summaryrefslogtreecommitdiff
path: root/gcc/gimple-fold.c
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/gimple-fold.c
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'gcc/gimple-fold.c')
-rw-r--r--gcc/gimple-fold.c2736
1 files changed, 2736 insertions, 0 deletions
diff --git a/gcc/gimple-fold.c b/gcc/gimple-fold.c
new file mode 100644
index 000000000..ad45dcb1a
--- /dev/null
+++ b/gcc/gimple-fold.c
@@ -0,0 +1,2736 @@
+/* Statement simplification on GIMPLE.
+ Copyright (C) 2010, 2011 Free Software Foundation, Inc.
+ Split out from tree-ssa-ccp.c.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 3, or (at your option) any
+later version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "flags.h"
+#include "function.h"
+#include "tree-dump.h"
+#include "tree-flow.h"
+#include "tree-pass.h"
+#include "tree-ssa-propagate.h"
+#include "target.h"
+
+/* Return true when DECL can be referenced from current unit.
+ We can get declarations that are not possible to reference for
+ various reasons:
+
+ 1) When analyzing C++ virtual tables.
+ C++ virtual tables do have known constructors even
+ when they are keyed to other compilation unit.
+ Those tables can contain pointers to methods and vars
+ in other units. Those methods have both STATIC and EXTERNAL
+ set.
+ 2) In WHOPR mode devirtualization might lead to reference
+ to method that was partitioned elsehwere.
+ In this case we have static VAR_DECL or FUNCTION_DECL
+ that has no corresponding callgraph/varpool node
+ declaring the body.
+ 3) COMDAT functions referred by external vtables that
+ we devirtualize only during final copmilation stage.
+ At this time we already decided that we will not output
+ the function body and thus we can't reference the symbol
+ directly. */
+
+static bool
+can_refer_decl_in_current_unit_p (tree decl)
+{
+ struct varpool_node *vnode;
+ struct cgraph_node *node;
+
+ if (!TREE_STATIC (decl) && !DECL_EXTERNAL (decl))
+ return true;
+ /* External flag is set, so we deal with C++ reference
+ to static object from other file. */
+ if (DECL_EXTERNAL (decl) && TREE_STATIC (decl)
+ && TREE_CODE (decl) == VAR_DECL)
+ {
+ /* Just be sure it is not big in frontend setting
+ flags incorrectly. Those variables should never
+ be finalized. */
+ gcc_checking_assert (!(vnode = varpool_get_node (decl))
+ || !vnode->finalized);
+ return false;
+ }
+ /* When function is public, we always can introduce new reference.
+ Exception are the COMDAT functions where introducing a direct
+ reference imply need to include function body in the curren tunit. */
+ if (TREE_PUBLIC (decl) && !DECL_COMDAT (decl))
+ return true;
+ /* We are not at ltrans stage; so don't worry about WHOPR.
+ Also when still gimplifying all referred comdat functions will be
+ produced. */
+ if (!flag_ltrans && (!DECL_COMDAT (decl) || !cgraph_function_flags_ready))
+ return true;
+ /* If we already output the function body, we are safe. */
+ if (TREE_ASM_WRITTEN (decl))
+ return true;
+ if (TREE_CODE (decl) == FUNCTION_DECL)
+ {
+ node = cgraph_get_node (decl);
+ /* Check that we still have function body and that we didn't took
+ the decision to eliminate offline copy of the function yet.
+ The second is important when devirtualization happens during final
+ compilation stage when making a new reference no longer makes callee
+ to be compiled. */
+ if (!node || !node->analyzed || node->global.inlined_to)
+ return false;
+ }
+ else if (TREE_CODE (decl) == VAR_DECL)
+ {
+ vnode = varpool_get_node (decl);
+ if (!vnode || !vnode->finalized)
+ return false;
+ }
+ return true;
+}
+
+/* CVAL is value taken from DECL_INITIAL of variable. Try to transorm it into
+ acceptable form for is_gimple_min_invariant. */
+
+tree
+canonicalize_constructor_val (tree cval)
+{
+ STRIP_NOPS (cval);
+ if (TREE_CODE (cval) == POINTER_PLUS_EXPR)
+ {
+ tree t = maybe_fold_offset_to_address (EXPR_LOCATION (cval),
+ TREE_OPERAND (cval, 0),
+ TREE_OPERAND (cval, 1),
+ TREE_TYPE (cval));
+ if (t)
+ cval = t;
+ }
+ if (TREE_CODE (cval) == ADDR_EXPR)
+ {
+ tree base = get_base_address (TREE_OPERAND (cval, 0));
+
+ if (base
+ && (TREE_CODE (base) == VAR_DECL
+ || TREE_CODE (base) == FUNCTION_DECL)
+ && !can_refer_decl_in_current_unit_p (base))
+ return NULL_TREE;
+ if (base && TREE_CODE (base) == VAR_DECL)
+ add_referenced_var (base);
+ /* We never have the chance to fixup types in global initializers
+ during gimplification. Do so here. */
+ if (TREE_TYPE (TREE_TYPE (cval)) != TREE_TYPE (TREE_OPERAND (cval, 0)))
+ cval = build_fold_addr_expr (TREE_OPERAND (cval, 0));
+ }
+ return cval;
+}
+
+/* If SYM is a constant variable with known value, return the value.
+ NULL_TREE is returned otherwise. */
+
+tree
+get_symbol_constant_value (tree sym)
+{
+ if (const_value_known_p (sym))
+ {
+ tree val = DECL_INITIAL (sym);
+ if (val)
+ {
+ val = canonicalize_constructor_val (val);
+ if (val && is_gimple_min_invariant (val))
+ return val;
+ else
+ return NULL_TREE;
+ }
+ /* Variables declared 'const' without an initializer
+ have zero as the initializer if they may not be
+ overridden at link or run time. */
+ if (!val
+ && (INTEGRAL_TYPE_P (TREE_TYPE (sym))
+ || SCALAR_FLOAT_TYPE_P (TREE_TYPE (sym))))
+ return build_zero_cst (TREE_TYPE (sym));
+ }
+
+ return NULL_TREE;
+}
+
+
+/* Return true if we may propagate the address expression ADDR into the
+ dereference DEREF and cancel them. */
+
+bool
+may_propagate_address_into_dereference (tree addr, tree deref)
+{
+ gcc_assert (TREE_CODE (deref) == MEM_REF
+ && TREE_CODE (addr) == ADDR_EXPR);
+
+ /* Don't propagate if ADDR's operand has incomplete type. */
+ if (!COMPLETE_TYPE_P (TREE_TYPE (TREE_OPERAND (addr, 0))))
+ return false;
+
+ /* If the address is invariant then we do not need to preserve restrict
+ qualifications. But we do need to preserve volatile qualifiers until
+ we can annotate the folded dereference itself properly. */
+ if (is_gimple_min_invariant (addr)
+ && (!TREE_THIS_VOLATILE (deref)
+ || TYPE_VOLATILE (TREE_TYPE (addr))))
+ return useless_type_conversion_p (TREE_TYPE (deref),
+ TREE_TYPE (TREE_OPERAND (addr, 0)));
+
+ /* Else both the address substitution and the folding must result in
+ a valid useless type conversion sequence. */
+ return (useless_type_conversion_p (TREE_TYPE (TREE_OPERAND (deref, 0)),
+ TREE_TYPE (addr))
+ && useless_type_conversion_p (TREE_TYPE (deref),
+ TREE_TYPE (TREE_OPERAND (addr, 0))));
+}
+
+
+/* A subroutine of fold_stmt. Attempts to fold *(A+O) to A[X].
+ BASE is an array type. OFFSET is a byte displacement.
+
+ LOC is the location of the original expression. */
+
+static tree
+maybe_fold_offset_to_array_ref (location_t loc, tree base, tree offset)
+{
+ tree min_idx, idx, idx_type, elt_offset = integer_zero_node;
+ tree array_type, elt_type, elt_size;
+ tree domain_type;
+
+ /* If BASE is an ARRAY_REF, we can pick up another offset (this time
+ measured in units of the size of elements type) from that ARRAY_REF).
+ We can't do anything if either is variable.
+
+ The case we handle here is *(&A[N]+O). */
+ if (TREE_CODE (base) == ARRAY_REF)
+ {
+ tree low_bound = array_ref_low_bound (base);
+
+ elt_offset = TREE_OPERAND (base, 1);
+ if (TREE_CODE (low_bound) != INTEGER_CST
+ || TREE_CODE (elt_offset) != INTEGER_CST)
+ return NULL_TREE;
+
+ elt_offset = int_const_binop (MINUS_EXPR, elt_offset, low_bound, 0);
+ base = TREE_OPERAND (base, 0);
+ }
+
+ /* Ignore stupid user tricks of indexing non-array variables. */
+ array_type = TREE_TYPE (base);
+ if (TREE_CODE (array_type) != ARRAY_TYPE)
+ return NULL_TREE;
+ elt_type = TREE_TYPE (array_type);
+
+ /* Use signed size type for intermediate computation on the index. */
+ idx_type = ssizetype;
+
+ /* If OFFSET and ELT_OFFSET are zero, we don't care about the size of the
+ element type (so we can use the alignment if it's not constant).
+ Otherwise, compute the offset as an index by using a division. If the
+ division isn't exact, then don't do anything. */
+ elt_size = TYPE_SIZE_UNIT (elt_type);
+ if (!elt_size)
+ return NULL;
+ if (integer_zerop (offset))
+ {
+ if (TREE_CODE (elt_size) != INTEGER_CST)
+ elt_size = size_int (TYPE_ALIGN (elt_type));
+
+ idx = build_int_cst (idx_type, 0);
+ }
+ else
+ {
+ unsigned HOST_WIDE_INT lquo, lrem;
+ HOST_WIDE_INT hquo, hrem;
+ double_int soffset;
+
+ /* The final array offset should be signed, so we need
+ to sign-extend the (possibly pointer) offset here
+ and use signed division. */
+ soffset = double_int_sext (tree_to_double_int (offset),
+ TYPE_PRECISION (TREE_TYPE (offset)));
+ if (TREE_CODE (elt_size) != INTEGER_CST
+ || div_and_round_double (TRUNC_DIV_EXPR, 0,
+ soffset.low, soffset.high,
+ TREE_INT_CST_LOW (elt_size),
+ TREE_INT_CST_HIGH (elt_size),
+ &lquo, &hquo, &lrem, &hrem)
+ || lrem || hrem)
+ return NULL_TREE;
+
+ idx = build_int_cst_wide (idx_type, lquo, hquo);
+ }
+
+ /* Assume the low bound is zero. If there is a domain type, get the
+ low bound, if any, convert the index into that type, and add the
+ low bound. */
+ min_idx = build_int_cst (idx_type, 0);
+ domain_type = TYPE_DOMAIN (array_type);
+ if (domain_type)
+ {
+ idx_type = domain_type;
+ if (TYPE_MIN_VALUE (idx_type))
+ min_idx = TYPE_MIN_VALUE (idx_type);
+ else
+ min_idx = fold_convert (idx_type, min_idx);
+
+ if (TREE_CODE (min_idx) != INTEGER_CST)
+ return NULL_TREE;
+
+ elt_offset = fold_convert (idx_type, elt_offset);
+ }
+
+ if (!integer_zerop (min_idx))
+ idx = int_const_binop (PLUS_EXPR, idx, min_idx, 0);
+ if (!integer_zerop (elt_offset))
+ idx = int_const_binop (PLUS_EXPR, idx, elt_offset, 0);
+
+ /* Make sure to possibly truncate late after offsetting. */
+ idx = fold_convert (idx_type, idx);
+
+ /* We don't want to construct access past array bounds. For example
+ char *(c[4]);
+ c[3][2];
+ should not be simplified into (*c)[14] or tree-vrp will
+ give false warnings.
+ This is only an issue for multi-dimensional arrays. */
+ if (TREE_CODE (elt_type) == ARRAY_TYPE
+ && domain_type)
+ {
+ if (TYPE_MAX_VALUE (domain_type)
+ && TREE_CODE (TYPE_MAX_VALUE (domain_type)) == INTEGER_CST
+ && tree_int_cst_lt (TYPE_MAX_VALUE (domain_type), idx))
+ return NULL_TREE;
+ else if (TYPE_MIN_VALUE (domain_type)
+ && TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST
+ && tree_int_cst_lt (idx, TYPE_MIN_VALUE (domain_type)))
+ return NULL_TREE;
+ else if (compare_tree_int (idx, 0) < 0)
+ return NULL_TREE;
+ }
+
+ {
+ tree t = build4 (ARRAY_REF, elt_type, base, idx, NULL_TREE, NULL_TREE);
+ SET_EXPR_LOCATION (t, loc);
+ return t;
+ }
+}
+
+
+/* Attempt to express (ORIG_TYPE)BASE+OFFSET as BASE[index].
+ LOC is the location of original expression.
+
+ Before attempting the conversion strip off existing ADDR_EXPRs. */
+
+tree
+maybe_fold_offset_to_reference (location_t loc, tree base, tree offset,
+ tree orig_type)
+{
+ tree ret;
+
+ STRIP_NOPS (base);
+ if (TREE_CODE (base) != ADDR_EXPR)
+ return NULL_TREE;
+
+ base = TREE_OPERAND (base, 0);
+ if (types_compatible_p (orig_type, TREE_TYPE (base))
+ && integer_zerop (offset))
+ return base;
+
+ ret = maybe_fold_offset_to_array_ref (loc, base, offset);
+ if (ret && types_compatible_p (orig_type, TREE_TYPE (ret)))
+ return ret;
+ return NULL_TREE;
+}
+
+/* Attempt to express (ORIG_TYPE)ADDR+OFFSET as (*ADDR)[index].
+ LOC is the location of the original expression. */
+
+tree
+maybe_fold_offset_to_address (location_t loc, tree addr, tree offset,
+ tree orig_type)
+{
+ tree base, ret;
+
+ STRIP_NOPS (addr);
+ if (TREE_CODE (addr) != ADDR_EXPR)
+ return NULL_TREE;
+ base = TREE_OPERAND (addr, 0);
+ ret = maybe_fold_offset_to_array_ref (loc, base, offset);
+ if (ret)
+ {
+ ret = build_fold_addr_expr (ret);
+ if (!useless_type_conversion_p (orig_type, TREE_TYPE (ret)))
+ return NULL_TREE;
+ SET_EXPR_LOCATION (ret, loc);
+ }
+
+ return ret;
+}
+
+
+/* A quaint feature extant in our address arithmetic is that there
+ can be hidden type changes here. The type of the result need
+ not be the same as the type of the input pointer.
+
+ What we're after here is an expression of the form
+ (T *)(&array + const)
+ where array is OP0, const is OP1, RES_TYPE is T and
+ the cast doesn't actually exist, but is implicit in the
+ type of the POINTER_PLUS_EXPR. We'd like to turn this into
+ &array[x]
+ which may be able to propagate further. */
+
+tree
+maybe_fold_stmt_addition (location_t loc, tree res_type, tree op0, tree op1)
+{
+ tree ptd_type;
+ tree t;
+
+ /* The first operand should be an ADDR_EXPR. */
+ if (TREE_CODE (op0) != ADDR_EXPR)
+ return NULL_TREE;
+ op0 = TREE_OPERAND (op0, 0);
+
+ /* It had better be a constant. */
+ if (TREE_CODE (op1) != INTEGER_CST)
+ {
+ /* Or op0 should now be A[0] and the non-constant offset defined
+ via a multiplication by the array element size. */
+ if (TREE_CODE (op0) == ARRAY_REF
+ /* As we will end up creating a variable index array access
+ in the outermost array dimension make sure there isn't
+ a more inner array that the index could overflow to. */
+ && TREE_CODE (TREE_OPERAND (op0, 0)) != ARRAY_REF
+ && integer_zerop (TREE_OPERAND (op0, 1))
+ && TREE_CODE (op1) == SSA_NAME)
+ {
+ gimple offset_def = SSA_NAME_DEF_STMT (op1);
+ tree elsz = TYPE_SIZE_UNIT (TREE_TYPE (op0));
+ if (!host_integerp (elsz, 1)
+ || !is_gimple_assign (offset_def))
+ return NULL_TREE;
+
+ /* Do not build array references of something that we can't
+ see the true number of array dimensions for. */
+ if (!DECL_P (TREE_OPERAND (op0, 0))
+ && !handled_component_p (TREE_OPERAND (op0, 0)))
+ return NULL_TREE;
+
+ if (gimple_assign_rhs_code (offset_def) == MULT_EXPR
+ && TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST
+ && tree_int_cst_equal (gimple_assign_rhs2 (offset_def), elsz))
+ return build_fold_addr_expr
+ (build4 (ARRAY_REF, TREE_TYPE (op0),
+ TREE_OPERAND (op0, 0),
+ gimple_assign_rhs1 (offset_def),
+ TREE_OPERAND (op0, 2),
+ TREE_OPERAND (op0, 3)));
+ else if (integer_onep (elsz)
+ && gimple_assign_rhs_code (offset_def) != MULT_EXPR)
+ return build_fold_addr_expr
+ (build4 (ARRAY_REF, TREE_TYPE (op0),
+ TREE_OPERAND (op0, 0),
+ op1,
+ TREE_OPERAND (op0, 2),
+ TREE_OPERAND (op0, 3)));
+ }
+ else if (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
+ /* Dto. */
+ && TREE_CODE (TREE_TYPE (TREE_TYPE (op0))) != ARRAY_TYPE
+ && TREE_CODE (op1) == SSA_NAME)
+ {
+ gimple offset_def = SSA_NAME_DEF_STMT (op1);
+ tree elsz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (op0)));
+ if (!host_integerp (elsz, 1)
+ || !is_gimple_assign (offset_def))
+ return NULL_TREE;
+
+ /* Do not build array references of something that we can't
+ see the true number of array dimensions for. */
+ if (!DECL_P (op0)
+ && !handled_component_p (op0))
+ return NULL_TREE;
+
+ if (gimple_assign_rhs_code (offset_def) == MULT_EXPR
+ && TREE_CODE (gimple_assign_rhs2 (offset_def)) == INTEGER_CST
+ && tree_int_cst_equal (gimple_assign_rhs2 (offset_def), elsz))
+ return build_fold_addr_expr
+ (build4 (ARRAY_REF, TREE_TYPE (TREE_TYPE (op0)),
+ op0, gimple_assign_rhs1 (offset_def),
+ integer_zero_node, NULL_TREE));
+ else if (integer_onep (elsz)
+ && gimple_assign_rhs_code (offset_def) != MULT_EXPR)
+ return build_fold_addr_expr
+ (build4 (ARRAY_REF, TREE_TYPE (TREE_TYPE (op0)),
+ op0, op1,
+ integer_zero_node, NULL_TREE));
+ }
+
+ return NULL_TREE;
+ }
+
+ /* If the first operand is an ARRAY_REF, expand it so that we can fold
+ the offset into it. */
+ while (TREE_CODE (op0) == ARRAY_REF)
+ {
+ tree array_obj = TREE_OPERAND (op0, 0);
+ tree array_idx = TREE_OPERAND (op0, 1);
+ tree elt_type = TREE_TYPE (op0);
+ tree elt_size = TYPE_SIZE_UNIT (elt_type);
+ tree min_idx;
+
+ if (TREE_CODE (array_idx) != INTEGER_CST)
+ break;
+ if (TREE_CODE (elt_size) != INTEGER_CST)
+ break;
+
+ /* Un-bias the index by the min index of the array type. */
+ min_idx = TYPE_DOMAIN (TREE_TYPE (array_obj));
+ if (min_idx)
+ {
+ min_idx = TYPE_MIN_VALUE (min_idx);
+ if (min_idx)
+ {
+ if (TREE_CODE (min_idx) != INTEGER_CST)
+ break;
+
+ array_idx = fold_convert (TREE_TYPE (min_idx), array_idx);
+ if (!integer_zerop (min_idx))
+ array_idx = int_const_binop (MINUS_EXPR, array_idx,
+ min_idx, 0);
+ }
+ }
+
+ /* Convert the index to a byte offset. */
+ array_idx = fold_convert (sizetype, array_idx);
+ array_idx = int_const_binop (MULT_EXPR, array_idx, elt_size, 0);
+
+ /* Update the operands for the next round, or for folding. */
+ op1 = int_const_binop (PLUS_EXPR,
+ array_idx, op1, 0);
+ op0 = array_obj;
+ }
+
+ ptd_type = TREE_TYPE (res_type);
+ /* If we want a pointer to void, reconstruct the reference from the
+ array element type. A pointer to that can be trivially converted
+ to void *. This happens as we fold (void *)(ptr p+ off). */
+ if (VOID_TYPE_P (ptd_type)
+ && TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE)
+ ptd_type = TREE_TYPE (TREE_TYPE (op0));
+
+ /* At which point we can try some of the same things as for indirects. */
+ t = maybe_fold_offset_to_array_ref (loc, op0, op1);
+ if (t)
+ {
+ t = build_fold_addr_expr (t);
+ if (!useless_type_conversion_p (res_type, TREE_TYPE (t)))
+ return NULL_TREE;
+ SET_EXPR_LOCATION (t, loc);
+ }
+
+ return t;
+}
+
+/* Subroutine of fold_stmt. We perform several simplifications of the
+ memory reference tree EXPR and make sure to re-gimplify them properly
+ after propagation of constant addresses. IS_LHS is true if the
+ reference is supposed to be an lvalue. */
+
+static tree
+maybe_fold_reference (tree expr, bool is_lhs)
+{
+ tree *t = &expr;
+ tree result;
+
+ if (!is_lhs
+ && (result = fold_const_aggregate_ref (expr))
+ && is_gimple_min_invariant (result))
+ return result;
+
+ /* ??? We might want to open-code the relevant remaining cases
+ to avoid using the generic fold. */
+ if (handled_component_p (*t)
+ && CONSTANT_CLASS_P (TREE_OPERAND (*t, 0)))
+ {
+ tree tem = fold (*t);
+ if (tem != *t)
+ return tem;
+ }
+
+ while (handled_component_p (*t))
+ t = &TREE_OPERAND (*t, 0);
+
+ /* Fold back MEM_REFs to reference trees. */
+ if (TREE_CODE (*t) == MEM_REF
+ && TREE_CODE (TREE_OPERAND (*t, 0)) == ADDR_EXPR
+ && integer_zerop (TREE_OPERAND (*t, 1))
+ && (TREE_THIS_VOLATILE (*t)
+ == TREE_THIS_VOLATILE (TREE_OPERAND (TREE_OPERAND (*t, 0), 0)))
+ && !TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (TREE_OPERAND (*t, 1)))
+ && (TYPE_MAIN_VARIANT (TREE_TYPE (*t))
+ == TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (TREE_OPERAND (*t, 1)))))
+ /* We have to look out here to not drop a required conversion
+ from the rhs to the lhs if is_lhs, but we don't have the
+ rhs here to verify that. Thus require strict type
+ compatibility. */
+ && types_compatible_p (TREE_TYPE (*t),
+ TREE_TYPE (TREE_OPERAND
+ (TREE_OPERAND (*t, 0), 0))))
+ {
+ tree tem;
+ *t = TREE_OPERAND (TREE_OPERAND (*t, 0), 0);
+ tem = maybe_fold_reference (expr, is_lhs);
+ if (tem)
+ return tem;
+ return expr;
+ }
+ /* Canonicalize MEM_REFs invariant address operand. */
+ else if (TREE_CODE (*t) == MEM_REF
+ && !is_gimple_mem_ref_addr (TREE_OPERAND (*t, 0)))
+ {
+ bool volatile_p = TREE_THIS_VOLATILE (*t);
+ tree tem = fold_binary (MEM_REF, TREE_TYPE (*t),
+ TREE_OPERAND (*t, 0),
+ TREE_OPERAND (*t, 1));
+ if (tem)
+ {
+ TREE_THIS_VOLATILE (tem) = volatile_p;
+ *t = tem;
+ tem = maybe_fold_reference (expr, is_lhs);
+ if (tem)
+ return tem;
+ return expr;
+ }
+ }
+ else if (TREE_CODE (*t) == TARGET_MEM_REF)
+ {
+ tree tem = maybe_fold_tmr (*t);
+ if (tem)
+ {
+ *t = tem;
+ tem = maybe_fold_reference (expr, is_lhs);
+ if (tem)
+ return tem;
+ return expr;
+ }
+ }
+ else if (!is_lhs
+ && DECL_P (*t))
+ {
+ tree tem = get_symbol_constant_value (*t);
+ if (tem
+ && useless_type_conversion_p (TREE_TYPE (*t), TREE_TYPE (tem)))
+ {
+ *t = unshare_expr (tem);
+ tem = maybe_fold_reference (expr, is_lhs);
+ if (tem)
+ return tem;
+ return expr;
+ }
+ }
+
+ return NULL_TREE;
+}
+
+
+/* Attempt to fold an assignment statement pointed-to by SI. Returns a
+ replacement rhs for the statement or NULL_TREE if no simplification
+ could be made. It is assumed that the operands have been previously
+ folded. */
+
+static tree
+fold_gimple_assign (gimple_stmt_iterator *si)
+{
+ gimple stmt = gsi_stmt (*si);
+ enum tree_code subcode = gimple_assign_rhs_code (stmt);
+ location_t loc = gimple_location (stmt);
+
+ tree result = NULL_TREE;
+
+ switch (get_gimple_rhs_class (subcode))
+ {
+ case GIMPLE_SINGLE_RHS:
+ {
+ tree rhs = gimple_assign_rhs1 (stmt);
+
+ /* Try to fold a conditional expression. */
+ if (TREE_CODE (rhs) == COND_EXPR)
+ {
+ tree op0 = COND_EXPR_COND (rhs);
+ tree tem;
+ bool set = false;
+ location_t cond_loc = EXPR_LOCATION (rhs);
+
+ if (COMPARISON_CLASS_P (op0))
+ {
+ fold_defer_overflow_warnings ();
+ tem = fold_binary_loc (cond_loc,
+ TREE_CODE (op0), TREE_TYPE (op0),
+ TREE_OPERAND (op0, 0),
+ TREE_OPERAND (op0, 1));
+ /* This is actually a conditional expression, not a GIMPLE
+ conditional statement, however, the valid_gimple_rhs_p
+ test still applies. */
+ set = (tem && is_gimple_condexpr (tem)
+ && valid_gimple_rhs_p (tem));
+ fold_undefer_overflow_warnings (set, stmt, 0);
+ }
+ else if (is_gimple_min_invariant (op0))
+ {
+ tem = op0;
+ set = true;
+ }
+ else
+ return NULL_TREE;
+
+ if (set)
+ result = fold_build3_loc (cond_loc, COND_EXPR, TREE_TYPE (rhs), tem,
+ COND_EXPR_THEN (rhs), COND_EXPR_ELSE (rhs));
+ }
+
+ else if (REFERENCE_CLASS_P (rhs))
+ return maybe_fold_reference (rhs, false);
+
+ else if (TREE_CODE (rhs) == ADDR_EXPR)
+ {
+ tree ref = TREE_OPERAND (rhs, 0);
+ tree tem = maybe_fold_reference (ref, true);
+ if (tem
+ && TREE_CODE (tem) == MEM_REF
+ && integer_zerop (TREE_OPERAND (tem, 1)))
+ result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (tem, 0));
+ else if (tem)
+ result = fold_convert (TREE_TYPE (rhs),
+ build_fold_addr_expr_loc (loc, tem));
+ else if (TREE_CODE (ref) == MEM_REF
+ && integer_zerop (TREE_OPERAND (ref, 1)))
+ result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (ref, 0));
+ }
+
+ else if (TREE_CODE (rhs) == CONSTRUCTOR
+ && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
+ && (CONSTRUCTOR_NELTS (rhs)
+ == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
+ {
+ /* Fold a constant vector CONSTRUCTOR to VECTOR_CST. */
+ unsigned i;
+ tree val;
+
+ FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
+ if (TREE_CODE (val) != INTEGER_CST
+ && TREE_CODE (val) != REAL_CST
+ && TREE_CODE (val) != FIXED_CST)
+ return NULL_TREE;
+
+ return build_vector_from_ctor (TREE_TYPE (rhs),
+ CONSTRUCTOR_ELTS (rhs));
+ }
+
+ else if (DECL_P (rhs))
+ return unshare_expr (get_symbol_constant_value (rhs));
+
+ /* If we couldn't fold the RHS, hand over to the generic
+ fold routines. */
+ if (result == NULL_TREE)
+ result = fold (rhs);
+
+ /* Strip away useless type conversions. Both the NON_LVALUE_EXPR
+ that may have been added by fold, and "useless" type
+ conversions that might now be apparent due to propagation. */
+ STRIP_USELESS_TYPE_CONVERSION (result);
+
+ if (result != rhs && valid_gimple_rhs_p (result))
+ return result;
+
+ return NULL_TREE;
+ }
+ break;
+
+ case GIMPLE_UNARY_RHS:
+ {
+ tree rhs = gimple_assign_rhs1 (stmt);
+
+ result = fold_unary_loc (loc, subcode, gimple_expr_type (stmt), rhs);
+ if (result)
+ {
+ /* If the operation was a conversion do _not_ mark a
+ resulting constant with TREE_OVERFLOW if the original
+ constant was not. These conversions have implementation
+ defined behavior and retaining the TREE_OVERFLOW flag
+ here would confuse later passes such as VRP. */
+ if (CONVERT_EXPR_CODE_P (subcode)
+ && TREE_CODE (result) == INTEGER_CST
+ && TREE_CODE (rhs) == INTEGER_CST)
+ TREE_OVERFLOW (result) = TREE_OVERFLOW (rhs);
+
+ STRIP_USELESS_TYPE_CONVERSION (result);
+ if (valid_gimple_rhs_p (result))
+ return result;
+ }
+ else if (CONVERT_EXPR_CODE_P (subcode)
+ && POINTER_TYPE_P (gimple_expr_type (stmt))
+ && POINTER_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
+ {
+ tree type = gimple_expr_type (stmt);
+ tree t = maybe_fold_offset_to_address (loc,
+ gimple_assign_rhs1 (stmt),
+ integer_zero_node, type);
+ if (t)
+ return t;
+ }
+ }
+ break;
+
+ case GIMPLE_BINARY_RHS:
+ /* Try to fold pointer addition. */
+ if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
+ {
+ tree type = TREE_TYPE (gimple_assign_rhs1 (stmt));
+ if (TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE)
+ {
+ type = build_pointer_type (TREE_TYPE (TREE_TYPE (type)));
+ if (!useless_type_conversion_p
+ (TREE_TYPE (gimple_assign_lhs (stmt)), type))
+ type = TREE_TYPE (gimple_assign_rhs1 (stmt));
+ }
+ result = maybe_fold_stmt_addition (gimple_location (stmt),
+ type,
+ gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs2 (stmt));
+ }
+
+ if (!result)
+ result = fold_binary_loc (loc, subcode,
+ TREE_TYPE (gimple_assign_lhs (stmt)),
+ gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs2 (stmt));
+
+ if (result)
+ {
+ STRIP_USELESS_TYPE_CONVERSION (result);
+ if (valid_gimple_rhs_p (result))
+ return result;
+
+ /* Fold might have produced non-GIMPLE, so if we trust it blindly
+ we lose canonicalization opportunities. Do not go again
+ through fold here though, or the same non-GIMPLE will be
+ produced. */
+ if (commutative_tree_code (subcode)
+ && tree_swap_operands_p (gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs2 (stmt), false))
+ return build2 (subcode, TREE_TYPE (gimple_assign_lhs (stmt)),
+ gimple_assign_rhs2 (stmt),
+ gimple_assign_rhs1 (stmt));
+ }
+ break;
+
+ case GIMPLE_TERNARY_RHS:
+ result = fold_ternary_loc (loc, subcode,
+ TREE_TYPE (gimple_assign_lhs (stmt)),
+ gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs2 (stmt),
+ gimple_assign_rhs3 (stmt));
+
+ if (result)
+ {
+ STRIP_USELESS_TYPE_CONVERSION (result);
+ if (valid_gimple_rhs_p (result))
+ return result;
+
+ /* Fold might have produced non-GIMPLE, so if we trust it blindly
+ we lose canonicalization opportunities. Do not go again
+ through fold here though, or the same non-GIMPLE will be
+ produced. */
+ if (commutative_ternary_tree_code (subcode)
+ && tree_swap_operands_p (gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs2 (stmt), false))
+ return build3 (subcode, TREE_TYPE (gimple_assign_lhs (stmt)),
+ gimple_assign_rhs2 (stmt),
+ gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs3 (stmt));
+ }
+ break;
+
+ case GIMPLE_INVALID_RHS:
+ gcc_unreachable ();
+ }
+
+ return NULL_TREE;
+}
+
+/* Attempt to fold a conditional statement. Return true if any changes were
+ made. We only attempt to fold the condition expression, and do not perform
+ any transformation that would require alteration of the cfg. It is
+ assumed that the operands have been previously folded. */
+
+static bool
+fold_gimple_cond (gimple stmt)
+{
+ tree result = fold_binary_loc (gimple_location (stmt),
+ gimple_cond_code (stmt),
+ boolean_type_node,
+ gimple_cond_lhs (stmt),
+ gimple_cond_rhs (stmt));
+
+ if (result)
+ {
+ STRIP_USELESS_TYPE_CONVERSION (result);
+ if (is_gimple_condexpr (result) && valid_gimple_rhs_p (result))
+ {
+ gimple_cond_set_condition_from_tree (stmt, result);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* Convert EXPR into a GIMPLE value suitable for substitution on the
+ RHS of an assignment. Insert the necessary statements before
+ iterator *SI_P. The statement at *SI_P, which must be a GIMPLE_CALL
+ is replaced. If the call is expected to produces a result, then it
+ is replaced by an assignment of the new RHS to the result variable.
+ If the result is to be ignored, then the call is replaced by a
+ GIMPLE_NOP. A proper VDEF chain is retained by making the first
+ VUSE and the last VDEF of the whole sequence be the same as the replaced
+ statement and using new SSA names for stores in between. */
+
+void
+gimplify_and_update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
+{
+ tree lhs;
+ tree tmp = NULL_TREE; /* Silence warning. */
+ gimple stmt, new_stmt;
+ gimple_stmt_iterator i;
+ gimple_seq stmts = gimple_seq_alloc();
+ struct gimplify_ctx gctx;
+ gimple last = NULL;
+ gimple laststore = NULL;
+ tree reaching_vuse;
+
+ stmt = gsi_stmt (*si_p);
+
+ gcc_assert (is_gimple_call (stmt));
+
+ lhs = gimple_call_lhs (stmt);
+ reaching_vuse = gimple_vuse (stmt);
+
+ push_gimplify_context (&gctx);
+
+ if (lhs == NULL_TREE)
+ {
+ gimplify_and_add (expr, &stmts);
+ /* We can end up with folding a memcpy of an empty class assignment
+ which gets optimized away by C++ gimplification. */
+ if (gimple_seq_empty_p (stmts))
+ {
+ pop_gimplify_context (NULL);
+ if (gimple_in_ssa_p (cfun))
+ {
+ unlink_stmt_vdef (stmt);
+ release_defs (stmt);
+ }
+ gsi_remove (si_p, true);
+ return;
+ }
+ }
+ else
+ tmp = get_initialized_tmp_var (expr, &stmts, NULL);
+
+ pop_gimplify_context (NULL);
+
+ if (gimple_has_location (stmt))
+ annotate_all_with_location (stmts, gimple_location (stmt));
+
+ /* The replacement can expose previously unreferenced variables. */
+ for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
+ {
+ if (last)
+ {
+ gsi_insert_before (si_p, last, GSI_NEW_STMT);
+ gsi_next (si_p);
+ }
+ new_stmt = gsi_stmt (i);
+ if (gimple_in_ssa_p (cfun))
+ {
+ find_new_referenced_vars (new_stmt);
+ mark_symbols_for_renaming (new_stmt);
+ }
+ /* If the new statement has a VUSE, update it with exact SSA name we
+ know will reach this one. */
+ if (gimple_vuse (new_stmt))
+ {
+ /* If we've also seen a previous store create a new VDEF for
+ the latter one, and make that the new reaching VUSE. */
+ if (laststore)
+ {
+ reaching_vuse = make_ssa_name (gimple_vop (cfun), laststore);
+ gimple_set_vdef (laststore, reaching_vuse);
+ update_stmt (laststore);
+ laststore = NULL;
+ }
+ gimple_set_vuse (new_stmt, reaching_vuse);
+ gimple_set_modified (new_stmt, true);
+ }
+ if (gimple_assign_single_p (new_stmt)
+ && !is_gimple_reg (gimple_assign_lhs (new_stmt)))
+ {
+ laststore = new_stmt;
+ }
+ last = new_stmt;
+ }
+
+ if (lhs == NULL_TREE)
+ {
+ /* If we replace a call without LHS that has a VDEF and our new
+ sequence ends with a store we must make that store have the same
+ vdef in order not to break the sequencing. This can happen
+ for instance when folding memcpy calls into assignments. */
+ if (gimple_vdef (stmt) && laststore)
+ {
+ gimple_set_vdef (laststore, gimple_vdef (stmt));
+ if (TREE_CODE (gimple_vdef (stmt)) == SSA_NAME)
+ SSA_NAME_DEF_STMT (gimple_vdef (stmt)) = laststore;
+ update_stmt (laststore);
+ }
+ else if (gimple_in_ssa_p (cfun))
+ {
+ unlink_stmt_vdef (stmt);
+ release_defs (stmt);
+ }
+ new_stmt = last;
+ }
+ else
+ {
+ if (last)
+ {
+ gsi_insert_before (si_p, last, GSI_NEW_STMT);
+ gsi_next (si_p);
+ }
+ if (laststore && is_gimple_reg (lhs))
+ {
+ gimple_set_vdef (laststore, gimple_vdef (stmt));
+ update_stmt (laststore);
+ if (TREE_CODE (gimple_vdef (stmt)) == SSA_NAME)
+ SSA_NAME_DEF_STMT (gimple_vdef (stmt)) = laststore;
+ laststore = NULL;
+ }
+ else if (laststore)
+ {
+ reaching_vuse = make_ssa_name (gimple_vop (cfun), laststore);
+ gimple_set_vdef (laststore, reaching_vuse);
+ update_stmt (laststore);
+ laststore = NULL;
+ }
+ new_stmt = gimple_build_assign (lhs, tmp);
+ if (!is_gimple_reg (tmp))
+ gimple_set_vuse (new_stmt, reaching_vuse);
+ if (!is_gimple_reg (lhs))
+ {
+ gimple_set_vdef (new_stmt, gimple_vdef (stmt));
+ if (TREE_CODE (gimple_vdef (stmt)) == SSA_NAME)
+ SSA_NAME_DEF_STMT (gimple_vdef (stmt)) = new_stmt;
+ }
+ else if (reaching_vuse == gimple_vuse (stmt))
+ unlink_stmt_vdef (stmt);
+ }
+
+ gimple_set_location (new_stmt, gimple_location (stmt));
+ gsi_replace (si_p, new_stmt, false);
+}
+
+/* Return the string length, maximum string length or maximum value of
+ ARG in LENGTH.
+ If ARG is an SSA name variable, follow its use-def chains. If LENGTH
+ is not NULL and, for TYPE == 0, its value is not equal to the length
+ we determine or if we are unable to determine the length or value,
+ return false. VISITED is a bitmap of visited variables.
+ TYPE is 0 if string length should be returned, 1 for maximum string
+ length and 2 for maximum value ARG can have. */
+
+static bool
+get_maxval_strlen (tree arg, tree *length, bitmap visited, int type)
+{
+ tree var, val;
+ gimple def_stmt;
+
+ if (TREE_CODE (arg) != SSA_NAME)
+ {
+ if (TREE_CODE (arg) == COND_EXPR)
+ return get_maxval_strlen (COND_EXPR_THEN (arg), length, visited, type)
+ && get_maxval_strlen (COND_EXPR_ELSE (arg), length, visited, type);
+ /* We can end up with &(*iftmp_1)[0] here as well, so handle it. */
+ else if (TREE_CODE (arg) == ADDR_EXPR
+ && TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF
+ && integer_zerop (TREE_OPERAND (TREE_OPERAND (arg, 0), 1)))
+ {
+ tree aop0 = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
+ if (TREE_CODE (aop0) == INDIRECT_REF
+ && TREE_CODE (TREE_OPERAND (aop0, 0)) == SSA_NAME)
+ return get_maxval_strlen (TREE_OPERAND (aop0, 0),
+ length, visited, type);
+ }
+
+ if (type == 2)
+ {
+ val = arg;
+ if (TREE_CODE (val) != INTEGER_CST
+ || tree_int_cst_sgn (val) < 0)
+ return false;
+ }
+ else
+ val = c_strlen (arg, 1);
+ if (!val)
+ return false;
+
+ if (*length)
+ {
+ if (type > 0)
+ {
+ if (TREE_CODE (*length) != INTEGER_CST
+ || TREE_CODE (val) != INTEGER_CST)
+ return false;
+
+ if (tree_int_cst_lt (*length, val))
+ *length = val;
+ return true;
+ }
+ else if (simple_cst_equal (val, *length) != 1)
+ return false;
+ }
+
+ *length = val;
+ return true;
+ }
+
+ /* If we were already here, break the infinite cycle. */
+ if (!bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
+ return true;
+
+ var = arg;
+ def_stmt = SSA_NAME_DEF_STMT (var);
+
+ switch (gimple_code (def_stmt))
+ {
+ case GIMPLE_ASSIGN:
+ /* The RHS of the statement defining VAR must either have a
+ constant length or come from another SSA_NAME with a constant
+ length. */
+ if (gimple_assign_single_p (def_stmt)
+ || gimple_assign_unary_nop_p (def_stmt))
+ {
+ tree rhs = gimple_assign_rhs1 (def_stmt);
+ return get_maxval_strlen (rhs, length, visited, type);
+ }
+ return false;
+
+ case GIMPLE_PHI:
+ {
+ /* All the arguments of the PHI node must have the same constant
+ length. */
+ unsigned i;
+
+ for (i = 0; i < gimple_phi_num_args (def_stmt); i++)
+ {
+ tree arg = gimple_phi_arg (def_stmt, i)->def;
+
+ /* If this PHI has itself as an argument, we cannot
+ determine the string length of this argument. However,
+ if we can find a constant string length for the other
+ PHI args then we can still be sure that this is a
+ constant string length. So be optimistic and just
+ continue with the next argument. */
+ if (arg == gimple_phi_result (def_stmt))
+ continue;
+
+ if (!get_maxval_strlen (arg, length, visited, type))
+ return false;
+ }
+ }
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+
+/* Fold builtin call in statement STMT. Returns a simplified tree.
+ We may return a non-constant expression, including another call
+ to a different function and with different arguments, e.g.,
+ substituting memcpy for strcpy when the string length is known.
+ Note that some builtins expand into inline code that may not
+ be valid in GIMPLE. Callers must take care. */
+
+tree
+gimple_fold_builtin (gimple stmt)
+{
+ tree result, val[3];
+ tree callee, a;
+ int arg_idx, type;
+ bitmap visited;
+ bool ignore;
+ int nargs;
+ location_t loc = gimple_location (stmt);
+
+ gcc_assert (is_gimple_call (stmt));
+
+ ignore = (gimple_call_lhs (stmt) == NULL);
+
+ /* First try the generic builtin folder. If that succeeds, return the
+ result directly. */
+ result = fold_call_stmt (stmt, ignore);
+ if (result)
+ {
+ if (ignore)
+ STRIP_NOPS (result);
+ return result;
+ }
+
+ /* Ignore MD builtins. */
+ callee = gimple_call_fndecl (stmt);
+ if (DECL_BUILT_IN_CLASS (callee) == BUILT_IN_MD)
+ return NULL_TREE;
+
+ /* Give up for always_inline inline builtins until they are
+ inlined. */
+ if (avoid_folding_inline_builtin (callee))
+ return NULL_TREE;
+
+ /* If the builtin could not be folded, and it has no argument list,
+ we're done. */
+ nargs = gimple_call_num_args (stmt);
+ if (nargs == 0)
+ return NULL_TREE;
+
+ /* Limit the work only for builtins we know how to simplify. */
+ switch (DECL_FUNCTION_CODE (callee))
+ {
+ case BUILT_IN_STRLEN:
+ case BUILT_IN_FPUTS:
+ case BUILT_IN_FPUTS_UNLOCKED:
+ arg_idx = 0;
+ type = 0;
+ break;
+ case BUILT_IN_STRCPY:
+ case BUILT_IN_STRNCPY:
+ arg_idx = 1;
+ type = 0;
+ break;
+ case BUILT_IN_MEMCPY_CHK:
+ case BUILT_IN_MEMPCPY_CHK:
+ case BUILT_IN_MEMMOVE_CHK:
+ case BUILT_IN_MEMSET_CHK:
+ case BUILT_IN_STRNCPY_CHK:
+ arg_idx = 2;
+ type = 2;
+ break;
+ case BUILT_IN_STRCPY_CHK:
+ case BUILT_IN_STPCPY_CHK:
+ arg_idx = 1;
+ type = 1;
+ break;
+ case BUILT_IN_SNPRINTF_CHK:
+ case BUILT_IN_VSNPRINTF_CHK:
+ arg_idx = 1;
+ type = 2;
+ break;
+ default:
+ return NULL_TREE;
+ }
+
+ if (arg_idx >= nargs)
+ return NULL_TREE;
+
+ /* Try to use the dataflow information gathered by the CCP process. */
+ visited = BITMAP_ALLOC (NULL);
+ bitmap_clear (visited);
+
+ memset (val, 0, sizeof (val));
+ a = gimple_call_arg (stmt, arg_idx);
+ if (!get_maxval_strlen (a, &val[arg_idx], visited, type))
+ val[arg_idx] = NULL_TREE;
+
+ BITMAP_FREE (visited);
+
+ result = NULL_TREE;
+ switch (DECL_FUNCTION_CODE (callee))
+ {
+ case BUILT_IN_STRLEN:
+ if (val[0] && nargs == 1)
+ {
+ tree new_val =
+ fold_convert (TREE_TYPE (gimple_call_lhs (stmt)), val[0]);
+
+ /* If the result is not a valid gimple value, or not a cast
+ of a valid gimple value, then we cannot use the result. */
+ if (is_gimple_val (new_val)
+ || (CONVERT_EXPR_P (new_val)
+ && is_gimple_val (TREE_OPERAND (new_val, 0))))
+ return new_val;
+ }
+ break;
+
+ case BUILT_IN_STRCPY:
+ if (val[1] && is_gimple_val (val[1]) && nargs == 2)
+ result = fold_builtin_strcpy (loc, callee,
+ gimple_call_arg (stmt, 0),
+ gimple_call_arg (stmt, 1),
+ val[1]);
+ break;
+
+ case BUILT_IN_STRNCPY:
+ if (val[1] && is_gimple_val (val[1]) && nargs == 3)
+ result = fold_builtin_strncpy (loc, callee,
+ gimple_call_arg (stmt, 0),
+ gimple_call_arg (stmt, 1),
+ gimple_call_arg (stmt, 2),
+ val[1]);
+ break;
+
+ case BUILT_IN_FPUTS:
+ if (nargs == 2)
+ result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0),
+ gimple_call_arg (stmt, 1),
+ ignore, false, val[0]);
+ break;
+
+ case BUILT_IN_FPUTS_UNLOCKED:
+ if (nargs == 2)
+ result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0),
+ gimple_call_arg (stmt, 1),
+ ignore, true, val[0]);
+ break;
+
+ case BUILT_IN_MEMCPY_CHK:
+ case BUILT_IN_MEMPCPY_CHK:
+ case BUILT_IN_MEMMOVE_CHK:
+ case BUILT_IN_MEMSET_CHK:
+ if (val[2] && is_gimple_val (val[2]) && nargs == 4)
+ result = fold_builtin_memory_chk (loc, callee,
+ gimple_call_arg (stmt, 0),
+ gimple_call_arg (stmt, 1),
+ gimple_call_arg (stmt, 2),
+ gimple_call_arg (stmt, 3),
+ val[2], ignore,
+ DECL_FUNCTION_CODE (callee));
+ break;
+
+ case BUILT_IN_STRCPY_CHK:
+ case BUILT_IN_STPCPY_CHK:
+ if (val[1] && is_gimple_val (val[1]) && nargs == 3)
+ result = fold_builtin_stxcpy_chk (loc, callee,
+ gimple_call_arg (stmt, 0),
+ gimple_call_arg (stmt, 1),
+ gimple_call_arg (stmt, 2),
+ val[1], ignore,
+ DECL_FUNCTION_CODE (callee));
+ break;
+
+ case BUILT_IN_STRNCPY_CHK:
+ if (val[2] && is_gimple_val (val[2]) && nargs == 4)
+ result = fold_builtin_strncpy_chk (loc, gimple_call_arg (stmt, 0),
+ gimple_call_arg (stmt, 1),
+ gimple_call_arg (stmt, 2),
+ gimple_call_arg (stmt, 3),
+ val[2]);
+ break;
+
+ case BUILT_IN_SNPRINTF_CHK:
+ case BUILT_IN_VSNPRINTF_CHK:
+ if (val[1] && is_gimple_val (val[1]))
+ result = gimple_fold_builtin_snprintf_chk (stmt, val[1],
+ DECL_FUNCTION_CODE (callee));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (result && ignore)
+ result = fold_ignored_result (result);
+ return result;
+}
+
+/* Return a declaration of a function which an OBJ_TYPE_REF references. TOKEN
+ is integer form of OBJ_TYPE_REF_TOKEN of the reference expression.
+ KNOWN_BINFO carries the binfo describing the true type of
+ OBJ_TYPE_REF_OBJECT(REF). If a call to the function must be accompanied
+ with a this adjustment, the constant which should be added to this pointer
+ is stored to *DELTA. If REFUSE_THUNKS is true, return NULL if the function
+ is a thunk (other than a this adjustment which is dealt with by DELTA). */
+
+tree
+gimple_get_virt_method_for_binfo (HOST_WIDE_INT token, tree known_binfo,
+ tree *delta, bool refuse_thunks)
+{
+ HOST_WIDE_INT i;
+ tree v, fndecl;
+ struct cgraph_node *node;
+
+ v = BINFO_VIRTUALS (known_binfo);
+ /* If there is no virtual methods leave the OBJ_TYPE_REF alone. */
+ if (!v)
+ return NULL_TREE;
+ i = 0;
+ while (i != token)
+ {
+ i += (TARGET_VTABLE_USES_DESCRIPTORS
+ ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
+ v = TREE_CHAIN (v);
+ }
+
+ /* If BV_VCALL_INDEX is non-NULL, give up. */
+ if (TREE_TYPE (v))
+ return NULL_TREE;
+
+ fndecl = TREE_VALUE (v);
+ node = cgraph_get_node_or_alias (fndecl);
+ if (refuse_thunks
+ && (!node
+ /* Bail out if it is a thunk declaration. Since simple this_adjusting
+ thunks are represented by a constant in TREE_PURPOSE of items in
+ BINFO_VIRTUALS, this is a more complicate type which we cannot handle as
+ yet.
+
+ FIXME: Remove the following condition once we are able to represent
+ thunk information on call graph edges. */
+ || (node->same_body_alias && node->thunk.thunk_p)))
+ return NULL_TREE;
+
+ /* When cgraph node is missing and function is not public, we cannot
+ devirtualize. This can happen in WHOPR when the actual method
+ ends up in other partition, because we found devirtualization
+ possibility too late. */
+ if (!can_refer_decl_in_current_unit_p (TREE_VALUE (v)))
+ return NULL_TREE;
+
+ *delta = TREE_PURPOSE (v);
+ gcc_checking_assert (host_integerp (*delta, 0));
+ return fndecl;
+}
+
+/* Generate code adjusting the first parameter of a call statement determined
+ by GSI by DELTA. */
+
+void
+gimple_adjust_this_by_delta (gimple_stmt_iterator *gsi, tree delta)
+{
+ gimple call_stmt = gsi_stmt (*gsi);
+ tree parm, tmp;
+ gimple new_stmt;
+
+ delta = fold_convert (sizetype, delta);
+ gcc_assert (gimple_call_num_args (call_stmt) >= 1);
+ parm = gimple_call_arg (call_stmt, 0);
+ gcc_assert (POINTER_TYPE_P (TREE_TYPE (parm)));
+ tmp = create_tmp_var (TREE_TYPE (parm), NULL);
+ add_referenced_var (tmp);
+
+ tmp = make_ssa_name (tmp, NULL);
+ new_stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, tmp, parm, delta);
+ SSA_NAME_DEF_STMT (tmp) = new_stmt;
+ gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
+ gimple_call_set_arg (call_stmt, 0, tmp);
+}
+
+/* Attempt to fold a call statement referenced by the statement iterator GSI.
+ The statement may be replaced by another statement, e.g., if the call
+ simplifies to a constant value. Return true if any changes were made.
+ It is assumed that the operands have been previously folded. */
+
+bool
+gimple_fold_call (gimple_stmt_iterator *gsi, bool inplace)
+{
+ gimple stmt = gsi_stmt (*gsi);
+
+ tree callee = gimple_call_fndecl (stmt);
+
+ /* Check for builtins that CCP can handle using information not
+ available in the generic fold routines. */
+ if (!inplace && callee && DECL_BUILT_IN (callee))
+ {
+ tree result = gimple_fold_builtin (stmt);
+
+ if (result)
+ {
+ if (!update_call_from_tree (gsi, result))
+ gimplify_and_update_call_from_tree (gsi, result);
+ return true;
+ }
+ }
+ return false;
+}
+
+/* Worker for both fold_stmt and fold_stmt_inplace. The INPLACE argument
+ distinguishes both cases. */
+
+static bool
+fold_stmt_1 (gimple_stmt_iterator *gsi, bool inplace)
+{
+ bool changed = false;
+ gimple stmt = gsi_stmt (*gsi);
+ unsigned i;
+ gimple_stmt_iterator gsinext = *gsi;
+ gimple next_stmt;
+
+ gsi_next (&gsinext);
+ next_stmt = gsi_end_p (gsinext) ? NULL : gsi_stmt (gsinext);
+
+ /* Fold the main computation performed by the statement. */
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_ASSIGN:
+ {
+ unsigned old_num_ops = gimple_num_ops (stmt);
+ tree new_rhs = fold_gimple_assign (gsi);
+ tree lhs = gimple_assign_lhs (stmt);
+ if (new_rhs
+ && !useless_type_conversion_p (TREE_TYPE (lhs),
+ TREE_TYPE (new_rhs)))
+ new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
+ if (new_rhs
+ && (!inplace
+ || get_gimple_rhs_num_ops (TREE_CODE (new_rhs)) < old_num_ops))
+ {
+ gimple_assign_set_rhs_from_tree (gsi, new_rhs);
+ changed = true;
+ }
+ break;
+ }
+
+ case GIMPLE_COND:
+ changed |= fold_gimple_cond (stmt);
+ break;
+
+ case GIMPLE_CALL:
+ /* Fold *& in call arguments. */
+ for (i = 0; i < gimple_call_num_args (stmt); ++i)
+ if (REFERENCE_CLASS_P (gimple_call_arg (stmt, i)))
+ {
+ tree tmp = maybe_fold_reference (gimple_call_arg (stmt, i), false);
+ if (tmp)
+ {
+ gimple_call_set_arg (stmt, i, tmp);
+ changed = true;
+ }
+ }
+ changed |= gimple_fold_call (gsi, inplace);
+ break;
+
+ case GIMPLE_ASM:
+ /* Fold *& in asm operands. */
+ {
+ size_t noutputs;
+ const char **oconstraints;
+ const char *constraint;
+ bool allows_mem, allows_reg;
+
+ noutputs = gimple_asm_noutputs (stmt);
+ oconstraints = XALLOCAVEC (const char *, noutputs);
+
+ for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
+ {
+ tree link = gimple_asm_output_op (stmt, i);
+ tree op = TREE_VALUE (link);
+ oconstraints[i]
+ = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
+ if (REFERENCE_CLASS_P (op)
+ && (op = maybe_fold_reference (op, true)) != NULL_TREE)
+ {
+ TREE_VALUE (link) = op;
+ changed = true;
+ }
+ }
+ for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
+ {
+ tree link = gimple_asm_input_op (stmt, i);
+ tree op = TREE_VALUE (link);
+ constraint
+ = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
+ parse_input_constraint (&constraint, 0, 0, noutputs, 0,
+ oconstraints, &allows_mem, &allows_reg);
+ if (REFERENCE_CLASS_P (op)
+ && (op = maybe_fold_reference (op, !allows_reg && allows_mem))
+ != NULL_TREE)
+ {
+ TREE_VALUE (link) = op;
+ changed = true;
+ }
+ }
+ }
+ break;
+
+ case GIMPLE_DEBUG:
+ if (gimple_debug_bind_p (stmt))
+ {
+ tree val = gimple_debug_bind_get_value (stmt);
+ if (val
+ && REFERENCE_CLASS_P (val))
+ {
+ tree tem = maybe_fold_reference (val, false);
+ if (tem)
+ {
+ gimple_debug_bind_set_value (stmt, tem);
+ changed = true;
+ }
+ }
+ }
+ break;
+
+ default:;
+ }
+
+ /* If stmt folds into nothing and it was the last stmt in a bb,
+ don't call gsi_stmt. */
+ if (gsi_end_p (*gsi))
+ {
+ gcc_assert (next_stmt == NULL);
+ return changed;
+ }
+
+ stmt = gsi_stmt (*gsi);
+
+ /* Fold *& on the lhs. Don't do this if stmt folded into nothing,
+ as we'd changing the next stmt. */
+ if (gimple_has_lhs (stmt) && stmt != next_stmt)
+ {
+ tree lhs = gimple_get_lhs (stmt);
+ if (lhs && REFERENCE_CLASS_P (lhs))
+ {
+ tree new_lhs = maybe_fold_reference (lhs, true);
+ if (new_lhs)
+ {
+ gimple_set_lhs (stmt, new_lhs);
+ changed = true;
+ }
+ }
+ }
+
+ return changed;
+}
+
+/* Fold the statement pointed to by GSI. In some cases, this function may
+ replace the whole statement with a new one. Returns true iff folding
+ makes any changes.
+ The statement pointed to by GSI should be in valid gimple form but may
+ be in unfolded state as resulting from for example constant propagation
+ which can produce *&x = 0. */
+
+bool
+fold_stmt (gimple_stmt_iterator *gsi)
+{
+ return fold_stmt_1 (gsi, false);
+}
+
+/* Perform the minimal folding on statement STMT. Only operations like
+ *&x created by constant propagation are handled. The statement cannot
+ be replaced with a new one. Return true if the statement was
+ changed, false otherwise.
+ The statement STMT should be in valid gimple form but may
+ be in unfolded state as resulting from for example constant propagation
+ which can produce *&x = 0. */
+
+bool
+fold_stmt_inplace (gimple stmt)
+{
+ gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
+ bool changed = fold_stmt_1 (&gsi, true);
+ gcc_assert (gsi_stmt (gsi) == stmt);
+ return changed;
+}
+
+/* Canonicalize and possibly invert the boolean EXPR; return NULL_TREE
+ if EXPR is null or we don't know how.
+ If non-null, the result always has boolean type. */
+
+static tree
+canonicalize_bool (tree expr, bool invert)
+{
+ if (!expr)
+ return NULL_TREE;
+ else if (invert)
+ {
+ if (integer_nonzerop (expr))
+ return boolean_false_node;
+ else if (integer_zerop (expr))
+ return boolean_true_node;
+ else if (TREE_CODE (expr) == SSA_NAME)
+ return fold_build2 (EQ_EXPR, boolean_type_node, expr,
+ build_int_cst (TREE_TYPE (expr), 0));
+ else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison)
+ return fold_build2 (invert_tree_comparison (TREE_CODE (expr), false),
+ boolean_type_node,
+ TREE_OPERAND (expr, 0),
+ TREE_OPERAND (expr, 1));
+ else
+ return NULL_TREE;
+ }
+ else
+ {
+ if (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
+ return expr;
+ if (integer_nonzerop (expr))
+ return boolean_true_node;
+ else if (integer_zerop (expr))
+ return boolean_false_node;
+ else if (TREE_CODE (expr) == SSA_NAME)
+ return fold_build2 (NE_EXPR, boolean_type_node, expr,
+ build_int_cst (TREE_TYPE (expr), 0));
+ else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison)
+ return fold_build2 (TREE_CODE (expr),
+ boolean_type_node,
+ TREE_OPERAND (expr, 0),
+ TREE_OPERAND (expr, 1));
+ else
+ return NULL_TREE;
+ }
+}
+
+/* Check to see if a boolean expression EXPR is logically equivalent to the
+ comparison (OP1 CODE OP2). Check for various identities involving
+ SSA_NAMEs. */
+
+static bool
+same_bool_comparison_p (const_tree expr, enum tree_code code,
+ const_tree op1, const_tree op2)
+{
+ gimple s;
+
+ /* The obvious case. */
+ if (TREE_CODE (expr) == code
+ && operand_equal_p (TREE_OPERAND (expr, 0), op1, 0)
+ && operand_equal_p (TREE_OPERAND (expr, 1), op2, 0))
+ return true;
+
+ /* Check for comparing (name, name != 0) and the case where expr
+ is an SSA_NAME with a definition matching the comparison. */
+ if (TREE_CODE (expr) == SSA_NAME
+ && TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
+ {
+ if (operand_equal_p (expr, op1, 0))
+ return ((code == NE_EXPR && integer_zerop (op2))
+ || (code == EQ_EXPR && integer_nonzerop (op2)));
+ s = SSA_NAME_DEF_STMT (expr);
+ if (is_gimple_assign (s)
+ && gimple_assign_rhs_code (s) == code
+ && operand_equal_p (gimple_assign_rhs1 (s), op1, 0)
+ && operand_equal_p (gimple_assign_rhs2 (s), op2, 0))
+ return true;
+ }
+
+ /* If op1 is of the form (name != 0) or (name == 0), and the definition
+ of name is a comparison, recurse. */
+ if (TREE_CODE (op1) == SSA_NAME
+ && TREE_CODE (TREE_TYPE (op1)) == BOOLEAN_TYPE)
+ {
+ s = SSA_NAME_DEF_STMT (op1);
+ if (is_gimple_assign (s)
+ && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
+ {
+ enum tree_code c = gimple_assign_rhs_code (s);
+ if ((c == NE_EXPR && integer_zerop (op2))
+ || (c == EQ_EXPR && integer_nonzerop (op2)))
+ return same_bool_comparison_p (expr, c,
+ gimple_assign_rhs1 (s),
+ gimple_assign_rhs2 (s));
+ if ((c == EQ_EXPR && integer_zerop (op2))
+ || (c == NE_EXPR && integer_nonzerop (op2)))
+ return same_bool_comparison_p (expr,
+ invert_tree_comparison (c, false),
+ gimple_assign_rhs1 (s),
+ gimple_assign_rhs2 (s));
+ }
+ }
+ return false;
+}
+
+/* Check to see if two boolean expressions OP1 and OP2 are logically
+ equivalent. */
+
+static bool
+same_bool_result_p (const_tree op1, const_tree op2)
+{
+ /* Simple cases first. */
+ if (operand_equal_p (op1, op2, 0))
+ return true;
+
+ /* Check the cases where at least one of the operands is a comparison.
+ These are a bit smarter than operand_equal_p in that they apply some
+ identifies on SSA_NAMEs. */
+ if (TREE_CODE_CLASS (TREE_CODE (op2)) == tcc_comparison
+ && same_bool_comparison_p (op1, TREE_CODE (op2),
+ TREE_OPERAND (op2, 0),
+ TREE_OPERAND (op2, 1)))
+ return true;
+ if (TREE_CODE_CLASS (TREE_CODE (op1)) == tcc_comparison
+ && same_bool_comparison_p (op2, TREE_CODE (op1),
+ TREE_OPERAND (op1, 0),
+ TREE_OPERAND (op1, 1)))
+ return true;
+
+ /* Default case. */
+ return false;
+}
+
+/* Forward declarations for some mutually recursive functions. */
+
+static tree
+and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
+ enum tree_code code2, tree op2a, tree op2b);
+static tree
+and_var_with_comparison (tree var, bool invert,
+ enum tree_code code2, tree op2a, tree op2b);
+static tree
+and_var_with_comparison_1 (gimple stmt,
+ enum tree_code code2, tree op2a, tree op2b);
+static tree
+or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
+ enum tree_code code2, tree op2a, tree op2b);
+static tree
+or_var_with_comparison (tree var, bool invert,
+ enum tree_code code2, tree op2a, tree op2b);
+static tree
+or_var_with_comparison_1 (gimple stmt,
+ enum tree_code code2, tree op2a, tree op2b);
+
+/* Helper function for and_comparisons_1: try to simplify the AND of the
+ ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
+ If INVERT is true, invert the value of the VAR before doing the AND.
+ Return NULL_EXPR if we can't simplify this to a single expression. */
+
+static tree
+and_var_with_comparison (tree var, bool invert,
+ enum tree_code code2, tree op2a, tree op2b)
+{
+ tree t;
+ gimple stmt = SSA_NAME_DEF_STMT (var);
+
+ /* We can only deal with variables whose definitions are assignments. */
+ if (!is_gimple_assign (stmt))
+ return NULL_TREE;
+
+ /* If we have an inverted comparison, apply DeMorgan's law and rewrite
+ !var AND (op2a code2 op2b) => !(var OR !(op2a code2 op2b))
+ Then we only have to consider the simpler non-inverted cases. */
+ if (invert)
+ t = or_var_with_comparison_1 (stmt,
+ invert_tree_comparison (code2, false),
+ op2a, op2b);
+ else
+ t = and_var_with_comparison_1 (stmt, code2, op2a, op2b);
+ return canonicalize_bool (t, invert);
+}
+
+/* Try to simplify the AND of the ssa variable defined by the assignment
+ STMT with the comparison specified by (OP2A CODE2 OP2B).
+ Return NULL_EXPR if we can't simplify this to a single expression. */
+
+static tree
+and_var_with_comparison_1 (gimple stmt,
+ enum tree_code code2, tree op2a, tree op2b)
+{
+ tree var = gimple_assign_lhs (stmt);
+ tree true_test_var = NULL_TREE;
+ tree false_test_var = NULL_TREE;
+ enum tree_code innercode = gimple_assign_rhs_code (stmt);
+
+ /* Check for identities like (var AND (var == 0)) => false. */
+ if (TREE_CODE (op2a) == SSA_NAME
+ && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
+ {
+ if ((code2 == NE_EXPR && integer_zerop (op2b))
+ || (code2 == EQ_EXPR && integer_nonzerop (op2b)))
+ {
+ true_test_var = op2a;
+ if (var == true_test_var)
+ return var;
+ }
+ else if ((code2 == EQ_EXPR && integer_zerop (op2b))
+ || (code2 == NE_EXPR && integer_nonzerop (op2b)))
+ {
+ false_test_var = op2a;
+ if (var == false_test_var)
+ return boolean_false_node;
+ }
+ }
+
+ /* If the definition is a comparison, recurse on it. */
+ if (TREE_CODE_CLASS (innercode) == tcc_comparison)
+ {
+ tree t = and_comparisons_1 (innercode,
+ gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs2 (stmt),
+ code2,
+ op2a,
+ op2b);
+ if (t)
+ return t;
+ }
+
+ /* If the definition is an AND or OR expression, we may be able to
+ simplify by reassociating. */
+ if (innercode == TRUTH_AND_EXPR
+ || innercode == TRUTH_OR_EXPR
+ || (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
+ && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR)))
+ {
+ tree inner1 = gimple_assign_rhs1 (stmt);
+ tree inner2 = gimple_assign_rhs2 (stmt);
+ gimple s;
+ tree t;
+ tree partial = NULL_TREE;
+ bool is_and = (innercode == TRUTH_AND_EXPR || innercode == BIT_AND_EXPR);
+
+ /* Check for boolean identities that don't require recursive examination
+ of inner1/inner2:
+ inner1 AND (inner1 AND inner2) => inner1 AND inner2 => var
+ inner1 AND (inner1 OR inner2) => inner1
+ !inner1 AND (inner1 AND inner2) => false
+ !inner1 AND (inner1 OR inner2) => !inner1 AND inner2
+ Likewise for similar cases involving inner2. */
+ if (inner1 == true_test_var)
+ return (is_and ? var : inner1);
+ else if (inner2 == true_test_var)
+ return (is_and ? var : inner2);
+ else if (inner1 == false_test_var)
+ return (is_and
+ ? boolean_false_node
+ : and_var_with_comparison (inner2, false, code2, op2a, op2b));
+ else if (inner2 == false_test_var)
+ return (is_and
+ ? boolean_false_node
+ : and_var_with_comparison (inner1, false, code2, op2a, op2b));
+
+ /* Next, redistribute/reassociate the AND across the inner tests.
+ Compute the first partial result, (inner1 AND (op2a code op2b)) */
+ if (TREE_CODE (inner1) == SSA_NAME
+ && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
+ && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
+ && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s),
+ gimple_assign_rhs1 (s),
+ gimple_assign_rhs2 (s),
+ code2, op2a, op2b)))
+ {
+ /* Handle the AND case, where we are reassociating:
+ (inner1 AND inner2) AND (op2a code2 op2b)
+ => (t AND inner2)
+ If the partial result t is a constant, we win. Otherwise
+ continue on to try reassociating with the other inner test. */
+ if (is_and)
+ {
+ if (integer_onep (t))
+ return inner2;
+ else if (integer_zerop (t))
+ return boolean_false_node;
+ }
+
+ /* Handle the OR case, where we are redistributing:
+ (inner1 OR inner2) AND (op2a code2 op2b)
+ => (t OR (inner2 AND (op2a code2 op2b))) */
+ else if (integer_onep (t))
+ return boolean_true_node;
+
+ /* Save partial result for later. */
+ partial = t;
+ }
+
+ /* Compute the second partial result, (inner2 AND (op2a code op2b)) */
+ if (TREE_CODE (inner2) == SSA_NAME
+ && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
+ && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
+ && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s),
+ gimple_assign_rhs1 (s),
+ gimple_assign_rhs2 (s),
+ code2, op2a, op2b)))
+ {
+ /* Handle the AND case, where we are reassociating:
+ (inner1 AND inner2) AND (op2a code2 op2b)
+ => (inner1 AND t) */
+ if (is_and)
+ {
+ if (integer_onep (t))
+ return inner1;
+ else if (integer_zerop (t))
+ return boolean_false_node;
+ /* If both are the same, we can apply the identity
+ (x AND x) == x. */
+ else if (partial && same_bool_result_p (t, partial))
+ return t;
+ }
+
+ /* Handle the OR case. where we are redistributing:
+ (inner1 OR inner2) AND (op2a code2 op2b)
+ => (t OR (inner1 AND (op2a code2 op2b)))
+ => (t OR partial) */
+ else
+ {
+ if (integer_onep (t))
+ return boolean_true_node;
+ else if (partial)
+ {
+ /* We already got a simplification for the other
+ operand to the redistributed OR expression. The
+ interesting case is when at least one is false.
+ Or, if both are the same, we can apply the identity
+ (x OR x) == x. */
+ if (integer_zerop (partial))
+ return t;
+ else if (integer_zerop (t))
+ return partial;
+ else if (same_bool_result_p (t, partial))
+ return t;
+ }
+ }
+ }
+ }
+ return NULL_TREE;
+}
+
+/* Try to simplify the AND of two comparisons defined by
+ (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
+ If this can be done without constructing an intermediate value,
+ return the resulting tree; otherwise NULL_TREE is returned.
+ This function is deliberately asymmetric as it recurses on SSA_DEFs
+ in the first comparison but not the second. */
+
+static tree
+and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
+ enum tree_code code2, tree op2a, tree op2b)
+{
+ /* First check for ((x CODE1 y) AND (x CODE2 y)). */
+ if (operand_equal_p (op1a, op2a, 0)
+ && operand_equal_p (op1b, op2b, 0))
+ {
+ tree t = combine_comparisons (UNKNOWN_LOCATION,
+ TRUTH_ANDIF_EXPR, code1, code2,
+ boolean_type_node, op1a, op1b);
+ if (t)
+ return t;
+ }
+
+ /* Likewise the swapped case of the above. */
+ if (operand_equal_p (op1a, op2b, 0)
+ && operand_equal_p (op1b, op2a, 0))
+ {
+ tree t = combine_comparisons (UNKNOWN_LOCATION,
+ TRUTH_ANDIF_EXPR, code1,
+ swap_tree_comparison (code2),
+ boolean_type_node, op1a, op1b);
+ if (t)
+ return t;
+ }
+
+ /* If both comparisons are of the same value against constants, we might
+ be able to merge them. */
+ if (operand_equal_p (op1a, op2a, 0)
+ && TREE_CODE (op1b) == INTEGER_CST
+ && TREE_CODE (op2b) == INTEGER_CST)
+ {
+ int cmp = tree_int_cst_compare (op1b, op2b);
+
+ /* If we have (op1a == op1b), we should either be able to
+ return that or FALSE, depending on whether the constant op1b
+ also satisfies the other comparison against op2b. */
+ if (code1 == EQ_EXPR)
+ {
+ bool done = true;
+ bool val;
+ switch (code2)
+ {
+ case EQ_EXPR: val = (cmp == 0); break;
+ case NE_EXPR: val = (cmp != 0); break;
+ case LT_EXPR: val = (cmp < 0); break;
+ case GT_EXPR: val = (cmp > 0); break;
+ case LE_EXPR: val = (cmp <= 0); break;
+ case GE_EXPR: val = (cmp >= 0); break;
+ default: done = false;
+ }
+ if (done)
+ {
+ if (val)
+ return fold_build2 (code1, boolean_type_node, op1a, op1b);
+ else
+ return boolean_false_node;
+ }
+ }
+ /* Likewise if the second comparison is an == comparison. */
+ else if (code2 == EQ_EXPR)
+ {
+ bool done = true;
+ bool val;
+ switch (code1)
+ {
+ case EQ_EXPR: val = (cmp == 0); break;
+ case NE_EXPR: val = (cmp != 0); break;
+ case LT_EXPR: val = (cmp > 0); break;
+ case GT_EXPR: val = (cmp < 0); break;
+ case LE_EXPR: val = (cmp >= 0); break;
+ case GE_EXPR: val = (cmp <= 0); break;
+ default: done = false;
+ }
+ if (done)
+ {
+ if (val)
+ return fold_build2 (code2, boolean_type_node, op2a, op2b);
+ else
+ return boolean_false_node;
+ }
+ }
+
+ /* Same business with inequality tests. */
+ else if (code1 == NE_EXPR)
+ {
+ bool val;
+ switch (code2)
+ {
+ case EQ_EXPR: val = (cmp != 0); break;
+ case NE_EXPR: val = (cmp == 0); break;
+ case LT_EXPR: val = (cmp >= 0); break;
+ case GT_EXPR: val = (cmp <= 0); break;
+ case LE_EXPR: val = (cmp > 0); break;
+ case GE_EXPR: val = (cmp < 0); break;
+ default:
+ val = false;
+ }
+ if (val)
+ return fold_build2 (code2, boolean_type_node, op2a, op2b);
+ }
+ else if (code2 == NE_EXPR)
+ {
+ bool val;
+ switch (code1)
+ {
+ case EQ_EXPR: val = (cmp == 0); break;
+ case NE_EXPR: val = (cmp != 0); break;
+ case LT_EXPR: val = (cmp <= 0); break;
+ case GT_EXPR: val = (cmp >= 0); break;
+ case LE_EXPR: val = (cmp < 0); break;
+ case GE_EXPR: val = (cmp > 0); break;
+ default:
+ val = false;
+ }
+ if (val)
+ return fold_build2 (code1, boolean_type_node, op1a, op1b);
+ }
+
+ /* Chose the more restrictive of two < or <= comparisons. */
+ else if ((code1 == LT_EXPR || code1 == LE_EXPR)
+ && (code2 == LT_EXPR || code2 == LE_EXPR))
+ {
+ if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
+ return fold_build2 (code1, boolean_type_node, op1a, op1b);
+ else
+ return fold_build2 (code2, boolean_type_node, op2a, op2b);
+ }
+
+ /* Likewise chose the more restrictive of two > or >= comparisons. */
+ else if ((code1 == GT_EXPR || code1 == GE_EXPR)
+ && (code2 == GT_EXPR || code2 == GE_EXPR))
+ {
+ if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
+ return fold_build2 (code1, boolean_type_node, op1a, op1b);
+ else
+ return fold_build2 (code2, boolean_type_node, op2a, op2b);
+ }
+
+ /* Check for singleton ranges. */
+ else if (cmp == 0
+ && ((code1 == LE_EXPR && code2 == GE_EXPR)
+ || (code1 == GE_EXPR && code2 == LE_EXPR)))
+ return fold_build2 (EQ_EXPR, boolean_type_node, op1a, op2b);
+
+ /* Check for disjoint ranges. */
+ else if (cmp <= 0
+ && (code1 == LT_EXPR || code1 == LE_EXPR)
+ && (code2 == GT_EXPR || code2 == GE_EXPR))
+ return boolean_false_node;
+ else if (cmp >= 0
+ && (code1 == GT_EXPR || code1 == GE_EXPR)
+ && (code2 == LT_EXPR || code2 == LE_EXPR))
+ return boolean_false_node;
+ }
+
+ /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
+ NAME's definition is a truth value. See if there are any simplifications
+ that can be done against the NAME's definition. */
+ if (TREE_CODE (op1a) == SSA_NAME
+ && (code1 == NE_EXPR || code1 == EQ_EXPR)
+ && (integer_zerop (op1b) || integer_onep (op1b)))
+ {
+ bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
+ || (code1 == NE_EXPR && integer_onep (op1b)));
+ gimple stmt = SSA_NAME_DEF_STMT (op1a);
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_ASSIGN:
+ /* Try to simplify by copy-propagating the definition. */
+ return and_var_with_comparison (op1a, invert, code2, op2a, op2b);
+
+ case GIMPLE_PHI:
+ /* If every argument to the PHI produces the same result when
+ ANDed with the second comparison, we win.
+ Do not do this unless the type is bool since we need a bool
+ result here anyway. */
+ if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
+ {
+ tree result = NULL_TREE;
+ unsigned i;
+ for (i = 0; i < gimple_phi_num_args (stmt); i++)
+ {
+ tree arg = gimple_phi_arg_def (stmt, i);
+
+ /* If this PHI has itself as an argument, ignore it.
+ If all the other args produce the same result,
+ we're still OK. */
+ if (arg == gimple_phi_result (stmt))
+ continue;
+ else if (TREE_CODE (arg) == INTEGER_CST)
+ {
+ if (invert ? integer_nonzerop (arg) : integer_zerop (arg))
+ {
+ if (!result)
+ result = boolean_false_node;
+ else if (!integer_zerop (result))
+ return NULL_TREE;
+ }
+ else if (!result)
+ result = fold_build2 (code2, boolean_type_node,
+ op2a, op2b);
+ else if (!same_bool_comparison_p (result,
+ code2, op2a, op2b))
+ return NULL_TREE;
+ }
+ else if (TREE_CODE (arg) == SSA_NAME
+ && !SSA_NAME_IS_DEFAULT_DEF (arg))
+ {
+ tree temp;
+ gimple def_stmt = SSA_NAME_DEF_STMT (arg);
+ /* In simple cases we can look through PHI nodes,
+ but we have to be careful with loops.
+ See PR49073. */
+ if (! dom_info_available_p (CDI_DOMINATORS)
+ || gimple_bb (def_stmt) == gimple_bb (stmt)
+ || dominated_by_p (CDI_DOMINATORS,
+ gimple_bb (def_stmt),
+ gimple_bb (stmt)))
+ return NULL_TREE;
+ temp = and_var_with_comparison (arg, invert, code2,
+ op2a, op2b);
+ if (!temp)
+ return NULL_TREE;
+ else if (!result)
+ result = temp;
+ else if (!same_bool_result_p (result, temp))
+ return NULL_TREE;
+ }
+ else
+ return NULL_TREE;
+ }
+ return result;
+ }
+
+ default:
+ break;
+ }
+ }
+ return NULL_TREE;
+}
+
+/* Try to simplify the AND of two comparisons, specified by
+ (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
+ If this can be simplified to a single expression (without requiring
+ introducing more SSA variables to hold intermediate values),
+ return the resulting tree. Otherwise return NULL_TREE.
+ If the result expression is non-null, it has boolean type. */
+
+tree
+maybe_fold_and_comparisons (enum tree_code code1, tree op1a, tree op1b,
+ enum tree_code code2, tree op2a, tree op2b)
+{
+ tree t = and_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b);
+ if (t)
+ return t;
+ else
+ return and_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b);
+}
+
+/* Helper function for or_comparisons_1: try to simplify the OR of the
+ ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
+ If INVERT is true, invert the value of VAR before doing the OR.
+ Return NULL_EXPR if we can't simplify this to a single expression. */
+
+static tree
+or_var_with_comparison (tree var, bool invert,
+ enum tree_code code2, tree op2a, tree op2b)
+{
+ tree t;
+ gimple stmt = SSA_NAME_DEF_STMT (var);
+
+ /* We can only deal with variables whose definitions are assignments. */
+ if (!is_gimple_assign (stmt))
+ return NULL_TREE;
+
+ /* If we have an inverted comparison, apply DeMorgan's law and rewrite
+ !var OR (op2a code2 op2b) => !(var AND !(op2a code2 op2b))
+ Then we only have to consider the simpler non-inverted cases. */
+ if (invert)
+ t = and_var_with_comparison_1 (stmt,
+ invert_tree_comparison (code2, false),
+ op2a, op2b);
+ else
+ t = or_var_with_comparison_1 (stmt, code2, op2a, op2b);
+ return canonicalize_bool (t, invert);
+}
+
+/* Try to simplify the OR of the ssa variable defined by the assignment
+ STMT with the comparison specified by (OP2A CODE2 OP2B).
+ Return NULL_EXPR if we can't simplify this to a single expression. */
+
+static tree
+or_var_with_comparison_1 (gimple stmt,
+ enum tree_code code2, tree op2a, tree op2b)
+{
+ tree var = gimple_assign_lhs (stmt);
+ tree true_test_var = NULL_TREE;
+ tree false_test_var = NULL_TREE;
+ enum tree_code innercode = gimple_assign_rhs_code (stmt);
+
+ /* Check for identities like (var OR (var != 0)) => true . */
+ if (TREE_CODE (op2a) == SSA_NAME
+ && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
+ {
+ if ((code2 == NE_EXPR && integer_zerop (op2b))
+ || (code2 == EQ_EXPR && integer_nonzerop (op2b)))
+ {
+ true_test_var = op2a;
+ if (var == true_test_var)
+ return var;
+ }
+ else if ((code2 == EQ_EXPR && integer_zerop (op2b))
+ || (code2 == NE_EXPR && integer_nonzerop (op2b)))
+ {
+ false_test_var = op2a;
+ if (var == false_test_var)
+ return boolean_true_node;
+ }
+ }
+
+ /* If the definition is a comparison, recurse on it. */
+ if (TREE_CODE_CLASS (innercode) == tcc_comparison)
+ {
+ tree t = or_comparisons_1 (innercode,
+ gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs2 (stmt),
+ code2,
+ op2a,
+ op2b);
+ if (t)
+ return t;
+ }
+
+ /* If the definition is an AND or OR expression, we may be able to
+ simplify by reassociating. */
+ if (innercode == TRUTH_AND_EXPR
+ || innercode == TRUTH_OR_EXPR
+ || (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
+ && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR)))
+ {
+ tree inner1 = gimple_assign_rhs1 (stmt);
+ tree inner2 = gimple_assign_rhs2 (stmt);
+ gimple s;
+ tree t;
+ tree partial = NULL_TREE;
+ bool is_or = (innercode == TRUTH_OR_EXPR || innercode == BIT_IOR_EXPR);
+
+ /* Check for boolean identities that don't require recursive examination
+ of inner1/inner2:
+ inner1 OR (inner1 OR inner2) => inner1 OR inner2 => var
+ inner1 OR (inner1 AND inner2) => inner1
+ !inner1 OR (inner1 OR inner2) => true
+ !inner1 OR (inner1 AND inner2) => !inner1 OR inner2
+ */
+ if (inner1 == true_test_var)
+ return (is_or ? var : inner1);
+ else if (inner2 == true_test_var)
+ return (is_or ? var : inner2);
+ else if (inner1 == false_test_var)
+ return (is_or
+ ? boolean_true_node
+ : or_var_with_comparison (inner2, false, code2, op2a, op2b));
+ else if (inner2 == false_test_var)
+ return (is_or
+ ? boolean_true_node
+ : or_var_with_comparison (inner1, false, code2, op2a, op2b));
+
+ /* Next, redistribute/reassociate the OR across the inner tests.
+ Compute the first partial result, (inner1 OR (op2a code op2b)) */
+ if (TREE_CODE (inner1) == SSA_NAME
+ && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
+ && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
+ && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s),
+ gimple_assign_rhs1 (s),
+ gimple_assign_rhs2 (s),
+ code2, op2a, op2b)))
+ {
+ /* Handle the OR case, where we are reassociating:
+ (inner1 OR inner2) OR (op2a code2 op2b)
+ => (t OR inner2)
+ If the partial result t is a constant, we win. Otherwise
+ continue on to try reassociating with the other inner test. */
+ if (is_or)
+ {
+ if (integer_onep (t))
+ return boolean_true_node;
+ else if (integer_zerop (t))
+ return inner2;
+ }
+
+ /* Handle the AND case, where we are redistributing:
+ (inner1 AND inner2) OR (op2a code2 op2b)
+ => (t AND (inner2 OR (op2a code op2b))) */
+ else if (integer_zerop (t))
+ return boolean_false_node;
+
+ /* Save partial result for later. */
+ partial = t;
+ }
+
+ /* Compute the second partial result, (inner2 OR (op2a code op2b)) */
+ if (TREE_CODE (inner2) == SSA_NAME
+ && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
+ && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
+ && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s),
+ gimple_assign_rhs1 (s),
+ gimple_assign_rhs2 (s),
+ code2, op2a, op2b)))
+ {
+ /* Handle the OR case, where we are reassociating:
+ (inner1 OR inner2) OR (op2a code2 op2b)
+ => (inner1 OR t)
+ => (t OR partial) */
+ if (is_or)
+ {
+ if (integer_zerop (t))
+ return inner1;
+ else if (integer_onep (t))
+ return boolean_true_node;
+ /* If both are the same, we can apply the identity
+ (x OR x) == x. */
+ else if (partial && same_bool_result_p (t, partial))
+ return t;
+ }
+
+ /* Handle the AND case, where we are redistributing:
+ (inner1 AND inner2) OR (op2a code2 op2b)
+ => (t AND (inner1 OR (op2a code2 op2b)))
+ => (t AND partial) */
+ else
+ {
+ if (integer_zerop (t))
+ return boolean_false_node;
+ else if (partial)
+ {
+ /* We already got a simplification for the other
+ operand to the redistributed AND expression. The
+ interesting case is when at least one is true.
+ Or, if both are the same, we can apply the identity
+ (x AND x) == x. */
+ if (integer_onep (partial))
+ return t;
+ else if (integer_onep (t))
+ return partial;
+ else if (same_bool_result_p (t, partial))
+ return t;
+ }
+ }
+ }
+ }
+ return NULL_TREE;
+}
+
+/* Try to simplify the OR of two comparisons defined by
+ (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
+ If this can be done without constructing an intermediate value,
+ return the resulting tree; otherwise NULL_TREE is returned.
+ This function is deliberately asymmetric as it recurses on SSA_DEFs
+ in the first comparison but not the second. */
+
+static tree
+or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
+ enum tree_code code2, tree op2a, tree op2b)
+{
+ /* First check for ((x CODE1 y) OR (x CODE2 y)). */
+ if (operand_equal_p (op1a, op2a, 0)
+ && operand_equal_p (op1b, op2b, 0))
+ {
+ tree t = combine_comparisons (UNKNOWN_LOCATION,
+ TRUTH_ORIF_EXPR, code1, code2,
+ boolean_type_node, op1a, op1b);
+ if (t)
+ return t;
+ }
+
+ /* Likewise the swapped case of the above. */
+ if (operand_equal_p (op1a, op2b, 0)
+ && operand_equal_p (op1b, op2a, 0))
+ {
+ tree t = combine_comparisons (UNKNOWN_LOCATION,
+ TRUTH_ORIF_EXPR, code1,
+ swap_tree_comparison (code2),
+ boolean_type_node, op1a, op1b);
+ if (t)
+ return t;
+ }
+
+ /* If both comparisons are of the same value against constants, we might
+ be able to merge them. */
+ if (operand_equal_p (op1a, op2a, 0)
+ && TREE_CODE (op1b) == INTEGER_CST
+ && TREE_CODE (op2b) == INTEGER_CST)
+ {
+ int cmp = tree_int_cst_compare (op1b, op2b);
+
+ /* If we have (op1a != op1b), we should either be able to
+ return that or TRUE, depending on whether the constant op1b
+ also satisfies the other comparison against op2b. */
+ if (code1 == NE_EXPR)
+ {
+ bool done = true;
+ bool val;
+ switch (code2)
+ {
+ case EQ_EXPR: val = (cmp == 0); break;
+ case NE_EXPR: val = (cmp != 0); break;
+ case LT_EXPR: val = (cmp < 0); break;
+ case GT_EXPR: val = (cmp > 0); break;
+ case LE_EXPR: val = (cmp <= 0); break;
+ case GE_EXPR: val = (cmp >= 0); break;
+ default: done = false;
+ }
+ if (done)
+ {
+ if (val)
+ return boolean_true_node;
+ else
+ return fold_build2 (code1, boolean_type_node, op1a, op1b);
+ }
+ }
+ /* Likewise if the second comparison is a != comparison. */
+ else if (code2 == NE_EXPR)
+ {
+ bool done = true;
+ bool val;
+ switch (code1)
+ {
+ case EQ_EXPR: val = (cmp == 0); break;
+ case NE_EXPR: val = (cmp != 0); break;
+ case LT_EXPR: val = (cmp > 0); break;
+ case GT_EXPR: val = (cmp < 0); break;
+ case LE_EXPR: val = (cmp >= 0); break;
+ case GE_EXPR: val = (cmp <= 0); break;
+ default: done = false;
+ }
+ if (done)
+ {
+ if (val)
+ return boolean_true_node;
+ else
+ return fold_build2 (code2, boolean_type_node, op2a, op2b);
+ }
+ }
+
+ /* See if an equality test is redundant with the other comparison. */
+ else if (code1 == EQ_EXPR)
+ {
+ bool val;
+ switch (code2)
+ {
+ case EQ_EXPR: val = (cmp == 0); break;
+ case NE_EXPR: val = (cmp != 0); break;
+ case LT_EXPR: val = (cmp < 0); break;
+ case GT_EXPR: val = (cmp > 0); break;
+ case LE_EXPR: val = (cmp <= 0); break;
+ case GE_EXPR: val = (cmp >= 0); break;
+ default:
+ val = false;
+ }
+ if (val)
+ return fold_build2 (code2, boolean_type_node, op2a, op2b);
+ }
+ else if (code2 == EQ_EXPR)
+ {
+ bool val;
+ switch (code1)
+ {
+ case EQ_EXPR: val = (cmp == 0); break;
+ case NE_EXPR: val = (cmp != 0); break;
+ case LT_EXPR: val = (cmp > 0); break;
+ case GT_EXPR: val = (cmp < 0); break;
+ case LE_EXPR: val = (cmp >= 0); break;
+ case GE_EXPR: val = (cmp <= 0); break;
+ default:
+ val = false;
+ }
+ if (val)
+ return fold_build2 (code1, boolean_type_node, op1a, op1b);
+ }
+
+ /* Chose the less restrictive of two < or <= comparisons. */
+ else if ((code1 == LT_EXPR || code1 == LE_EXPR)
+ && (code2 == LT_EXPR || code2 == LE_EXPR))
+ {
+ if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
+ return fold_build2 (code2, boolean_type_node, op2a, op2b);
+ else
+ return fold_build2 (code1, boolean_type_node, op1a, op1b);
+ }
+
+ /* Likewise chose the less restrictive of two > or >= comparisons. */
+ else if ((code1 == GT_EXPR || code1 == GE_EXPR)
+ && (code2 == GT_EXPR || code2 == GE_EXPR))
+ {
+ if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
+ return fold_build2 (code2, boolean_type_node, op2a, op2b);
+ else
+ return fold_build2 (code1, boolean_type_node, op1a, op1b);
+ }
+
+ /* Check for singleton ranges. */
+ else if (cmp == 0
+ && ((code1 == LT_EXPR && code2 == GT_EXPR)
+ || (code1 == GT_EXPR && code2 == LT_EXPR)))
+ return fold_build2 (NE_EXPR, boolean_type_node, op1a, op2b);
+
+ /* Check for less/greater pairs that don't restrict the range at all. */
+ else if (cmp >= 0
+ && (code1 == LT_EXPR || code1 == LE_EXPR)
+ && (code2 == GT_EXPR || code2 == GE_EXPR))
+ return boolean_true_node;
+ else if (cmp <= 0
+ && (code1 == GT_EXPR || code1 == GE_EXPR)
+ && (code2 == LT_EXPR || code2 == LE_EXPR))
+ return boolean_true_node;
+ }
+
+ /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
+ NAME's definition is a truth value. See if there are any simplifications
+ that can be done against the NAME's definition. */
+ if (TREE_CODE (op1a) == SSA_NAME
+ && (code1 == NE_EXPR || code1 == EQ_EXPR)
+ && (integer_zerop (op1b) || integer_onep (op1b)))
+ {
+ bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
+ || (code1 == NE_EXPR && integer_onep (op1b)));
+ gimple stmt = SSA_NAME_DEF_STMT (op1a);
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_ASSIGN:
+ /* Try to simplify by copy-propagating the definition. */
+ return or_var_with_comparison (op1a, invert, code2, op2a, op2b);
+
+ case GIMPLE_PHI:
+ /* If every argument to the PHI produces the same result when
+ ORed with the second comparison, we win.
+ Do not do this unless the type is bool since we need a bool
+ result here anyway. */
+ if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
+ {
+ tree result = NULL_TREE;
+ unsigned i;
+ for (i = 0; i < gimple_phi_num_args (stmt); i++)
+ {
+ tree arg = gimple_phi_arg_def (stmt, i);
+
+ /* If this PHI has itself as an argument, ignore it.
+ If all the other args produce the same result,
+ we're still OK. */
+ if (arg == gimple_phi_result (stmt))
+ continue;
+ else if (TREE_CODE (arg) == INTEGER_CST)
+ {
+ if (invert ? integer_zerop (arg) : integer_nonzerop (arg))
+ {
+ if (!result)
+ result = boolean_true_node;
+ else if (!integer_onep (result))
+ return NULL_TREE;
+ }
+ else if (!result)
+ result = fold_build2 (code2, boolean_type_node,
+ op2a, op2b);
+ else if (!same_bool_comparison_p (result,
+ code2, op2a, op2b))
+ return NULL_TREE;
+ }
+ else if (TREE_CODE (arg) == SSA_NAME
+ && !SSA_NAME_IS_DEFAULT_DEF (arg))
+ {
+ tree temp;
+ gimple def_stmt = SSA_NAME_DEF_STMT (arg);
+ /* In simple cases we can look through PHI nodes,
+ but we have to be careful with loops.
+ See PR49073. */
+ if (! dom_info_available_p (CDI_DOMINATORS)
+ || gimple_bb (def_stmt) == gimple_bb (stmt)
+ || dominated_by_p (CDI_DOMINATORS,
+ gimple_bb (def_stmt),
+ gimple_bb (stmt)))
+ return NULL_TREE;
+ temp = or_var_with_comparison (arg, invert, code2,
+ op2a, op2b);
+ if (!temp)
+ return NULL_TREE;
+ else if (!result)
+ result = temp;
+ else if (!same_bool_result_p (result, temp))
+ return NULL_TREE;
+ }
+ else
+ return NULL_TREE;
+ }
+ return result;
+ }
+
+ default:
+ break;
+ }
+ }
+ return NULL_TREE;
+}
+
+/* Try to simplify the OR of two comparisons, specified by
+ (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
+ If this can be simplified to a single expression (without requiring
+ introducing more SSA variables to hold intermediate values),
+ return the resulting tree. Otherwise return NULL_TREE.
+ If the result expression is non-null, it has boolean type. */
+
+tree
+maybe_fold_or_comparisons (enum tree_code code1, tree op1a, tree op1b,
+ enum tree_code code2, tree op2a, tree op2b)
+{
+ tree t = or_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b);
+ if (t)
+ return t;
+ else
+ return or_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b);
+}