summaryrefslogtreecommitdiff
path: root/gcc/graphite-interchange.c
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/graphite-interchange.c
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'gcc/graphite-interchange.c')
-rw-r--r--gcc/graphite-interchange.c715
1 files changed, 715 insertions, 0 deletions
diff --git a/gcc/graphite-interchange.c b/gcc/graphite-interchange.c
new file mode 100644
index 000000000..934839aac
--- /dev/null
+++ b/gcc/graphite-interchange.c
@@ -0,0 +1,715 @@
+/* Interchange heuristics and transform for loop interchange on
+ polyhedral representation.
+
+ Copyright (C) 2009, 2010 Free Software Foundation, Inc.
+ Contributed by Sebastian Pop <sebastian.pop@amd.com> and
+ Harsha Jagasia <harsha.jagasia@amd.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "cfgloop.h"
+#include "tree-chrec.h"
+#include "tree-data-ref.h"
+#include "tree-scalar-evolution.h"
+#include "sese.h"
+
+#ifdef HAVE_cloog
+#include "ppl_c.h"
+#include "graphite-ppl.h"
+#include "graphite-poly.h"
+
+/* Builds a linear expression, of dimension DIM, representing PDR's
+ memory access:
+
+ L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
+
+ For an array A[10][20] with two subscript locations s0 and s1, the
+ linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
+ corresponds to a memory stride of 20.
+
+ OFFSET is a number of dimensions to prepend before the
+ subscript dimensions: s_0, s_1, ..., s_n.
+
+ Thus, the final linear expression has the following format:
+ 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
+ where the expression itself is:
+ c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
+
+static ppl_Linear_Expression_t
+build_linearized_memory_access (ppl_dimension_type offset, poly_dr_p pdr)
+{
+ ppl_Linear_Expression_t res;
+ ppl_Linear_Expression_t le;
+ ppl_dimension_type i;
+ ppl_dimension_type first = pdr_subscript_dim (pdr, 0);
+ ppl_dimension_type last = pdr_subscript_dim (pdr, PDR_NB_SUBSCRIPTS (pdr));
+ mpz_t size, sub_size;
+ graphite_dim_t dim = offset + pdr_dim (pdr);
+
+ ppl_new_Linear_Expression_with_dimension (&res, dim);
+
+ mpz_init (size);
+ mpz_set_si (size, 1);
+ mpz_init (sub_size);
+ mpz_set_si (sub_size, 1);
+
+ for (i = last - 1; i >= first; i--)
+ {
+ ppl_set_coef_gmp (res, i + offset, size);
+
+ ppl_new_Linear_Expression_with_dimension (&le, dim - offset);
+ ppl_set_coef (le, i, 1);
+ ppl_max_for_le_pointset (PDR_ACCESSES (pdr), le, sub_size);
+ mpz_mul (size, size, sub_size);
+ ppl_delete_Linear_Expression (le);
+ }
+
+ mpz_clear (sub_size);
+ mpz_clear (size);
+ return res;
+}
+
+/* Builds a partial difference equations and inserts them
+ into pointset powerset polyhedron P. Polyhedron is assumed
+ to have the format: T|I|T'|I'|G|S|S'|l1|l2.
+
+ TIME_DEPTH is the time dimension w.r.t. which we are
+ differentiating.
+ OFFSET represents the number of dimensions between
+ columns t_{time_depth} and t'_{time_depth}.
+ DIM_SCTR is the number of scattering dimensions. It is
+ essentially the dimensionality of the T vector.
+
+ The following equations are inserted into the polyhedron P:
+ | t_1 = t_1'
+ | ...
+ | t_{time_depth-1} = t'_{time_depth-1}
+ | t_{time_depth} = t'_{time_depth} + 1
+ | t_{time_depth+1} = t'_{time_depth + 1}
+ | ...
+ | t_{dim_sctr} = t'_{dim_sctr}. */
+
+static void
+build_partial_difference (ppl_Pointset_Powerset_C_Polyhedron_t *p,
+ ppl_dimension_type time_depth,
+ ppl_dimension_type offset,
+ ppl_dimension_type dim_sctr)
+{
+ ppl_Constraint_t new_cstr;
+ ppl_Linear_Expression_t le;
+ ppl_dimension_type i;
+ ppl_dimension_type dim;
+ ppl_Pointset_Powerset_C_Polyhedron_t temp;
+
+ /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
+ This is the core part of this alogrithm, since this
+ constraint asks for the memory access stride (difference)
+ between two consecutive points in time dimensions. */
+
+ ppl_Pointset_Powerset_C_Polyhedron_space_dimension (*p, &dim);
+ ppl_new_Linear_Expression_with_dimension (&le, dim);
+ ppl_set_coef (le, time_depth, 1);
+ ppl_set_coef (le, time_depth + offset, -1);
+ ppl_set_inhomogeneous (le, 1);
+ ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
+ ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
+ ppl_delete_Linear_Expression (le);
+ ppl_delete_Constraint (new_cstr);
+
+ /* Add equalities:
+ | t1 = t1'
+ | ...
+ | t_{time_depth-1} = t'_{time_depth-1}
+ | t_{time_depth+1} = t'_{time_depth+1}
+ | ...
+ | t_{dim_sctr} = t'_{dim_sctr}
+
+ This means that all the time dimensions are equal except for
+ time_depth, where the constraint is t_{depth} = t'_{depth} + 1
+ step. More to this: we should be carefull not to add equalities
+ to the 'coupled' dimensions, which happens when the one dimension
+ is stripmined dimension, and the other dimension corresponds
+ to the point loop inside stripmined dimension. */
+
+ ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
+
+ for (i = 0; i < dim_sctr; i++)
+ if (i != time_depth)
+ {
+ ppl_new_Linear_Expression_with_dimension (&le, dim);
+ ppl_set_coef (le, i, 1);
+ ppl_set_coef (le, i + offset, -1);
+ ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
+ ppl_Pointset_Powerset_C_Polyhedron_add_constraint (temp, new_cstr);
+
+ if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (temp))
+ {
+ ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
+ ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
+ }
+ else
+ ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
+ ppl_delete_Linear_Expression (le);
+ ppl_delete_Constraint (new_cstr);
+ }
+
+ ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
+}
+
+
+/* Set STRIDE to the stride of PDR in memory by advancing by one in
+ the loop at DEPTH. */
+
+static void
+pdr_stride_in_loop (mpz_t stride, graphite_dim_t depth, poly_dr_p pdr)
+{
+ ppl_dimension_type time_depth;
+ ppl_Linear_Expression_t le, lma;
+ ppl_Constraint_t new_cstr;
+ ppl_dimension_type i, *map;
+ ppl_Pointset_Powerset_C_Polyhedron_t p1, p2, sctr;
+ graphite_dim_t nb_subscripts = PDR_NB_SUBSCRIPTS (pdr) + 1;
+ poly_bb_p pbb = PDR_PBB (pdr);
+ ppl_dimension_type offset = pbb_nb_scattering_transform (pbb)
+ + pbb_nb_local_vars (pbb)
+ + pbb_dim_iter_domain (pbb);
+ ppl_dimension_type offsetg = offset + pbb_nb_params (pbb);
+ ppl_dimension_type dim_sctr = pbb_nb_scattering_transform (pbb)
+ + pbb_nb_local_vars (pbb);
+ ppl_dimension_type dim_L1 = offset + offsetg + 2 * nb_subscripts;
+ ppl_dimension_type dim_L2 = offset + offsetg + 2 * nb_subscripts + 1;
+ ppl_dimension_type new_dim = offset + offsetg + 2 * nb_subscripts + 2;
+
+ /* The resulting polyhedron should have the following format:
+ T|I|T'|I'|G|S|S'|l1|l2
+ where:
+ | T = t_1..t_{dim_sctr}
+ | I = i_1..i_{dim_iter_domain}
+ | T'= t'_1..t'_{dim_sctr}
+ | I'= i'_1..i'_{dim_iter_domain}
+ | G = g_1..g_{nb_params}
+ | S = s_1..s_{nb_subscripts}
+ | S'= s'_1..s'_{nb_subscripts}
+ | l1 and l2 are scalars.
+
+ Some invariants:
+ offset = dim_sctr + dim_iter_domain + nb_local_vars
+ offsetg = dim_sctr + dim_iter_domain + nb_local_vars + nb_params. */
+
+ /* Construct the T|I|0|0|G|0|0|0|0 part. */
+ {
+ ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
+ (&sctr, PBB_TRANSFORMED_SCATTERING (pbb));
+ ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
+ (sctr, 2 * nb_subscripts + 2);
+ ppl_insert_dimensions_pointset (sctr, offset, offset);
+ }
+
+ /* Construct the 0|I|0|0|G|S|0|0|0 part. */
+ {
+ ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
+ (&p1, PDR_ACCESSES (pdr));
+ ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
+ (p1, nb_subscripts + 2);
+ ppl_insert_dimensions_pointset (p1, 0, dim_sctr);
+ ppl_insert_dimensions_pointset (p1, offset, offset);
+ }
+
+ /* Construct the 0|0|0|0|0|S|0|l1|0 part. */
+ {
+ lma = build_linearized_memory_access (offset + dim_sctr, pdr);
+ ppl_set_coef (lma, dim_L1, -1);
+ ppl_new_Constraint (&new_cstr, lma, PPL_CONSTRAINT_TYPE_EQUAL);
+ ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p1, new_cstr);
+ ppl_delete_Linear_Expression (lma);
+ ppl_delete_Constraint (new_cstr);
+ }
+
+ /* Now intersect all the parts to get the polyhedron P1:
+ T|I|0|0|G|0|0|0 |0
+ 0|I|0|0|G|S|0|0 |0
+ 0|0|0|0|0|S|0|l1|0
+ ------------------
+ T|I|0|0|G|S|0|l1|0. */
+
+ ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, sctr);
+ ppl_delete_Pointset_Powerset_C_Polyhedron (sctr);
+
+ /* Build P2, which would have the following form:
+ 0|0|T'|I'|G|0|S'|0|l2
+
+ P2 is built, by remapping the P1 polyhedron:
+ T|I|0|0|G|S|0|l1|0
+
+ using the following mapping:
+ T->T'
+ I->I'
+ S->S'
+ l1->l2. */
+ {
+ ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
+ (&p2, p1);
+
+ map = ppl_new_id_map (new_dim);
+
+ /* TI -> T'I'. */
+ for (i = 0; i < offset; i++)
+ ppl_interchange (map, i, i + offset);
+
+ /* l1 -> l2. */
+ ppl_interchange (map, dim_L1, dim_L2);
+
+ /* S -> S'. */
+ for (i = 0; i < nb_subscripts; i++)
+ ppl_interchange (map, offset + offsetg + i,
+ offset + offsetg + nb_subscripts + i);
+
+ ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (p2, map, new_dim);
+ free (map);
+ }
+
+ time_depth = psct_dynamic_dim (pbb, depth);
+
+ /* P1 = P1 inter P2. */
+ ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, p2);
+ build_partial_difference (&p1, time_depth, offset, dim_sctr);
+
+ /* Maximise the expression L2 - L1. */
+ {
+ ppl_new_Linear_Expression_with_dimension (&le, new_dim);
+ ppl_set_coef (le, dim_L2, 1);
+ ppl_set_coef (le, dim_L1, -1);
+ ppl_max_for_le_pointset (p1, le, stride);
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ char *str;
+ void (*gmp_free) (void *, size_t);
+
+ fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d:",
+ pbb_index (pbb), PDR_ID (pdr), (int) depth);
+ str = mpz_get_str (0, 10, stride);
+ fprintf (dump_file, " %s ", str);
+ mp_get_memory_functions (NULL, NULL, &gmp_free);
+ (*gmp_free) (str, strlen (str) + 1);
+ }
+
+ ppl_delete_Pointset_Powerset_C_Polyhedron (p1);
+ ppl_delete_Pointset_Powerset_C_Polyhedron (p2);
+ ppl_delete_Linear_Expression (le);
+}
+
+
+/* Sets STRIDES to the sum of all the strides of the data references
+ accessed in LOOP at DEPTH. */
+
+static void
+memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, mpz_t strides)
+{
+ int i, j;
+ lst_p l;
+ poly_dr_p pdr;
+ mpz_t s, n;
+
+ mpz_init (s);
+ mpz_init (n);
+
+ FOR_EACH_VEC_ELT (lst_p, LST_SEQ (loop), j, l)
+ if (LST_LOOP_P (l))
+ memory_strides_in_loop_1 (l, depth, strides);
+ else
+ FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (LST_PBB (l)), i, pdr)
+ {
+ pdr_stride_in_loop (s, depth, pdr);
+ mpz_set_si (n, PDR_NB_REFS (pdr));
+ mpz_mul (s, s, n);
+ mpz_add (strides, strides, s);
+ }
+
+ mpz_clear (s);
+ mpz_clear (n);
+}
+
+/* Sets STRIDES to the sum of all the strides of the data references
+ accessed in LOOP at DEPTH. */
+
+static void
+memory_strides_in_loop (lst_p loop, graphite_dim_t depth, mpz_t strides)
+{
+ if (mpz_cmp_si (loop->memory_strides, -1) == 0)
+ {
+ mpz_set_si (strides, 0);
+ memory_strides_in_loop_1 (loop, depth, strides);
+ }
+ else
+ mpz_set (strides, loop->memory_strides);
+}
+
+/* Return true when the interchange of loops LOOP1 and LOOP2 is
+ profitable.
+
+ Example:
+
+ | int a[100][100];
+ |
+ | int
+ | foo (int N)
+ | {
+ | int j;
+ | int i;
+ |
+ | for (i = 0; i < N; i++)
+ | for (j = 0; j < N; j++)
+ | a[j][2 * i] += 1;
+ |
+ | return a[N][12];
+ | }
+
+ The data access A[j][i] is described like this:
+
+ | i j N a s0 s1 1
+ | 0 0 0 1 0 0 -5 = 0
+ | 0 -1 0 0 1 0 0 = 0
+ |-2 0 0 0 0 1 0 = 0
+ | 0 0 0 0 1 0 0 >= 0
+ | 0 0 0 0 0 1 0 >= 0
+ | 0 0 0 0 -1 0 100 >= 0
+ | 0 0 0 0 0 -1 100 >= 0
+
+ The linearized memory access L to A[100][100] is:
+
+ | i j N a s0 s1 1
+ | 0 0 0 0 100 1 0
+
+ TODO: the shown format is not valid as it does not show the fact
+ that the iteration domain "i j" is transformed using the scattering.
+
+ Next, to measure the impact of iterating once in loop "i", we build
+ a maximization problem: first, we add to DR accesses the dimensions
+ k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
+ L1 and L2 are the linearized memory access functions.
+
+ | i j N a s0 s1 k s2 s3 L1 L2 D1 1
+ | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
+ | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
+ |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
+ | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
+ | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
+ | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
+ | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
+ | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
+
+ Then, we generate the polyhedron P2 by interchanging the dimensions
+ (s0, s2), (s1, s3), (L1, L2), (k, i)
+
+ | i j N a s0 s1 k s2 s3 L1 L2 D1 1
+ | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
+ | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
+ | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
+ | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
+ | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
+ | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
+ | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
+ | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
+
+ then we add to P2 the equality k = i + 1:
+
+ |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
+
+ and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
+
+ Similarly, to determine the impact of one iteration on loop "j", we
+ interchange (k, j), we add "k = j + 1", and we compute D2 the
+ maximal value of the difference.
+
+ Finally, the profitability test is D1 < D2: if in the outer loop
+ the strides are smaller than in the inner loop, then it is
+ profitable to interchange the loops at DEPTH1 and DEPTH2. */
+
+static bool
+lst_interchange_profitable_p (lst_p nest, int depth1, int depth2)
+{
+ mpz_t d1, d2;
+ bool res;
+
+ gcc_assert (depth1 < depth2);
+
+ mpz_init (d1);
+ mpz_init (d2);
+
+ memory_strides_in_loop (nest, depth1, d1);
+ memory_strides_in_loop (nest, depth2, d2);
+
+ res = mpz_cmp (d1, d2) < 0;
+
+ mpz_clear (d1);
+ mpz_clear (d2);
+
+ return res;
+}
+
+/* Interchanges the loops at DEPTH1 and DEPTH2 of the original
+ scattering and assigns the resulting polyhedron to the transformed
+ scattering. */
+
+static void
+pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
+ poly_bb_p pbb)
+{
+ ppl_dimension_type i, dim;
+ ppl_dimension_type *map;
+ ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
+ ppl_dimension_type dim1 = psct_dynamic_dim (pbb, depth1);
+ ppl_dimension_type dim2 = psct_dynamic_dim (pbb, depth2);
+
+ ppl_Polyhedron_space_dimension (poly, &dim);
+ map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
+
+ for (i = 0; i < dim; i++)
+ map[i] = i;
+
+ map[dim1] = dim2;
+ map[dim2] = dim1;
+
+ ppl_Polyhedron_map_space_dimensions (poly, map, dim);
+ free (map);
+}
+
+/* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
+ the statements below LST. */
+
+static void
+lst_apply_interchange (lst_p lst, int depth1, int depth2)
+{
+ if (!lst)
+ return;
+
+ if (LST_LOOP_P (lst))
+ {
+ int i;
+ lst_p l;
+
+ FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, l)
+ lst_apply_interchange (l, depth1, depth2);
+ }
+ else
+ pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
+}
+
+/* Return true when the nest starting at LOOP1 and ending on LOOP2 is
+ perfect: i.e. there are no sequence of statements. */
+
+static bool
+lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
+{
+ if (loop1 == loop2)
+ return true;
+
+ if (!LST_LOOP_P (loop1))
+ return false;
+
+ return VEC_length (lst_p, LST_SEQ (loop1)) == 1
+ && lst_perfectly_nested_p (VEC_index (lst_p, LST_SEQ (loop1), 0), loop2);
+}
+
+/* Transform the loop nest between LOOP1 and LOOP2 into a perfect
+ nest. To continue the naming tradition, this function is called
+ after perfect_nestify. NEST is set to the perfectly nested loop
+ that is created. BEFORE/AFTER are set to the loops distributed
+ before/after the loop NEST. */
+
+static void
+lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
+ lst_p *nest, lst_p *after)
+{
+ poly_bb_p first, last;
+
+ gcc_assert (loop1 && loop2
+ && loop1 != loop2
+ && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
+
+ first = LST_PBB (lst_find_first_pbb (loop2));
+ last = LST_PBB (lst_find_last_pbb (loop2));
+
+ *before = copy_lst (loop1);
+ *nest = copy_lst (loop1);
+ *after = copy_lst (loop1);
+
+ lst_remove_all_before_including_pbb (*before, first, false);
+ lst_remove_all_before_including_pbb (*after, last, true);
+
+ lst_remove_all_before_excluding_pbb (*nest, first, true);
+ lst_remove_all_before_excluding_pbb (*nest, last, false);
+
+ if (lst_empty_p (*before))
+ {
+ free_lst (*before);
+ *before = NULL;
+ }
+ if (lst_empty_p (*after))
+ {
+ free_lst (*after);
+ *after = NULL;
+ }
+ if (lst_empty_p (*nest))
+ {
+ free_lst (*nest);
+ *nest = NULL;
+ }
+}
+
+/* Try to interchange LOOP1 with LOOP2 for all the statements of the
+ body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
+ interchange. */
+
+static bool
+lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2)
+{
+ int depth1 = lst_depth (loop1);
+ int depth2 = lst_depth (loop2);
+ lst_p transformed;
+
+ lst_p before = NULL, nest = NULL, after = NULL;
+
+ if (!lst_perfectly_nested_p (loop1, loop2))
+ lst_perfect_nestify (loop1, loop2, &before, &nest, &after);
+
+ if (!lst_interchange_profitable_p (loop2, depth1, depth2))
+ return false;
+
+ lst_apply_interchange (loop2, depth1, depth2);
+
+ /* Sync the transformed LST information and the PBB scatterings
+ before using the scatterings in the data dependence analysis. */
+ if (before || nest || after)
+ {
+ transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
+ before, nest, after);
+ lst_update_scattering (transformed);
+ free_lst (transformed);
+ }
+
+ if (graphite_legal_transform (scop))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "Loops at depths %d and %d will be interchanged.\n",
+ depth1, depth2);
+
+ /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
+ lst_insert_in_sequence (before, loop1, true);
+ lst_insert_in_sequence (after, loop1, false);
+
+ if (nest)
+ {
+ lst_replace (loop1, nest);
+ free_lst (loop1);
+ }
+
+ return true;
+ }
+
+ /* Undo the transform. */
+ free_lst (before);
+ free_lst (nest);
+ free_lst (after);
+ lst_apply_interchange (loop2, depth2, depth1);
+ return false;
+}
+
+/* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
+ with the loop OUTER in LST_SEQ (OUTER_FATHER). */
+
+static bool
+lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
+ lst_p inner_father)
+{
+ int inner;
+ lst_p loop1, loop2;
+
+ gcc_assert (outer_father
+ && LST_LOOP_P (outer_father)
+ && LST_LOOP_P (VEC_index (lst_p, LST_SEQ (outer_father), outer))
+ && inner_father
+ && LST_LOOP_P (inner_father));
+
+ loop1 = VEC_index (lst_p, LST_SEQ (outer_father), outer);
+
+ FOR_EACH_VEC_ELT (lst_p, LST_SEQ (inner_father), inner, loop2)
+ if (LST_LOOP_P (loop2)
+ && (lst_try_interchange_loops (scop, loop1, loop2)
+ || lst_interchange_select_inner (scop, outer_father, outer, loop2)))
+ return true;
+
+ return false;
+}
+
+/* Interchanges all the loops of LOOP and the loops of its body that
+ are considered profitable to interchange. Return true if it did
+ interchanged some loops. OUTER is the index in LST_SEQ (LOOP) that
+ points to the next outer loop to be considered for interchange. */
+
+static bool
+lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
+{
+ lst_p l;
+ bool res = false;
+ int i = 0;
+ lst_p father;
+
+ if (!loop || !LST_LOOP_P (loop))
+ return false;
+
+ father = LST_LOOP_FATHER (loop);
+ if (father)
+ {
+ while (lst_interchange_select_inner (scop, father, outer, loop))
+ {
+ res = true;
+ loop = VEC_index (lst_p, LST_SEQ (father), outer);
+ }
+ }
+
+ if (LST_LOOP_P (loop))
+ FOR_EACH_VEC_ELT (lst_p, LST_SEQ (loop), i, l)
+ if (LST_LOOP_P (l))
+ res |= lst_interchange_select_outer (scop, l, i);
+
+ return res;
+}
+
+/* Interchanges all the loop depths that are considered profitable for SCOP. */
+
+bool
+scop_do_interchange (scop_p scop)
+{
+ bool res = lst_interchange_select_outer
+ (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
+
+ lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
+
+ return res;
+}
+
+
+#endif
+