, 1); +} + +/* Verify that the register in use_sfunc_addr still agrees with the address + used in the sfunc. This prevents fill_slots_from_thread from changing + use_sfunc_addr. + INSN is the use_sfunc_addr instruction, and REG is the register it + guards. */ +int +check_use_sfunc_addr (rtx insn, rtx reg) +{ + /* Search for the sfunc. It should really come right after INSN. */ + while ((insn = NEXT_INSN (insn))) + { + if (LABEL_P (insn) || JUMP_P (insn)) + break; + if (! INSN_P (insn)) + continue; + + if (GET_CODE (PATTERN (insn)) == SEQUENCE) + insn = XVECEXP (PATTERN (insn), 0, 0); + if (GET_CODE (PATTERN (insn)) != PARALLEL + || get_attr_type (insn) != TYPE_SFUNC) + continue; + return rtx_equal_p (extract_sfunc_addr (insn), reg); + } + gcc_unreachable (); +} + +/* This function returns a constant rtx that represents pi / 2**15 in + SFmode. it's used to scale SFmode angles, in radians, to a + fixed-point signed 16.16-bit fraction of a full circle, i.e., 2*pi + maps to 0x10000). */ + +static GTY(()) rtx sh_fsca_sf2int_rtx; + +rtx +sh_fsca_sf2int (void) +{ + if (! sh_fsca_sf2int_rtx) + { + REAL_VALUE_TYPE rv; + + real_from_string (&rv, "10430.378350470453"); + sh_fsca_sf2int_rtx = const_double_from_real_value (rv, SFmode); + } + + return sh_fsca_sf2int_rtx; +} + +/* This function returns a constant rtx that represents pi / 2**15 in + DFmode. it's used to scale DFmode angles, in radians, to a + fixed-point signed 16.16-bit fraction of a full circle, i.e., 2*pi + maps to 0x10000). */ + +static GTY(()) rtx sh_fsca_df2int_rtx; + +rtx +sh_fsca_df2int (void) +{ + if (! sh_fsca_df2int_rtx) + { + REAL_VALUE_TYPE rv; + + real_from_string (&rv, "10430.378350470453"); + sh_fsca_df2int_rtx = const_double_from_real_value (rv, DFmode); + } + + return sh_fsca_df2int_rtx; +} + +/* This function returns a constant rtx that represents 2**15 / pi in + SFmode. it's used to scale a fixed-point signed 16.16-bit fraction + of a full circle back to a SFmode value, i.e., 0x10000 maps to + 2*pi). */ + +static GTY(()) rtx sh_fsca_int2sf_rtx; + +rtx +sh_fsca_int2sf (void) +{ + if (! sh_fsca_int2sf_rtx) + { + REAL_VALUE_TYPE rv; + + real_from_string (&rv, "9.587379924285257e-5"); + sh_fsca_int2sf_rtx = const_double_from_real_value (rv, SFmode); + } + + return sh_fsca_int2sf_rtx; +} + +/* Initialize the CUMULATIVE_ARGS structure. */ + +void +sh_init_cumulative_args (CUMULATIVE_ARGS * pcum, + tree fntype, + rtx libname ATTRIBUTE_UNUSED, + tree fndecl, + signed int n_named_args, + enum machine_mode mode) +{ + pcum->arg_count [(int) SH_ARG_FLOAT] = 0; + pcum->free_single_fp_reg = 0; + pcum->stack_regs = 0; + pcum->byref_regs = 0; + pcum->byref = 0; + pcum->outgoing = (n_named_args == -1) ? 0 : 1; + + /* XXX - Should we check TARGET_HITACHI here ??? */ + pcum->renesas_abi = sh_attr_renesas_p (fntype) ? 1 : 0; + + if (fntype) + { + pcum->force_mem = ((TARGET_HITACHI || pcum->renesas_abi) + && aggregate_value_p (TREE_TYPE (fntype), fndecl)); + pcum->prototype_p = prototype_p (fntype); + pcum->arg_count [(int) SH_ARG_INT] + = TARGET_SH5 && aggregate_value_p (TREE_TYPE (fntype), fndecl); + + pcum->call_cookie + = CALL_COOKIE_RET_TRAMP (TARGET_SHCOMPACT + && pcum->arg_count [(int) SH_ARG_INT] == 0 + && (TYPE_MODE (TREE_TYPE (fntype)) == BLKmode + ? int_size_in_bytes (TREE_TYPE (fntype)) + : GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (fntype)))) > 4 + && (BASE_RETURN_VALUE_REG (TYPE_MODE (TREE_TYPE (fntype))) + == FIRST_RET_REG)); + } + else + { + pcum->arg_count [(int) SH_ARG_INT] = 0; + pcum->prototype_p = FALSE; + if (mode != VOIDmode) + { + pcum->call_cookie = + CALL_COOKIE_RET_TRAMP (TARGET_SHCOMPACT + && GET_MODE_SIZE (mode) > 4 + && BASE_RETURN_VALUE_REG (mode) == FIRST_RET_REG); + + /* If the default ABI is the Renesas ABI then all library + calls must assume that the library will be using the + Renesas ABI. So if the function would return its result + in memory then we must force the address of this memory + block onto the stack. Ideally we would like to call + targetm.calls.return_in_memory() here but we do not have + the TYPE or the FNDECL available so we synthesize the + contents of that function as best we can. */ + pcum->force_mem = + (TARGET_DEFAULT & MASK_HITACHI) + && (mode == BLKmode + || (GET_MODE_SIZE (mode) > 4 + && !(mode == DFmode + && TARGET_FPU_DOUBLE))); + } + else + { + pcum->call_cookie = 0; + pcum->force_mem = FALSE; + } + } +} + +/* Replace any occurrence of FROM(n) in X with TO(n). The function does + not enter into CONST_DOUBLE for the replace. + + Note that copying is not done so X must not be shared unless all copies + are to be modified. + + This is like replace_rtx, except that we operate on N_REPLACEMENTS + replacements simultaneously - FROM(n) is replacements[n*2] and to(n) is + replacements[n*2+1] - and that we take mode changes into account. + + If a replacement is ambiguous, return NULL_RTX. + + If MODIFY is zero, don't modify any rtl in place, + just return zero or nonzero for failure / success. */ + +rtx +replace_n_hard_rtx (rtx x, rtx *replacements, int n_replacements, int modify) +{ + int i, j; + const char *fmt; + + /* The following prevents loops occurrence when we change MEM in + CONST_DOUBLE onto the same CONST_DOUBLE. */ + if (x != 0 && GET_CODE (x) == CONST_DOUBLE) + return x; + + for (i = n_replacements - 1; i >= 0 ; i--) + if (x == replacements[i*2] && GET_MODE (x) == GET_MODE (replacements[i*2+1])) + return replacements[i*2+1]; + + /* Allow this function to make replacements in EXPR_LISTs. */ + if (x == 0) + return 0; + + if (GET_CODE (x) == SUBREG) + { + rtx new_rtx = replace_n_hard_rtx (SUBREG_REG (x), replacements, + n_replacements, modify); + + if (CONST_INT_P (new_rtx)) + { + x = simplify_subreg (GET_MODE (x), new_rtx, + GET_MODE (SUBREG_REG (x)), + SUBREG_BYTE (x)); + if (! x) + abort (); + } + else if (modify) + SUBREG_REG (x) = new_rtx; + + return x; + } + else if (REG_P (x)) + { + unsigned regno = REGNO (x); + unsigned nregs = (regno < FIRST_PSEUDO_REGISTER + ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1); + rtx result = NULL_RTX; + + for (i = n_replacements - 1; i >= 0; i--) + { + rtx from = replacements[i*2]; + rtx to = replacements[i*2+1]; + unsigned from_regno, from_nregs, to_regno, new_regno; + + if (!REG_P (from)) + continue; + from_regno = REGNO (from); + from_nregs = (from_regno < FIRST_PSEUDO_REGISTER + ? HARD_REGNO_NREGS (from_regno, GET_MODE (from)) : 1); + if (regno < from_regno + from_nregs && regno + nregs > from_regno) + { + if (regno < from_regno + || regno + nregs > from_regno + nregs + || !REG_P (to) + || result) + return NULL_RTX; + to_regno = REGNO (to); + if (to_regno < FIRST_PSEUDO_REGISTER) + { + new_regno = regno + to_regno - from_regno; + if ((unsigned) HARD_REGNO_NREGS (new_regno, GET_MODE (x)) + != nregs) + return NULL_RTX; + result = gen_rtx_REG (GET_MODE (x), new_regno); + } + else if (GET_MODE (x) <= GET_MODE (to)) + result = gen_lowpart_common (GET_MODE (x), to); + else + result = gen_lowpart_SUBREG (GET_MODE (x), to); + } + } + return result ? result : x; + } + else if (GET_CODE (x) == ZERO_EXTEND) + { + rtx new_rtx = replace_n_hard_rtx (XEXP (x, 0), replacements, + n_replacements, modify); + + if (CONST_INT_P (new_rtx)) + { + x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x), + new_rtx, GET_MODE (XEXP (x, 0))); + if (! x) + abort (); + } + else if (modify) + XEXP (x, 0) = new_rtx; + + return x; + } + + fmt = GET_RTX_FORMAT (GET_CODE (x)); + for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) + { + rtx new_rtx; + + if (fmt[i] == 'e') + { + new_rtx = replace_n_hard_rtx (XEXP (x, i), replacements, + n_replacements, modify); + if (!new_rtx) + return NULL_RTX; + if (modify) + XEXP (x, i) = new_rtx; + } + else if (fmt[i] == 'E') + for (j = XVECLEN (x, i) - 1; j >= 0; j--) + { + new_rtx = replace_n_hard_rtx (XVECEXP (x, i, j), replacements, + n_replacements, modify); + if (!new_rtx) + return NULL_RTX; + if (modify) + XVECEXP (x, i, j) = new_rtx; + } + } + + return x; +} + +rtx +sh_gen_truncate (enum machine_mode mode, rtx x, int need_sign_ext) +{ + enum rtx_code code = TRUNCATE; + + if (GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND) + { + rtx inner = XEXP (x, 0); + enum machine_mode inner_mode = GET_MODE (inner); + + if (inner_mode == mode) + return inner; + else if (GET_MODE_SIZE (inner_mode) >= GET_MODE_SIZE (mode)) + x = inner; + else if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode) + && (! need_sign_ext || GET_CODE (x) == SIGN_EXTEND)) + { + code = GET_CODE (x); + x = inner; + } + } + return gen_rtx_fmt_e (code, mode, x); +} + +/* called via for_each_rtx after reload, to clean up truncates of + registers that span multiple actual hard registers. */ +int +shmedia_cleanup_truncate (rtx *p, void *n_changes) +{ + rtx x = *p, reg; + + if (GET_CODE (x) != TRUNCATE) + return 0; + reg = XEXP (x, 0); + if (GET_MODE_SIZE (GET_MODE (reg)) > 8 && REG_P (reg)) + { + enum machine_mode reg_mode = GET_MODE (reg); + XEXP (x, 0) = simplify_subreg (DImode, reg, reg_mode, + subreg_lowpart_offset (DImode, reg_mode)); + *(int*) n_changes += 1; + return -1; + } + return 0; +} + +/* Load and store depend on the highpart of the address. However, + set_attr_alternative does not give well-defined results before reload, + so we must look at the rtl ourselves to see if any of the feeding + registers is used in a memref. */ + +/* Called by sh_contains_memref_p via for_each_rtx. */ +static int +sh_contains_memref_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED) +{ + return (MEM_P (*loc)); +} + +/* Return nonzero iff INSN contains a MEM. */ +int +sh_contains_memref_p (rtx insn) +{ + return for_each_rtx (&PATTERN (insn), &sh_contains_memref_p_1, NULL); +} + +/* Return nonzero iff INSN loads a banked register. */ +int +sh_loads_bankedreg_p (rtx insn) +{ + if (GET_CODE (PATTERN (insn)) == SET) + { + rtx op = SET_DEST (PATTERN(insn)); + if (REG_P (op) && BANKED_REGISTER_P (REGNO (op))) + return 1; + } + + return 0; +} + +/* FNADDR is the MEM expression from a call expander. Return an address + to use in an SHmedia insn pattern. */ +rtx +shmedia_prepare_call_address (rtx fnaddr, int is_sibcall) +{ + int is_sym; + + fnaddr = XEXP (fnaddr, 0); + is_sym = GET_CODE (fnaddr) == SYMBOL_REF; + if (flag_pic && is_sym) + { + if (! SYMBOL_REF_LOCAL_P (fnaddr)) + { + rtx reg = gen_reg_rtx (Pmode); + + /* We must not use GOTPLT for sibcalls, because PIC_REG + must be restored before the PLT code gets to run. */ + if (is_sibcall) + emit_insn (gen_symGOT2reg (reg, fnaddr)); + else + emit_insn (gen_symGOTPLT2reg (reg, fnaddr)); + fnaddr = reg; + } + else + { + fnaddr = gen_sym2PIC (fnaddr); + PUT_MODE (fnaddr, Pmode); + } + } + /* If ptabs might trap, make this visible to the rest of the compiler. + We generally assume that symbols pertain to valid locations, but + it is possible to generate invalid symbols with asm or linker tricks. + In a list of functions where each returns its successor, an invalid + symbol might denote an empty list. */ + if (!TARGET_PT_FIXED + && (!is_sym || TARGET_INVALID_SYMBOLS) + && (!REG_P (fnaddr) || ! TARGET_REGISTER_P (REGNO (fnaddr)))) + { + rtx tr = gen_reg_rtx (PDImode); + + emit_insn (gen_ptabs (tr, fnaddr)); + fnaddr = tr; + } + else if (! target_reg_operand (fnaddr, Pmode)) + fnaddr = copy_to_mode_reg (Pmode, fnaddr); + return fnaddr; +} + +/* Implement TARGET_PREFERRED_RELOAD_CLASS. */ + +static reg_class_t +sh_preferred_reload_class (rtx x, reg_class_t rclass) +{ + if (rclass == NO_REGS + && TARGET_SHMEDIA + && (CONST_DOUBLE_P (x) + || GET_CODE (x) == SYMBOL_REF + || PIC_ADDR_P (x))) + return GENERAL_REGS; + + return rclass; +} + +/* Implement TARGET_SECONDARY_RELOAD. */ + +static reg_class_t +sh_secondary_reload (bool in_p, rtx x, reg_class_t rclass_i, + enum machine_mode mode, secondary_reload_info *sri) +{ + enum reg_class rclass = (enum reg_class) rclass_i; + + if (in_p) + { + if (REGCLASS_HAS_FP_REG (rclass) + && ! TARGET_SHMEDIA + && immediate_operand ((x), mode) + && ! ((fp_zero_operand (x) || fp_one_operand (x)) + && mode == SFmode && fldi_ok ())) + switch (mode) + { + case SFmode: + sri->icode = CODE_FOR_reload_insf__frn; + return NO_REGS; + case DFmode: + sri->icode = CODE_FOR_reload_indf__frn; + return NO_REGS; + case SImode: + /* ??? If we knew that we are in the appropriate mode - + single precision - we could use a reload pattern directly. */ + return FPUL_REGS; + default: + abort (); + } + if (rclass == FPUL_REGS + && ((REG_P (x) + && (REGNO (x) == MACL_REG || REGNO (x) == MACH_REG + || REGNO (x) == T_REG)) + || GET_CODE (x) == PLUS)) + return GENERAL_REGS; + if (rclass == FPUL_REGS && immediate_operand (x, mode)) + { + if (satisfies_constraint_I08 (x) || fp_zero_operand (x)) + return GENERAL_REGS; + else if (mode == SFmode) + return FP_REGS; + sri->icode = CODE_FOR_reload_insi__i_fpul; + return NO_REGS; + } + if (rclass == FPSCR_REGS + && ((REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER) + || (MEM_P (x) && GET_CODE (XEXP (x, 0)) == PLUS))) + return GENERAL_REGS; + if (REGCLASS_HAS_FP_REG (rclass) + && TARGET_SHMEDIA + && immediate_operand (x, mode) + && x != CONST0_RTX (GET_MODE (x)) + && GET_MODE (x) != V4SFmode) + return GENERAL_REGS; + if ((mode == QImode || mode == HImode) + && TARGET_SHMEDIA && inqhi_operand (x, mode)) + { + sri->icode = ((mode == QImode) + ? CODE_FOR_reload_inqi : CODE_FOR_reload_inhi); + return NO_REGS; + } + if (TARGET_SHMEDIA && rclass == GENERAL_REGS + && (GET_CODE (x) == LABEL_REF || PIC_ADDR_P (x))) + return TARGET_REGS; + } /* end of input-only processing. */ + + if (((REGCLASS_HAS_FP_REG (rclass) + && (REG_P (x) + && (GENERAL_OR_AP_REGISTER_P (REGNO (x)) + || (FP_REGISTER_P (REGNO (x)) && mode == SImode + && TARGET_FMOVD)))) + || (REGCLASS_HAS_GENERAL_REG (rclass) + && REG_P (x) + && FP_REGISTER_P (REGNO (x)))) + && ! TARGET_SHMEDIA + && (mode == SFmode || mode == SImode)) + return FPUL_REGS; + if ((rclass == FPUL_REGS + || (REGCLASS_HAS_FP_REG (rclass) + && ! TARGET_SHMEDIA && mode == SImode)) + && (MEM_P (x) + || (REG_P (x) + && (REGNO (x) >= FIRST_PSEUDO_REGISTER + || REGNO (x) == T_REG + || system_reg_operand (x, VOIDmode))))) + { + if (rclass == FPUL_REGS) + return GENERAL_REGS; + return FPUL_REGS; + } + if ((rclass == TARGET_REGS + || (TARGET_SHMEDIA && rclass == SIBCALL_REGS)) + && !satisfies_constraint_Csy (x) + && (!REG_P (x) || ! GENERAL_REGISTER_P (REGNO (x)))) + return GENERAL_REGS; + if ((rclass == MAC_REGS || rclass == PR_REGS) + && REG_P (x) && ! GENERAL_REGISTER_P (REGNO (x)) + && rclass != REGNO_REG_CLASS (REGNO (x))) + return GENERAL_REGS; + if (rclass != GENERAL_REGS && REG_P (x) + && TARGET_REGISTER_P (REGNO (x))) + return GENERAL_REGS; + return NO_REGS; +} + +static void +sh_conditional_register_usage (void) +{ + int regno; + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno ++) + if (! VALID_REGISTER_P (regno)) + fixed_regs[regno] = call_used_regs[regno] = 1; + /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. */ + if (TARGET_SH5) + { + call_used_regs[FIRST_GENERAL_REG + 8] + = call_used_regs[FIRST_GENERAL_REG + 9] = 1; + call_really_used_regs[FIRST_GENERAL_REG + 8] + = call_really_used_regs[FIRST_GENERAL_REG + 9] = 1; + } + if (TARGET_SHMEDIA) + { + regno_reg_class[FIRST_GENERAL_REG] = GENERAL_REGS; + CLEAR_HARD_REG_SET (reg_class_contents[FP0_REGS]); + regno_reg_class[FIRST_FP_REG] = FP_REGS; + } + if (flag_pic) + { + fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; + call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; + } + /* Renesas saves and restores mac registers on call. */ + if (TARGET_HITACHI && ! TARGET_NOMACSAVE) + { + call_really_used_regs[MACH_REG] = 0; + call_really_used_regs[MACL_REG] = 0; + } + for (regno = FIRST_FP_REG + (TARGET_LITTLE_ENDIAN != 0); + regno <= LAST_FP_REG; regno += 2) + SET_HARD_REG_BIT (reg_class_contents[DF_HI_REGS], regno); + if (TARGET_SHMEDIA) + { + for (regno = FIRST_TARGET_REG; regno <= LAST_TARGET_REG; regno ++) + if (! fixed_regs[regno] && call_really_used_regs[regno]) + SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); + } + else + for (regno = FIRST_GENERAL_REG; regno <= LAST_GENERAL_REG; regno++) + if (! fixed_regs[regno] && call_really_used_regs[regno]) + SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); +} + + +enum sh_divide_strategy_e sh_div_strategy = SH_DIV_STRATEGY_DEFAULT; + +#include "gt-sh.h" |