summaryrefslogtreecommitdiff
path: root/gcc/fortran/simplify.c
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/fortran/simplify.c
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'gcc/fortran/simplify.c')
-rw-r--r--gcc/fortran/simplify.c6858
1 files changed, 6858 insertions, 0 deletions
diff --git a/gcc/fortran/simplify.c b/gcc/fortran/simplify.c
new file mode 100644
index 000000000..57ffa1b82
--- /dev/null
+++ b/gcc/fortran/simplify.c
@@ -0,0 +1,6858 @@
+/* Simplify intrinsic functions at compile-time.
+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
+ 2010, 2011 Free Software Foundation, Inc.
+ Contributed by Andy Vaught & Katherine Holcomb
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "flags.h"
+#include "gfortran.h"
+#include "arith.h"
+#include "intrinsic.h"
+#include "target-memory.h"
+#include "constructor.h"
+#include "version.h" /* For version_string. */
+
+
+gfc_expr gfc_bad_expr;
+
+
+/* Note that 'simplification' is not just transforming expressions.
+ For functions that are not simplified at compile time, range
+ checking is done if possible.
+
+ The return convention is that each simplification function returns:
+
+ A new expression node corresponding to the simplified arguments.
+ The original arguments are destroyed by the caller, and must not
+ be a part of the new expression.
+
+ NULL pointer indicating that no simplification was possible and
+ the original expression should remain intact.
+
+ An expression pointer to gfc_bad_expr (a static placeholder)
+ indicating that some error has prevented simplification. The
+ error is generated within the function and should be propagated
+ upwards
+
+ By the time a simplification function gets control, it has been
+ decided that the function call is really supposed to be the
+ intrinsic. No type checking is strictly necessary, since only
+ valid types will be passed on. On the other hand, a simplification
+ subroutine may have to look at the type of an argument as part of
+ its processing.
+
+ Array arguments are only passed to these subroutines that implement
+ the simplification of transformational intrinsics.
+
+ The functions in this file don't have much comment with them, but
+ everything is reasonably straight-forward. The Standard, chapter 13
+ is the best comment you'll find for this file anyway. */
+
+/* Range checks an expression node. If all goes well, returns the
+ node, otherwise returns &gfc_bad_expr and frees the node. */
+
+static gfc_expr *
+range_check (gfc_expr *result, const char *name)
+{
+ if (result == NULL)
+ return &gfc_bad_expr;
+
+ if (result->expr_type != EXPR_CONSTANT)
+ return result;
+
+ switch (gfc_range_check (result))
+ {
+ case ARITH_OK:
+ return result;
+
+ case ARITH_OVERFLOW:
+ gfc_error ("Result of %s overflows its kind at %L", name,
+ &result->where);
+ break;
+
+ case ARITH_UNDERFLOW:
+ gfc_error ("Result of %s underflows its kind at %L", name,
+ &result->where);
+ break;
+
+ case ARITH_NAN:
+ gfc_error ("Result of %s is NaN at %L", name, &result->where);
+ break;
+
+ default:
+ gfc_error ("Result of %s gives range error for its kind at %L", name,
+ &result->where);
+ break;
+ }
+
+ gfc_free_expr (result);
+ return &gfc_bad_expr;
+}
+
+
+/* A helper function that gets an optional and possibly missing
+ kind parameter. Returns the kind, -1 if something went wrong. */
+
+static int
+get_kind (bt type, gfc_expr *k, const char *name, int default_kind)
+{
+ int kind;
+
+ if (k == NULL)
+ return default_kind;
+
+ if (k->expr_type != EXPR_CONSTANT)
+ {
+ gfc_error ("KIND parameter of %s at %L must be an initialization "
+ "expression", name, &k->where);
+ return -1;
+ }
+
+ if (gfc_extract_int (k, &kind) != NULL
+ || gfc_validate_kind (type, kind, true) < 0)
+ {
+ gfc_error ("Invalid KIND parameter of %s at %L", name, &k->where);
+ return -1;
+ }
+
+ return kind;
+}
+
+
+/* Converts an mpz_t signed variable into an unsigned one, assuming
+ two's complement representations and a binary width of bitsize.
+ The conversion is a no-op unless x is negative; otherwise, it can
+ be accomplished by masking out the high bits. */
+
+static void
+convert_mpz_to_unsigned (mpz_t x, int bitsize)
+{
+ mpz_t mask;
+
+ if (mpz_sgn (x) < 0)
+ {
+ /* Confirm that no bits above the signed range are unset. */
+ gcc_assert (mpz_scan0 (x, bitsize-1) == ULONG_MAX);
+
+ mpz_init_set_ui (mask, 1);
+ mpz_mul_2exp (mask, mask, bitsize);
+ mpz_sub_ui (mask, mask, 1);
+
+ mpz_and (x, x, mask);
+
+ mpz_clear (mask);
+ }
+ else
+ {
+ /* Confirm that no bits above the signed range are set. */
+ gcc_assert (mpz_scan1 (x, bitsize-1) == ULONG_MAX);
+ }
+}
+
+
+/* Converts an mpz_t unsigned variable into a signed one, assuming
+ two's complement representations and a binary width of bitsize.
+ If the bitsize-1 bit is set, this is taken as a sign bit and
+ the number is converted to the corresponding negative number. */
+
+static void
+convert_mpz_to_signed (mpz_t x, int bitsize)
+{
+ mpz_t mask;
+
+ /* Confirm that no bits above the unsigned range are set. */
+ gcc_assert (mpz_scan1 (x, bitsize) == ULONG_MAX);
+
+ if (mpz_tstbit (x, bitsize - 1) == 1)
+ {
+ mpz_init_set_ui (mask, 1);
+ mpz_mul_2exp (mask, mask, bitsize);
+ mpz_sub_ui (mask, mask, 1);
+
+ /* We negate the number by hand, zeroing the high bits, that is
+ make it the corresponding positive number, and then have it
+ negated by GMP, giving the correct representation of the
+ negative number. */
+ mpz_com (x, x);
+ mpz_add_ui (x, x, 1);
+ mpz_and (x, x, mask);
+
+ mpz_neg (x, x);
+
+ mpz_clear (mask);
+ }
+}
+
+
+/* In-place convert BOZ to REAL of the specified kind. */
+
+static gfc_expr *
+convert_boz (gfc_expr *x, int kind)
+{
+ if (x && x->ts.type == BT_INTEGER && x->is_boz)
+ {
+ gfc_typespec ts;
+ gfc_clear_ts (&ts);
+ ts.type = BT_REAL;
+ ts.kind = kind;
+
+ if (!gfc_convert_boz (x, &ts))
+ return &gfc_bad_expr;
+ }
+
+ return x;
+}
+
+
+/* Test that the expression is an constant array. */
+
+static bool
+is_constant_array_expr (gfc_expr *e)
+{
+ gfc_constructor *c;
+
+ if (e == NULL)
+ return true;
+
+ if (e->expr_type != EXPR_ARRAY || !gfc_is_constant_expr (e))
+ return false;
+
+ for (c = gfc_constructor_first (e->value.constructor);
+ c; c = gfc_constructor_next (c))
+ if (c->expr->expr_type != EXPR_CONSTANT
+ && c->expr->expr_type != EXPR_STRUCTURE)
+ return false;
+
+ return true;
+}
+
+
+/* Initialize a transformational result expression with a given value. */
+
+static void
+init_result_expr (gfc_expr *e, int init, gfc_expr *array)
+{
+ if (e && e->expr_type == EXPR_ARRAY)
+ {
+ gfc_constructor *ctor = gfc_constructor_first (e->value.constructor);
+ while (ctor)
+ {
+ init_result_expr (ctor->expr, init, array);
+ ctor = gfc_constructor_next (ctor);
+ }
+ }
+ else if (e && e->expr_type == EXPR_CONSTANT)
+ {
+ int i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
+ int length;
+ gfc_char_t *string;
+
+ switch (e->ts.type)
+ {
+ case BT_LOGICAL:
+ e->value.logical = (init ? 1 : 0);
+ break;
+
+ case BT_INTEGER:
+ if (init == INT_MIN)
+ mpz_set (e->value.integer, gfc_integer_kinds[i].min_int);
+ else if (init == INT_MAX)
+ mpz_set (e->value.integer, gfc_integer_kinds[i].huge);
+ else
+ mpz_set_si (e->value.integer, init);
+ break;
+
+ case BT_REAL:
+ if (init == INT_MIN)
+ {
+ mpfr_set (e->value.real, gfc_real_kinds[i].huge, GFC_RND_MODE);
+ mpfr_neg (e->value.real, e->value.real, GFC_RND_MODE);
+ }
+ else if (init == INT_MAX)
+ mpfr_set (e->value.real, gfc_real_kinds[i].huge, GFC_RND_MODE);
+ else
+ mpfr_set_si (e->value.real, init, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ mpc_set_si (e->value.complex, init, GFC_MPC_RND_MODE);
+ break;
+
+ case BT_CHARACTER:
+ if (init == INT_MIN)
+ {
+ gfc_expr *len = gfc_simplify_len (array, NULL);
+ gfc_extract_int (len, &length);
+ string = gfc_get_wide_string (length + 1);
+ gfc_wide_memset (string, 0, length);
+ }
+ else if (init == INT_MAX)
+ {
+ gfc_expr *len = gfc_simplify_len (array, NULL);
+ gfc_extract_int (len, &length);
+ string = gfc_get_wide_string (length + 1);
+ gfc_wide_memset (string, 255, length);
+ }
+ else
+ {
+ length = 0;
+ string = gfc_get_wide_string (1);
+ }
+
+ string[length] = '\0';
+ e->value.character.length = length;
+ e->value.character.string = string;
+ break;
+
+ default:
+ gcc_unreachable();
+ }
+ }
+ else
+ gcc_unreachable();
+}
+
+
+/* Helper function for gfc_simplify_dot_product() and gfc_simplify_matmul. */
+
+static gfc_expr *
+compute_dot_product (gfc_expr *matrix_a, int stride_a, int offset_a,
+ gfc_expr *matrix_b, int stride_b, int offset_b)
+{
+ gfc_expr *result, *a, *b;
+
+ result = gfc_get_constant_expr (matrix_a->ts.type, matrix_a->ts.kind,
+ &matrix_a->where);
+ init_result_expr (result, 0, NULL);
+
+ a = gfc_constructor_lookup_expr (matrix_a->value.constructor, offset_a);
+ b = gfc_constructor_lookup_expr (matrix_b->value.constructor, offset_b);
+ while (a && b)
+ {
+ /* Copying of expressions is required as operands are free'd
+ by the gfc_arith routines. */
+ switch (result->ts.type)
+ {
+ case BT_LOGICAL:
+ result = gfc_or (result,
+ gfc_and (gfc_copy_expr (a),
+ gfc_copy_expr (b)));
+ break;
+
+ case BT_INTEGER:
+ case BT_REAL:
+ case BT_COMPLEX:
+ result = gfc_add (result,
+ gfc_multiply (gfc_copy_expr (a),
+ gfc_copy_expr (b)));
+ break;
+
+ default:
+ gcc_unreachable();
+ }
+
+ offset_a += stride_a;
+ a = gfc_constructor_lookup_expr (matrix_a->value.constructor, offset_a);
+
+ offset_b += stride_b;
+ b = gfc_constructor_lookup_expr (matrix_b->value.constructor, offset_b);
+ }
+
+ return result;
+}
+
+
+/* Build a result expression for transformational intrinsics,
+ depending on DIM. */
+
+static gfc_expr *
+transformational_result (gfc_expr *array, gfc_expr *dim, bt type,
+ int kind, locus* where)
+{
+ gfc_expr *result;
+ int i, nelem;
+
+ if (!dim || array->rank == 1)
+ return gfc_get_constant_expr (type, kind, where);
+
+ result = gfc_get_array_expr (type, kind, where);
+ result->shape = gfc_copy_shape_excluding (array->shape, array->rank, dim);
+ result->rank = array->rank - 1;
+
+ /* gfc_array_size() would count the number of elements in the constructor,
+ we have not built those yet. */
+ nelem = 1;
+ for (i = 0; i < result->rank; ++i)
+ nelem *= mpz_get_ui (result->shape[i]);
+
+ for (i = 0; i < nelem; ++i)
+ {
+ gfc_constructor_append_expr (&result->value.constructor,
+ gfc_get_constant_expr (type, kind, where),
+ NULL);
+ }
+
+ return result;
+}
+
+
+typedef gfc_expr* (*transformational_op)(gfc_expr*, gfc_expr*);
+
+/* Wrapper function, implements 'op1 += 1'. Only called if MASK
+ of COUNT intrinsic is .TRUE..
+
+ Interface and implimentation mimics arith functions as
+ gfc_add, gfc_multiply, etc. */
+
+static gfc_expr* gfc_count (gfc_expr *op1, gfc_expr *op2)
+{
+ gfc_expr *result;
+
+ gcc_assert (op1->ts.type == BT_INTEGER);
+ gcc_assert (op2->ts.type == BT_LOGICAL);
+ gcc_assert (op2->value.logical);
+
+ result = gfc_copy_expr (op1);
+ mpz_add_ui (result->value.integer, result->value.integer, 1);
+
+ gfc_free_expr (op1);
+ gfc_free_expr (op2);
+ return result;
+}
+
+
+/* Transforms an ARRAY with operation OP, according to MASK, to a
+ scalar RESULT. E.g. called if
+
+ REAL, PARAMETER :: array(n, m) = ...
+ REAL, PARAMETER :: s = SUM(array)
+
+ where OP == gfc_add(). */
+
+static gfc_expr *
+simplify_transformation_to_scalar (gfc_expr *result, gfc_expr *array, gfc_expr *mask,
+ transformational_op op)
+{
+ gfc_expr *a, *m;
+ gfc_constructor *array_ctor, *mask_ctor;
+
+ /* Shortcut for constant .FALSE. MASK. */
+ if (mask
+ && mask->expr_type == EXPR_CONSTANT
+ && !mask->value.logical)
+ return result;
+
+ array_ctor = gfc_constructor_first (array->value.constructor);
+ mask_ctor = NULL;
+ if (mask && mask->expr_type == EXPR_ARRAY)
+ mask_ctor = gfc_constructor_first (mask->value.constructor);
+
+ while (array_ctor)
+ {
+ a = array_ctor->expr;
+ array_ctor = gfc_constructor_next (array_ctor);
+
+ /* A constant MASK equals .TRUE. here and can be ignored. */
+ if (mask_ctor)
+ {
+ m = mask_ctor->expr;
+ mask_ctor = gfc_constructor_next (mask_ctor);
+ if (!m->value.logical)
+ continue;
+ }
+
+ result = op (result, gfc_copy_expr (a));
+ }
+
+ return result;
+}
+
+/* Transforms an ARRAY with operation OP, according to MASK, to an
+ array RESULT. E.g. called if
+
+ REAL, PARAMETER :: array(n, m) = ...
+ REAL, PARAMETER :: s(n) = PROD(array, DIM=1)
+
+ where OP == gfc_multiply(). The result might be post processed using post_op. */
+
+static gfc_expr *
+simplify_transformation_to_array (gfc_expr *result, gfc_expr *array, gfc_expr *dim,
+ gfc_expr *mask, transformational_op op,
+ transformational_op post_op)
+{
+ mpz_t size;
+ int done, i, n, arraysize, resultsize, dim_index, dim_extent, dim_stride;
+ gfc_expr **arrayvec, **resultvec, **base, **src, **dest;
+ gfc_constructor *array_ctor, *mask_ctor, *result_ctor;
+
+ int count[GFC_MAX_DIMENSIONS], extent[GFC_MAX_DIMENSIONS],
+ sstride[GFC_MAX_DIMENSIONS], dstride[GFC_MAX_DIMENSIONS],
+ tmpstride[GFC_MAX_DIMENSIONS];
+
+ /* Shortcut for constant .FALSE. MASK. */
+ if (mask
+ && mask->expr_type == EXPR_CONSTANT
+ && !mask->value.logical)
+ return result;
+
+ /* Build an indexed table for array element expressions to minimize
+ linked-list traversal. Masked elements are set to NULL. */
+ gfc_array_size (array, &size);
+ arraysize = mpz_get_ui (size);
+
+ arrayvec = (gfc_expr**) gfc_getmem (sizeof (gfc_expr*) * arraysize);
+
+ array_ctor = gfc_constructor_first (array->value.constructor);
+ mask_ctor = NULL;
+ if (mask && mask->expr_type == EXPR_ARRAY)
+ mask_ctor = gfc_constructor_first (mask->value.constructor);
+
+ for (i = 0; i < arraysize; ++i)
+ {
+ arrayvec[i] = array_ctor->expr;
+ array_ctor = gfc_constructor_next (array_ctor);
+
+ if (mask_ctor)
+ {
+ if (!mask_ctor->expr->value.logical)
+ arrayvec[i] = NULL;
+
+ mask_ctor = gfc_constructor_next (mask_ctor);
+ }
+ }
+
+ /* Same for the result expression. */
+ gfc_array_size (result, &size);
+ resultsize = mpz_get_ui (size);
+ mpz_clear (size);
+
+ resultvec = (gfc_expr**) gfc_getmem (sizeof (gfc_expr*) * resultsize);
+ result_ctor = gfc_constructor_first (result->value.constructor);
+ for (i = 0; i < resultsize; ++i)
+ {
+ resultvec[i] = result_ctor->expr;
+ result_ctor = gfc_constructor_next (result_ctor);
+ }
+
+ gfc_extract_int (dim, &dim_index);
+ dim_index -= 1; /* zero-base index */
+ dim_extent = 0;
+ dim_stride = 0;
+
+ for (i = 0, n = 0; i < array->rank; ++i)
+ {
+ count[i] = 0;
+ tmpstride[i] = (i == 0) ? 1 : tmpstride[i-1] * mpz_get_si (array->shape[i-1]);
+ if (i == dim_index)
+ {
+ dim_extent = mpz_get_si (array->shape[i]);
+ dim_stride = tmpstride[i];
+ continue;
+ }
+
+ extent[n] = mpz_get_si (array->shape[i]);
+ sstride[n] = tmpstride[i];
+ dstride[n] = (n == 0) ? 1 : dstride[n-1] * extent[n-1];
+ n += 1;
+ }
+
+ done = false;
+ base = arrayvec;
+ dest = resultvec;
+ while (!done)
+ {
+ for (src = base, n = 0; n < dim_extent; src += dim_stride, ++n)
+ if (*src)
+ *dest = op (*dest, gfc_copy_expr (*src));
+
+ count[0]++;
+ base += sstride[0];
+ dest += dstride[0];
+
+ n = 0;
+ while (!done && count[n] == extent[n])
+ {
+ count[n] = 0;
+ base -= sstride[n] * extent[n];
+ dest -= dstride[n] * extent[n];
+
+ n++;
+ if (n < result->rank)
+ {
+ count [n]++;
+ base += sstride[n];
+ dest += dstride[n];
+ }
+ else
+ done = true;
+ }
+ }
+
+ /* Place updated expression in result constructor. */
+ result_ctor = gfc_constructor_first (result->value.constructor);
+ for (i = 0; i < resultsize; ++i)
+ {
+ if (post_op)
+ result_ctor->expr = post_op (result_ctor->expr, resultvec[i]);
+ else
+ result_ctor->expr = resultvec[i];
+ result_ctor = gfc_constructor_next (result_ctor);
+ }
+
+ gfc_free (arrayvec);
+ gfc_free (resultvec);
+ return result;
+}
+
+
+static gfc_expr *
+simplify_transformation (gfc_expr *array, gfc_expr *dim, gfc_expr *mask,
+ int init_val, transformational_op op)
+{
+ gfc_expr *result;
+
+ if (!is_constant_array_expr (array)
+ || !gfc_is_constant_expr (dim))
+ return NULL;
+
+ if (mask
+ && !is_constant_array_expr (mask)
+ && mask->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = transformational_result (array, dim, array->ts.type,
+ array->ts.kind, &array->where);
+ init_result_expr (result, init_val, NULL);
+
+ return !dim || array->rank == 1 ?
+ simplify_transformation_to_scalar (result, array, mask, op) :
+ simplify_transformation_to_array (result, array, dim, mask, op, NULL);
+}
+
+
+/********************** Simplification functions *****************************/
+
+gfc_expr *
+gfc_simplify_abs (gfc_expr *e)
+{
+ gfc_expr *result;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ switch (e->ts.type)
+ {
+ case BT_INTEGER:
+ result = gfc_get_constant_expr (BT_INTEGER, e->ts.kind, &e->where);
+ mpz_abs (result->value.integer, e->value.integer);
+ return range_check (result, "IABS");
+
+ case BT_REAL:
+ result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where);
+ mpfr_abs (result->value.real, e->value.real, GFC_RND_MODE);
+ return range_check (result, "ABS");
+
+ case BT_COMPLEX:
+ gfc_set_model_kind (e->ts.kind);
+ result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where);
+ mpc_abs (result->value.real, e->value.complex, GFC_RND_MODE);
+ return range_check (result, "CABS");
+
+ default:
+ gfc_internal_error ("gfc_simplify_abs(): Bad type");
+ }
+}
+
+
+static gfc_expr *
+simplify_achar_char (gfc_expr *e, gfc_expr *k, const char *name, bool ascii)
+{
+ gfc_expr *result;
+ int kind;
+ bool too_large = false;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ kind = get_kind (BT_CHARACTER, k, name, gfc_default_character_kind);
+ if (kind == -1)
+ return &gfc_bad_expr;
+
+ if (mpz_cmp_si (e->value.integer, 0) < 0)
+ {
+ gfc_error ("Argument of %s function at %L is negative", name,
+ &e->where);
+ return &gfc_bad_expr;
+ }
+
+ if (ascii && gfc_option.warn_surprising
+ && mpz_cmp_si (e->value.integer, 127) > 0)
+ gfc_warning ("Argument of %s function at %L outside of range [0,127]",
+ name, &e->where);
+
+ if (kind == 1 && mpz_cmp_si (e->value.integer, 255) > 0)
+ too_large = true;
+ else if (kind == 4)
+ {
+ mpz_t t;
+ mpz_init_set_ui (t, 2);
+ mpz_pow_ui (t, t, 32);
+ mpz_sub_ui (t, t, 1);
+ if (mpz_cmp (e->value.integer, t) > 0)
+ too_large = true;
+ mpz_clear (t);
+ }
+
+ if (too_large)
+ {
+ gfc_error ("Argument of %s function at %L is too large for the "
+ "collating sequence of kind %d", name, &e->where, kind);
+ return &gfc_bad_expr;
+ }
+
+ result = gfc_get_character_expr (kind, &e->where, NULL, 1);
+ result->value.character.string[0] = mpz_get_ui (e->value.integer);
+
+ return result;
+}
+
+
+
+/* We use the processor's collating sequence, because all
+ systems that gfortran currently works on are ASCII. */
+
+gfc_expr *
+gfc_simplify_achar (gfc_expr *e, gfc_expr *k)
+{
+ return simplify_achar_char (e, k, "ACHAR", true);
+}
+
+
+gfc_expr *
+gfc_simplify_acos (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ switch (x->ts.type)
+ {
+ case BT_REAL:
+ if (mpfr_cmp_si (x->value.real, 1) > 0
+ || mpfr_cmp_si (x->value.real, -1) < 0)
+ {
+ gfc_error ("Argument of ACOS at %L must be between -1 and 1",
+ &x->where);
+ return &gfc_bad_expr;
+ }
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_acos (result->value.real, x->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpc_acos (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("in gfc_simplify_acos(): Bad type");
+ }
+
+ return range_check (result, "ACOS");
+}
+
+gfc_expr *
+gfc_simplify_acosh (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ switch (x->ts.type)
+ {
+ case BT_REAL:
+ if (mpfr_cmp_si (x->value.real, 1) < 0)
+ {
+ gfc_error ("Argument of ACOSH at %L must not be less than 1",
+ &x->where);
+ return &gfc_bad_expr;
+ }
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_acosh (result->value.real, x->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpc_acosh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("in gfc_simplify_acosh(): Bad type");
+ }
+
+ return range_check (result, "ACOSH");
+}
+
+gfc_expr *
+gfc_simplify_adjustl (gfc_expr *e)
+{
+ gfc_expr *result;
+ int count, i, len;
+ gfc_char_t ch;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ len = e->value.character.length;
+
+ for (count = 0, i = 0; i < len; ++i)
+ {
+ ch = e->value.character.string[i];
+ if (ch != ' ')
+ break;
+ ++count;
+ }
+
+ result = gfc_get_character_expr (e->ts.kind, &e->where, NULL, len);
+ for (i = 0; i < len - count; ++i)
+ result->value.character.string[i] = e->value.character.string[count + i];
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_adjustr (gfc_expr *e)
+{
+ gfc_expr *result;
+ int count, i, len;
+ gfc_char_t ch;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ len = e->value.character.length;
+
+ for (count = 0, i = len - 1; i >= 0; --i)
+ {
+ ch = e->value.character.string[i];
+ if (ch != ' ')
+ break;
+ ++count;
+ }
+
+ result = gfc_get_character_expr (e->ts.kind, &e->where, NULL, len);
+ for (i = 0; i < count; ++i)
+ result->value.character.string[i] = ' ';
+
+ for (i = count; i < len; ++i)
+ result->value.character.string[i] = e->value.character.string[i - count];
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_aimag (gfc_expr *e)
+{
+ gfc_expr *result;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where);
+ mpfr_set (result->value.real, mpc_imagref (e->value.complex), GFC_RND_MODE);
+
+ return range_check (result, "AIMAG");
+}
+
+
+gfc_expr *
+gfc_simplify_aint (gfc_expr *e, gfc_expr *k)
+{
+ gfc_expr *rtrunc, *result;
+ int kind;
+
+ kind = get_kind (BT_REAL, k, "AINT", e->ts.kind);
+ if (kind == -1)
+ return &gfc_bad_expr;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ rtrunc = gfc_copy_expr (e);
+ mpfr_trunc (rtrunc->value.real, e->value.real);
+
+ result = gfc_real2real (rtrunc, kind);
+
+ gfc_free_expr (rtrunc);
+
+ return range_check (result, "AINT");
+}
+
+
+gfc_expr *
+gfc_simplify_all (gfc_expr *mask, gfc_expr *dim)
+{
+ return simplify_transformation (mask, dim, NULL, true, gfc_and);
+}
+
+
+gfc_expr *
+gfc_simplify_dint (gfc_expr *e)
+{
+ gfc_expr *rtrunc, *result;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ rtrunc = gfc_copy_expr (e);
+ mpfr_trunc (rtrunc->value.real, e->value.real);
+
+ result = gfc_real2real (rtrunc, gfc_default_double_kind);
+
+ gfc_free_expr (rtrunc);
+
+ return range_check (result, "DINT");
+}
+
+
+gfc_expr *
+gfc_simplify_anint (gfc_expr *e, gfc_expr *k)
+{
+ gfc_expr *result;
+ int kind;
+
+ kind = get_kind (BT_REAL, k, "ANINT", e->ts.kind);
+ if (kind == -1)
+ return &gfc_bad_expr;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (e->ts.type, kind, &e->where);
+ mpfr_round (result->value.real, e->value.real);
+
+ return range_check (result, "ANINT");
+}
+
+
+gfc_expr *
+gfc_simplify_and (gfc_expr *x, gfc_expr *y)
+{
+ gfc_expr *result;
+ int kind;
+
+ if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ kind = x->ts.kind > y->ts.kind ? x->ts.kind : y->ts.kind;
+
+ switch (x->ts.type)
+ {
+ case BT_INTEGER:
+ result = gfc_get_constant_expr (BT_INTEGER, kind, &x->where);
+ mpz_and (result->value.integer, x->value.integer, y->value.integer);
+ return range_check (result, "AND");
+
+ case BT_LOGICAL:
+ return gfc_get_logical_expr (kind, &x->where,
+ x->value.logical && y->value.logical);
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+gfc_expr *
+gfc_simplify_any (gfc_expr *mask, gfc_expr *dim)
+{
+ return simplify_transformation (mask, dim, NULL, false, gfc_or);
+}
+
+
+gfc_expr *
+gfc_simplify_dnint (gfc_expr *e)
+{
+ gfc_expr *result;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (BT_REAL, gfc_default_double_kind, &e->where);
+ mpfr_round (result->value.real, e->value.real);
+
+ return range_check (result, "DNINT");
+}
+
+
+gfc_expr *
+gfc_simplify_asin (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ switch (x->ts.type)
+ {
+ case BT_REAL:
+ if (mpfr_cmp_si (x->value.real, 1) > 0
+ || mpfr_cmp_si (x->value.real, -1) < 0)
+ {
+ gfc_error ("Argument of ASIN at %L must be between -1 and 1",
+ &x->where);
+ return &gfc_bad_expr;
+ }
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_asin (result->value.real, x->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpc_asin (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("in gfc_simplify_asin(): Bad type");
+ }
+
+ return range_check (result, "ASIN");
+}
+
+
+gfc_expr *
+gfc_simplify_asinh (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+
+ switch (x->ts.type)
+ {
+ case BT_REAL:
+ mpfr_asinh (result->value.real, x->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ mpc_asinh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("in gfc_simplify_asinh(): Bad type");
+ }
+
+ return range_check (result, "ASINH");
+}
+
+
+gfc_expr *
+gfc_simplify_atan (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+
+ switch (x->ts.type)
+ {
+ case BT_REAL:
+ mpfr_atan (result->value.real, x->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ mpc_atan (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("in gfc_simplify_atan(): Bad type");
+ }
+
+ return range_check (result, "ATAN");
+}
+
+
+gfc_expr *
+gfc_simplify_atanh (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ switch (x->ts.type)
+ {
+ case BT_REAL:
+ if (mpfr_cmp_si (x->value.real, 1) >= 0
+ || mpfr_cmp_si (x->value.real, -1) <= 0)
+ {
+ gfc_error ("Argument of ATANH at %L must be inside the range -1 "
+ "to 1", &x->where);
+ return &gfc_bad_expr;
+ }
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_atanh (result->value.real, x->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpc_atanh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("in gfc_simplify_atanh(): Bad type");
+ }
+
+ return range_check (result, "ATANH");
+}
+
+
+gfc_expr *
+gfc_simplify_atan2 (gfc_expr *y, gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (mpfr_sgn (y->value.real) == 0 && mpfr_sgn (x->value.real) == 0)
+ {
+ gfc_error ("If first argument of ATAN2 %L is zero, then the "
+ "second argument must not be zero", &x->where);
+ return &gfc_bad_expr;
+ }
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_atan2 (result->value.real, y->value.real, x->value.real, GFC_RND_MODE);
+
+ return range_check (result, "ATAN2");
+}
+
+
+gfc_expr *
+gfc_simplify_bessel_j0 (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_j0 (result->value.real, x->value.real, GFC_RND_MODE);
+
+ return range_check (result, "BESSEL_J0");
+}
+
+
+gfc_expr *
+gfc_simplify_bessel_j1 (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_j1 (result->value.real, x->value.real, GFC_RND_MODE);
+
+ return range_check (result, "BESSEL_J1");
+}
+
+
+gfc_expr *
+gfc_simplify_bessel_jn (gfc_expr *order, gfc_expr *x)
+{
+ gfc_expr *result;
+ long n;
+
+ if (x->expr_type != EXPR_CONSTANT || order->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ n = mpz_get_si (order->value.integer);
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_jn (result->value.real, n, x->value.real, GFC_RND_MODE);
+
+ return range_check (result, "BESSEL_JN");
+}
+
+
+/* Simplify transformational form of JN and YN. */
+
+static gfc_expr *
+gfc_simplify_bessel_n2 (gfc_expr *order1, gfc_expr *order2, gfc_expr *x,
+ bool jn)
+{
+ gfc_expr *result;
+ gfc_expr *e;
+ long n1, n2;
+ int i;
+ mpfr_t x2rev, last1, last2;
+
+ if (x->expr_type != EXPR_CONSTANT || order1->expr_type != EXPR_CONSTANT
+ || order2->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ n1 = mpz_get_si (order1->value.integer);
+ n2 = mpz_get_si (order2->value.integer);
+ result = gfc_get_array_expr (x->ts.type, x->ts.kind, &x->where);
+ result->rank = 1;
+ result->shape = gfc_get_shape (1);
+ mpz_init_set_ui (result->shape[0], MAX (n2-n1+1, 0));
+
+ if (n2 < n1)
+ return result;
+
+ /* Special case: x == 0; it is J0(0.0) == 1, JN(N > 0, 0.0) == 0; and
+ YN(N, 0.0) = -Inf. */
+
+ if (mpfr_cmp_ui (x->value.real, 0.0) == 0)
+ {
+ if (!jn && gfc_option.flag_range_check)
+ {
+ gfc_error ("Result of BESSEL_YN is -INF at %L", &result->where);
+ gfc_free_expr (result);
+ return &gfc_bad_expr;
+ }
+
+ if (jn && n1 == 0)
+ {
+ e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_set_ui (e->value.real, 1, GFC_RND_MODE);
+ gfc_constructor_append_expr (&result->value.constructor, e,
+ &x->where);
+ n1++;
+ }
+
+ for (i = n1; i <= n2; i++)
+ {
+ e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ if (jn)
+ mpfr_set_ui (e->value.real, 0, GFC_RND_MODE);
+ else
+ mpfr_set_inf (e->value.real, -1);
+ gfc_constructor_append_expr (&result->value.constructor, e,
+ &x->where);
+ }
+
+ return result;
+ }
+
+ /* Use the faster but more verbose recurrence algorithm. Bessel functions
+ are stable for downward recursion and Neumann functions are stable
+ for upward recursion. It is
+ x2rev = 2.0/x,
+ J(N-1, x) = x2rev * N * J(N, x) - J(N+1, x),
+ Y(N+1, x) = x2rev * N * Y(N, x) - Y(N-1, x).
+ Cf. http://dlmf.nist.gov/10.74#iv and http://dlmf.nist.gov/10.6#E1 */
+
+ gfc_set_model_kind (x->ts.kind);
+
+ /* Get first recursion anchor. */
+
+ mpfr_init (last1);
+ if (jn)
+ mpfr_jn (last1, n2, x->value.real, GFC_RND_MODE);
+ else
+ mpfr_yn (last1, n1, x->value.real, GFC_RND_MODE);
+
+ e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_set (e->value.real, last1, GFC_RND_MODE);
+ if (range_check (e, jn ? "BESSEL_JN" : "BESSEL_YN") == &gfc_bad_expr)
+ {
+ mpfr_clear (last1);
+ gfc_free_expr (e);
+ gfc_free_expr (result);
+ return &gfc_bad_expr;
+ }
+ gfc_constructor_append_expr (&result->value.constructor, e, &x->where);
+
+ if (n1 == n2)
+ {
+ mpfr_clear (last1);
+ return result;
+ }
+
+ /* Get second recursion anchor. */
+
+ mpfr_init (last2);
+ if (jn)
+ mpfr_jn (last2, n2-1, x->value.real, GFC_RND_MODE);
+ else
+ mpfr_yn (last2, n1+1, x->value.real, GFC_RND_MODE);
+
+ e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_set (e->value.real, last2, GFC_RND_MODE);
+ if (range_check (e, jn ? "BESSEL_JN" : "BESSEL_YN") == &gfc_bad_expr)
+ {
+ mpfr_clear (last1);
+ mpfr_clear (last2);
+ gfc_free_expr (e);
+ gfc_free_expr (result);
+ return &gfc_bad_expr;
+ }
+ if (jn)
+ gfc_constructor_insert_expr (&result->value.constructor, e, &x->where, -2);
+ else
+ gfc_constructor_append_expr (&result->value.constructor, e, &x->where);
+
+ if (n1 + 1 == n2)
+ {
+ mpfr_clear (last1);
+ mpfr_clear (last2);
+ return result;
+ }
+
+ /* Start actual recursion. */
+
+ mpfr_init (x2rev);
+ mpfr_ui_div (x2rev, 2, x->value.real, GFC_RND_MODE);
+
+ for (i = 2; i <= n2-n1; i++)
+ {
+ e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+
+ /* Special case: For YN, if the previous N gave -INF, set
+ also N+1 to -INF. */
+ if (!jn && !gfc_option.flag_range_check && mpfr_inf_p (last2))
+ {
+ mpfr_set_inf (e->value.real, -1);
+ gfc_constructor_append_expr (&result->value.constructor, e,
+ &x->where);
+ continue;
+ }
+
+ mpfr_mul_si (e->value.real, x2rev, jn ? (n2-i+1) : (n1+i-1),
+ GFC_RND_MODE);
+ mpfr_mul (e->value.real, e->value.real, last2, GFC_RND_MODE);
+ mpfr_sub (e->value.real, e->value.real, last1, GFC_RND_MODE);
+
+ if (range_check (e, jn ? "BESSEL_JN" : "BESSEL_YN") == &gfc_bad_expr)
+ goto error;
+
+ if (jn)
+ gfc_constructor_insert_expr (&result->value.constructor, e, &x->where,
+ -i-1);
+ else
+ gfc_constructor_append_expr (&result->value.constructor, e, &x->where);
+
+ mpfr_set (last1, last2, GFC_RND_MODE);
+ mpfr_set (last2, e->value.real, GFC_RND_MODE);
+ }
+
+ mpfr_clear (last1);
+ mpfr_clear (last2);
+ mpfr_clear (x2rev);
+ return result;
+
+error:
+ mpfr_clear (last1);
+ mpfr_clear (last2);
+ mpfr_clear (x2rev);
+ gfc_free_expr (e);
+ gfc_free_expr (result);
+ return &gfc_bad_expr;
+}
+
+
+gfc_expr *
+gfc_simplify_bessel_jn2 (gfc_expr *order1, gfc_expr *order2, gfc_expr *x)
+{
+ return gfc_simplify_bessel_n2 (order1, order2, x, true);
+}
+
+
+gfc_expr *
+gfc_simplify_bessel_y0 (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_y0 (result->value.real, x->value.real, GFC_RND_MODE);
+
+ return range_check (result, "BESSEL_Y0");
+}
+
+
+gfc_expr *
+gfc_simplify_bessel_y1 (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_y1 (result->value.real, x->value.real, GFC_RND_MODE);
+
+ return range_check (result, "BESSEL_Y1");
+}
+
+
+gfc_expr *
+gfc_simplify_bessel_yn (gfc_expr *order, gfc_expr *x)
+{
+ gfc_expr *result;
+ long n;
+
+ if (x->expr_type != EXPR_CONSTANT || order->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ n = mpz_get_si (order->value.integer);
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_yn (result->value.real, n, x->value.real, GFC_RND_MODE);
+
+ return range_check (result, "BESSEL_YN");
+}
+
+
+gfc_expr *
+gfc_simplify_bessel_yn2 (gfc_expr *order1, gfc_expr *order2, gfc_expr *x)
+{
+ return gfc_simplify_bessel_n2 (order1, order2, x, false);
+}
+
+
+gfc_expr *
+gfc_simplify_bit_size (gfc_expr *e)
+{
+ int i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
+ return gfc_get_int_expr (e->ts.kind, &e->where,
+ gfc_integer_kinds[i].bit_size);
+}
+
+
+gfc_expr *
+gfc_simplify_btest (gfc_expr *e, gfc_expr *bit)
+{
+ int b;
+
+ if (e->expr_type != EXPR_CONSTANT || bit->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (gfc_extract_int (bit, &b) != NULL || b < 0)
+ return gfc_get_logical_expr (gfc_default_logical_kind, &e->where, false);
+
+ return gfc_get_logical_expr (gfc_default_logical_kind, &e->where,
+ mpz_tstbit (e->value.integer, b));
+}
+
+
+static int
+compare_bitwise (gfc_expr *i, gfc_expr *j)
+{
+ mpz_t x, y;
+ int k, res;
+
+ gcc_assert (i->ts.type == BT_INTEGER);
+ gcc_assert (j->ts.type == BT_INTEGER);
+
+ mpz_init_set (x, i->value.integer);
+ k = gfc_validate_kind (i->ts.type, i->ts.kind, false);
+ convert_mpz_to_unsigned (x, gfc_integer_kinds[k].bit_size);
+
+ mpz_init_set (y, j->value.integer);
+ k = gfc_validate_kind (j->ts.type, j->ts.kind, false);
+ convert_mpz_to_unsigned (y, gfc_integer_kinds[k].bit_size);
+
+ res = mpz_cmp (x, y);
+ mpz_clear (x);
+ mpz_clear (y);
+ return res;
+}
+
+
+gfc_expr *
+gfc_simplify_bge (gfc_expr *i, gfc_expr *j)
+{
+ if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ return gfc_get_logical_expr (gfc_default_logical_kind, &i->where,
+ compare_bitwise (i, j) >= 0);
+}
+
+
+gfc_expr *
+gfc_simplify_bgt (gfc_expr *i, gfc_expr *j)
+{
+ if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ return gfc_get_logical_expr (gfc_default_logical_kind, &i->where,
+ compare_bitwise (i, j) > 0);
+}
+
+
+gfc_expr *
+gfc_simplify_ble (gfc_expr *i, gfc_expr *j)
+{
+ if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ return gfc_get_logical_expr (gfc_default_logical_kind, &i->where,
+ compare_bitwise (i, j) <= 0);
+}
+
+
+gfc_expr *
+gfc_simplify_blt (gfc_expr *i, gfc_expr *j)
+{
+ if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ return gfc_get_logical_expr (gfc_default_logical_kind, &i->where,
+ compare_bitwise (i, j) < 0);
+}
+
+
+gfc_expr *
+gfc_simplify_ceiling (gfc_expr *e, gfc_expr *k)
+{
+ gfc_expr *ceil, *result;
+ int kind;
+
+ kind = get_kind (BT_INTEGER, k, "CEILING", gfc_default_integer_kind);
+ if (kind == -1)
+ return &gfc_bad_expr;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ ceil = gfc_copy_expr (e);
+ mpfr_ceil (ceil->value.real, e->value.real);
+
+ result = gfc_get_constant_expr (BT_INTEGER, kind, &e->where);
+ gfc_mpfr_to_mpz (result->value.integer, ceil->value.real, &e->where);
+
+ gfc_free_expr (ceil);
+
+ return range_check (result, "CEILING");
+}
+
+
+gfc_expr *
+gfc_simplify_char (gfc_expr *e, gfc_expr *k)
+{
+ return simplify_achar_char (e, k, "CHAR", false);
+}
+
+
+/* Common subroutine for simplifying CMPLX, COMPLEX and DCMPLX. */
+
+static gfc_expr *
+simplify_cmplx (const char *name, gfc_expr *x, gfc_expr *y, int kind)
+{
+ gfc_expr *result;
+
+ if (convert_boz (x, kind) == &gfc_bad_expr)
+ return &gfc_bad_expr;
+
+ if (convert_boz (y, kind) == &gfc_bad_expr)
+ return &gfc_bad_expr;
+
+ if (x->expr_type != EXPR_CONSTANT
+ || (y != NULL && y->expr_type != EXPR_CONSTANT))
+ return NULL;
+
+ result = gfc_get_constant_expr (BT_COMPLEX, kind, &x->where);
+
+ switch (x->ts.type)
+ {
+ case BT_INTEGER:
+ mpc_set_z (result->value.complex, x->value.integer, GFC_MPC_RND_MODE);
+ break;
+
+ case BT_REAL:
+ mpc_set_fr (result->value.complex, x->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ mpc_set (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("gfc_simplify_dcmplx(): Bad type (x)");
+ }
+
+ if (!y)
+ return range_check (result, name);
+
+ switch (y->ts.type)
+ {
+ case BT_INTEGER:
+ mpfr_set_z (mpc_imagref (result->value.complex),
+ y->value.integer, GFC_RND_MODE);
+ break;
+
+ case BT_REAL:
+ mpfr_set (mpc_imagref (result->value.complex),
+ y->value.real, GFC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("gfc_simplify_dcmplx(): Bad type (y)");
+ }
+
+ return range_check (result, name);
+}
+
+
+gfc_expr *
+gfc_simplify_cmplx (gfc_expr *x, gfc_expr *y, gfc_expr *k)
+{
+ int kind;
+
+ kind = get_kind (BT_REAL, k, "CMPLX", gfc_default_complex_kind);
+ if (kind == -1)
+ return &gfc_bad_expr;
+
+ return simplify_cmplx ("CMPLX", x, y, kind);
+}
+
+
+gfc_expr *
+gfc_simplify_complex (gfc_expr *x, gfc_expr *y)
+{
+ int kind;
+
+ if (x->ts.type == BT_INTEGER && y->ts.type == BT_INTEGER)
+ kind = gfc_default_complex_kind;
+ else if (x->ts.type == BT_REAL || y->ts.type == BT_INTEGER)
+ kind = x->ts.kind;
+ else if (x->ts.type == BT_INTEGER || y->ts.type == BT_REAL)
+ kind = y->ts.kind;
+ else if (x->ts.type == BT_REAL && y->ts.type == BT_REAL)
+ kind = (x->ts.kind > y->ts.kind) ? x->ts.kind : y->ts.kind;
+ else
+ gcc_unreachable ();
+
+ return simplify_cmplx ("COMPLEX", x, y, kind);
+}
+
+
+gfc_expr *
+gfc_simplify_conjg (gfc_expr *e)
+{
+ gfc_expr *result;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_copy_expr (e);
+ mpc_conj (result->value.complex, result->value.complex, GFC_MPC_RND_MODE);
+
+ return range_check (result, "CONJG");
+}
+
+
+gfc_expr *
+gfc_simplify_cos (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+
+ switch (x->ts.type)
+ {
+ case BT_REAL:
+ mpfr_cos (result->value.real, x->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ gfc_set_model_kind (x->ts.kind);
+ mpc_cos (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("in gfc_simplify_cos(): Bad type");
+ }
+
+ return range_check (result, "COS");
+}
+
+
+gfc_expr *
+gfc_simplify_cosh (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+
+ switch (x->ts.type)
+ {
+ case BT_REAL:
+ mpfr_cosh (result->value.real, x->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ mpc_cosh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return range_check (result, "COSH");
+}
+
+
+gfc_expr *
+gfc_simplify_count (gfc_expr *mask, gfc_expr *dim, gfc_expr *kind)
+{
+ gfc_expr *result;
+
+ if (!is_constant_array_expr (mask)
+ || !gfc_is_constant_expr (dim)
+ || !gfc_is_constant_expr (kind))
+ return NULL;
+
+ result = transformational_result (mask, dim,
+ BT_INTEGER,
+ get_kind (BT_INTEGER, kind, "COUNT",
+ gfc_default_integer_kind),
+ &mask->where);
+
+ init_result_expr (result, 0, NULL);
+
+ /* Passing MASK twice, once as data array, once as mask.
+ Whenever gfc_count is called, '1' is added to the result. */
+ return !dim || mask->rank == 1 ?
+ simplify_transformation_to_scalar (result, mask, mask, gfc_count) :
+ simplify_transformation_to_array (result, mask, dim, mask, gfc_count, NULL);
+}
+
+
+gfc_expr *
+gfc_simplify_dcmplx (gfc_expr *x, gfc_expr *y)
+{
+ return simplify_cmplx ("DCMPLX", x, y, gfc_default_double_kind);
+}
+
+
+gfc_expr *
+gfc_simplify_dble (gfc_expr *e)
+{
+ gfc_expr *result = NULL;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (convert_boz (e, gfc_default_double_kind) == &gfc_bad_expr)
+ return &gfc_bad_expr;
+
+ result = gfc_convert_constant (e, BT_REAL, gfc_default_double_kind);
+ if (result == &gfc_bad_expr)
+ return &gfc_bad_expr;
+
+ return range_check (result, "DBLE");
+}
+
+
+gfc_expr *
+gfc_simplify_digits (gfc_expr *x)
+{
+ int i, digits;
+
+ i = gfc_validate_kind (x->ts.type, x->ts.kind, false);
+
+ switch (x->ts.type)
+ {
+ case BT_INTEGER:
+ digits = gfc_integer_kinds[i].digits;
+ break;
+
+ case BT_REAL:
+ case BT_COMPLEX:
+ digits = gfc_real_kinds[i].digits;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return gfc_get_int_expr (gfc_default_integer_kind, NULL, digits);
+}
+
+
+gfc_expr *
+gfc_simplify_dim (gfc_expr *x, gfc_expr *y)
+{
+ gfc_expr *result;
+ int kind;
+
+ if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ kind = x->ts.kind > y->ts.kind ? x->ts.kind : y->ts.kind;
+ result = gfc_get_constant_expr (x->ts.type, kind, &x->where);
+
+ switch (x->ts.type)
+ {
+ case BT_INTEGER:
+ if (mpz_cmp (x->value.integer, y->value.integer) > 0)
+ mpz_sub (result->value.integer, x->value.integer, y->value.integer);
+ else
+ mpz_set_ui (result->value.integer, 0);
+
+ break;
+
+ case BT_REAL:
+ if (mpfr_cmp (x->value.real, y->value.real) > 0)
+ mpfr_sub (result->value.real, x->value.real, y->value.real,
+ GFC_RND_MODE);
+ else
+ mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
+
+ break;
+
+ default:
+ gfc_internal_error ("gfc_simplify_dim(): Bad type");
+ }
+
+ return range_check (result, "DIM");
+}
+
+
+gfc_expr*
+gfc_simplify_dot_product (gfc_expr *vector_a, gfc_expr *vector_b)
+{
+ if (!is_constant_array_expr (vector_a)
+ || !is_constant_array_expr (vector_b))
+ return NULL;
+
+ gcc_assert (vector_a->rank == 1);
+ gcc_assert (vector_b->rank == 1);
+ gcc_assert (gfc_compare_types (&vector_a->ts, &vector_b->ts));
+
+ return compute_dot_product (vector_a, 1, 0, vector_b, 1, 0);
+}
+
+
+gfc_expr *
+gfc_simplify_dprod (gfc_expr *x, gfc_expr *y)
+{
+ gfc_expr *a1, *a2, *result;
+
+ if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ a1 = gfc_real2real (x, gfc_default_double_kind);
+ a2 = gfc_real2real (y, gfc_default_double_kind);
+
+ result = gfc_get_constant_expr (BT_REAL, gfc_default_double_kind, &x->where);
+ mpfr_mul (result->value.real, a1->value.real, a2->value.real, GFC_RND_MODE);
+
+ gfc_free_expr (a2);
+ gfc_free_expr (a1);
+
+ return range_check (result, "DPROD");
+}
+
+
+static gfc_expr *
+simplify_dshift (gfc_expr *arg1, gfc_expr *arg2, gfc_expr *shiftarg,
+ bool right)
+{
+ gfc_expr *result;
+ int i, k, size, shift;
+
+ if (arg1->expr_type != EXPR_CONSTANT || arg2->expr_type != EXPR_CONSTANT
+ || shiftarg->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ k = gfc_validate_kind (BT_INTEGER, arg1->ts.kind, false);
+ size = gfc_integer_kinds[k].bit_size;
+
+ if (gfc_extract_int (shiftarg, &shift) != NULL)
+ {
+ gfc_error ("Invalid SHIFT argument of DSHIFTL at %L", &shiftarg->where);
+ return &gfc_bad_expr;
+ }
+
+ gcc_assert (shift >= 0 && shift <= size);
+
+ /* DSHIFTR(I,J,SHIFT) = DSHIFTL(I,J,SIZE-SHIFT). */
+ if (right)
+ shift = size - shift;
+
+ result = gfc_get_constant_expr (BT_INTEGER, arg1->ts.kind, &arg1->where);
+ mpz_set_ui (result->value.integer, 0);
+
+ for (i = 0; i < shift; i++)
+ if (mpz_tstbit (arg2->value.integer, size - shift + i))
+ mpz_setbit (result->value.integer, i);
+
+ for (i = 0; i < size - shift; i++)
+ if (mpz_tstbit (arg1->value.integer, i))
+ mpz_setbit (result->value.integer, shift + i);
+
+ /* Convert to a signed value. */
+ convert_mpz_to_signed (result->value.integer, size);
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_dshiftr (gfc_expr *arg1, gfc_expr *arg2, gfc_expr *shiftarg)
+{
+ return simplify_dshift (arg1, arg2, shiftarg, true);
+}
+
+
+gfc_expr *
+gfc_simplify_dshiftl (gfc_expr *arg1, gfc_expr *arg2, gfc_expr *shiftarg)
+{
+ return simplify_dshift (arg1, arg2, shiftarg, false);
+}
+
+
+gfc_expr *
+gfc_simplify_erf (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_erf (result->value.real, x->value.real, GFC_RND_MODE);
+
+ return range_check (result, "ERF");
+}
+
+
+gfc_expr *
+gfc_simplify_erfc (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_erfc (result->value.real, x->value.real, GFC_RND_MODE);
+
+ return range_check (result, "ERFC");
+}
+
+
+/* Helper functions to simplify ERFC_SCALED(x) = ERFC(x) * EXP(X**2). */
+
+#define MAX_ITER 200
+#define ARG_LIMIT 12
+
+/* Calculate ERFC_SCALED directly by its definition:
+
+ ERFC_SCALED(x) = ERFC(x) * EXP(X**2)
+
+ using a large precision for intermediate results. This is used for all
+ but large values of the argument. */
+static void
+fullprec_erfc_scaled (mpfr_t res, mpfr_t arg)
+{
+ mp_prec_t prec;
+ mpfr_t a, b;
+
+ prec = mpfr_get_default_prec ();
+ mpfr_set_default_prec (10 * prec);
+
+ mpfr_init (a);
+ mpfr_init (b);
+
+ mpfr_set (a, arg, GFC_RND_MODE);
+ mpfr_sqr (b, a, GFC_RND_MODE);
+ mpfr_exp (b, b, GFC_RND_MODE);
+ mpfr_erfc (a, a, GFC_RND_MODE);
+ mpfr_mul (a, a, b, GFC_RND_MODE);
+
+ mpfr_set (res, a, GFC_RND_MODE);
+ mpfr_set_default_prec (prec);
+
+ mpfr_clear (a);
+ mpfr_clear (b);
+}
+
+/* Calculate ERFC_SCALED using a power series expansion in 1/arg:
+
+ ERFC_SCALED(x) = 1 / (x * sqrt(pi))
+ * (1 + Sum_n (-1)**n * (1 * 3 * 5 * ... * (2n-1))
+ / (2 * x**2)**n)
+
+ This is used for large values of the argument. Intermediate calculations
+ are performed with twice the precision. We don't do a fixed number of
+ iterations of the sum, but stop when it has converged to the required
+ precision. */
+static void
+asympt_erfc_scaled (mpfr_t res, mpfr_t arg)
+{
+ mpfr_t sum, x, u, v, w, oldsum, sumtrunc;
+ mpz_t num;
+ mp_prec_t prec;
+ unsigned i;
+
+ prec = mpfr_get_default_prec ();
+ mpfr_set_default_prec (2 * prec);
+
+ mpfr_init (sum);
+ mpfr_init (x);
+ mpfr_init (u);
+ mpfr_init (v);
+ mpfr_init (w);
+ mpz_init (num);
+
+ mpfr_init (oldsum);
+ mpfr_init (sumtrunc);
+ mpfr_set_prec (oldsum, prec);
+ mpfr_set_prec (sumtrunc, prec);
+
+ mpfr_set (x, arg, GFC_RND_MODE);
+ mpfr_set_ui (sum, 1, GFC_RND_MODE);
+ mpz_set_ui (num, 1);
+
+ mpfr_set (u, x, GFC_RND_MODE);
+ mpfr_sqr (u, u, GFC_RND_MODE);
+ mpfr_mul_ui (u, u, 2, GFC_RND_MODE);
+ mpfr_pow_si (u, u, -1, GFC_RND_MODE);
+
+ for (i = 1; i < MAX_ITER; i++)
+ {
+ mpfr_set (oldsum, sum, GFC_RND_MODE);
+
+ mpz_mul_ui (num, num, 2 * i - 1);
+ mpz_neg (num, num);
+
+ mpfr_set (w, u, GFC_RND_MODE);
+ mpfr_pow_ui (w, w, i, GFC_RND_MODE);
+
+ mpfr_set_z (v, num, GFC_RND_MODE);
+ mpfr_mul (v, v, w, GFC_RND_MODE);
+
+ mpfr_add (sum, sum, v, GFC_RND_MODE);
+
+ mpfr_set (sumtrunc, sum, GFC_RND_MODE);
+ if (mpfr_cmp (sumtrunc, oldsum) == 0)
+ break;
+ }
+
+ /* We should have converged by now; otherwise, ARG_LIMIT is probably
+ set too low. */
+ gcc_assert (i < MAX_ITER);
+
+ /* Divide by x * sqrt(Pi). */
+ mpfr_const_pi (u, GFC_RND_MODE);
+ mpfr_sqrt (u, u, GFC_RND_MODE);
+ mpfr_mul (u, u, x, GFC_RND_MODE);
+ mpfr_div (sum, sum, u, GFC_RND_MODE);
+
+ mpfr_set (res, sum, GFC_RND_MODE);
+ mpfr_set_default_prec (prec);
+
+ mpfr_clears (sum, x, u, v, w, oldsum, sumtrunc, NULL);
+ mpz_clear (num);
+}
+
+
+gfc_expr *
+gfc_simplify_erfc_scaled (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ if (mpfr_cmp_d (x->value.real, ARG_LIMIT) >= 0)
+ asympt_erfc_scaled (result->value.real, x->value.real);
+ else
+ fullprec_erfc_scaled (result->value.real, x->value.real);
+
+ return range_check (result, "ERFC_SCALED");
+}
+
+#undef MAX_ITER
+#undef ARG_LIMIT
+
+
+gfc_expr *
+gfc_simplify_epsilon (gfc_expr *e)
+{
+ gfc_expr *result;
+ int i;
+
+ i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
+
+ result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where);
+ mpfr_set (result->value.real, gfc_real_kinds[i].epsilon, GFC_RND_MODE);
+
+ return range_check (result, "EPSILON");
+}
+
+
+gfc_expr *
+gfc_simplify_exp (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+
+ switch (x->ts.type)
+ {
+ case BT_REAL:
+ mpfr_exp (result->value.real, x->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ gfc_set_model_kind (x->ts.kind);
+ mpc_exp (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("in gfc_simplify_exp(): Bad type");
+ }
+
+ return range_check (result, "EXP");
+}
+
+
+gfc_expr *
+gfc_simplify_exponent (gfc_expr *x)
+{
+ int i;
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind,
+ &x->where);
+
+ gfc_set_model (x->value.real);
+
+ if (mpfr_sgn (x->value.real) == 0)
+ {
+ mpz_set_ui (result->value.integer, 0);
+ return result;
+ }
+
+ i = (int) mpfr_get_exp (x->value.real);
+ mpz_set_si (result->value.integer, i);
+
+ return range_check (result, "EXPONENT");
+}
+
+
+gfc_expr *
+gfc_simplify_float (gfc_expr *a)
+{
+ gfc_expr *result;
+
+ if (a->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (a->is_boz)
+ {
+ if (convert_boz (a, gfc_default_real_kind) == &gfc_bad_expr)
+ return &gfc_bad_expr;
+
+ result = gfc_copy_expr (a);
+ }
+ else
+ result = gfc_int2real (a, gfc_default_real_kind);
+
+ return range_check (result, "FLOAT");
+}
+
+
+static bool
+is_last_ref_vtab (gfc_expr *e)
+{
+ gfc_ref *ref;
+ gfc_component *comp = NULL;
+
+ if (e->expr_type != EXPR_VARIABLE)
+ return false;
+
+ for (ref = e->ref; ref; ref = ref->next)
+ if (ref->type == REF_COMPONENT)
+ comp = ref->u.c.component;
+
+ if (!e->ref || !comp)
+ return e->symtree->n.sym->attr.vtab;
+
+ if (comp->name[0] == '_' && strcmp (comp->name, "_vptr") == 0)
+ return true;
+
+ return false;
+}
+
+
+gfc_expr *
+gfc_simplify_extends_type_of (gfc_expr *a, gfc_expr *mold)
+{
+ /* Avoid simplification of resolved symbols. */
+ if (is_last_ref_vtab (a) || is_last_ref_vtab (mold))
+ return NULL;
+
+ if (a->ts.type == BT_DERIVED && mold->ts.type == BT_DERIVED)
+ return gfc_get_logical_expr (gfc_default_logical_kind, &a->where,
+ gfc_type_is_extension_of (mold->ts.u.derived,
+ a->ts.u.derived));
+ /* Return .false. if the dynamic type can never be the same. */
+ if ((a->ts.type == BT_CLASS && mold->ts.type == BT_CLASS
+ && !gfc_type_is_extension_of
+ (mold->ts.u.derived->components->ts.u.derived,
+ a->ts.u.derived->components->ts.u.derived)
+ && !gfc_type_is_extension_of
+ (a->ts.u.derived->components->ts.u.derived,
+ mold->ts.u.derived->components->ts.u.derived))
+ || (a->ts.type == BT_DERIVED && mold->ts.type == BT_CLASS
+ && !gfc_type_is_extension_of
+ (a->ts.u.derived,
+ mold->ts.u.derived->components->ts.u.derived)
+ && !gfc_type_is_extension_of
+ (mold->ts.u.derived->components->ts.u.derived,
+ a->ts.u.derived))
+ || (a->ts.type == BT_CLASS && mold->ts.type == BT_DERIVED
+ && !gfc_type_is_extension_of
+ (mold->ts.u.derived,
+ a->ts.u.derived->components->ts.u.derived)))
+ return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, false);
+
+ if (mold->ts.type == BT_DERIVED
+ && gfc_type_is_extension_of (mold->ts.u.derived,
+ a->ts.u.derived->components->ts.u.derived))
+ return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, true);
+
+ return NULL;
+}
+
+
+gfc_expr *
+gfc_simplify_same_type_as (gfc_expr *a, gfc_expr *b)
+{
+ /* Avoid simplification of resolved symbols. */
+ if (is_last_ref_vtab (a) || is_last_ref_vtab (b))
+ return NULL;
+
+ /* Return .false. if the dynamic type can never be the
+ same. */
+ if ((a->ts.type == BT_CLASS || b->ts.type == BT_CLASS)
+ && !gfc_type_compatible (&a->ts, &b->ts)
+ && !gfc_type_compatible (&b->ts, &a->ts))
+ return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, false);
+
+ if (a->ts.type != BT_DERIVED || b->ts.type != BT_DERIVED)
+ return NULL;
+
+ return gfc_get_logical_expr (gfc_default_logical_kind, &a->where,
+ gfc_compare_derived_types (a->ts.u.derived,
+ b->ts.u.derived));
+}
+
+
+gfc_expr *
+gfc_simplify_floor (gfc_expr *e, gfc_expr *k)
+{
+ gfc_expr *result;
+ mpfr_t floor;
+ int kind;
+
+ kind = get_kind (BT_INTEGER, k, "FLOOR", gfc_default_integer_kind);
+ if (kind == -1)
+ gfc_internal_error ("gfc_simplify_floor(): Bad kind");
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ gfc_set_model_kind (kind);
+
+ mpfr_init (floor);
+ mpfr_floor (floor, e->value.real);
+
+ result = gfc_get_constant_expr (BT_INTEGER, kind, &e->where);
+ gfc_mpfr_to_mpz (result->value.integer, floor, &e->where);
+
+ mpfr_clear (floor);
+
+ return range_check (result, "FLOOR");
+}
+
+
+gfc_expr *
+gfc_simplify_fraction (gfc_expr *x)
+{
+ gfc_expr *result;
+ mpfr_t absv, exp, pow2;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (BT_REAL, x->ts.kind, &x->where);
+
+ if (mpfr_sgn (x->value.real) == 0)
+ {
+ mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
+ return result;
+ }
+
+ gfc_set_model_kind (x->ts.kind);
+ mpfr_init (exp);
+ mpfr_init (absv);
+ mpfr_init (pow2);
+
+ mpfr_abs (absv, x->value.real, GFC_RND_MODE);
+ mpfr_log2 (exp, absv, GFC_RND_MODE);
+
+ mpfr_trunc (exp, exp);
+ mpfr_add_ui (exp, exp, 1, GFC_RND_MODE);
+
+ mpfr_ui_pow (pow2, 2, exp, GFC_RND_MODE);
+
+ mpfr_div (result->value.real, absv, pow2, GFC_RND_MODE);
+
+ mpfr_clears (exp, absv, pow2, NULL);
+
+ return range_check (result, "FRACTION");
+}
+
+
+gfc_expr *
+gfc_simplify_gamma (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_gamma (result->value.real, x->value.real, GFC_RND_MODE);
+
+ return range_check (result, "GAMMA");
+}
+
+
+gfc_expr *
+gfc_simplify_huge (gfc_expr *e)
+{
+ gfc_expr *result;
+ int i;
+
+ i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
+ result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where);
+
+ switch (e->ts.type)
+ {
+ case BT_INTEGER:
+ mpz_set (result->value.integer, gfc_integer_kinds[i].huge);
+ break;
+
+ case BT_REAL:
+ mpfr_set (result->value.real, gfc_real_kinds[i].huge, GFC_RND_MODE);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_hypot (gfc_expr *x, gfc_expr *y)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_hypot (result->value.real, x->value.real, y->value.real, GFC_RND_MODE);
+ return range_check (result, "HYPOT");
+}
+
+
+/* We use the processor's collating sequence, because all
+ systems that gfortran currently works on are ASCII. */
+
+gfc_expr *
+gfc_simplify_iachar (gfc_expr *e, gfc_expr *kind)
+{
+ gfc_expr *result;
+ gfc_char_t index;
+ int k;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (e->value.character.length != 1)
+ {
+ gfc_error ("Argument of IACHAR at %L must be of length one", &e->where);
+ return &gfc_bad_expr;
+ }
+
+ index = e->value.character.string[0];
+
+ if (gfc_option.warn_surprising && index > 127)
+ gfc_warning ("Argument of IACHAR function at %L outside of range 0..127",
+ &e->where);
+
+ k = get_kind (BT_INTEGER, kind, "IACHAR", gfc_default_integer_kind);
+ if (k == -1)
+ return &gfc_bad_expr;
+
+ result = gfc_get_int_expr (k, &e->where, index);
+
+ return range_check (result, "IACHAR");
+}
+
+
+static gfc_expr *
+do_bit_and (gfc_expr *result, gfc_expr *e)
+{
+ gcc_assert (e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT);
+ gcc_assert (result->ts.type == BT_INTEGER
+ && result->expr_type == EXPR_CONSTANT);
+
+ mpz_and (result->value.integer, result->value.integer, e->value.integer);
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_iall (gfc_expr *array, gfc_expr *dim, gfc_expr *mask)
+{
+ return simplify_transformation (array, dim, mask, -1, do_bit_and);
+}
+
+
+static gfc_expr *
+do_bit_ior (gfc_expr *result, gfc_expr *e)
+{
+ gcc_assert (e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT);
+ gcc_assert (result->ts.type == BT_INTEGER
+ && result->expr_type == EXPR_CONSTANT);
+
+ mpz_ior (result->value.integer, result->value.integer, e->value.integer);
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_iany (gfc_expr *array, gfc_expr *dim, gfc_expr *mask)
+{
+ return simplify_transformation (array, dim, mask, 0, do_bit_ior);
+}
+
+
+gfc_expr *
+gfc_simplify_iand (gfc_expr *x, gfc_expr *y)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (BT_INTEGER, x->ts.kind, &x->where);
+ mpz_and (result->value.integer, x->value.integer, y->value.integer);
+
+ return range_check (result, "IAND");
+}
+
+
+gfc_expr *
+gfc_simplify_ibclr (gfc_expr *x, gfc_expr *y)
+{
+ gfc_expr *result;
+ int k, pos;
+
+ if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (gfc_extract_int (y, &pos) != NULL || pos < 0)
+ {
+ gfc_error ("Invalid second argument of IBCLR at %L", &y->where);
+ return &gfc_bad_expr;
+ }
+
+ k = gfc_validate_kind (x->ts.type, x->ts.kind, false);
+
+ if (pos >= gfc_integer_kinds[k].bit_size)
+ {
+ gfc_error ("Second argument of IBCLR exceeds bit size at %L",
+ &y->where);
+ return &gfc_bad_expr;
+ }
+
+ result = gfc_copy_expr (x);
+
+ convert_mpz_to_unsigned (result->value.integer,
+ gfc_integer_kinds[k].bit_size);
+
+ mpz_clrbit (result->value.integer, pos);
+
+ convert_mpz_to_signed (result->value.integer,
+ gfc_integer_kinds[k].bit_size);
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_ibits (gfc_expr *x, gfc_expr *y, gfc_expr *z)
+{
+ gfc_expr *result;
+ int pos, len;
+ int i, k, bitsize;
+ int *bits;
+
+ if (x->expr_type != EXPR_CONSTANT
+ || y->expr_type != EXPR_CONSTANT
+ || z->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (gfc_extract_int (y, &pos) != NULL || pos < 0)
+ {
+ gfc_error ("Invalid second argument of IBITS at %L", &y->where);
+ return &gfc_bad_expr;
+ }
+
+ if (gfc_extract_int (z, &len) != NULL || len < 0)
+ {
+ gfc_error ("Invalid third argument of IBITS at %L", &z->where);
+ return &gfc_bad_expr;
+ }
+
+ k = gfc_validate_kind (BT_INTEGER, x->ts.kind, false);
+
+ bitsize = gfc_integer_kinds[k].bit_size;
+
+ if (pos + len > bitsize)
+ {
+ gfc_error ("Sum of second and third arguments of IBITS exceeds "
+ "bit size at %L", &y->where);
+ return &gfc_bad_expr;
+ }
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ convert_mpz_to_unsigned (result->value.integer,
+ gfc_integer_kinds[k].bit_size);
+
+ bits = XCNEWVEC (int, bitsize);
+
+ for (i = 0; i < bitsize; i++)
+ bits[i] = 0;
+
+ for (i = 0; i < len; i++)
+ bits[i] = mpz_tstbit (x->value.integer, i + pos);
+
+ for (i = 0; i < bitsize; i++)
+ {
+ if (bits[i] == 0)
+ mpz_clrbit (result->value.integer, i);
+ else if (bits[i] == 1)
+ mpz_setbit (result->value.integer, i);
+ else
+ gfc_internal_error ("IBITS: Bad bit");
+ }
+
+ gfc_free (bits);
+
+ convert_mpz_to_signed (result->value.integer,
+ gfc_integer_kinds[k].bit_size);
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_ibset (gfc_expr *x, gfc_expr *y)
+{
+ gfc_expr *result;
+ int k, pos;
+
+ if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (gfc_extract_int (y, &pos) != NULL || pos < 0)
+ {
+ gfc_error ("Invalid second argument of IBSET at %L", &y->where);
+ return &gfc_bad_expr;
+ }
+
+ k = gfc_validate_kind (x->ts.type, x->ts.kind, false);
+
+ if (pos >= gfc_integer_kinds[k].bit_size)
+ {
+ gfc_error ("Second argument of IBSET exceeds bit size at %L",
+ &y->where);
+ return &gfc_bad_expr;
+ }
+
+ result = gfc_copy_expr (x);
+
+ convert_mpz_to_unsigned (result->value.integer,
+ gfc_integer_kinds[k].bit_size);
+
+ mpz_setbit (result->value.integer, pos);
+
+ convert_mpz_to_signed (result->value.integer,
+ gfc_integer_kinds[k].bit_size);
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_ichar (gfc_expr *e, gfc_expr *kind)
+{
+ gfc_expr *result;
+ gfc_char_t index;
+ int k;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (e->value.character.length != 1)
+ {
+ gfc_error ("Argument of ICHAR at %L must be of length one", &e->where);
+ return &gfc_bad_expr;
+ }
+
+ index = e->value.character.string[0];
+
+ k = get_kind (BT_INTEGER, kind, "ICHAR", gfc_default_integer_kind);
+ if (k == -1)
+ return &gfc_bad_expr;
+
+ result = gfc_get_int_expr (k, &e->where, index);
+
+ return range_check (result, "ICHAR");
+}
+
+
+gfc_expr *
+gfc_simplify_ieor (gfc_expr *x, gfc_expr *y)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (BT_INTEGER, x->ts.kind, &x->where);
+ mpz_xor (result->value.integer, x->value.integer, y->value.integer);
+
+ return range_check (result, "IEOR");
+}
+
+
+gfc_expr *
+gfc_simplify_index (gfc_expr *x, gfc_expr *y, gfc_expr *b, gfc_expr *kind)
+{
+ gfc_expr *result;
+ int back, len, lensub;
+ int i, j, k, count, index = 0, start;
+
+ if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT
+ || ( b != NULL && b->expr_type != EXPR_CONSTANT))
+ return NULL;
+
+ if (b != NULL && b->value.logical != 0)
+ back = 1;
+ else
+ back = 0;
+
+ k = get_kind (BT_INTEGER, kind, "INDEX", gfc_default_integer_kind);
+ if (k == -1)
+ return &gfc_bad_expr;
+
+ result = gfc_get_constant_expr (BT_INTEGER, k, &x->where);
+
+ len = x->value.character.length;
+ lensub = y->value.character.length;
+
+ if (len < lensub)
+ {
+ mpz_set_si (result->value.integer, 0);
+ return result;
+ }
+
+ if (back == 0)
+ {
+ if (lensub == 0)
+ {
+ mpz_set_si (result->value.integer, 1);
+ return result;
+ }
+ else if (lensub == 1)
+ {
+ for (i = 0; i < len; i++)
+ {
+ for (j = 0; j < lensub; j++)
+ {
+ if (y->value.character.string[j]
+ == x->value.character.string[i])
+ {
+ index = i + 1;
+ goto done;
+ }
+ }
+ }
+ }
+ else
+ {
+ for (i = 0; i < len; i++)
+ {
+ for (j = 0; j < lensub; j++)
+ {
+ if (y->value.character.string[j]
+ == x->value.character.string[i])
+ {
+ start = i;
+ count = 0;
+
+ for (k = 0; k < lensub; k++)
+ {
+ if (y->value.character.string[k]
+ == x->value.character.string[k + start])
+ count++;
+ }
+
+ if (count == lensub)
+ {
+ index = start + 1;
+ goto done;
+ }
+ }
+ }
+ }
+ }
+
+ }
+ else
+ {
+ if (lensub == 0)
+ {
+ mpz_set_si (result->value.integer, len + 1);
+ return result;
+ }
+ else if (lensub == 1)
+ {
+ for (i = 0; i < len; i++)
+ {
+ for (j = 0; j < lensub; j++)
+ {
+ if (y->value.character.string[j]
+ == x->value.character.string[len - i])
+ {
+ index = len - i + 1;
+ goto done;
+ }
+ }
+ }
+ }
+ else
+ {
+ for (i = 0; i < len; i++)
+ {
+ for (j = 0; j < lensub; j++)
+ {
+ if (y->value.character.string[j]
+ == x->value.character.string[len - i])
+ {
+ start = len - i;
+ if (start <= len - lensub)
+ {
+ count = 0;
+ for (k = 0; k < lensub; k++)
+ if (y->value.character.string[k]
+ == x->value.character.string[k + start])
+ count++;
+
+ if (count == lensub)
+ {
+ index = start + 1;
+ goto done;
+ }
+ }
+ else
+ {
+ continue;
+ }
+ }
+ }
+ }
+ }
+ }
+
+done:
+ mpz_set_si (result->value.integer, index);
+ return range_check (result, "INDEX");
+}
+
+
+static gfc_expr *
+simplify_intconv (gfc_expr *e, int kind, const char *name)
+{
+ gfc_expr *result = NULL;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_convert_constant (e, BT_INTEGER, kind);
+ if (result == &gfc_bad_expr)
+ return &gfc_bad_expr;
+
+ return range_check (result, name);
+}
+
+
+gfc_expr *
+gfc_simplify_int (gfc_expr *e, gfc_expr *k)
+{
+ int kind;
+
+ kind = get_kind (BT_INTEGER, k, "INT", gfc_default_integer_kind);
+ if (kind == -1)
+ return &gfc_bad_expr;
+
+ return simplify_intconv (e, kind, "INT");
+}
+
+gfc_expr *
+gfc_simplify_int2 (gfc_expr *e)
+{
+ return simplify_intconv (e, 2, "INT2");
+}
+
+
+gfc_expr *
+gfc_simplify_int8 (gfc_expr *e)
+{
+ return simplify_intconv (e, 8, "INT8");
+}
+
+
+gfc_expr *
+gfc_simplify_long (gfc_expr *e)
+{
+ return simplify_intconv (e, 4, "LONG");
+}
+
+
+gfc_expr *
+gfc_simplify_ifix (gfc_expr *e)
+{
+ gfc_expr *rtrunc, *result;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ rtrunc = gfc_copy_expr (e);
+ mpfr_trunc (rtrunc->value.real, e->value.real);
+
+ result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind,
+ &e->where);
+ gfc_mpfr_to_mpz (result->value.integer, rtrunc->value.real, &e->where);
+
+ gfc_free_expr (rtrunc);
+
+ return range_check (result, "IFIX");
+}
+
+
+gfc_expr *
+gfc_simplify_idint (gfc_expr *e)
+{
+ gfc_expr *rtrunc, *result;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ rtrunc = gfc_copy_expr (e);
+ mpfr_trunc (rtrunc->value.real, e->value.real);
+
+ result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind,
+ &e->where);
+ gfc_mpfr_to_mpz (result->value.integer, rtrunc->value.real, &e->where);
+
+ gfc_free_expr (rtrunc);
+
+ return range_check (result, "IDINT");
+}
+
+
+gfc_expr *
+gfc_simplify_ior (gfc_expr *x, gfc_expr *y)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (BT_INTEGER, x->ts.kind, &x->where);
+ mpz_ior (result->value.integer, x->value.integer, y->value.integer);
+
+ return range_check (result, "IOR");
+}
+
+
+static gfc_expr *
+do_bit_xor (gfc_expr *result, gfc_expr *e)
+{
+ gcc_assert (e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT);
+ gcc_assert (result->ts.type == BT_INTEGER
+ && result->expr_type == EXPR_CONSTANT);
+
+ mpz_xor (result->value.integer, result->value.integer, e->value.integer);
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_iparity (gfc_expr *array, gfc_expr *dim, gfc_expr *mask)
+{
+ return simplify_transformation (array, dim, mask, 0, do_bit_xor);
+}
+
+
+
+gfc_expr *
+gfc_simplify_is_iostat_end (gfc_expr *x)
+{
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ return gfc_get_logical_expr (gfc_default_logical_kind, &x->where,
+ mpz_cmp_si (x->value.integer,
+ LIBERROR_END) == 0);
+}
+
+
+gfc_expr *
+gfc_simplify_is_iostat_eor (gfc_expr *x)
+{
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ return gfc_get_logical_expr (gfc_default_logical_kind, &x->where,
+ mpz_cmp_si (x->value.integer,
+ LIBERROR_EOR) == 0);
+}
+
+
+gfc_expr *
+gfc_simplify_isnan (gfc_expr *x)
+{
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ return gfc_get_logical_expr (gfc_default_logical_kind, &x->where,
+ mpfr_nan_p (x->value.real));
+}
+
+
+/* Performs a shift on its first argument. Depending on the last
+ argument, the shift can be arithmetic, i.e. with filling from the
+ left like in the SHIFTA intrinsic. */
+static gfc_expr *
+simplify_shift (gfc_expr *e, gfc_expr *s, const char *name,
+ bool arithmetic, int direction)
+{
+ gfc_expr *result;
+ int ashift, *bits, i, k, bitsize, shift;
+
+ if (e->expr_type != EXPR_CONSTANT || s->expr_type != EXPR_CONSTANT)
+ return NULL;
+ if (gfc_extract_int (s, &shift) != NULL)
+ {
+ gfc_error ("Invalid second argument of %s at %L", name, &s->where);
+ return &gfc_bad_expr;
+ }
+
+ k = gfc_validate_kind (BT_INTEGER, e->ts.kind, false);
+ bitsize = gfc_integer_kinds[k].bit_size;
+
+ result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where);
+
+ if (shift == 0)
+ {
+ mpz_set (result->value.integer, e->value.integer);
+ return result;
+ }
+
+ if (direction > 0 && shift < 0)
+ {
+ /* Left shift, as in SHIFTL. */
+ gfc_error ("Second argument of %s is negative at %L", name, &e->where);
+ return &gfc_bad_expr;
+ }
+ else if (direction < 0)
+ {
+ /* Right shift, as in SHIFTR or SHIFTA. */
+ if (shift < 0)
+ {
+ gfc_error ("Second argument of %s is negative at %L",
+ name, &e->where);
+ return &gfc_bad_expr;
+ }
+
+ shift = -shift;
+ }
+
+ ashift = (shift >= 0 ? shift : -shift);
+
+ if (ashift > bitsize)
+ {
+ gfc_error ("Magnitude of second argument of %s exceeds bit size "
+ "at %L", name, &e->where);
+ return &gfc_bad_expr;
+ }
+
+ bits = XCNEWVEC (int, bitsize);
+
+ for (i = 0; i < bitsize; i++)
+ bits[i] = mpz_tstbit (e->value.integer, i);
+
+ if (shift > 0)
+ {
+ /* Left shift. */
+ for (i = 0; i < shift; i++)
+ mpz_clrbit (result->value.integer, i);
+
+ for (i = 0; i < bitsize - shift; i++)
+ {
+ if (bits[i] == 0)
+ mpz_clrbit (result->value.integer, i + shift);
+ else
+ mpz_setbit (result->value.integer, i + shift);
+ }
+ }
+ else
+ {
+ /* Right shift. */
+ if (arithmetic && bits[bitsize - 1])
+ for (i = bitsize - 1; i >= bitsize - ashift; i--)
+ mpz_setbit (result->value.integer, i);
+ else
+ for (i = bitsize - 1; i >= bitsize - ashift; i--)
+ mpz_clrbit (result->value.integer, i);
+
+ for (i = bitsize - 1; i >= ashift; i--)
+ {
+ if (bits[i] == 0)
+ mpz_clrbit (result->value.integer, i - ashift);
+ else
+ mpz_setbit (result->value.integer, i - ashift);
+ }
+ }
+
+ convert_mpz_to_signed (result->value.integer, bitsize);
+ gfc_free (bits);
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_ishft (gfc_expr *e, gfc_expr *s)
+{
+ return simplify_shift (e, s, "ISHFT", false, 0);
+}
+
+
+gfc_expr *
+gfc_simplify_lshift (gfc_expr *e, gfc_expr *s)
+{
+ return simplify_shift (e, s, "LSHIFT", false, 1);
+}
+
+
+gfc_expr *
+gfc_simplify_rshift (gfc_expr *e, gfc_expr *s)
+{
+ return simplify_shift (e, s, "RSHIFT", true, -1);
+}
+
+
+gfc_expr *
+gfc_simplify_shifta (gfc_expr *e, gfc_expr *s)
+{
+ return simplify_shift (e, s, "SHIFTA", true, -1);
+}
+
+
+gfc_expr *
+gfc_simplify_shiftl (gfc_expr *e, gfc_expr *s)
+{
+ return simplify_shift (e, s, "SHIFTL", false, 1);
+}
+
+
+gfc_expr *
+gfc_simplify_shiftr (gfc_expr *e, gfc_expr *s)
+{
+ return simplify_shift (e, s, "SHIFTR", false, -1);
+}
+
+
+gfc_expr *
+gfc_simplify_ishftc (gfc_expr *e, gfc_expr *s, gfc_expr *sz)
+{
+ gfc_expr *result;
+ int shift, ashift, isize, ssize, delta, k;
+ int i, *bits;
+
+ if (e->expr_type != EXPR_CONSTANT || s->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (gfc_extract_int (s, &shift) != NULL)
+ {
+ gfc_error ("Invalid second argument of ISHFTC at %L", &s->where);
+ return &gfc_bad_expr;
+ }
+
+ k = gfc_validate_kind (e->ts.type, e->ts.kind, false);
+ isize = gfc_integer_kinds[k].bit_size;
+
+ if (sz != NULL)
+ {
+ if (sz->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (gfc_extract_int (sz, &ssize) != NULL || ssize <= 0)
+ {
+ gfc_error ("Invalid third argument of ISHFTC at %L", &sz->where);
+ return &gfc_bad_expr;
+ }
+
+ if (ssize > isize)
+ {
+ gfc_error ("Magnitude of third argument of ISHFTC exceeds "
+ "BIT_SIZE of first argument at %L", &s->where);
+ return &gfc_bad_expr;
+ }
+ }
+ else
+ ssize = isize;
+
+ if (shift >= 0)
+ ashift = shift;
+ else
+ ashift = -shift;
+
+ if (ashift > ssize)
+ {
+ if (sz != NULL)
+ gfc_error ("Magnitude of second argument of ISHFTC exceeds "
+ "third argument at %L", &s->where);
+ else
+ gfc_error ("Magnitude of second argument of ISHFTC exceeds "
+ "BIT_SIZE of first argument at %L", &s->where);
+ return &gfc_bad_expr;
+ }
+
+ result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where);
+
+ mpz_set (result->value.integer, e->value.integer);
+
+ if (shift == 0)
+ return result;
+
+ convert_mpz_to_unsigned (result->value.integer, isize);
+
+ bits = XCNEWVEC (int, ssize);
+
+ for (i = 0; i < ssize; i++)
+ bits[i] = mpz_tstbit (e->value.integer, i);
+
+ delta = ssize - ashift;
+
+ if (shift > 0)
+ {
+ for (i = 0; i < delta; i++)
+ {
+ if (bits[i] == 0)
+ mpz_clrbit (result->value.integer, i + shift);
+ else
+ mpz_setbit (result->value.integer, i + shift);
+ }
+
+ for (i = delta; i < ssize; i++)
+ {
+ if (bits[i] == 0)
+ mpz_clrbit (result->value.integer, i - delta);
+ else
+ mpz_setbit (result->value.integer, i - delta);
+ }
+ }
+ else
+ {
+ for (i = 0; i < ashift; i++)
+ {
+ if (bits[i] == 0)
+ mpz_clrbit (result->value.integer, i + delta);
+ else
+ mpz_setbit (result->value.integer, i + delta);
+ }
+
+ for (i = ashift; i < ssize; i++)
+ {
+ if (bits[i] == 0)
+ mpz_clrbit (result->value.integer, i + shift);
+ else
+ mpz_setbit (result->value.integer, i + shift);
+ }
+ }
+
+ convert_mpz_to_signed (result->value.integer, isize);
+
+ gfc_free (bits);
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_kind (gfc_expr *e)
+{
+ return gfc_get_int_expr (gfc_default_integer_kind, NULL, e->ts.kind);
+}
+
+
+static gfc_expr *
+simplify_bound_dim (gfc_expr *array, gfc_expr *kind, int d, int upper,
+ gfc_array_spec *as, gfc_ref *ref, bool coarray)
+{
+ gfc_expr *l, *u, *result;
+ int k;
+
+ k = get_kind (BT_INTEGER, kind, upper ? "UBOUND" : "LBOUND",
+ gfc_default_integer_kind);
+ if (k == -1)
+ return &gfc_bad_expr;
+
+ result = gfc_get_constant_expr (BT_INTEGER, k, &array->where);
+
+ /* For non-variables, LBOUND(expr, DIM=n) = 1 and
+ UBOUND(expr, DIM=n) = SIZE(expr, DIM=n). */
+ if (!coarray && array->expr_type != EXPR_VARIABLE)
+ {
+ if (upper)
+ {
+ gfc_expr* dim = result;
+ mpz_set_si (dim->value.integer, d);
+
+ result = gfc_simplify_size (array, dim, kind);
+ gfc_free_expr (dim);
+ if (!result)
+ goto returnNull;
+ }
+ else
+ mpz_set_si (result->value.integer, 1);
+
+ goto done;
+ }
+
+ /* Otherwise, we have a variable expression. */
+ gcc_assert (array->expr_type == EXPR_VARIABLE);
+ gcc_assert (as);
+
+ if (gfc_resolve_array_spec (as, 0) == FAILURE)
+ return NULL;
+
+ /* The last dimension of an assumed-size array is special. */
+ if ((!coarray && d == as->rank && as->type == AS_ASSUMED_SIZE && !upper)
+ || (coarray && d == as->rank + as->corank))
+ {
+ if (as->lower[d-1]->expr_type == EXPR_CONSTANT)
+ {
+ gfc_free_expr (result);
+ return gfc_copy_expr (as->lower[d-1]);
+ }
+
+ goto returnNull;
+ }
+
+ result = gfc_get_constant_expr (BT_INTEGER, k, &array->where);
+
+ /* Then, we need to know the extent of the given dimension. */
+ if (coarray || ref->u.ar.type == AR_FULL)
+ {
+ l = as->lower[d-1];
+ u = as->upper[d-1];
+
+ if (l->expr_type != EXPR_CONSTANT || u == NULL
+ || u->expr_type != EXPR_CONSTANT)
+ goto returnNull;
+
+ if (mpz_cmp (l->value.integer, u->value.integer) > 0)
+ {
+ /* Zero extent. */
+ if (upper)
+ mpz_set_si (result->value.integer, 0);
+ else
+ mpz_set_si (result->value.integer, 1);
+ }
+ else
+ {
+ /* Nonzero extent. */
+ if (upper)
+ mpz_set (result->value.integer, u->value.integer);
+ else
+ mpz_set (result->value.integer, l->value.integer);
+ }
+ }
+ else
+ {
+ if (upper)
+ {
+ if (gfc_ref_dimen_size (&ref->u.ar, d-1, &result->value.integer, NULL)
+ != SUCCESS)
+ goto returnNull;
+ }
+ else
+ mpz_set_si (result->value.integer, (long int) 1);
+ }
+
+done:
+ return range_check (result, upper ? "UBOUND" : "LBOUND");
+
+returnNull:
+ gfc_free_expr (result);
+ return NULL;
+}
+
+
+static gfc_expr *
+simplify_bound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind, int upper)
+{
+ gfc_ref *ref;
+ gfc_array_spec *as;
+ int d;
+
+ if (array->expr_type != EXPR_VARIABLE)
+ {
+ as = NULL;
+ ref = NULL;
+ goto done;
+ }
+
+ /* Follow any component references. */
+ as = array->symtree->n.sym->as;
+ for (ref = array->ref; ref; ref = ref->next)
+ {
+ switch (ref->type)
+ {
+ case REF_ARRAY:
+ switch (ref->u.ar.type)
+ {
+ case AR_ELEMENT:
+ as = NULL;
+ continue;
+
+ case AR_FULL:
+ /* We're done because 'as' has already been set in the
+ previous iteration. */
+ if (!ref->next)
+ goto done;
+
+ /* Fall through. */
+
+ case AR_UNKNOWN:
+ return NULL;
+
+ case AR_SECTION:
+ as = ref->u.ar.as;
+ goto done;
+ }
+
+ gcc_unreachable ();
+
+ case REF_COMPONENT:
+ as = ref->u.c.component->as;
+ continue;
+
+ case REF_SUBSTRING:
+ continue;
+ }
+ }
+
+ gcc_unreachable ();
+
+ done:
+
+ if (as && (as->type == AS_DEFERRED || as->type == AS_ASSUMED_SHAPE))
+ return NULL;
+
+ if (dim == NULL)
+ {
+ /* Multi-dimensional bounds. */
+ gfc_expr *bounds[GFC_MAX_DIMENSIONS];
+ gfc_expr *e;
+ int k;
+
+ /* UBOUND(ARRAY) is not valid for an assumed-size array. */
+ if (upper && as && as->type == AS_ASSUMED_SIZE)
+ {
+ /* An error message will be emitted in
+ check_assumed_size_reference (resolve.c). */
+ return &gfc_bad_expr;
+ }
+
+ /* Simplify the bounds for each dimension. */
+ for (d = 0; d < array->rank; d++)
+ {
+ bounds[d] = simplify_bound_dim (array, kind, d + 1, upper, as, ref,
+ false);
+ if (bounds[d] == NULL || bounds[d] == &gfc_bad_expr)
+ {
+ int j;
+
+ for (j = 0; j < d; j++)
+ gfc_free_expr (bounds[j]);
+ return bounds[d];
+ }
+ }
+
+ /* Allocate the result expression. */
+ k = get_kind (BT_INTEGER, kind, upper ? "UBOUND" : "LBOUND",
+ gfc_default_integer_kind);
+ if (k == -1)
+ return &gfc_bad_expr;
+
+ e = gfc_get_array_expr (BT_INTEGER, k, &array->where);
+
+ /* The result is a rank 1 array; its size is the rank of the first
+ argument to {L,U}BOUND. */
+ e->rank = 1;
+ e->shape = gfc_get_shape (1);
+ mpz_init_set_ui (e->shape[0], array->rank);
+
+ /* Create the constructor for this array. */
+ for (d = 0; d < array->rank; d++)
+ gfc_constructor_append_expr (&e->value.constructor,
+ bounds[d], &e->where);
+
+ return e;
+ }
+ else
+ {
+ /* A DIM argument is specified. */
+ if (dim->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ d = mpz_get_si (dim->value.integer);
+
+ if (d < 1 || d > array->rank
+ || (d == array->rank && as && as->type == AS_ASSUMED_SIZE && upper))
+ {
+ gfc_error ("DIM argument at %L is out of bounds", &dim->where);
+ return &gfc_bad_expr;
+ }
+
+ return simplify_bound_dim (array, kind, d, upper, as, ref, false);
+ }
+}
+
+
+static gfc_expr *
+simplify_cobound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind, int upper)
+{
+ gfc_ref *ref;
+ gfc_array_spec *as;
+ int d;
+
+ if (array->expr_type != EXPR_VARIABLE)
+ return NULL;
+
+ /* Follow any component references. */
+ as = array->symtree->n.sym->as;
+ for (ref = array->ref; ref; ref = ref->next)
+ {
+ switch (ref->type)
+ {
+ case REF_ARRAY:
+ switch (ref->u.ar.type)
+ {
+ case AR_ELEMENT:
+ if (ref->next == NULL)
+ {
+ gcc_assert (ref->u.ar.as->corank > 0
+ && ref->u.ar.as->rank == 0);
+ as = ref->u.ar.as;
+ goto done;
+ }
+ as = NULL;
+ continue;
+
+ case AR_FULL:
+ /* We're done because 'as' has already been set in the
+ previous iteration. */
+ if (!ref->next)
+ goto done;
+
+ /* Fall through. */
+
+ case AR_UNKNOWN:
+ return NULL;
+
+ case AR_SECTION:
+ as = ref->u.ar.as;
+ goto done;
+ }
+
+ gcc_unreachable ();
+
+ case REF_COMPONENT:
+ as = ref->u.c.component->as;
+ continue;
+
+ case REF_SUBSTRING:
+ continue;
+ }
+ }
+
+ gcc_unreachable ();
+
+ done:
+
+ if (as->type == AS_DEFERRED || as->type == AS_ASSUMED_SHAPE)
+ return NULL;
+
+ if (dim == NULL)
+ {
+ /* Multi-dimensional cobounds. */
+ gfc_expr *bounds[GFC_MAX_DIMENSIONS];
+ gfc_expr *e;
+ int k;
+
+ /* Simplify the cobounds for each dimension. */
+ for (d = 0; d < as->corank; d++)
+ {
+ bounds[d] = simplify_bound_dim (array, kind, d + 1 + array->rank,
+ upper, as, ref, true);
+ if (bounds[d] == NULL || bounds[d] == &gfc_bad_expr)
+ {
+ int j;
+
+ for (j = 0; j < d; j++)
+ gfc_free_expr (bounds[j]);
+ return bounds[d];
+ }
+ }
+
+ /* Allocate the result expression. */
+ e = gfc_get_expr ();
+ e->where = array->where;
+ e->expr_type = EXPR_ARRAY;
+ e->ts.type = BT_INTEGER;
+ k = get_kind (BT_INTEGER, kind, upper ? "UCOBOUND" : "LCOBOUND",
+ gfc_default_integer_kind);
+ if (k == -1)
+ {
+ gfc_free_expr (e);
+ return &gfc_bad_expr;
+ }
+ e->ts.kind = k;
+
+ /* The result is a rank 1 array; its size is the rank of the first
+ argument to {L,U}COBOUND. */
+ e->rank = 1;
+ e->shape = gfc_get_shape (1);
+ mpz_init_set_ui (e->shape[0], as->corank);
+
+ /* Create the constructor for this array. */
+ for (d = 0; d < as->corank; d++)
+ gfc_constructor_append_expr (&e->value.constructor,
+ bounds[d], &e->where);
+ return e;
+ }
+ else
+ {
+ /* A DIM argument is specified. */
+ if (dim->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ d = mpz_get_si (dim->value.integer);
+
+ if (d < 1 || d > as->corank)
+ {
+ gfc_error ("DIM argument at %L is out of bounds", &dim->where);
+ return &gfc_bad_expr;
+ }
+
+ return simplify_bound_dim (array, kind, d+array->rank, upper, as, ref, true);
+ }
+}
+
+
+gfc_expr *
+gfc_simplify_lbound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind)
+{
+ return simplify_bound (array, dim, kind, 0);
+}
+
+
+gfc_expr *
+gfc_simplify_lcobound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind)
+{
+ gfc_expr *e;
+ /* return simplify_cobound (array, dim, kind, 0);*/
+
+ e = simplify_cobound (array, dim, kind, 0);
+ if (e != NULL)
+ return e;
+
+ gfc_error ("Not yet implemented: LCOBOUND for coarray with non-constant "
+ "cobounds at %L", &array->where);
+ return &gfc_bad_expr;
+}
+
+gfc_expr *
+gfc_simplify_leadz (gfc_expr *e)
+{
+ unsigned long lz, bs;
+ int i;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
+ bs = gfc_integer_kinds[i].bit_size;
+ if (mpz_cmp_si (e->value.integer, 0) == 0)
+ lz = bs;
+ else if (mpz_cmp_si (e->value.integer, 0) < 0)
+ lz = 0;
+ else
+ lz = bs - mpz_sizeinbase (e->value.integer, 2);
+
+ return gfc_get_int_expr (gfc_default_integer_kind, &e->where, lz);
+}
+
+
+gfc_expr *
+gfc_simplify_len (gfc_expr *e, gfc_expr *kind)
+{
+ gfc_expr *result;
+ int k = get_kind (BT_INTEGER, kind, "LEN", gfc_default_integer_kind);
+
+ if (k == -1)
+ return &gfc_bad_expr;
+
+ if (e->expr_type == EXPR_CONSTANT)
+ {
+ result = gfc_get_constant_expr (BT_INTEGER, k, &e->where);
+ mpz_set_si (result->value.integer, e->value.character.length);
+ return range_check (result, "LEN");
+ }
+ else if (e->ts.u.cl != NULL && e->ts.u.cl->length != NULL
+ && e->ts.u.cl->length->expr_type == EXPR_CONSTANT
+ && e->ts.u.cl->length->ts.type == BT_INTEGER)
+ {
+ result = gfc_get_constant_expr (BT_INTEGER, k, &e->where);
+ mpz_set (result->value.integer, e->ts.u.cl->length->value.integer);
+ return range_check (result, "LEN");
+ }
+ else
+ return NULL;
+}
+
+
+gfc_expr *
+gfc_simplify_len_trim (gfc_expr *e, gfc_expr *kind)
+{
+ gfc_expr *result;
+ int count, len, i;
+ int k = get_kind (BT_INTEGER, kind, "LEN_TRIM", gfc_default_integer_kind);
+
+ if (k == -1)
+ return &gfc_bad_expr;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ len = e->value.character.length;
+ for (count = 0, i = 1; i <= len; i++)
+ if (e->value.character.string[len - i] == ' ')
+ count++;
+ else
+ break;
+
+ result = gfc_get_int_expr (k, &e->where, len - count);
+ return range_check (result, "LEN_TRIM");
+}
+
+gfc_expr *
+gfc_simplify_lgamma (gfc_expr *x)
+{
+ gfc_expr *result;
+ int sg;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_lgamma (result->value.real, &sg, x->value.real, GFC_RND_MODE);
+
+ return range_check (result, "LGAMMA");
+}
+
+
+gfc_expr *
+gfc_simplify_lge (gfc_expr *a, gfc_expr *b)
+{
+ if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ return gfc_get_logical_expr (gfc_default_logical_kind, &a->where,
+ gfc_compare_string (a, b) >= 0);
+}
+
+
+gfc_expr *
+gfc_simplify_lgt (gfc_expr *a, gfc_expr *b)
+{
+ if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ return gfc_get_logical_expr (gfc_default_logical_kind, &a->where,
+ gfc_compare_string (a, b) > 0);
+}
+
+
+gfc_expr *
+gfc_simplify_lle (gfc_expr *a, gfc_expr *b)
+{
+ if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ return gfc_get_logical_expr (gfc_default_logical_kind, &a->where,
+ gfc_compare_string (a, b) <= 0);
+}
+
+
+gfc_expr *
+gfc_simplify_llt (gfc_expr *a, gfc_expr *b)
+{
+ if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ return gfc_get_logical_expr (gfc_default_logical_kind, &a->where,
+ gfc_compare_string (a, b) < 0);
+}
+
+
+gfc_expr *
+gfc_simplify_log (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+
+ switch (x->ts.type)
+ {
+ case BT_REAL:
+ if (mpfr_sgn (x->value.real) <= 0)
+ {
+ gfc_error ("Argument of LOG at %L cannot be less than or equal "
+ "to zero", &x->where);
+ gfc_free_expr (result);
+ return &gfc_bad_expr;
+ }
+
+ mpfr_log (result->value.real, x->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ if ((mpfr_sgn (mpc_realref (x->value.complex)) == 0)
+ && (mpfr_sgn (mpc_imagref (x->value.complex)) == 0))
+ {
+ gfc_error ("Complex argument of LOG at %L cannot be zero",
+ &x->where);
+ gfc_free_expr (result);
+ return &gfc_bad_expr;
+ }
+
+ gfc_set_model_kind (x->ts.kind);
+ mpc_log (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("gfc_simplify_log: bad type");
+ }
+
+ return range_check (result, "LOG");
+}
+
+
+gfc_expr *
+gfc_simplify_log10 (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (mpfr_sgn (x->value.real) <= 0)
+ {
+ gfc_error ("Argument of LOG10 at %L cannot be less than or equal "
+ "to zero", &x->where);
+ return &gfc_bad_expr;
+ }
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+ mpfr_log10 (result->value.real, x->value.real, GFC_RND_MODE);
+
+ return range_check (result, "LOG10");
+}
+
+
+gfc_expr *
+gfc_simplify_logical (gfc_expr *e, gfc_expr *k)
+{
+ int kind;
+
+ kind = get_kind (BT_LOGICAL, k, "LOGICAL", gfc_default_logical_kind);
+ if (kind < 0)
+ return &gfc_bad_expr;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ return gfc_get_logical_expr (kind, &e->where, e->value.logical);
+}
+
+
+gfc_expr*
+gfc_simplify_matmul (gfc_expr *matrix_a, gfc_expr *matrix_b)
+{
+ gfc_expr *result;
+ int row, result_rows, col, result_columns;
+ int stride_a, offset_a, stride_b, offset_b;
+
+ if (!is_constant_array_expr (matrix_a)
+ || !is_constant_array_expr (matrix_b))
+ return NULL;
+
+ gcc_assert (gfc_compare_types (&matrix_a->ts, &matrix_b->ts));
+ result = gfc_get_array_expr (matrix_a->ts.type,
+ matrix_a->ts.kind,
+ &matrix_a->where);
+
+ if (matrix_a->rank == 1 && matrix_b->rank == 2)
+ {
+ result_rows = 1;
+ result_columns = mpz_get_si (matrix_b->shape[1]);
+ stride_a = 1;
+ stride_b = mpz_get_si (matrix_b->shape[0]);
+
+ result->rank = 1;
+ result->shape = gfc_get_shape (result->rank);
+ mpz_init_set_si (result->shape[0], result_columns);
+ }
+ else if (matrix_a->rank == 2 && matrix_b->rank == 1)
+ {
+ result_rows = mpz_get_si (matrix_a->shape[0]);
+ result_columns = 1;
+ stride_a = mpz_get_si (matrix_a->shape[0]);
+ stride_b = 1;
+
+ result->rank = 1;
+ result->shape = gfc_get_shape (result->rank);
+ mpz_init_set_si (result->shape[0], result_rows);
+ }
+ else if (matrix_a->rank == 2 && matrix_b->rank == 2)
+ {
+ result_rows = mpz_get_si (matrix_a->shape[0]);
+ result_columns = mpz_get_si (matrix_b->shape[1]);
+ stride_a = mpz_get_si (matrix_a->shape[0]);
+ stride_b = mpz_get_si (matrix_b->shape[0]);
+
+ result->rank = 2;
+ result->shape = gfc_get_shape (result->rank);
+ mpz_init_set_si (result->shape[0], result_rows);
+ mpz_init_set_si (result->shape[1], result_columns);
+ }
+ else
+ gcc_unreachable();
+
+ offset_a = offset_b = 0;
+ for (col = 0; col < result_columns; ++col)
+ {
+ offset_a = 0;
+
+ for (row = 0; row < result_rows; ++row)
+ {
+ gfc_expr *e = compute_dot_product (matrix_a, stride_a, offset_a,
+ matrix_b, 1, offset_b);
+ gfc_constructor_append_expr (&result->value.constructor,
+ e, NULL);
+
+ offset_a += 1;
+ }
+
+ offset_b += stride_b;
+ }
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_maskr (gfc_expr *i, gfc_expr *kind_arg)
+{
+ gfc_expr *result;
+ int kind, arg, k;
+ const char *s;
+
+ if (i->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ kind = get_kind (BT_INTEGER, kind_arg, "MASKR", gfc_default_integer_kind);
+ if (kind == -1)
+ return &gfc_bad_expr;
+ k = gfc_validate_kind (BT_INTEGER, kind, false);
+
+ s = gfc_extract_int (i, &arg);
+ gcc_assert (!s);
+
+ result = gfc_get_constant_expr (BT_INTEGER, kind, &i->where);
+
+ /* MASKR(n) = 2^n - 1 */
+ mpz_set_ui (result->value.integer, 1);
+ mpz_mul_2exp (result->value.integer, result->value.integer, arg);
+ mpz_sub_ui (result->value.integer, result->value.integer, 1);
+
+ convert_mpz_to_signed (result->value.integer, gfc_integer_kinds[k].bit_size);
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_maskl (gfc_expr *i, gfc_expr *kind_arg)
+{
+ gfc_expr *result;
+ int kind, arg, k;
+ const char *s;
+ mpz_t z;
+
+ if (i->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ kind = get_kind (BT_INTEGER, kind_arg, "MASKL", gfc_default_integer_kind);
+ if (kind == -1)
+ return &gfc_bad_expr;
+ k = gfc_validate_kind (BT_INTEGER, kind, false);
+
+ s = gfc_extract_int (i, &arg);
+ gcc_assert (!s);
+
+ result = gfc_get_constant_expr (BT_INTEGER, kind, &i->where);
+
+ /* MASKL(n) = 2^bit_size - 2^(bit_size - n) */
+ mpz_init_set_ui (z, 1);
+ mpz_mul_2exp (z, z, gfc_integer_kinds[k].bit_size);
+ mpz_set_ui (result->value.integer, 1);
+ mpz_mul_2exp (result->value.integer, result->value.integer,
+ gfc_integer_kinds[k].bit_size - arg);
+ mpz_sub (result->value.integer, z, result->value.integer);
+ mpz_clear (z);
+
+ convert_mpz_to_signed (result->value.integer, gfc_integer_kinds[k].bit_size);
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_merge (gfc_expr *tsource, gfc_expr *fsource, gfc_expr *mask)
+{
+ if (tsource->expr_type != EXPR_CONSTANT
+ || fsource->expr_type != EXPR_CONSTANT
+ || mask->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ return gfc_copy_expr (mask->value.logical ? tsource : fsource);
+}
+
+
+gfc_expr *
+gfc_simplify_merge_bits (gfc_expr *i, gfc_expr *j, gfc_expr *mask_expr)
+{
+ mpz_t arg1, arg2, mask;
+ gfc_expr *result;
+
+ if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT
+ || mask_expr->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (BT_INTEGER, i->ts.kind, &i->where);
+
+ /* Convert all argument to unsigned. */
+ mpz_init_set (arg1, i->value.integer);
+ mpz_init_set (arg2, j->value.integer);
+ mpz_init_set (mask, mask_expr->value.integer);
+
+ /* MERGE_BITS(I,J,MASK) = IOR (IAND (I, MASK), IAND (J, NOT (MASK))). */
+ mpz_and (arg1, arg1, mask);
+ mpz_com (mask, mask);
+ mpz_and (arg2, arg2, mask);
+ mpz_ior (result->value.integer, arg1, arg2);
+
+ mpz_clear (arg1);
+ mpz_clear (arg2);
+ mpz_clear (mask);
+
+ return result;
+}
+
+
+/* Selects between current value and extremum for simplify_min_max
+ and simplify_minval_maxval. */
+static void
+min_max_choose (gfc_expr *arg, gfc_expr *extremum, int sign)
+{
+ switch (arg->ts.type)
+ {
+ case BT_INTEGER:
+ if (mpz_cmp (arg->value.integer,
+ extremum->value.integer) * sign > 0)
+ mpz_set (extremum->value.integer, arg->value.integer);
+ break;
+
+ case BT_REAL:
+ /* We need to use mpfr_min and mpfr_max to treat NaN properly. */
+ if (sign > 0)
+ mpfr_max (extremum->value.real, extremum->value.real,
+ arg->value.real, GFC_RND_MODE);
+ else
+ mpfr_min (extremum->value.real, extremum->value.real,
+ arg->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_CHARACTER:
+#define LENGTH(x) ((x)->value.character.length)
+#define STRING(x) ((x)->value.character.string)
+ if (LENGTH(extremum) < LENGTH(arg))
+ {
+ gfc_char_t *tmp = STRING(extremum);
+
+ STRING(extremum) = gfc_get_wide_string (LENGTH(arg) + 1);
+ memcpy (STRING(extremum), tmp,
+ LENGTH(extremum) * sizeof (gfc_char_t));
+ gfc_wide_memset (&STRING(extremum)[LENGTH(extremum)], ' ',
+ LENGTH(arg) - LENGTH(extremum));
+ STRING(extremum)[LENGTH(arg)] = '\0'; /* For debugger */
+ LENGTH(extremum) = LENGTH(arg);
+ gfc_free (tmp);
+ }
+
+ if (gfc_compare_string (arg, extremum) * sign > 0)
+ {
+ gfc_free (STRING(extremum));
+ STRING(extremum) = gfc_get_wide_string (LENGTH(extremum) + 1);
+ memcpy (STRING(extremum), STRING(arg),
+ LENGTH(arg) * sizeof (gfc_char_t));
+ gfc_wide_memset (&STRING(extremum)[LENGTH(arg)], ' ',
+ LENGTH(extremum) - LENGTH(arg));
+ STRING(extremum)[LENGTH(extremum)] = '\0'; /* For debugger */
+ }
+#undef LENGTH
+#undef STRING
+ break;
+
+ default:
+ gfc_internal_error ("simplify_min_max(): Bad type in arglist");
+ }
+}
+
+
+/* This function is special since MAX() can take any number of
+ arguments. The simplified expression is a rewritten version of the
+ argument list containing at most one constant element. Other
+ constant elements are deleted. Because the argument list has
+ already been checked, this function always succeeds. sign is 1 for
+ MAX(), -1 for MIN(). */
+
+static gfc_expr *
+simplify_min_max (gfc_expr *expr, int sign)
+{
+ gfc_actual_arglist *arg, *last, *extremum;
+ gfc_intrinsic_sym * specific;
+
+ last = NULL;
+ extremum = NULL;
+ specific = expr->value.function.isym;
+
+ arg = expr->value.function.actual;
+
+ for (; arg; last = arg, arg = arg->next)
+ {
+ if (arg->expr->expr_type != EXPR_CONSTANT)
+ continue;
+
+ if (extremum == NULL)
+ {
+ extremum = arg;
+ continue;
+ }
+
+ min_max_choose (arg->expr, extremum->expr, sign);
+
+ /* Delete the extra constant argument. */
+ if (last == NULL)
+ expr->value.function.actual = arg->next;
+ else
+ last->next = arg->next;
+
+ arg->next = NULL;
+ gfc_free_actual_arglist (arg);
+ arg = last;
+ }
+
+ /* If there is one value left, replace the function call with the
+ expression. */
+ if (expr->value.function.actual->next != NULL)
+ return NULL;
+
+ /* Convert to the correct type and kind. */
+ if (expr->ts.type != BT_UNKNOWN)
+ return gfc_convert_constant (expr->value.function.actual->expr,
+ expr->ts.type, expr->ts.kind);
+
+ if (specific->ts.type != BT_UNKNOWN)
+ return gfc_convert_constant (expr->value.function.actual->expr,
+ specific->ts.type, specific->ts.kind);
+
+ return gfc_copy_expr (expr->value.function.actual->expr);
+}
+
+
+gfc_expr *
+gfc_simplify_min (gfc_expr *e)
+{
+ return simplify_min_max (e, -1);
+}
+
+
+gfc_expr *
+gfc_simplify_max (gfc_expr *e)
+{
+ return simplify_min_max (e, 1);
+}
+
+
+/* This is a simplified version of simplify_min_max to provide
+ simplification of minval and maxval for a vector. */
+
+static gfc_expr *
+simplify_minval_maxval (gfc_expr *expr, int sign)
+{
+ gfc_constructor *c, *extremum;
+ gfc_intrinsic_sym * specific;
+
+ extremum = NULL;
+ specific = expr->value.function.isym;
+
+ for (c = gfc_constructor_first (expr->value.constructor);
+ c; c = gfc_constructor_next (c))
+ {
+ if (c->expr->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (extremum == NULL)
+ {
+ extremum = c;
+ continue;
+ }
+
+ min_max_choose (c->expr, extremum->expr, sign);
+ }
+
+ if (extremum == NULL)
+ return NULL;
+
+ /* Convert to the correct type and kind. */
+ if (expr->ts.type != BT_UNKNOWN)
+ return gfc_convert_constant (extremum->expr,
+ expr->ts.type, expr->ts.kind);
+
+ if (specific->ts.type != BT_UNKNOWN)
+ return gfc_convert_constant (extremum->expr,
+ specific->ts.type, specific->ts.kind);
+
+ return gfc_copy_expr (extremum->expr);
+}
+
+
+gfc_expr *
+gfc_simplify_minval (gfc_expr *array, gfc_expr* dim, gfc_expr *mask)
+{
+ if (array->expr_type != EXPR_ARRAY || array->rank != 1 || dim || mask)
+ return NULL;
+
+ return simplify_minval_maxval (array, -1);
+}
+
+
+gfc_expr *
+gfc_simplify_maxval (gfc_expr *array, gfc_expr* dim, gfc_expr *mask)
+{
+ if (array->expr_type != EXPR_ARRAY || array->rank != 1 || dim || mask)
+ return NULL;
+
+ return simplify_minval_maxval (array, 1);
+}
+
+
+gfc_expr *
+gfc_simplify_maxexponent (gfc_expr *x)
+{
+ int i = gfc_validate_kind (BT_REAL, x->ts.kind, false);
+ return gfc_get_int_expr (gfc_default_integer_kind, &x->where,
+ gfc_real_kinds[i].max_exponent);
+}
+
+
+gfc_expr *
+gfc_simplify_minexponent (gfc_expr *x)
+{
+ int i = gfc_validate_kind (BT_REAL, x->ts.kind, false);
+ return gfc_get_int_expr (gfc_default_integer_kind, &x->where,
+ gfc_real_kinds[i].min_exponent);
+}
+
+
+gfc_expr *
+gfc_simplify_mod (gfc_expr *a, gfc_expr *p)
+{
+ gfc_expr *result;
+ mpfr_t tmp;
+ int kind;
+
+ if (a->expr_type != EXPR_CONSTANT || p->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ kind = a->ts.kind > p->ts.kind ? a->ts.kind : p->ts.kind;
+ result = gfc_get_constant_expr (a->ts.type, kind, &a->where);
+
+ switch (a->ts.type)
+ {
+ case BT_INTEGER:
+ if (mpz_cmp_ui (p->value.integer, 0) == 0)
+ {
+ /* Result is processor-dependent. */
+ gfc_error ("Second argument MOD at %L is zero", &a->where);
+ gfc_free_expr (result);
+ return &gfc_bad_expr;
+ }
+ mpz_tdiv_r (result->value.integer, a->value.integer, p->value.integer);
+ break;
+
+ case BT_REAL:
+ if (mpfr_cmp_ui (p->value.real, 0) == 0)
+ {
+ /* Result is processor-dependent. */
+ gfc_error ("Second argument of MOD at %L is zero", &p->where);
+ gfc_free_expr (result);
+ return &gfc_bad_expr;
+ }
+
+ gfc_set_model_kind (kind);
+ mpfr_init (tmp);
+ mpfr_div (tmp, a->value.real, p->value.real, GFC_RND_MODE);
+ mpfr_trunc (tmp, tmp);
+ mpfr_mul (tmp, tmp, p->value.real, GFC_RND_MODE);
+ mpfr_sub (result->value.real, a->value.real, tmp, GFC_RND_MODE);
+ mpfr_clear (tmp);
+ break;
+
+ default:
+ gfc_internal_error ("gfc_simplify_mod(): Bad arguments");
+ }
+
+ return range_check (result, "MOD");
+}
+
+
+gfc_expr *
+gfc_simplify_modulo (gfc_expr *a, gfc_expr *p)
+{
+ gfc_expr *result;
+ mpfr_t tmp;
+ int kind;
+
+ if (a->expr_type != EXPR_CONSTANT || p->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ kind = a->ts.kind > p->ts.kind ? a->ts.kind : p->ts.kind;
+ result = gfc_get_constant_expr (a->ts.type, kind, &a->where);
+
+ switch (a->ts.type)
+ {
+ case BT_INTEGER:
+ if (mpz_cmp_ui (p->value.integer, 0) == 0)
+ {
+ /* Result is processor-dependent. This processor just opts
+ to not handle it at all. */
+ gfc_error ("Second argument of MODULO at %L is zero", &a->where);
+ gfc_free_expr (result);
+ return &gfc_bad_expr;
+ }
+ mpz_fdiv_r (result->value.integer, a->value.integer, p->value.integer);
+
+ break;
+
+ case BT_REAL:
+ if (mpfr_cmp_ui (p->value.real, 0) == 0)
+ {
+ /* Result is processor-dependent. */
+ gfc_error ("Second argument of MODULO at %L is zero", &p->where);
+ gfc_free_expr (result);
+ return &gfc_bad_expr;
+ }
+
+ gfc_set_model_kind (kind);
+ mpfr_init (tmp);
+ mpfr_div (tmp, a->value.real, p->value.real, GFC_RND_MODE);
+ mpfr_floor (tmp, tmp);
+ mpfr_mul (tmp, tmp, p->value.real, GFC_RND_MODE);
+ mpfr_sub (result->value.real, a->value.real, tmp, GFC_RND_MODE);
+ mpfr_clear (tmp);
+ break;
+
+ default:
+ gfc_internal_error ("gfc_simplify_modulo(): Bad arguments");
+ }
+
+ return range_check (result, "MODULO");
+}
+
+
+/* Exists for the sole purpose of consistency with other intrinsics. */
+gfc_expr *
+gfc_simplify_mvbits (gfc_expr *f ATTRIBUTE_UNUSED,
+ gfc_expr *fp ATTRIBUTE_UNUSED,
+ gfc_expr *l ATTRIBUTE_UNUSED,
+ gfc_expr *to ATTRIBUTE_UNUSED,
+ gfc_expr *tp ATTRIBUTE_UNUSED)
+{
+ return NULL;
+}
+
+
+gfc_expr *
+gfc_simplify_nearest (gfc_expr *x, gfc_expr *s)
+{
+ gfc_expr *result;
+ mp_exp_t emin, emax;
+ int kind;
+
+ if (x->expr_type != EXPR_CONSTANT || s->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (mpfr_sgn (s->value.real) == 0)
+ {
+ gfc_error ("Second argument of NEAREST at %L shall not be zero",
+ &s->where);
+ return &gfc_bad_expr;
+ }
+
+ result = gfc_copy_expr (x);
+
+ /* Save current values of emin and emax. */
+ emin = mpfr_get_emin ();
+ emax = mpfr_get_emax ();
+
+ /* Set emin and emax for the current model number. */
+ kind = gfc_validate_kind (BT_REAL, x->ts.kind, 0);
+ mpfr_set_emin ((mp_exp_t) gfc_real_kinds[kind].min_exponent -
+ mpfr_get_prec(result->value.real) + 1);
+ mpfr_set_emax ((mp_exp_t) gfc_real_kinds[kind].max_exponent - 1);
+ mpfr_check_range (result->value.real, 0, GMP_RNDU);
+
+ if (mpfr_sgn (s->value.real) > 0)
+ {
+ mpfr_nextabove (result->value.real);
+ mpfr_subnormalize (result->value.real, 0, GMP_RNDU);
+ }
+ else
+ {
+ mpfr_nextbelow (result->value.real);
+ mpfr_subnormalize (result->value.real, 0, GMP_RNDD);
+ }
+
+ mpfr_set_emin (emin);
+ mpfr_set_emax (emax);
+
+ /* Only NaN can occur. Do not use range check as it gives an
+ error for denormal numbers. */
+ if (mpfr_nan_p (result->value.real) && gfc_option.flag_range_check)
+ {
+ gfc_error ("Result of NEAREST is NaN at %L", &result->where);
+ gfc_free_expr (result);
+ return &gfc_bad_expr;
+ }
+
+ return result;
+}
+
+
+static gfc_expr *
+simplify_nint (const char *name, gfc_expr *e, gfc_expr *k)
+{
+ gfc_expr *itrunc, *result;
+ int kind;
+
+ kind = get_kind (BT_INTEGER, k, name, gfc_default_integer_kind);
+ if (kind == -1)
+ return &gfc_bad_expr;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ itrunc = gfc_copy_expr (e);
+ mpfr_round (itrunc->value.real, e->value.real);
+
+ result = gfc_get_constant_expr (BT_INTEGER, kind, &e->where);
+ gfc_mpfr_to_mpz (result->value.integer, itrunc->value.real, &e->where);
+
+ gfc_free_expr (itrunc);
+
+ return range_check (result, name);
+}
+
+
+gfc_expr *
+gfc_simplify_new_line (gfc_expr *e)
+{
+ gfc_expr *result;
+
+ result = gfc_get_character_expr (e->ts.kind, &e->where, NULL, 1);
+ result->value.character.string[0] = '\n';
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_nint (gfc_expr *e, gfc_expr *k)
+{
+ return simplify_nint ("NINT", e, k);
+}
+
+
+gfc_expr *
+gfc_simplify_idnint (gfc_expr *e)
+{
+ return simplify_nint ("IDNINT", e, NULL);
+}
+
+
+static gfc_expr *
+add_squared (gfc_expr *result, gfc_expr *e)
+{
+ mpfr_t tmp;
+
+ gcc_assert (e->ts.type == BT_REAL && e->expr_type == EXPR_CONSTANT);
+ gcc_assert (result->ts.type == BT_REAL
+ && result->expr_type == EXPR_CONSTANT);
+
+ gfc_set_model_kind (result->ts.kind);
+ mpfr_init (tmp);
+ mpfr_pow_ui (tmp, e->value.real, 2, GFC_RND_MODE);
+ mpfr_add (result->value.real, result->value.real, tmp,
+ GFC_RND_MODE);
+ mpfr_clear (tmp);
+
+ return result;
+}
+
+
+static gfc_expr *
+do_sqrt (gfc_expr *result, gfc_expr *e)
+{
+ gcc_assert (e->ts.type == BT_REAL && e->expr_type == EXPR_CONSTANT);
+ gcc_assert (result->ts.type == BT_REAL
+ && result->expr_type == EXPR_CONSTANT);
+
+ mpfr_set (result->value.real, e->value.real, GFC_RND_MODE);
+ mpfr_sqrt (result->value.real, result->value.real, GFC_RND_MODE);
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_norm2 (gfc_expr *e, gfc_expr *dim)
+{
+ gfc_expr *result;
+
+ if (!is_constant_array_expr (e)
+ || (dim != NULL && !gfc_is_constant_expr (dim)))
+ return NULL;
+
+ result = transformational_result (e, dim, e->ts.type, e->ts.kind, &e->where);
+ init_result_expr (result, 0, NULL);
+
+ if (!dim || e->rank == 1)
+ {
+ result = simplify_transformation_to_scalar (result, e, NULL,
+ add_squared);
+ mpfr_sqrt (result->value.real, result->value.real, GFC_RND_MODE);
+ }
+ else
+ result = simplify_transformation_to_array (result, e, dim, NULL,
+ add_squared, &do_sqrt);
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_not (gfc_expr *e)
+{
+ gfc_expr *result;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where);
+ mpz_com (result->value.integer, e->value.integer);
+
+ return range_check (result, "NOT");
+}
+
+
+gfc_expr *
+gfc_simplify_null (gfc_expr *mold)
+{
+ gfc_expr *result;
+
+ if (mold)
+ {
+ result = gfc_copy_expr (mold);
+ result->expr_type = EXPR_NULL;
+ }
+ else
+ result = gfc_get_null_expr (NULL);
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_num_images (void)
+{
+ gfc_expr *result;
+
+ if (gfc_option.coarray == GFC_FCOARRAY_NONE)
+ {
+ gfc_fatal_error ("Coarrays disabled at %C, use -fcoarray= to enable");
+ return &gfc_bad_expr;
+ }
+
+ /* FIXME: gfc_current_locus is wrong. */
+ result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind,
+ &gfc_current_locus);
+ mpz_set_si (result->value.integer, 1);
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_or (gfc_expr *x, gfc_expr *y)
+{
+ gfc_expr *result;
+ int kind;
+
+ if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ kind = x->ts.kind > y->ts.kind ? x->ts.kind : y->ts.kind;
+
+ switch (x->ts.type)
+ {
+ case BT_INTEGER:
+ result = gfc_get_constant_expr (BT_INTEGER, kind, &x->where);
+ mpz_ior (result->value.integer, x->value.integer, y->value.integer);
+ return range_check (result, "OR");
+
+ case BT_LOGICAL:
+ return gfc_get_logical_expr (kind, &x->where,
+ x->value.logical || y->value.logical);
+ default:
+ gcc_unreachable();
+ }
+}
+
+
+gfc_expr *
+gfc_simplify_pack (gfc_expr *array, gfc_expr *mask, gfc_expr *vector)
+{
+ gfc_expr *result;
+ gfc_constructor *array_ctor, *mask_ctor, *vector_ctor;
+
+ if (!is_constant_array_expr(array)
+ || !is_constant_array_expr(vector)
+ || (!gfc_is_constant_expr (mask)
+ && !is_constant_array_expr(mask)))
+ return NULL;
+
+ result = gfc_get_array_expr (array->ts.type, array->ts.kind, &array->where);
+ if (array->ts.type == BT_DERIVED)
+ result->ts.u.derived = array->ts.u.derived;
+
+ array_ctor = gfc_constructor_first (array->value.constructor);
+ vector_ctor = vector
+ ? gfc_constructor_first (vector->value.constructor)
+ : NULL;
+
+ if (mask->expr_type == EXPR_CONSTANT
+ && mask->value.logical)
+ {
+ /* Copy all elements of ARRAY to RESULT. */
+ while (array_ctor)
+ {
+ gfc_constructor_append_expr (&result->value.constructor,
+ gfc_copy_expr (array_ctor->expr),
+ NULL);
+
+ array_ctor = gfc_constructor_next (array_ctor);
+ vector_ctor = gfc_constructor_next (vector_ctor);
+ }
+ }
+ else if (mask->expr_type == EXPR_ARRAY)
+ {
+ /* Copy only those elements of ARRAY to RESULT whose
+ MASK equals .TRUE.. */
+ mask_ctor = gfc_constructor_first (mask->value.constructor);
+ while (mask_ctor)
+ {
+ if (mask_ctor->expr->value.logical)
+ {
+ gfc_constructor_append_expr (&result->value.constructor,
+ gfc_copy_expr (array_ctor->expr),
+ NULL);
+ vector_ctor = gfc_constructor_next (vector_ctor);
+ }
+
+ array_ctor = gfc_constructor_next (array_ctor);
+ mask_ctor = gfc_constructor_next (mask_ctor);
+ }
+ }
+
+ /* Append any left-over elements from VECTOR to RESULT. */
+ while (vector_ctor)
+ {
+ gfc_constructor_append_expr (&result->value.constructor,
+ gfc_copy_expr (vector_ctor->expr),
+ NULL);
+ vector_ctor = gfc_constructor_next (vector_ctor);
+ }
+
+ result->shape = gfc_get_shape (1);
+ gfc_array_size (result, &result->shape[0]);
+
+ if (array->ts.type == BT_CHARACTER)
+ result->ts.u.cl = array->ts.u.cl;
+
+ return result;
+}
+
+
+static gfc_expr *
+do_xor (gfc_expr *result, gfc_expr *e)
+{
+ gcc_assert (e->ts.type == BT_LOGICAL && e->expr_type == EXPR_CONSTANT);
+ gcc_assert (result->ts.type == BT_LOGICAL
+ && result->expr_type == EXPR_CONSTANT);
+
+ result->value.logical = result->value.logical != e->value.logical;
+ return result;
+}
+
+
+
+gfc_expr *
+gfc_simplify_parity (gfc_expr *e, gfc_expr *dim)
+{
+ return simplify_transformation (e, dim, NULL, 0, do_xor);
+}
+
+
+gfc_expr *
+gfc_simplify_popcnt (gfc_expr *e)
+{
+ int res, k;
+ mpz_t x;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ k = gfc_validate_kind (e->ts.type, e->ts.kind, false);
+
+ /* Convert argument to unsigned, then count the '1' bits. */
+ mpz_init_set (x, e->value.integer);
+ convert_mpz_to_unsigned (x, gfc_integer_kinds[k].bit_size);
+ res = mpz_popcount (x);
+ mpz_clear (x);
+
+ return gfc_get_int_expr (gfc_default_integer_kind, &e->where, res);
+}
+
+
+gfc_expr *
+gfc_simplify_poppar (gfc_expr *e)
+{
+ gfc_expr *popcnt;
+ const char *s;
+ int i;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ popcnt = gfc_simplify_popcnt (e);
+ gcc_assert (popcnt);
+
+ s = gfc_extract_int (popcnt, &i);
+ gcc_assert (!s);
+
+ return gfc_get_int_expr (gfc_default_integer_kind, &e->where, i % 2);
+}
+
+
+gfc_expr *
+gfc_simplify_precision (gfc_expr *e)
+{
+ int i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
+ return gfc_get_int_expr (gfc_default_integer_kind, &e->where,
+ gfc_real_kinds[i].precision);
+}
+
+
+gfc_expr *
+gfc_simplify_product (gfc_expr *array, gfc_expr *dim, gfc_expr *mask)
+{
+ return simplify_transformation (array, dim, mask, 1, gfc_multiply);
+}
+
+
+gfc_expr *
+gfc_simplify_radix (gfc_expr *e)
+{
+ int i;
+ i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
+
+ switch (e->ts.type)
+ {
+ case BT_INTEGER:
+ i = gfc_integer_kinds[i].radix;
+ break;
+
+ case BT_REAL:
+ i = gfc_real_kinds[i].radix;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return gfc_get_int_expr (gfc_default_integer_kind, &e->where, i);
+}
+
+
+gfc_expr *
+gfc_simplify_range (gfc_expr *e)
+{
+ int i;
+ i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
+
+ switch (e->ts.type)
+ {
+ case BT_INTEGER:
+ i = gfc_integer_kinds[i].range;
+ break;
+
+ case BT_REAL:
+ case BT_COMPLEX:
+ i = gfc_real_kinds[i].range;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return gfc_get_int_expr (gfc_default_integer_kind, &e->where, i);
+}
+
+
+gfc_expr *
+gfc_simplify_real (gfc_expr *e, gfc_expr *k)
+{
+ gfc_expr *result = NULL;
+ int kind;
+
+ if (e->ts.type == BT_COMPLEX)
+ kind = get_kind (BT_REAL, k, "REAL", e->ts.kind);
+ else
+ kind = get_kind (BT_REAL, k, "REAL", gfc_default_real_kind);
+
+ if (kind == -1)
+ return &gfc_bad_expr;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (convert_boz (e, kind) == &gfc_bad_expr)
+ return &gfc_bad_expr;
+
+ result = gfc_convert_constant (e, BT_REAL, kind);
+ if (result == &gfc_bad_expr)
+ return &gfc_bad_expr;
+
+ return range_check (result, "REAL");
+}
+
+
+gfc_expr *
+gfc_simplify_realpart (gfc_expr *e)
+{
+ gfc_expr *result;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where);
+ mpc_real (result->value.real, e->value.complex, GFC_RND_MODE);
+
+ return range_check (result, "REALPART");
+}
+
+gfc_expr *
+gfc_simplify_repeat (gfc_expr *e, gfc_expr *n)
+{
+ gfc_expr *result;
+ int i, j, len, ncop, nlen;
+ mpz_t ncopies;
+ bool have_length = false;
+
+ /* If NCOPIES isn't a constant, there's nothing we can do. */
+ if (n->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ /* If NCOPIES is negative, it's an error. */
+ if (mpz_sgn (n->value.integer) < 0)
+ {
+ gfc_error ("Argument NCOPIES of REPEAT intrinsic is negative at %L",
+ &n->where);
+ return &gfc_bad_expr;
+ }
+
+ /* If we don't know the character length, we can do no more. */
+ if (e->ts.u.cl && e->ts.u.cl->length
+ && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
+ {
+ len = mpz_get_si (e->ts.u.cl->length->value.integer);
+ have_length = true;
+ }
+ else if (e->expr_type == EXPR_CONSTANT
+ && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
+ {
+ len = e->value.character.length;
+ }
+ else
+ return NULL;
+
+ /* If the source length is 0, any value of NCOPIES is valid
+ and everything behaves as if NCOPIES == 0. */
+ mpz_init (ncopies);
+ if (len == 0)
+ mpz_set_ui (ncopies, 0);
+ else
+ mpz_set (ncopies, n->value.integer);
+
+ /* Check that NCOPIES isn't too large. */
+ if (len)
+ {
+ mpz_t max, mlen;
+ int i;
+
+ /* Compute the maximum value allowed for NCOPIES: huge(cl) / len. */
+ mpz_init (max);
+ i = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
+
+ if (have_length)
+ {
+ mpz_tdiv_q (max, gfc_integer_kinds[i].huge,
+ e->ts.u.cl->length->value.integer);
+ }
+ else
+ {
+ mpz_init_set_si (mlen, len);
+ mpz_tdiv_q (max, gfc_integer_kinds[i].huge, mlen);
+ mpz_clear (mlen);
+ }
+
+ /* The check itself. */
+ if (mpz_cmp (ncopies, max) > 0)
+ {
+ mpz_clear (max);
+ mpz_clear (ncopies);
+ gfc_error ("Argument NCOPIES of REPEAT intrinsic is too large at %L",
+ &n->where);
+ return &gfc_bad_expr;
+ }
+
+ mpz_clear (max);
+ }
+ mpz_clear (ncopies);
+
+ /* For further simplification, we need the character string to be
+ constant. */
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (len ||
+ (e->ts.u.cl->length &&
+ mpz_sgn (e->ts.u.cl->length->value.integer)) != 0)
+ {
+ const char *res = gfc_extract_int (n, &ncop);
+ gcc_assert (res == NULL);
+ }
+ else
+ ncop = 0;
+
+ len = e->value.character.length;
+ nlen = ncop * len;
+
+ result = gfc_get_constant_expr (BT_CHARACTER, e->ts.kind, &e->where);
+
+ if (ncop == 0)
+ return gfc_get_character_expr (e->ts.kind, &e->where, NULL, 0);
+
+ len = e->value.character.length;
+ nlen = ncop * len;
+
+ result = gfc_get_character_expr (e->ts.kind, &e->where, NULL, nlen);
+ for (i = 0; i < ncop; i++)
+ for (j = 0; j < len; j++)
+ result->value.character.string[j+i*len]= e->value.character.string[j];
+
+ result->value.character.string[nlen] = '\0'; /* For debugger */
+ return result;
+}
+
+
+/* This one is a bear, but mainly has to do with shuffling elements. */
+
+gfc_expr *
+gfc_simplify_reshape (gfc_expr *source, gfc_expr *shape_exp,
+ gfc_expr *pad, gfc_expr *order_exp)
+{
+ int order[GFC_MAX_DIMENSIONS], shape[GFC_MAX_DIMENSIONS];
+ int i, rank, npad, x[GFC_MAX_DIMENSIONS];
+ mpz_t index, size;
+ unsigned long j;
+ size_t nsource;
+ gfc_expr *e, *result;
+
+ /* Check that argument expression types are OK. */
+ if (!is_constant_array_expr (source)
+ || !is_constant_array_expr (shape_exp)
+ || !is_constant_array_expr (pad)
+ || !is_constant_array_expr (order_exp))
+ return NULL;
+
+ /* Proceed with simplification, unpacking the array. */
+
+ mpz_init (index);
+ rank = 0;
+
+ for (;;)
+ {
+ e = gfc_constructor_lookup_expr (shape_exp->value.constructor, rank);
+ if (e == NULL)
+ break;
+
+ gfc_extract_int (e, &shape[rank]);
+
+ gcc_assert (rank >= 0 && rank < GFC_MAX_DIMENSIONS);
+ gcc_assert (shape[rank] >= 0);
+
+ rank++;
+ }
+
+ gcc_assert (rank > 0);
+
+ /* Now unpack the order array if present. */
+ if (order_exp == NULL)
+ {
+ for (i = 0; i < rank; i++)
+ order[i] = i;
+ }
+ else
+ {
+ for (i = 0; i < rank; i++)
+ x[i] = 0;
+
+ for (i = 0; i < rank; i++)
+ {
+ e = gfc_constructor_lookup_expr (order_exp->value.constructor, i);
+ gcc_assert (e);
+
+ gfc_extract_int (e, &order[i]);
+
+ gcc_assert (order[i] >= 1 && order[i] <= rank);
+ order[i]--;
+ gcc_assert (x[order[i]] == 0);
+ x[order[i]] = 1;
+ }
+ }
+
+ /* Count the elements in the source and padding arrays. */
+
+ npad = 0;
+ if (pad != NULL)
+ {
+ gfc_array_size (pad, &size);
+ npad = mpz_get_ui (size);
+ mpz_clear (size);
+ }
+
+ gfc_array_size (source, &size);
+ nsource = mpz_get_ui (size);
+ mpz_clear (size);
+
+ /* If it weren't for that pesky permutation we could just loop
+ through the source and round out any shortage with pad elements.
+ But no, someone just had to have the compiler do something the
+ user should be doing. */
+
+ for (i = 0; i < rank; i++)
+ x[i] = 0;
+
+ result = gfc_get_array_expr (source->ts.type, source->ts.kind,
+ &source->where);
+ if (source->ts.type == BT_DERIVED)
+ result->ts.u.derived = source->ts.u.derived;
+ result->rank = rank;
+ result->shape = gfc_get_shape (rank);
+ for (i = 0; i < rank; i++)
+ mpz_init_set_ui (result->shape[i], shape[i]);
+
+ while (nsource > 0 || npad > 0)
+ {
+ /* Figure out which element to extract. */
+ mpz_set_ui (index, 0);
+
+ for (i = rank - 1; i >= 0; i--)
+ {
+ mpz_add_ui (index, index, x[order[i]]);
+ if (i != 0)
+ mpz_mul_ui (index, index, shape[order[i - 1]]);
+ }
+
+ if (mpz_cmp_ui (index, INT_MAX) > 0)
+ gfc_internal_error ("Reshaped array too large at %C");
+
+ j = mpz_get_ui (index);
+
+ if (j < nsource)
+ e = gfc_constructor_lookup_expr (source->value.constructor, j);
+ else
+ {
+ gcc_assert (npad > 0);
+
+ j = j - nsource;
+ j = j % npad;
+ e = gfc_constructor_lookup_expr (pad->value.constructor, j);
+ }
+ gcc_assert (e);
+
+ gfc_constructor_append_expr (&result->value.constructor,
+ gfc_copy_expr (e), &e->where);
+
+ /* Calculate the next element. */
+ i = 0;
+
+inc:
+ if (++x[i] < shape[i])
+ continue;
+ x[i++] = 0;
+ if (i < rank)
+ goto inc;
+
+ break;
+ }
+
+ mpz_clear (index);
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_rrspacing (gfc_expr *x)
+{
+ gfc_expr *result;
+ int i;
+ long int e, p;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ i = gfc_validate_kind (x->ts.type, x->ts.kind, false);
+
+ result = gfc_get_constant_expr (BT_REAL, x->ts.kind, &x->where);
+ mpfr_abs (result->value.real, x->value.real, GFC_RND_MODE);
+
+ /* Special case x = -0 and 0. */
+ if (mpfr_sgn (result->value.real) == 0)
+ {
+ mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
+ return result;
+ }
+
+ /* | x * 2**(-e) | * 2**p. */
+ e = - (long int) mpfr_get_exp (x->value.real);
+ mpfr_mul_2si (result->value.real, result->value.real, e, GFC_RND_MODE);
+
+ p = (long int) gfc_real_kinds[i].digits;
+ mpfr_mul_2si (result->value.real, result->value.real, p, GFC_RND_MODE);
+
+ return range_check (result, "RRSPACING");
+}
+
+
+gfc_expr *
+gfc_simplify_scale (gfc_expr *x, gfc_expr *i)
+{
+ int k, neg_flag, power, exp_range;
+ mpfr_t scale, radix;
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT || i->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (BT_REAL, x->ts.kind, &x->where);
+
+ if (mpfr_sgn (x->value.real) == 0)
+ {
+ mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
+ return result;
+ }
+
+ k = gfc_validate_kind (BT_REAL, x->ts.kind, false);
+
+ exp_range = gfc_real_kinds[k].max_exponent - gfc_real_kinds[k].min_exponent;
+
+ /* This check filters out values of i that would overflow an int. */
+ if (mpz_cmp_si (i->value.integer, exp_range + 2) > 0
+ || mpz_cmp_si (i->value.integer, -exp_range - 2) < 0)
+ {
+ gfc_error ("Result of SCALE overflows its kind at %L", &result->where);
+ gfc_free_expr (result);
+ return &gfc_bad_expr;
+ }
+
+ /* Compute scale = radix ** power. */
+ power = mpz_get_si (i->value.integer);
+
+ if (power >= 0)
+ neg_flag = 0;
+ else
+ {
+ neg_flag = 1;
+ power = -power;
+ }
+
+ gfc_set_model_kind (x->ts.kind);
+ mpfr_init (scale);
+ mpfr_init (radix);
+ mpfr_set_ui (radix, gfc_real_kinds[k].radix, GFC_RND_MODE);
+ mpfr_pow_ui (scale, radix, power, GFC_RND_MODE);
+
+ if (neg_flag)
+ mpfr_div (result->value.real, x->value.real, scale, GFC_RND_MODE);
+ else
+ mpfr_mul (result->value.real, x->value.real, scale, GFC_RND_MODE);
+
+ mpfr_clears (scale, radix, NULL);
+
+ return range_check (result, "SCALE");
+}
+
+
+/* Variants of strspn and strcspn that operate on wide characters. */
+
+static size_t
+wide_strspn (const gfc_char_t *s1, const gfc_char_t *s2)
+{
+ size_t i = 0;
+ const gfc_char_t *c;
+
+ while (s1[i])
+ {
+ for (c = s2; *c; c++)
+ {
+ if (s1[i] == *c)
+ break;
+ }
+ if (*c == '\0')
+ break;
+ i++;
+ }
+
+ return i;
+}
+
+static size_t
+wide_strcspn (const gfc_char_t *s1, const gfc_char_t *s2)
+{
+ size_t i = 0;
+ const gfc_char_t *c;
+
+ while (s1[i])
+ {
+ for (c = s2; *c; c++)
+ {
+ if (s1[i] == *c)
+ break;
+ }
+ if (*c)
+ break;
+ i++;
+ }
+
+ return i;
+}
+
+
+gfc_expr *
+gfc_simplify_scan (gfc_expr *e, gfc_expr *c, gfc_expr *b, gfc_expr *kind)
+{
+ gfc_expr *result;
+ int back;
+ size_t i;
+ size_t indx, len, lenc;
+ int k = get_kind (BT_INTEGER, kind, "SCAN", gfc_default_integer_kind);
+
+ if (k == -1)
+ return &gfc_bad_expr;
+
+ if (e->expr_type != EXPR_CONSTANT || c->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (b != NULL && b->value.logical != 0)
+ back = 1;
+ else
+ back = 0;
+
+ len = e->value.character.length;
+ lenc = c->value.character.length;
+
+ if (len == 0 || lenc == 0)
+ {
+ indx = 0;
+ }
+ else
+ {
+ if (back == 0)
+ {
+ indx = wide_strcspn (e->value.character.string,
+ c->value.character.string) + 1;
+ if (indx > len)
+ indx = 0;
+ }
+ else
+ {
+ i = 0;
+ for (indx = len; indx > 0; indx--)
+ {
+ for (i = 0; i < lenc; i++)
+ {
+ if (c->value.character.string[i]
+ == e->value.character.string[indx - 1])
+ break;
+ }
+ if (i < lenc)
+ break;
+ }
+ }
+ }
+
+ result = gfc_get_int_expr (k, &e->where, indx);
+ return range_check (result, "SCAN");
+}
+
+
+gfc_expr *
+gfc_simplify_selected_char_kind (gfc_expr *e)
+{
+ int kind;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (gfc_compare_with_Cstring (e, "ascii", false) == 0
+ || gfc_compare_with_Cstring (e, "default", false) == 0)
+ kind = 1;
+ else if (gfc_compare_with_Cstring (e, "iso_10646", false) == 0)
+ kind = 4;
+ else
+ kind = -1;
+
+ return gfc_get_int_expr (gfc_default_integer_kind, &e->where, kind);
+}
+
+
+gfc_expr *
+gfc_simplify_selected_int_kind (gfc_expr *e)
+{
+ int i, kind, range;
+
+ if (e->expr_type != EXPR_CONSTANT || gfc_extract_int (e, &range) != NULL)
+ return NULL;
+
+ kind = INT_MAX;
+
+ for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
+ if (gfc_integer_kinds[i].range >= range
+ && gfc_integer_kinds[i].kind < kind)
+ kind = gfc_integer_kinds[i].kind;
+
+ if (kind == INT_MAX)
+ kind = -1;
+
+ return gfc_get_int_expr (gfc_default_integer_kind, &e->where, kind);
+}
+
+
+gfc_expr *
+gfc_simplify_selected_real_kind (gfc_expr *p, gfc_expr *q, gfc_expr *rdx)
+{
+ int range, precision, radix, i, kind, found_precision, found_range,
+ found_radix;
+ locus *loc = &gfc_current_locus;
+
+ if (p == NULL)
+ precision = 0;
+ else
+ {
+ if (p->expr_type != EXPR_CONSTANT
+ || gfc_extract_int (p, &precision) != NULL)
+ return NULL;
+ loc = &p->where;
+ }
+
+ if (q == NULL)
+ range = 0;
+ else
+ {
+ if (q->expr_type != EXPR_CONSTANT
+ || gfc_extract_int (q, &range) != NULL)
+ return NULL;
+
+ if (!loc)
+ loc = &q->where;
+ }
+
+ if (rdx == NULL)
+ radix = 0;
+ else
+ {
+ if (rdx->expr_type != EXPR_CONSTANT
+ || gfc_extract_int (rdx, &radix) != NULL)
+ return NULL;
+
+ if (!loc)
+ loc = &rdx->where;
+ }
+
+ kind = INT_MAX;
+ found_precision = 0;
+ found_range = 0;
+ found_radix = 0;
+
+ for (i = 0; gfc_real_kinds[i].kind != 0; i++)
+ {
+ if (gfc_real_kinds[i].precision >= precision)
+ found_precision = 1;
+
+ if (gfc_real_kinds[i].range >= range)
+ found_range = 1;
+
+ if (gfc_real_kinds[i].radix >= radix)
+ found_radix = 1;
+
+ if (gfc_real_kinds[i].precision >= precision
+ && gfc_real_kinds[i].range >= range
+ && gfc_real_kinds[i].radix >= radix && gfc_real_kinds[i].kind < kind)
+ kind = gfc_real_kinds[i].kind;
+ }
+
+ if (kind == INT_MAX)
+ {
+ if (found_radix && found_range && !found_precision)
+ kind = -1;
+ else if (found_radix && found_precision && !found_range)
+ kind = -2;
+ else if (found_radix && !found_precision && !found_range)
+ kind = -3;
+ else if (found_radix)
+ kind = -4;
+ else
+ kind = -5;
+ }
+
+ return gfc_get_int_expr (gfc_default_integer_kind, loc, kind);
+}
+
+
+gfc_expr *
+gfc_simplify_set_exponent (gfc_expr *x, gfc_expr *i)
+{
+ gfc_expr *result;
+ mpfr_t exp, absv, log2, pow2, frac;
+ unsigned long exp2;
+
+ if (x->expr_type != EXPR_CONSTANT || i->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (BT_REAL, x->ts.kind, &x->where);
+
+ if (mpfr_sgn (x->value.real) == 0)
+ {
+ mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
+ return result;
+ }
+
+ gfc_set_model_kind (x->ts.kind);
+ mpfr_init (absv);
+ mpfr_init (log2);
+ mpfr_init (exp);
+ mpfr_init (pow2);
+ mpfr_init (frac);
+
+ mpfr_abs (absv, x->value.real, GFC_RND_MODE);
+ mpfr_log2 (log2, absv, GFC_RND_MODE);
+
+ mpfr_trunc (log2, log2);
+ mpfr_add_ui (exp, log2, 1, GFC_RND_MODE);
+
+ /* Old exponent value, and fraction. */
+ mpfr_ui_pow (pow2, 2, exp, GFC_RND_MODE);
+
+ mpfr_div (frac, absv, pow2, GFC_RND_MODE);
+
+ /* New exponent. */
+ exp2 = (unsigned long) mpz_get_d (i->value.integer);
+ mpfr_mul_2exp (result->value.real, frac, exp2, GFC_RND_MODE);
+
+ mpfr_clears (absv, log2, pow2, frac, NULL);
+
+ return range_check (result, "SET_EXPONENT");
+}
+
+
+gfc_expr *
+gfc_simplify_shape (gfc_expr *source, gfc_expr *kind)
+{
+ mpz_t shape[GFC_MAX_DIMENSIONS];
+ gfc_expr *result, *e, *f;
+ gfc_array_ref *ar;
+ int n;
+ gfc_try t;
+ int k = get_kind (BT_INTEGER, kind, "SHAPE", gfc_default_integer_kind);
+
+ result = gfc_get_array_expr (BT_INTEGER, k, &source->where);
+
+ if (source->rank == 0)
+ return result;
+
+ if (source->expr_type == EXPR_VARIABLE)
+ {
+ ar = gfc_find_array_ref (source);
+ t = gfc_array_ref_shape (ar, shape);
+ }
+ else if (source->shape)
+ {
+ t = SUCCESS;
+ for (n = 0; n < source->rank; n++)
+ {
+ mpz_init (shape[n]);
+ mpz_set (shape[n], source->shape[n]);
+ }
+ }
+ else
+ t = FAILURE;
+
+ for (n = 0; n < source->rank; n++)
+ {
+ e = gfc_get_constant_expr (BT_INTEGER, k, &source->where);
+
+ if (t == SUCCESS)
+ {
+ mpz_set (e->value.integer, shape[n]);
+ mpz_clear (shape[n]);
+ }
+ else
+ {
+ mpz_set_ui (e->value.integer, n + 1);
+
+ f = gfc_simplify_size (source, e, NULL);
+ gfc_free_expr (e);
+ if (f == NULL)
+ {
+ gfc_free_expr (result);
+ return NULL;
+ }
+ else
+ e = f;
+ }
+
+ gfc_constructor_append_expr (&result->value.constructor, e, NULL);
+ }
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_size (gfc_expr *array, gfc_expr *dim, gfc_expr *kind)
+{
+ mpz_t size;
+ gfc_expr *return_value;
+ int d;
+ int k = get_kind (BT_INTEGER, kind, "SIZE", gfc_default_integer_kind);
+
+ if (k == -1)
+ return &gfc_bad_expr;
+
+ /* For unary operations, the size of the result is given by the size
+ of the operand. For binary ones, it's the size of the first operand
+ unless it is scalar, then it is the size of the second. */
+ if (array->expr_type == EXPR_OP && !array->value.op.uop)
+ {
+ gfc_expr* replacement;
+ gfc_expr* simplified;
+
+ switch (array->value.op.op)
+ {
+ /* Unary operations. */
+ case INTRINSIC_NOT:
+ case INTRINSIC_UPLUS:
+ case INTRINSIC_UMINUS:
+ case INTRINSIC_PARENTHESES:
+ replacement = array->value.op.op1;
+ break;
+
+ /* Binary operations. If any one of the operands is scalar, take
+ the other one's size. If both of them are arrays, it does not
+ matter -- try to find one with known shape, if possible. */
+ default:
+ if (array->value.op.op1->rank == 0)
+ replacement = array->value.op.op2;
+ else if (array->value.op.op2->rank == 0)
+ replacement = array->value.op.op1;
+ else
+ {
+ simplified = gfc_simplify_size (array->value.op.op1, dim, kind);
+ if (simplified)
+ return simplified;
+
+ replacement = array->value.op.op2;
+ }
+ break;
+ }
+
+ /* Try to reduce it directly if possible. */
+ simplified = gfc_simplify_size (replacement, dim, kind);
+
+ /* Otherwise, we build a new SIZE call. This is hopefully at least
+ simpler than the original one. */
+ if (!simplified)
+ simplified = gfc_build_intrinsic_call (gfc_current_ns,
+ GFC_ISYM_SIZE, "size",
+ array->where, 3,
+ gfc_copy_expr (replacement),
+ gfc_copy_expr (dim),
+ gfc_copy_expr (kind));
+
+ return simplified;
+ }
+
+ if (dim == NULL)
+ {
+ if (gfc_array_size (array, &size) == FAILURE)
+ return NULL;
+ }
+ else
+ {
+ if (dim->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ d = mpz_get_ui (dim->value.integer) - 1;
+ if (gfc_array_dimen_size (array, d, &size) == FAILURE)
+ return NULL;
+ }
+
+ return_value = gfc_get_int_expr (k, &array->where, mpz_get_si (size));
+ mpz_clear (size);
+ return return_value;
+}
+
+
+gfc_expr *
+gfc_simplify_sign (gfc_expr *x, gfc_expr *y)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+
+ switch (x->ts.type)
+ {
+ case BT_INTEGER:
+ mpz_abs (result->value.integer, x->value.integer);
+ if (mpz_sgn (y->value.integer) < 0)
+ mpz_neg (result->value.integer, result->value.integer);
+ break;
+
+ case BT_REAL:
+ if (gfc_option.flag_sign_zero)
+ mpfr_copysign (result->value.real, x->value.real, y->value.real,
+ GFC_RND_MODE);
+ else
+ mpfr_setsign (result->value.real, x->value.real,
+ mpfr_sgn (y->value.real) < 0 ? 1 : 0, GFC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("Bad type in gfc_simplify_sign");
+ }
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_sin (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+
+ switch (x->ts.type)
+ {
+ case BT_REAL:
+ mpfr_sin (result->value.real, x->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ gfc_set_model (x->value.real);
+ mpc_sin (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("in gfc_simplify_sin(): Bad type");
+ }
+
+ return range_check (result, "SIN");
+}
+
+
+gfc_expr *
+gfc_simplify_sinh (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+
+ switch (x->ts.type)
+ {
+ case BT_REAL:
+ mpfr_sinh (result->value.real, x->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ mpc_sinh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return range_check (result, "SINH");
+}
+
+
+/* The argument is always a double precision real that is converted to
+ single precision. TODO: Rounding! */
+
+gfc_expr *
+gfc_simplify_sngl (gfc_expr *a)
+{
+ gfc_expr *result;
+
+ if (a->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_real2real (a, gfc_default_real_kind);
+ return range_check (result, "SNGL");
+}
+
+
+gfc_expr *
+gfc_simplify_spacing (gfc_expr *x)
+{
+ gfc_expr *result;
+ int i;
+ long int en, ep;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ i = gfc_validate_kind (x->ts.type, x->ts.kind, false);
+
+ result = gfc_get_constant_expr (BT_REAL, x->ts.kind, &x->where);
+
+ /* Special case x = 0 and -0. */
+ mpfr_abs (result->value.real, x->value.real, GFC_RND_MODE);
+ if (mpfr_sgn (result->value.real) == 0)
+ {
+ mpfr_set (result->value.real, gfc_real_kinds[i].tiny, GFC_RND_MODE);
+ return result;
+ }
+
+ /* In the Fortran 95 standard, the result is b**(e - p) where b, e, and p
+ are the radix, exponent of x, and precision. This excludes the
+ possibility of subnormal numbers. Fortran 2003 states the result is
+ b**max(e - p, emin - 1). */
+
+ ep = (long int) mpfr_get_exp (x->value.real) - gfc_real_kinds[i].digits;
+ en = (long int) gfc_real_kinds[i].min_exponent - 1;
+ en = en > ep ? en : ep;
+
+ mpfr_set_ui (result->value.real, 1, GFC_RND_MODE);
+ mpfr_mul_2si (result->value.real, result->value.real, en, GFC_RND_MODE);
+
+ return range_check (result, "SPACING");
+}
+
+
+gfc_expr *
+gfc_simplify_spread (gfc_expr *source, gfc_expr *dim_expr, gfc_expr *ncopies_expr)
+{
+ gfc_expr *result = 0L;
+ int i, j, dim, ncopies;
+ mpz_t size;
+
+ if ((!gfc_is_constant_expr (source)
+ && !is_constant_array_expr (source))
+ || !gfc_is_constant_expr (dim_expr)
+ || !gfc_is_constant_expr (ncopies_expr))
+ return NULL;
+
+ gcc_assert (dim_expr->ts.type == BT_INTEGER);
+ gfc_extract_int (dim_expr, &dim);
+ dim -= 1; /* zero-base DIM */
+
+ gcc_assert (ncopies_expr->ts.type == BT_INTEGER);
+ gfc_extract_int (ncopies_expr, &ncopies);
+ ncopies = MAX (ncopies, 0);
+
+ /* Do not allow the array size to exceed the limit for an array
+ constructor. */
+ if (source->expr_type == EXPR_ARRAY)
+ {
+ if (gfc_array_size (source, &size) == FAILURE)
+ gfc_internal_error ("Failure getting length of a constant array.");
+ }
+ else
+ mpz_init_set_ui (size, 1);
+
+ if (mpz_get_si (size)*ncopies > gfc_option.flag_max_array_constructor)
+ return NULL;
+
+ if (source->expr_type == EXPR_CONSTANT)
+ {
+ gcc_assert (dim == 0);
+
+ result = gfc_get_array_expr (source->ts.type, source->ts.kind,
+ &source->where);
+ if (source->ts.type == BT_DERIVED)
+ result->ts.u.derived = source->ts.u.derived;
+ result->rank = 1;
+ result->shape = gfc_get_shape (result->rank);
+ mpz_init_set_si (result->shape[0], ncopies);
+
+ for (i = 0; i < ncopies; ++i)
+ gfc_constructor_append_expr (&result->value.constructor,
+ gfc_copy_expr (source), NULL);
+ }
+ else if (source->expr_type == EXPR_ARRAY)
+ {
+ int offset, rstride[GFC_MAX_DIMENSIONS], extent[GFC_MAX_DIMENSIONS];
+ gfc_constructor *source_ctor;
+
+ gcc_assert (source->rank < GFC_MAX_DIMENSIONS);
+ gcc_assert (dim >= 0 && dim <= source->rank);
+
+ result = gfc_get_array_expr (source->ts.type, source->ts.kind,
+ &source->where);
+ if (source->ts.type == BT_DERIVED)
+ result->ts.u.derived = source->ts.u.derived;
+ result->rank = source->rank + 1;
+ result->shape = gfc_get_shape (result->rank);
+
+ for (i = 0, j = 0; i < result->rank; ++i)
+ {
+ if (i != dim)
+ mpz_init_set (result->shape[i], source->shape[j++]);
+ else
+ mpz_init_set_si (result->shape[i], ncopies);
+
+ extent[i] = mpz_get_si (result->shape[i]);
+ rstride[i] = (i == 0) ? 1 : rstride[i-1] * extent[i-1];
+ }
+
+ offset = 0;
+ for (source_ctor = gfc_constructor_first (source->value.constructor);
+ source_ctor; source_ctor = gfc_constructor_next (source_ctor))
+ {
+ for (i = 0; i < ncopies; ++i)
+ gfc_constructor_insert_expr (&result->value.constructor,
+ gfc_copy_expr (source_ctor->expr),
+ NULL, offset + i * rstride[dim]);
+
+ offset += (dim == 0 ? ncopies : 1);
+ }
+ }
+ else
+ /* FIXME: Returning here avoids a regression in array_simplify_1.f90.
+ Replace NULL with gcc_unreachable() after implementing
+ gfc_simplify_cshift(). */
+ return NULL;
+
+ if (source->ts.type == BT_CHARACTER)
+ result->ts.u.cl = source->ts.u.cl;
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_sqrt (gfc_expr *e)
+{
+ gfc_expr *result = NULL;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ switch (e->ts.type)
+ {
+ case BT_REAL:
+ if (mpfr_cmp_si (e->value.real, 0) < 0)
+ {
+ gfc_error ("Argument of SQRT at %L has a negative value",
+ &e->where);
+ return &gfc_bad_expr;
+ }
+ result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where);
+ mpfr_sqrt (result->value.real, e->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ gfc_set_model (e->value.real);
+
+ result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where);
+ mpc_sqrt (result->value.complex, e->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("invalid argument of SQRT at %L", &e->where);
+ }
+
+ return range_check (result, "SQRT");
+}
+
+
+gfc_expr *
+gfc_simplify_sum (gfc_expr *array, gfc_expr *dim, gfc_expr *mask)
+{
+ return simplify_transformation (array, dim, mask, 0, gfc_add);
+}
+
+
+gfc_expr *
+gfc_simplify_tan (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+
+ switch (x->ts.type)
+ {
+ case BT_REAL:
+ mpfr_tan (result->value.real, x->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ mpc_tan (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return range_check (result, "TAN");
+}
+
+
+gfc_expr *
+gfc_simplify_tanh (gfc_expr *x)
+{
+ gfc_expr *result;
+
+ if (x->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
+
+ switch (x->ts.type)
+ {
+ case BT_REAL:
+ mpfr_tanh (result->value.real, x->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ mpc_tanh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return range_check (result, "TANH");
+}
+
+
+gfc_expr *
+gfc_simplify_tiny (gfc_expr *e)
+{
+ gfc_expr *result;
+ int i;
+
+ i = gfc_validate_kind (BT_REAL, e->ts.kind, false);
+
+ result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where);
+ mpfr_set (result->value.real, gfc_real_kinds[i].tiny, GFC_RND_MODE);
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_trailz (gfc_expr *e)
+{
+ unsigned long tz, bs;
+ int i;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
+ bs = gfc_integer_kinds[i].bit_size;
+ tz = mpz_scan1 (e->value.integer, 0);
+
+ return gfc_get_int_expr (gfc_default_integer_kind,
+ &e->where, MIN (tz, bs));
+}
+
+
+gfc_expr *
+gfc_simplify_transfer (gfc_expr *source, gfc_expr *mold, gfc_expr *size)
+{
+ gfc_expr *result;
+ gfc_expr *mold_element;
+ size_t source_size;
+ size_t result_size;
+ size_t result_elt_size;
+ size_t buffer_size;
+ mpz_t tmp;
+ unsigned char *buffer;
+
+ if (!gfc_is_constant_expr (source)
+ || (gfc_init_expr_flag && !gfc_is_constant_expr (mold))
+ || !gfc_is_constant_expr (size))
+ return NULL;
+
+ if (source->expr_type == EXPR_FUNCTION)
+ return NULL;
+
+ /* Calculate the size of the source. */
+ if (source->expr_type == EXPR_ARRAY
+ && gfc_array_size (source, &tmp) == FAILURE)
+ gfc_internal_error ("Failure getting length of a constant array.");
+
+ source_size = gfc_target_expr_size (source);
+
+ /* Create an empty new expression with the appropriate characteristics. */
+ result = gfc_get_constant_expr (mold->ts.type, mold->ts.kind,
+ &source->where);
+ result->ts = mold->ts;
+
+ mold_element = mold->expr_type == EXPR_ARRAY
+ ? gfc_constructor_first (mold->value.constructor)->expr
+ : mold;
+
+ /* Set result character length, if needed. Note that this needs to be
+ set even for array expressions, in order to pass this information into
+ gfc_target_interpret_expr. */
+ if (result->ts.type == BT_CHARACTER && gfc_is_constant_expr (mold_element))
+ result->value.character.length = mold_element->value.character.length;
+
+ /* Set the number of elements in the result, and determine its size. */
+ result_elt_size = gfc_target_expr_size (mold_element);
+ if (result_elt_size == 0)
+ {
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ if (mold->expr_type == EXPR_ARRAY || mold->rank || size)
+ {
+ int result_length;
+
+ result->expr_type = EXPR_ARRAY;
+ result->rank = 1;
+
+ if (size)
+ result_length = (size_t)mpz_get_ui (size->value.integer);
+ else
+ {
+ result_length = source_size / result_elt_size;
+ if (result_length * result_elt_size < source_size)
+ result_length += 1;
+ }
+
+ result->shape = gfc_get_shape (1);
+ mpz_init_set_ui (result->shape[0], result_length);
+
+ result_size = result_length * result_elt_size;
+ }
+ else
+ {
+ result->rank = 0;
+ result_size = result_elt_size;
+ }
+
+ if (gfc_option.warn_surprising && source_size < result_size)
+ gfc_warning("Intrinsic TRANSFER at %L has partly undefined result: "
+ "source size %ld < result size %ld", &source->where,
+ (long) source_size, (long) result_size);
+
+ /* Allocate the buffer to store the binary version of the source. */
+ buffer_size = MAX (source_size, result_size);
+ buffer = (unsigned char*)alloca (buffer_size);
+ memset (buffer, 0, buffer_size);
+
+ /* Now write source to the buffer. */
+ gfc_target_encode_expr (source, buffer, buffer_size);
+
+ /* And read the buffer back into the new expression. */
+ gfc_target_interpret_expr (buffer, buffer_size, result);
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_transpose (gfc_expr *matrix)
+{
+ int row, matrix_rows, col, matrix_cols;
+ gfc_expr *result;
+
+ if (!is_constant_array_expr (matrix))
+ return NULL;
+
+ gcc_assert (matrix->rank == 2);
+
+ result = gfc_get_array_expr (matrix->ts.type, matrix->ts.kind,
+ &matrix->where);
+ result->rank = 2;
+ result->shape = gfc_get_shape (result->rank);
+ mpz_set (result->shape[0], matrix->shape[1]);
+ mpz_set (result->shape[1], matrix->shape[0]);
+
+ if (matrix->ts.type == BT_CHARACTER)
+ result->ts.u.cl = matrix->ts.u.cl;
+ else if (matrix->ts.type == BT_DERIVED)
+ result->ts.u.derived = matrix->ts.u.derived;
+
+ matrix_rows = mpz_get_si (matrix->shape[0]);
+ matrix_cols = mpz_get_si (matrix->shape[1]);
+ for (row = 0; row < matrix_rows; ++row)
+ for (col = 0; col < matrix_cols; ++col)
+ {
+ gfc_expr *e = gfc_constructor_lookup_expr (matrix->value.constructor,
+ col * matrix_rows + row);
+ gfc_constructor_insert_expr (&result->value.constructor,
+ gfc_copy_expr (e), &matrix->where,
+ row * matrix_cols + col);
+ }
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_trim (gfc_expr *e)
+{
+ gfc_expr *result;
+ int count, i, len, lentrim;
+
+ if (e->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ len = e->value.character.length;
+ for (count = 0, i = 1; i <= len; ++i)
+ {
+ if (e->value.character.string[len - i] == ' ')
+ count++;
+ else
+ break;
+ }
+
+ lentrim = len - count;
+
+ result = gfc_get_character_expr (e->ts.kind, &e->where, NULL, lentrim);
+ for (i = 0; i < lentrim; i++)
+ result->value.character.string[i] = e->value.character.string[i];
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_image_index (gfc_expr *coarray, gfc_expr *sub)
+{
+ gfc_expr *result;
+ gfc_ref *ref;
+ gfc_array_spec *as;
+ gfc_constructor *sub_cons;
+ bool first_image;
+ int d;
+
+ if (!is_constant_array_expr (sub))
+ goto not_implemented; /* return NULL;*/
+
+ /* Follow any component references. */
+ as = coarray->symtree->n.sym->as;
+ for (ref = coarray->ref; ref; ref = ref->next)
+ if (ref->type == REF_COMPONENT)
+ as = ref->u.ar.as;
+
+ if (as->type == AS_DEFERRED)
+ goto not_implemented; /* return NULL;*/
+
+ /* "valid sequence of cosubscripts" are required; thus, return 0 unless
+ the cosubscript addresses the first image. */
+
+ sub_cons = gfc_constructor_first (sub->value.constructor);
+ first_image = true;
+
+ for (d = 1; d <= as->corank; d++)
+ {
+ gfc_expr *ca_bound;
+ int cmp;
+
+ if (sub_cons == NULL)
+ {
+ gfc_error ("Too few elements in expression for SUB= argument at %L",
+ &sub->where);
+ return &gfc_bad_expr;
+ }
+
+ ca_bound = simplify_bound_dim (coarray, NULL, d + as->rank, 0, as,
+ NULL, true);
+ if (ca_bound == NULL)
+ goto not_implemented; /* return NULL */
+
+ if (ca_bound == &gfc_bad_expr)
+ return ca_bound;
+
+ cmp = mpz_cmp (ca_bound->value.integer, sub_cons->expr->value.integer);
+
+ if (cmp == 0)
+ {
+ gfc_free_expr (ca_bound);
+ sub_cons = gfc_constructor_next (sub_cons);
+ continue;
+ }
+
+ first_image = false;
+
+ if (cmp > 0)
+ {
+ gfc_error ("Out of bounds in IMAGE_INDEX at %L for dimension %d, "
+ "SUB has %ld and COARRAY lower bound is %ld)",
+ &coarray->where, d,
+ mpz_get_si (sub_cons->expr->value.integer),
+ mpz_get_si (ca_bound->value.integer));
+ gfc_free_expr (ca_bound);
+ return &gfc_bad_expr;
+ }
+
+ gfc_free_expr (ca_bound);
+
+ /* Check whether upperbound is valid for the multi-images case. */
+ if (d < as->corank)
+ {
+ ca_bound = simplify_bound_dim (coarray, NULL, d + as->rank, 1, as,
+ NULL, true);
+ if (ca_bound == &gfc_bad_expr)
+ return ca_bound;
+
+ if (ca_bound && ca_bound->expr_type == EXPR_CONSTANT
+ && mpz_cmp (ca_bound->value.integer,
+ sub_cons->expr->value.integer) < 0)
+ {
+ gfc_error ("Out of bounds in IMAGE_INDEX at %L for dimension %d, "
+ "SUB has %ld and COARRAY upper bound is %ld)",
+ &coarray->where, d,
+ mpz_get_si (sub_cons->expr->value.integer),
+ mpz_get_si (ca_bound->value.integer));
+ gfc_free_expr (ca_bound);
+ return &gfc_bad_expr;
+ }
+
+ if (ca_bound)
+ gfc_free_expr (ca_bound);
+ }
+
+ sub_cons = gfc_constructor_next (sub_cons);
+ }
+
+ if (sub_cons != NULL)
+ {
+ gfc_error ("Too many elements in expression for SUB= argument at %L",
+ &sub->where);
+ return &gfc_bad_expr;
+ }
+
+ result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind,
+ &gfc_current_locus);
+ if (first_image)
+ mpz_set_si (result->value.integer, 1);
+ else
+ mpz_set_si (result->value.integer, 0);
+
+ return result;
+
+not_implemented:
+ gfc_error ("Not yet implemented: IMAGE_INDEX for coarray with non-constant "
+ "cobounds at %L", &coarray->where);
+ return &gfc_bad_expr;
+}
+
+
+gfc_expr *
+gfc_simplify_this_image (gfc_expr *coarray, gfc_expr *dim)
+{
+ gfc_ref *ref;
+ gfc_array_spec *as;
+ int d;
+
+ if (coarray == NULL)
+ {
+ gfc_expr *result;
+ /* FIXME: gfc_current_locus is wrong. */
+ result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind,
+ &gfc_current_locus);
+ mpz_set_si (result->value.integer, 1);
+ return result;
+ }
+
+ gcc_assert (coarray->expr_type == EXPR_VARIABLE);
+
+ /* Follow any component references. */
+ as = coarray->symtree->n.sym->as;
+ for (ref = coarray->ref; ref; ref = ref->next)
+ if (ref->type == REF_COMPONENT)
+ as = ref->u.ar.as;
+
+ if (as->type == AS_DEFERRED)
+ goto not_implemented; /* return NULL;*/
+
+ if (dim == NULL)
+ {
+ /* Multi-dimensional bounds. */
+ gfc_expr *bounds[GFC_MAX_DIMENSIONS];
+ gfc_expr *e;
+
+ /* Simplify the bounds for each dimension. */
+ for (d = 0; d < as->corank; d++)
+ {
+ bounds[d] = simplify_bound_dim (coarray, NULL, d + as->rank + 1, 0,
+ as, NULL, true);
+ if (bounds[d] == NULL || bounds[d] == &gfc_bad_expr)
+ {
+ int j;
+
+ for (j = 0; j < d; j++)
+ gfc_free_expr (bounds[j]);
+ if (bounds[d] == NULL)
+ goto not_implemented;
+ return bounds[d];
+ }
+ }
+
+ /* Allocate the result expression. */
+ e = gfc_get_expr ();
+ e->where = coarray->where;
+ e->expr_type = EXPR_ARRAY;
+ e->ts.type = BT_INTEGER;
+ e->ts.kind = gfc_default_integer_kind;
+
+ e->rank = 1;
+ e->shape = gfc_get_shape (1);
+ mpz_init_set_ui (e->shape[0], as->corank);
+
+ /* Create the constructor for this array. */
+ for (d = 0; d < as->corank; d++)
+ gfc_constructor_append_expr (&e->value.constructor,
+ bounds[d], &e->where);
+
+ return e;
+ }
+ else
+ {
+ gfc_expr *e;
+ /* A DIM argument is specified. */
+ if (dim->expr_type != EXPR_CONSTANT)
+ goto not_implemented; /*return NULL;*/
+
+ d = mpz_get_si (dim->value.integer);
+
+ if (d < 1 || d > as->corank)
+ {
+ gfc_error ("DIM argument at %L is out of bounds", &dim->where);
+ return &gfc_bad_expr;
+ }
+
+ /*return simplify_bound_dim (coarray, NULL, d + as->rank, 0, as, NULL, true);*/
+ e = simplify_bound_dim (coarray, NULL, d + as->rank, 0, as, NULL, true);
+ if (e != NULL)
+ return e;
+ else
+ goto not_implemented;
+ }
+
+not_implemented:
+ gfc_error ("Not yet implemented: THIS_IMAGE for coarray with non-constant "
+ "cobounds at %L", &coarray->where);
+ return &gfc_bad_expr;
+}
+
+
+gfc_expr *
+gfc_simplify_ubound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind)
+{
+ return simplify_bound (array, dim, kind, 1);
+}
+
+gfc_expr *
+gfc_simplify_ucobound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind)
+{
+ gfc_expr *e;
+ /* return simplify_cobound (array, dim, kind, 1);*/
+
+ e = simplify_cobound (array, dim, kind, 1);
+ if (e != NULL)
+ return e;
+
+ gfc_error ("Not yet implemented: UCOBOUND for coarray with non-constant "
+ "cobounds at %L", &array->where);
+ return &gfc_bad_expr;
+}
+
+
+gfc_expr *
+gfc_simplify_unpack (gfc_expr *vector, gfc_expr *mask, gfc_expr *field)
+{
+ gfc_expr *result, *e;
+ gfc_constructor *vector_ctor, *mask_ctor, *field_ctor;
+
+ if (!is_constant_array_expr (vector)
+ || !is_constant_array_expr (mask)
+ || (!gfc_is_constant_expr (field)
+ && !is_constant_array_expr(field)))
+ return NULL;
+
+ result = gfc_get_array_expr (vector->ts.type, vector->ts.kind,
+ &vector->where);
+ if (vector->ts.type == BT_DERIVED)
+ result->ts.u.derived = vector->ts.u.derived;
+ result->rank = mask->rank;
+ result->shape = gfc_copy_shape (mask->shape, mask->rank);
+
+ if (vector->ts.type == BT_CHARACTER)
+ result->ts.u.cl = vector->ts.u.cl;
+
+ vector_ctor = gfc_constructor_first (vector->value.constructor);
+ mask_ctor = gfc_constructor_first (mask->value.constructor);
+ field_ctor
+ = field->expr_type == EXPR_ARRAY
+ ? gfc_constructor_first (field->value.constructor)
+ : NULL;
+
+ while (mask_ctor)
+ {
+ if (mask_ctor->expr->value.logical)
+ {
+ gcc_assert (vector_ctor);
+ e = gfc_copy_expr (vector_ctor->expr);
+ vector_ctor = gfc_constructor_next (vector_ctor);
+ }
+ else if (field->expr_type == EXPR_ARRAY)
+ e = gfc_copy_expr (field_ctor->expr);
+ else
+ e = gfc_copy_expr (field);
+
+ gfc_constructor_append_expr (&result->value.constructor, e, NULL);
+
+ mask_ctor = gfc_constructor_next (mask_ctor);
+ field_ctor = gfc_constructor_next (field_ctor);
+ }
+
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_verify (gfc_expr *s, gfc_expr *set, gfc_expr *b, gfc_expr *kind)
+{
+ gfc_expr *result;
+ int back;
+ size_t index, len, lenset;
+ size_t i;
+ int k = get_kind (BT_INTEGER, kind, "VERIFY", gfc_default_integer_kind);
+
+ if (k == -1)
+ return &gfc_bad_expr;
+
+ if (s->expr_type != EXPR_CONSTANT || set->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ if (b != NULL && b->value.logical != 0)
+ back = 1;
+ else
+ back = 0;
+
+ result = gfc_get_constant_expr (BT_INTEGER, k, &s->where);
+
+ len = s->value.character.length;
+ lenset = set->value.character.length;
+
+ if (len == 0)
+ {
+ mpz_set_ui (result->value.integer, 0);
+ return result;
+ }
+
+ if (back == 0)
+ {
+ if (lenset == 0)
+ {
+ mpz_set_ui (result->value.integer, 1);
+ return result;
+ }
+
+ index = wide_strspn (s->value.character.string,
+ set->value.character.string) + 1;
+ if (index > len)
+ index = 0;
+
+ }
+ else
+ {
+ if (lenset == 0)
+ {
+ mpz_set_ui (result->value.integer, len);
+ return result;
+ }
+ for (index = len; index > 0; index --)
+ {
+ for (i = 0; i < lenset; i++)
+ {
+ if (s->value.character.string[index - 1]
+ == set->value.character.string[i])
+ break;
+ }
+ if (i == lenset)
+ break;
+ }
+ }
+
+ mpz_set_ui (result->value.integer, index);
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_xor (gfc_expr *x, gfc_expr *y)
+{
+ gfc_expr *result;
+ int kind;
+
+ if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
+ return NULL;
+
+ kind = x->ts.kind > y->ts.kind ? x->ts.kind : y->ts.kind;
+
+ switch (x->ts.type)
+ {
+ case BT_INTEGER:
+ result = gfc_get_constant_expr (BT_INTEGER, kind, &x->where);
+ mpz_xor (result->value.integer, x->value.integer, y->value.integer);
+ return range_check (result, "XOR");
+
+ case BT_LOGICAL:
+ return gfc_get_logical_expr (kind, &x->where,
+ (x->value.logical && !y->value.logical)
+ || (!x->value.logical && y->value.logical));
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+/****************** Constant simplification *****************/
+
+/* Master function to convert one constant to another. While this is
+ used as a simplification function, it requires the destination type
+ and kind information which is supplied by a special case in
+ do_simplify(). */
+
+gfc_expr *
+gfc_convert_constant (gfc_expr *e, bt type, int kind)
+{
+ gfc_expr *g, *result, *(*f) (gfc_expr *, int);
+ gfc_constructor *c;
+
+ switch (e->ts.type)
+ {
+ case BT_INTEGER:
+ switch (type)
+ {
+ case BT_INTEGER:
+ f = gfc_int2int;
+ break;
+ case BT_REAL:
+ f = gfc_int2real;
+ break;
+ case BT_COMPLEX:
+ f = gfc_int2complex;
+ break;
+ case BT_LOGICAL:
+ f = gfc_int2log;
+ break;
+ default:
+ goto oops;
+ }
+ break;
+
+ case BT_REAL:
+ switch (type)
+ {
+ case BT_INTEGER:
+ f = gfc_real2int;
+ break;
+ case BT_REAL:
+ f = gfc_real2real;
+ break;
+ case BT_COMPLEX:
+ f = gfc_real2complex;
+ break;
+ default:
+ goto oops;
+ }
+ break;
+
+ case BT_COMPLEX:
+ switch (type)
+ {
+ case BT_INTEGER:
+ f = gfc_complex2int;
+ break;
+ case BT_REAL:
+ f = gfc_complex2real;
+ break;
+ case BT_COMPLEX:
+ f = gfc_complex2complex;
+ break;
+
+ default:
+ goto oops;
+ }
+ break;
+
+ case BT_LOGICAL:
+ switch (type)
+ {
+ case BT_INTEGER:
+ f = gfc_log2int;
+ break;
+ case BT_LOGICAL:
+ f = gfc_log2log;
+ break;
+ default:
+ goto oops;
+ }
+ break;
+
+ case BT_HOLLERITH:
+ switch (type)
+ {
+ case BT_INTEGER:
+ f = gfc_hollerith2int;
+ break;
+
+ case BT_REAL:
+ f = gfc_hollerith2real;
+ break;
+
+ case BT_COMPLEX:
+ f = gfc_hollerith2complex;
+ break;
+
+ case BT_CHARACTER:
+ f = gfc_hollerith2character;
+ break;
+
+ case BT_LOGICAL:
+ f = gfc_hollerith2logical;
+ break;
+
+ default:
+ goto oops;
+ }
+ break;
+
+ default:
+ oops:
+ gfc_internal_error ("gfc_convert_constant(): Unexpected type");
+ }
+
+ result = NULL;
+
+ switch (e->expr_type)
+ {
+ case EXPR_CONSTANT:
+ result = f (e, kind);
+ if (result == NULL)
+ return &gfc_bad_expr;
+ break;
+
+ case EXPR_ARRAY:
+ if (!gfc_is_constant_expr (e))
+ break;
+
+ result = gfc_get_array_expr (type, kind, &e->where);
+ result->shape = gfc_copy_shape (e->shape, e->rank);
+ result->rank = e->rank;
+
+ for (c = gfc_constructor_first (e->value.constructor);
+ c; c = gfc_constructor_next (c))
+ {
+ gfc_expr *tmp;
+ if (c->iterator == NULL)
+ tmp = f (c->expr, kind);
+ else
+ {
+ g = gfc_convert_constant (c->expr, type, kind);
+ if (g == &gfc_bad_expr)
+ {
+ gfc_free_expr (result);
+ return g;
+ }
+ tmp = g;
+ }
+
+ if (tmp == NULL)
+ {
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ gfc_constructor_append_expr (&result->value.constructor,
+ tmp, &c->where);
+ }
+
+ break;
+
+ default:
+ break;
+ }
+
+ return result;
+}
+
+
+/* Function for converting character constants. */
+gfc_expr *
+gfc_convert_char_constant (gfc_expr *e, bt type ATTRIBUTE_UNUSED, int kind)
+{
+ gfc_expr *result;
+ int i;
+
+ if (!gfc_is_constant_expr (e))
+ return NULL;
+
+ if (e->expr_type == EXPR_CONSTANT)
+ {
+ /* Simple case of a scalar. */
+ result = gfc_get_constant_expr (BT_CHARACTER, kind, &e->where);
+ if (result == NULL)
+ return &gfc_bad_expr;
+
+ result->value.character.length = e->value.character.length;
+ result->value.character.string
+ = gfc_get_wide_string (e->value.character.length + 1);
+ memcpy (result->value.character.string, e->value.character.string,
+ (e->value.character.length + 1) * sizeof (gfc_char_t));
+
+ /* Check we only have values representable in the destination kind. */
+ for (i = 0; i < result->value.character.length; i++)
+ if (!gfc_check_character_range (result->value.character.string[i],
+ kind))
+ {
+ gfc_error ("Character '%s' in string at %L cannot be converted "
+ "into character kind %d",
+ gfc_print_wide_char (result->value.character.string[i]),
+ &e->where, kind);
+ return &gfc_bad_expr;
+ }
+
+ return result;
+ }
+ else if (e->expr_type == EXPR_ARRAY)
+ {
+ /* For an array constructor, we convert each constructor element. */
+ gfc_constructor *c;
+
+ result = gfc_get_array_expr (type, kind, &e->where);
+ result->shape = gfc_copy_shape (e->shape, e->rank);
+ result->rank = e->rank;
+ result->ts.u.cl = e->ts.u.cl;
+
+ for (c = gfc_constructor_first (e->value.constructor);
+ c; c = gfc_constructor_next (c))
+ {
+ gfc_expr *tmp = gfc_convert_char_constant (c->expr, type, kind);
+ if (tmp == &gfc_bad_expr)
+ {
+ gfc_free_expr (result);
+ return &gfc_bad_expr;
+ }
+
+ if (tmp == NULL)
+ {
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ gfc_constructor_append_expr (&result->value.constructor,
+ tmp, &c->where);
+ }
+
+ return result;
+ }
+ else
+ return NULL;
+}
+
+
+gfc_expr *
+gfc_simplify_compiler_options (void)
+{
+ char *str;
+ gfc_expr *result;
+
+ str = gfc_get_option_string ();
+ result = gfc_get_character_expr (gfc_default_character_kind,
+ &gfc_current_locus, str, strlen (str));
+ gfc_free (str);
+ return result;
+}
+
+
+gfc_expr *
+gfc_simplify_compiler_version (void)
+{
+ char *buffer;
+ size_t len;
+
+ len = strlen ("GCC version ") + strlen (version_string);
+ buffer = XALLOCAVEC (char, len + 1);
+ snprintf (buffer, len + 1, "GCC version %s", version_string);
+ return gfc_get_character_expr (gfc_default_character_kind,
+ &gfc_current_locus, buffer, len);
+}