summaryrefslogtreecommitdiff
path: root/gcc/ipa-struct-reorg.c
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/ipa-struct-reorg.c
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'gcc/ipa-struct-reorg.c')
-rw-r--r--gcc/ipa-struct-reorg.c4064
1 files changed, 4064 insertions, 0 deletions
diff --git a/gcc/ipa-struct-reorg.c b/gcc/ipa-struct-reorg.c
new file mode 100644
index 000000000..7ab321eee
--- /dev/null
+++ b/gcc/ipa-struct-reorg.c
@@ -0,0 +1,4064 @@
+/* Struct-reorg optimization.
+ Copyright (C) 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
+ Contributed by Olga Golovanevsky <olga@il.ibm.com>
+ (Initial version of this code was developed
+ by Caroline Tice and Mostafa Hagog.)
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "ggc.h"
+#include "tree.h"
+#include "rtl.h"
+#include "gimple.h"
+#include "tree-inline.h"
+#include "tree-flow.h"
+#include "tree-flow-inline.h"
+#include "langhooks.h"
+#include "pointer-set.h"
+#include "hashtab.h"
+#include "flags.h"
+#include "debug.h"
+#include "target.h"
+#include "cgraph.h"
+#include "diagnostic.h"
+#include "tree-pretty-print.h"
+#include "gimple-pretty-print.h"
+#include "timevar.h"
+#include "params.h"
+#include "fibheap.h"
+#include "intl.h"
+#include "function.h"
+#include "basic-block.h"
+#include "tree-iterator.h"
+#include "tree-pass.h"
+#include "ipa-struct-reorg.h"
+#include "opts.h"
+#include "ipa-type-escape.h"
+#include "tree-dump.h"
+#include "gimple.h"
+
+/* This optimization implements structure peeling.
+
+ For example, given a structure type:
+ typedef struct
+ {
+ int a;
+ float b;
+ int c;
+ }str_t;
+
+ it can be peeled into two structure types as follows:
+
+ typedef struct and typedef struct
+ { {
+ int a; float b;
+ int c; } str_t_1;
+ }str_t_0;
+
+ or can be fully peeled:
+
+ typedef struct
+ {
+ int a;
+ }str_t_0;
+
+ typedef struct
+ {
+ float b;
+ }str_t_1;
+
+ typedef struct
+ {
+ int c;
+ }str_t_2;
+
+ When structure type is peeled all instances and their accesses
+ in the program are updated accordingly. For example, if there is
+ array of structures:
+
+ str_t A[N];
+
+ and structure type str_t was peeled into two structures str_t_0
+ and str_t_1 as it was shown above, then array A will be replaced
+ by two arrays as follows:
+
+ str_t_0 A_0[N];
+ str_t_1 A_1[N];
+
+ The field access of field a of element i of array A: A[i].a will be
+ replaced by an access to field a of element i of array A_0: A_0[i].a.
+
+ This optimization also supports dynamically allocated arrays.
+ If array of structures was allocated by malloc function:
+
+ str_t * p = (str_t *) malloc (sizeof (str_t) * N)
+
+ the allocation site will be replaced to reflect new structure types:
+
+ str_t_0 * p_0 = (str_t_0 *) malloc (sizeof (str_t_0) * N)
+ str_t_1 * p_1 = (str_t_1 *) malloc (sizeof (str_t_1) * N)
+
+ The field access through the pointer p[i].a will be changed by p_0[i].a.
+
+ The goal of structure peeling is to improve spatial locality.
+ For example, if one of the fields of a structure is accessed frequently
+ in the loop:
+
+ for (i = 0; i < N; i++)
+ {
+ ... = A[i].a;
+ }
+
+ the allocation of field a of str_t contiguously in memory will
+ increase the chances of fetching the field from cache.
+
+ The analysis part of this optimization is based on the frequency of
+ field accesses, which are collected all over the program.
+ Then the fields with the frequencies that satisfy the following condition
+ get peeled out of the structure:
+
+ freq(f) > C * max_field_freq_in_struct
+
+ where max_field_freq_in_struct is the maximum field frequency
+ in the structure. C is a constant defining which portion of
+ max_field_freq_in_struct the fields should have in order to be peeled.
+
+ If profiling information is provided, it is used to calculate the
+ frequency of field accesses. Otherwise, the structure is fully peeled.
+
+ IPA type-escape analysis is used to determine when it is safe
+ to peel a structure.
+
+ The optimization is activated by flag -fipa-struct-reorg. */
+
+/* New variables created by this optimization.
+ When doing struct peeling, each variable of
+ the original struct type will be replaced by
+ the set of new variables corresponding to
+ the new structure types. */
+struct new_var_data {
+ /* VAR_DECL for original struct type. */
+ tree orig_var;
+ /* Vector of new variables. */
+ VEC(tree, heap) *new_vars;
+};
+
+typedef struct new_var_data *new_var;
+typedef const struct new_var_data *const_new_var;
+
+/* This structure represents allocation site of the structure. */
+typedef struct alloc_site
+{
+ gimple stmt;
+ d_str str;
+} alloc_site_t;
+
+DEF_VEC_O (alloc_site_t);
+DEF_VEC_ALLOC_O (alloc_site_t, heap);
+
+/* Allocation sites that belong to the same function. */
+struct func_alloc_sites
+{
+ tree func;
+ /* Vector of allocation sites for function. */
+ VEC (alloc_site_t, heap) *allocs;
+};
+
+typedef struct func_alloc_sites *fallocs_t;
+typedef const struct func_alloc_sites *const_fallocs_t;
+
+/* All allocation sites in the program. */
+htab_t alloc_sites = NULL;
+
+/* New global variables. Generated once for whole program. */
+htab_t new_global_vars;
+
+/* New local variables. Generated per-function. */
+htab_t new_local_vars;
+
+/* Vector of structures to be transformed. */
+typedef struct data_structure structure;
+DEF_VEC_O (structure);
+DEF_VEC_ALLOC_O (structure, heap);
+VEC (structure, heap) *structures;
+
+/* Forward declarations. */
+static bool is_equal_types (tree, tree);
+
+/* Strip structure TYPE from pointers and arrays. */
+
+static inline tree
+strip_type (tree type)
+{
+ gcc_assert (TYPE_P (type));
+
+ while (POINTER_TYPE_P (type)
+ || TREE_CODE (type) == ARRAY_TYPE)
+ type = TREE_TYPE (type);
+
+ return type;
+}
+
+/* This function returns type of VAR. */
+
+static inline tree
+get_type_of_var (tree var)
+{
+ if (!var)
+ return NULL;
+
+ if (TREE_CODE (var) == PARM_DECL)
+ return DECL_ARG_TYPE (var);
+ else
+ return TREE_TYPE (var);
+}
+
+/* Set of actions we do for each newly generated STMT. */
+
+static inline void
+finalize_stmt (gimple stmt)
+{
+ update_stmt (stmt);
+ mark_symbols_for_renaming (stmt);
+}
+
+/* This function finalizes STMT and appends it to the list STMTS. */
+
+static inline void
+finalize_stmt_and_append (gimple_seq *stmts, gimple stmt)
+{
+ gimple_seq_add_stmt (stmts, stmt);
+ finalize_stmt (stmt);
+}
+
+/* This function returns true if two fields FIELD1 and FIELD2 are
+ semantically equal, and false otherwise. */
+
+static bool
+compare_fields (tree field1, tree field2)
+{
+ if (DECL_NAME (field1) && DECL_NAME (field2))
+ {
+ const char *name1 = IDENTIFIER_POINTER (DECL_NAME (field1));
+ const char *name2 = IDENTIFIER_POINTER (DECL_NAME (field2));
+
+ gcc_assert (name1 && name2);
+
+ if (strcmp (name1, name2))
+ return false;
+
+ }
+ else if (DECL_NAME (field1) || DECL_NAME (field2))
+ return false;
+
+ if (!is_equal_types (TREE_TYPE (field1), TREE_TYPE (field2)))
+ return false;
+
+ return true;
+}
+
+/* Given structure type SRT_TYPE and field FIELD,
+ this function is looking for a field with the same name
+ and type as FIELD in STR_TYPE. It returns it if found,
+ or NULL_TREE otherwise. */
+
+static tree
+find_field_in_struct_1 (tree str_type, tree field)
+{
+ tree str_field;
+
+ if (!DECL_NAME (field))
+ return NULL;
+
+ for (str_field = TYPE_FIELDS (str_type); str_field;
+ str_field = TREE_CHAIN (str_field))
+ {
+
+ if (!DECL_NAME (str_field))
+ continue;
+
+ if (compare_fields (field, str_field))
+ return str_field;
+ }
+
+ return NULL_TREE;
+}
+
+/* Given a field declaration FIELD_DECL, this function
+ returns corresponding field entry in structure STR. */
+
+static struct field_entry *
+find_field_in_struct (d_str str, tree field_decl)
+{
+ int i;
+
+ tree field = find_field_in_struct_1 (str->decl, field_decl);
+
+ for (i = 0; i < str->num_fields; i++)
+ if (str->fields[i].decl == field)
+ return &(str->fields[i]);
+
+ return NULL;
+}
+
+/* This function checks whether ARG is a result of multiplication
+ of some number by STRUCT_SIZE. If yes, the function returns true
+ and this number is filled into NUM. */
+
+static bool
+is_result_of_mult (tree arg, tree *num, tree struct_size)
+{
+ gimple size_def_stmt = SSA_NAME_DEF_STMT (arg);
+
+ /* If the allocation statement was of the form
+ D.2229_10 = <alloc_func> (D.2228_9);
+ then size_def_stmt can be D.2228_9 = num.3_8 * 8; */
+
+ if (size_def_stmt && is_gimple_assign (size_def_stmt))
+ {
+ tree lhs = gimple_assign_lhs (size_def_stmt);
+
+ /* We expect temporary here. */
+ if (!is_gimple_reg (lhs))
+ return false;
+
+ if (gimple_assign_rhs_code (size_def_stmt) == MULT_EXPR)
+ {
+ tree arg0 = gimple_assign_rhs1 (size_def_stmt);
+ tree arg1 = gimple_assign_rhs2 (size_def_stmt);
+
+ if (operand_equal_p (arg0, struct_size, OEP_ONLY_CONST))
+ {
+ *num = arg1;
+ return true;
+ }
+
+ if (operand_equal_p (arg1, struct_size, OEP_ONLY_CONST))
+ {
+ *num = arg0;
+ return true;
+ }
+ }
+ }
+
+ *num = NULL_TREE;
+ return false;
+}
+
+
+/* This function returns true if access ACC corresponds to the pattern
+ generated by compiler when an address of element i of an array
+ of structures STR_DECL (pointed by p) is calculated (p[i]). If this
+ pattern is recognized correctly, this function returns true
+ and fills missing fields in ACC. Otherwise it returns false. */
+
+static bool
+decompose_indirect_ref_acc (tree str_decl, struct field_access_site *acc)
+{
+ tree ref_var;
+ tree struct_size, op0, op1;
+ tree before_cast;
+ enum tree_code rhs_code;
+
+ ref_var = TREE_OPERAND (acc->ref, 0);
+
+ if (TREE_CODE (ref_var) != SSA_NAME)
+ return false;
+
+ acc->ref_def_stmt = SSA_NAME_DEF_STMT (ref_var);
+ if (!(acc->ref_def_stmt)
+ || (gimple_code (acc->ref_def_stmt) != GIMPLE_ASSIGN))
+ return false;
+
+ rhs_code = gimple_assign_rhs_code (acc->ref_def_stmt);
+
+ if (rhs_code != PLUS_EXPR
+ && rhs_code != MINUS_EXPR
+ && rhs_code != POINTER_PLUS_EXPR)
+ return false;
+
+ op0 = gimple_assign_rhs1 (acc->ref_def_stmt);
+ op1 = gimple_assign_rhs2 (acc->ref_def_stmt);
+
+ if (!is_array_access_through_pointer_and_index (rhs_code, op0, op1,
+ &acc->base, &acc->offset,
+ &acc->cast_stmt))
+ return false;
+
+ if (acc->cast_stmt)
+ before_cast = SINGLE_SSA_TREE_OPERAND (acc->cast_stmt, SSA_OP_USE);
+ else
+ before_cast = acc->offset;
+
+ if (!before_cast)
+ return false;
+
+
+ if (SSA_NAME_IS_DEFAULT_DEF (before_cast))
+ return false;
+
+ struct_size = TYPE_SIZE_UNIT (str_decl);
+
+ if (!is_result_of_mult (before_cast, &acc->num, struct_size))
+ return false;
+
+ /* ??? Add TREE_OPERAND (acc->ref, 1) to acc->offset. */
+ if (!integer_zerop (TREE_OPERAND (acc->ref, 1)))
+ return false;
+
+ return true;
+}
+
+
+/* This function checks whether the access ACC of structure type STR
+ is of the form suitable for transformation. If yes, it returns true.
+ False otherwise. */
+
+static bool
+decompose_access (tree str_decl, struct field_access_site *acc)
+{
+ gcc_assert (acc->ref);
+
+ if (TREE_CODE (acc->ref) == MEM_REF)
+ return decompose_indirect_ref_acc (str_decl, acc);
+ else if (TREE_CODE (acc->ref) == ARRAY_REF)
+ return true;
+ else if (TREE_CODE (acc->ref) == VAR_DECL)
+ return true;
+
+ return false;
+}
+
+/* This function creates empty field_access_site node. */
+
+static inline struct field_access_site *
+make_field_acc_node (void)
+{
+ return XCNEW (struct field_access_site);
+}
+
+/* This function returns the structure field access, defined by STMT,
+ if it is already in hashtable of function accesses F_ACCS. */
+
+static struct field_access_site *
+is_in_field_accs (gimple stmt, htab_t f_accs)
+{
+ return (struct field_access_site *)
+ htab_find_with_hash (f_accs, stmt, htab_hash_pointer (stmt));
+}
+
+/* This function adds an access ACC to the hashtable
+ F_ACCS of field accesses. */
+
+static void
+add_field_acc_to_acc_sites (struct field_access_site *acc,
+ htab_t f_accs)
+{
+ void **slot;
+
+ gcc_assert (!is_in_field_accs (acc->stmt, f_accs));
+ slot = htab_find_slot_with_hash (f_accs, acc->stmt,
+ htab_hash_pointer (acc->stmt),
+ INSERT);
+ *slot = acc;
+}
+
+/* This function adds the VAR to vector of variables of
+ an access site defined by statement STMT. If access entry
+ with statement STMT does not exist in hashtable of
+ accesses ACCS, this function creates it. */
+
+static void
+add_access_to_acc_sites (gimple stmt, tree var, htab_t accs)
+{
+ struct access_site *acc;
+
+ acc = (struct access_site *)
+ htab_find_with_hash (accs, stmt, htab_hash_pointer (stmt));
+
+ if (!acc)
+ {
+ void **slot;
+
+ acc = XNEW (struct access_site);
+ acc->stmt = stmt;
+ if (!is_gimple_debug (stmt))
+ acc->vars = VEC_alloc (tree, heap, 10);
+ else
+ acc->vars = NULL;
+ slot = htab_find_slot_with_hash (accs, stmt,
+ htab_hash_pointer (stmt), INSERT);
+ *slot = acc;
+ }
+ if (!is_gimple_debug (stmt))
+ VEC_safe_push (tree, heap, acc->vars, var);
+}
+
+/* This function adds NEW_DECL to function
+ referenced vars, and marks it for renaming. */
+
+static void
+finalize_var_creation (tree new_decl)
+{
+ add_referenced_var (new_decl);
+ mark_sym_for_renaming (new_decl);
+}
+
+/* This function finalizes VAR creation if it is a global VAR_DECL. */
+
+static void
+finalize_global_creation (tree var)
+{
+ if (TREE_CODE (var) == VAR_DECL
+ && is_global_var (var))
+ finalize_var_creation (var);
+}
+
+/* This function inserts NEW_DECL to varpool. */
+
+static inline void
+insert_global_to_varpool (tree new_decl)
+{
+ struct varpool_node *new_node;
+
+ new_node = varpool_node (new_decl);
+ notice_global_symbol (new_decl);
+ varpool_mark_needed_node (new_node);
+ varpool_finalize_decl (new_decl);
+}
+
+/* This function finalizes the creation of new variables,
+ defined by *SLOT->new_vars. */
+
+static int
+finalize_new_vars_creation (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ new_var n_var = *(new_var *) slot;
+ unsigned i;
+ tree var;
+
+ FOR_EACH_VEC_ELT (tree, n_var->new_vars, i, var)
+ finalize_var_creation (var);
+ return 1;
+}
+
+/* This function looks for the variable of NEW_TYPE type, stored in VAR.
+ It returns it, if found, and NULL_TREE otherwise. */
+
+static tree
+find_var_in_new_vars_vec (new_var var, tree new_type)
+{
+ tree n_var;
+ unsigned i;
+
+ FOR_EACH_VEC_ELT (tree, var->new_vars, i, n_var)
+ {
+ tree type = strip_type(get_type_of_var (n_var));
+ gcc_assert (type);
+
+ if (type == new_type)
+ return n_var;
+ }
+
+ return NULL_TREE;
+}
+
+/* This function returns new_var node, the orig_var of which is DECL.
+ It looks for new_var's in NEW_VARS_HTAB. If not found,
+ the function returns NULL. */
+
+static new_var
+is_in_new_vars_htab (tree decl, htab_t new_vars_htab)
+{
+ return (new_var) htab_find_with_hash (new_vars_htab, decl,
+ DECL_UID (decl));
+}
+
+/* Given original variable ORIG_VAR, this function returns
+ new variable corresponding to it of NEW_TYPE type. */
+
+static tree
+find_new_var_of_type (tree orig_var, tree new_type)
+{
+ new_var var;
+ gcc_assert (orig_var && new_type);
+
+ if (TREE_CODE (orig_var) == SSA_NAME)
+ orig_var = SSA_NAME_VAR (orig_var);
+
+ var = is_in_new_vars_htab (orig_var, new_global_vars);
+ if (!var)
+ var = is_in_new_vars_htab (orig_var, new_local_vars);
+ gcc_assert (var);
+ return find_var_in_new_vars_vec (var, new_type);
+}
+
+/* This function generates stmt:
+ res = NUM * sizeof(TYPE) and returns it.
+ res is filled into RES. */
+
+static gimple
+gen_size (tree num, tree type, tree *res)
+{
+ tree struct_size = TYPE_SIZE_UNIT (type);
+ HOST_WIDE_INT struct_size_int = TREE_INT_CST_LOW (struct_size);
+ gimple new_stmt;
+
+ *res = create_tmp_var (TREE_TYPE (num), NULL);
+
+ if (*res)
+ add_referenced_var (*res);
+
+ if (exact_log2 (struct_size_int) == -1)
+ {
+ tree size = build_int_cst (TREE_TYPE (num), struct_size_int);
+ new_stmt = gimple_build_assign (*res, fold_build2 (MULT_EXPR,
+ TREE_TYPE (num),
+ num, size));
+ }
+ else
+ {
+ tree C = build_int_cst (TREE_TYPE (num), exact_log2 (struct_size_int));
+
+ new_stmt = gimple_build_assign (*res, fold_build2 (LSHIFT_EXPR,
+ TREE_TYPE (num),
+ num, C));
+ }
+
+ finalize_stmt (new_stmt);
+ return new_stmt;
+}
+
+/* This function generates and returns a statement, that cast variable
+ BEFORE_CAST to NEW_TYPE. The cast result variable is stored
+ into RES_P. ORIG_CAST_STMT is the original cast statement. */
+
+static gimple
+gen_cast_stmt (tree before_cast, tree new_type, gimple orig_cast_stmt,
+ tree *res_p)
+{
+ tree lhs, new_lhs;
+ gimple new_stmt;
+
+ lhs = gimple_assign_lhs (orig_cast_stmt);
+ new_lhs = find_new_var_of_type (lhs, new_type);
+ gcc_assert (new_lhs);
+
+ new_stmt = gimple_build_assign_with_ops (NOP_EXPR, new_lhs, before_cast, 0);
+ finalize_stmt (new_stmt);
+ *res_p = new_lhs;
+ return new_stmt;
+}
+
+/* This function builds an edge between BB and E->dest and updates
+ phi nodes of E->dest. It returns newly created edge. */
+
+static edge
+make_edge_and_fix_phis_of_dest (basic_block bb, edge e)
+{
+ edge new_e;
+ tree arg;
+ gimple_stmt_iterator si;
+
+ new_e = make_edge (bb, e->dest, e->flags);
+
+ for (si = gsi_start_phis (new_e->dest); !gsi_end_p (si); gsi_next (&si))
+ {
+ gimple phi = gsi_stmt (si);
+ arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
+ add_phi_arg (phi, arg, new_e, gimple_phi_arg_location_from_edge (phi, e));
+ }
+
+ return new_e;
+}
+
+/* This function inserts NEW_STMT before STMT. */
+
+static void
+insert_before_stmt (gimple stmt, gimple new_stmt)
+{
+ gimple_stmt_iterator bsi;
+
+ if (!stmt || !new_stmt)
+ return;
+
+ bsi = gsi_for_stmt (stmt);
+ gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
+}
+
+/* Insert NEW_STMTS after STMT. */
+
+static void
+insert_seq_after_stmt (gimple stmt, gimple_seq new_stmts)
+{
+ gimple_stmt_iterator bsi;
+
+ if (!stmt || !new_stmts)
+ return;
+
+ bsi = gsi_for_stmt (stmt);
+ gsi_insert_seq_after (&bsi, new_stmts, GSI_SAME_STMT);
+}
+
+/* Insert NEW_STMT after STMT. */
+
+static void
+insert_after_stmt (gimple stmt, gimple new_stmt)
+{
+ gimple_stmt_iterator bsi;
+
+ if (!stmt || !new_stmt)
+ return;
+
+ bsi = gsi_for_stmt (stmt);
+ gsi_insert_after (&bsi, new_stmt, GSI_SAME_STMT);
+}
+
+/* This function returns vector of allocation sites
+ that appear in function FN_DECL. */
+
+static fallocs_t
+get_fallocs (tree fn_decl)
+{
+ return (fallocs_t) htab_find_with_hash (alloc_sites, fn_decl,
+ htab_hash_pointer (fn_decl));
+}
+
+/* If ALLOC_STMT is D.2225_7 = <alloc_func> (D.2224_6);
+ and it is a part of allocation of a structure,
+ then it is usually followed by a cast stmt
+ p_8 = (struct str_t *) D.2225_7;
+ which is returned by this function. */
+
+static gimple
+get_final_alloc_stmt (gimple alloc_stmt)
+{
+ gimple final_stmt;
+ use_operand_p use_p;
+ tree alloc_res;
+
+ if (!alloc_stmt)
+ return NULL;
+
+ if (!is_gimple_call (alloc_stmt))
+ return NULL;
+
+ alloc_res = gimple_get_lhs (alloc_stmt);
+
+ if (TREE_CODE (alloc_res) != SSA_NAME)
+ return NULL;
+
+ if (!single_imm_use (alloc_res, &use_p, &final_stmt))
+ return NULL;
+ else
+ return final_stmt;
+}
+
+/* This function returns true if STMT is one of allocation
+ sites of function FN_DECL. It returns false otherwise. */
+
+static bool
+is_part_of_malloc (gimple stmt, tree fn_decl)
+{
+ fallocs_t fallocs = get_fallocs (fn_decl);
+
+ if (fallocs)
+ {
+ alloc_site_t *call;
+ unsigned i;
+
+ FOR_EACH_VEC_ELT (alloc_site_t, fallocs->allocs, i, call)
+ if (call->stmt == stmt
+ || get_final_alloc_stmt (call->stmt) == stmt)
+ return true;
+ }
+ return false;
+}
+
+/* Auxiliary structure for a lookup over field accesses. */
+struct find_stmt_data
+{
+ bool found;
+ gimple stmt;
+};
+
+/* This function looks for DATA->stmt among
+ the statements involved in the field access,
+ defined by SLOT. It stops when it's found. */
+
+static int
+find_in_field_accs (void **slot, void *data)
+{
+ struct field_access_site *f_acc = *(struct field_access_site **) slot;
+ gimple stmt = ((struct find_stmt_data *)data)->stmt;
+
+ if (f_acc->stmt == stmt
+ || f_acc->ref_def_stmt == stmt
+ || f_acc->cast_stmt == stmt)
+ {
+ ((struct find_stmt_data *)data)->found = true;
+ return 0;
+ }
+ else
+ return 1;
+}
+
+/* This function checks whether STMT is part of field
+ accesses of structure STR. It returns true, if found,
+ and false otherwise. */
+
+static bool
+is_part_of_field_access (gimple stmt, d_str str)
+{
+ int i;
+
+ for (i = 0; i < str->num_fields; i++)
+ {
+ struct find_stmt_data data;
+ data.found = false;
+ data.stmt = stmt;
+
+ if (str->fields[i].acc_sites)
+ htab_traverse (str->fields[i].acc_sites, find_in_field_accs, &data);
+
+ if (data.found)
+ return true;
+ }
+
+ return false;
+}
+
+/* Auxiliary data for exclude_from_accs function. */
+
+struct exclude_data
+{
+ tree fn_decl;
+ d_str str;
+};
+
+/* This function returns component_ref with the BASE and
+ field named FIELD_ID from structure TYPE. */
+
+static inline tree
+build_comp_ref (tree base, tree field_id, tree type)
+{
+ tree field;
+ bool found = false;
+
+
+ /* Find field of structure type with the same name as field_id. */
+ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
+ {
+ if (DECL_NAME (field) == field_id)
+ {
+ found = true;
+ break;
+ }
+ }
+
+ gcc_assert (found);
+
+ return build3 (COMPONENT_REF, TREE_TYPE (field), base, field, NULL_TREE);
+}
+
+
+/* This struct represent data used for walk_tree
+ called from function find_pos_in_stmt.
+ - ref is a tree to be found,
+ - and pos is a pointer that points to ref in stmt. */
+struct ref_pos
+{
+ tree *pos;
+ tree ref;
+ tree container;
+};
+
+
+/* This is a callback function for walk_tree, called from
+ collect_accesses_in_bb function. DATA is a pointer to ref_pos structure.
+ When *TP is equal to DATA->ref, the walk_tree stops,
+ and found position, equal to TP, is assigned to DATA->pos. */
+
+static tree
+find_pos_in_stmt_1 (tree *tp, int *walk_subtrees, void * data)
+{
+ struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
+ struct ref_pos *r_pos = (struct ref_pos *) wi->info;
+ tree ref = r_pos->ref;
+ tree t = *tp;
+
+ if (t == ref || (TREE_CODE (t) == SSA_NAME && SSA_NAME_VAR (t) == ref))
+ {
+ r_pos->pos = tp;
+ return t;
+ }
+
+ r_pos->container = t;
+ *walk_subtrees = 1;
+ return NULL_TREE;
+}
+
+
+/* This function looks for the pointer of REF in STMT,
+ It returns it, if found, and NULL otherwise. */
+
+static tree *
+find_pos_in_stmt (gimple stmt, tree ref, struct ref_pos * r_pos)
+{
+ struct walk_stmt_info wi;
+
+ r_pos->ref = ref;
+ r_pos->pos = NULL;
+ r_pos->container = NULL_TREE;
+ memset (&wi, 0, sizeof (wi));
+ wi.info = r_pos;
+ walk_gimple_op (stmt, find_pos_in_stmt_1, &wi);
+
+ return r_pos->pos;
+}
+
+/* This structure is used to represent array
+ or pointer-to wrappers of structure type.
+ For example, if type1 is structure type,
+ then for type1 ** we generate two type_wrapper
+ structures with wrap = 0 each one.
+ It's used to unwind the original type up to
+ structure type, replace it with the new structure type
+ and wrap it back in the opposite order. */
+
+typedef struct type_wrapper
+{
+ /* 0 stand for pointer wrapper, and 1 for array wrapper. */
+ bool wrap;
+
+ /* Relevant for arrays as domain or index. */
+ tree domain;
+}type_wrapper_t;
+
+DEF_VEC_O (type_wrapper_t);
+DEF_VEC_ALLOC_O (type_wrapper_t, heap);
+
+/* This function replace field access ACC by the new
+ field access of structure type NEW_TYPE. */
+
+static void
+replace_field_acc (struct field_access_site *acc, tree new_type)
+{
+ tree ref_var = acc->ref;
+ tree new_ref;
+ tree lhs, rhs;
+ tree *pos;
+ tree new_acc;
+ tree field_id = DECL_NAME (acc->field_decl);
+ VEC (type_wrapper_t, heap) *wrapper = VEC_alloc (type_wrapper_t, heap, 10);
+ type_wrapper_t *wr_p = NULL;
+ struct ref_pos r_pos;
+
+ while (TREE_CODE (ref_var) == MEM_REF
+ || TREE_CODE (ref_var) == ARRAY_REF)
+ {
+ type_wrapper_t wr;
+
+ if (TREE_CODE (ref_var) == MEM_REF)
+ {
+ wr.wrap = 0;
+ wr.domain = 0;
+ }
+ else
+ {
+ wr.wrap = 1;
+ wr.domain = TREE_OPERAND (ref_var, 1);
+ }
+
+ VEC_safe_push (type_wrapper_t, heap, wrapper, &wr);
+ ref_var = TREE_OPERAND (ref_var, 0);
+ }
+
+ new_ref = find_new_var_of_type (ref_var, new_type);
+ finalize_global_creation (new_ref);
+
+ while (VEC_length (type_wrapper_t, wrapper) != 0)
+ {
+ tree type = TREE_TYPE (TREE_TYPE (new_ref));
+
+ wr_p = VEC_last (type_wrapper_t, wrapper);
+ if (wr_p->wrap) /* Array. */
+ new_ref = build4 (ARRAY_REF, type, new_ref,
+ wr_p->domain, NULL_TREE, NULL_TREE);
+ else /* Pointer. */
+ new_ref = build_simple_mem_ref (new_ref);
+ VEC_pop (type_wrapper_t, wrapper);
+ }
+
+ new_acc = build_comp_ref (new_ref, field_id, new_type);
+ VEC_free (type_wrapper_t, heap, wrapper);
+
+ if (is_gimple_assign (acc->stmt))
+ {
+ lhs = gimple_assign_lhs (acc->stmt);
+ rhs = gimple_assign_rhs1 (acc->stmt);
+
+ if (lhs == acc->comp_ref)
+ gimple_assign_set_lhs (acc->stmt, new_acc);
+ else if (rhs == acc->comp_ref)
+ gimple_assign_set_rhs1 (acc->stmt, new_acc);
+ else
+ {
+ pos = find_pos_in_stmt (acc->stmt, acc->comp_ref, &r_pos);
+ gcc_assert (pos);
+ *pos = new_acc;
+ }
+ }
+ else
+ {
+ pos = find_pos_in_stmt (acc->stmt, acc->comp_ref, &r_pos);
+ gcc_assert (pos);
+ *pos = new_acc;
+ }
+
+ finalize_stmt (acc->stmt);
+}
+
+/* This function replace field access ACC by a new field access
+ of structure type NEW_TYPE. */
+
+static void
+replace_field_access_stmt (struct field_access_site *acc, tree new_type)
+{
+
+ if (TREE_CODE (acc->ref) == MEM_REF
+ ||TREE_CODE (acc->ref) == ARRAY_REF
+ ||TREE_CODE (acc->ref) == VAR_DECL)
+ replace_field_acc (acc, new_type);
+ else
+ gcc_unreachable ();
+}
+
+/* This function looks for d_str, represented by TYPE, in the structures
+ vector. If found, it returns an index of found structure. Otherwise
+ it returns a length of the structures vector. */
+
+static unsigned
+find_structure (tree type)
+{
+ d_str str;
+ unsigned i;
+
+ type = TYPE_MAIN_VARIANT (type);
+
+ FOR_EACH_VEC_ELT (structure, structures, i, str)
+ if (is_equal_types (str->decl, type))
+ return i;
+
+ return VEC_length (structure, structures);
+}
+
+/* In this function we create new statements that have the same
+ form as ORIG_STMT, but of type NEW_TYPE. The statements
+ treated by this function are simple assignments,
+ like assignments: p.8_7 = p; or statements with rhs of
+ tree codes PLUS_EXPR and MINUS_EXPR. */
+
+static gimple
+create_base_plus_offset (gimple orig_stmt, tree new_type, tree offset)
+{
+ tree lhs;
+ tree new_lhs;
+ gimple new_stmt;
+ tree new_op0 = NULL_TREE, new_op1 = NULL_TREE;
+
+ lhs = gimple_assign_lhs (orig_stmt);
+
+ gcc_assert (TREE_CODE (lhs) == VAR_DECL
+ || TREE_CODE (lhs) == SSA_NAME);
+
+ new_lhs = find_new_var_of_type (lhs, new_type);
+ gcc_assert (new_lhs);
+ finalize_var_creation (new_lhs);
+
+ switch (gimple_assign_rhs_code (orig_stmt))
+ {
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case POINTER_PLUS_EXPR:
+ {
+ tree op0 = gimple_assign_rhs1 (orig_stmt);
+ tree op1 = gimple_assign_rhs2 (orig_stmt);
+ unsigned str0, str1;
+ unsigned length = VEC_length (structure, structures);
+
+
+ str0 = find_structure (strip_type (get_type_of_var (op0)));
+ str1 = find_structure (strip_type (get_type_of_var (op1)));
+ gcc_assert ((str0 != length) || (str1 != length));
+
+ if (str0 != length)
+ new_op0 = find_new_var_of_type (op0, new_type);
+ if (str1 != length)
+ new_op1 = find_new_var_of_type (op1, new_type);
+
+ if (!new_op0)
+ new_op0 = offset;
+ if (!new_op1)
+ new_op1 = offset;
+ }
+ break;
+
+ default:
+ gcc_unreachable();
+ }
+
+ new_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (orig_stmt),
+ new_lhs, new_op0, new_op1);
+ finalize_stmt (new_stmt);
+
+ return new_stmt;
+}
+
+/* Given a field access F_ACC of the FIELD, this function
+ replaces it by the new field access. */
+
+static void
+create_new_field_access (struct field_access_site *f_acc,
+ struct field_entry field)
+{
+ tree new_type = field.field_mapping;
+ gimple new_stmt;
+ tree size_res;
+ gimple mult_stmt;
+ gimple cast_stmt;
+ tree cast_res = NULL;
+
+ if (f_acc->num)
+ {
+ mult_stmt = gen_size (f_acc->num, new_type, &size_res);
+ insert_before_stmt (f_acc->ref_def_stmt, mult_stmt);
+ }
+
+ if (f_acc->cast_stmt)
+ {
+ cast_stmt = gen_cast_stmt (size_res, new_type,
+ f_acc->cast_stmt, &cast_res);
+ insert_after_stmt (f_acc->cast_stmt, cast_stmt);
+ }
+
+ if (f_acc->ref_def_stmt)
+ {
+ tree offset;
+ if (cast_res)
+ offset = cast_res;
+ else
+ offset = size_res;
+
+ new_stmt = create_base_plus_offset (f_acc->ref_def_stmt,
+ new_type, offset);
+ insert_after_stmt (f_acc->ref_def_stmt, new_stmt);
+ }
+
+ /* In stmt D.2163_19 = D.2162_18->b; we replace variable
+ D.2162_18 by an appropriate variable of new_type type. */
+ replace_field_access_stmt (f_acc, new_type);
+}
+
+/* This function creates a new condition statement
+ corresponding to the original COND_STMT, adds new basic block
+ and redirects condition edges. NEW_VAR is a new condition
+ variable located in the condition statement at the position POS. */
+
+static void
+create_new_stmts_for_cond_expr_1 (tree new_var, gimple cond_stmt, unsigned pos)
+{
+ gimple new_stmt;
+ edge true_e = NULL, false_e = NULL;
+ basic_block new_bb;
+ gimple_stmt_iterator si;
+
+ extract_true_false_edges_from_block (gimple_bb (cond_stmt),
+ &true_e, &false_e);
+
+ new_stmt = gimple_build_cond (gimple_cond_code (cond_stmt),
+ pos == 0 ? new_var : gimple_cond_lhs (cond_stmt),
+ pos == 1 ? new_var : gimple_cond_rhs (cond_stmt),
+ NULL_TREE,
+ NULL_TREE);
+
+ finalize_stmt (new_stmt);
+
+ /* Create new basic block after bb. */
+ new_bb = create_empty_bb (gimple_bb (cond_stmt));
+
+ /* Add new condition stmt to the new_bb. */
+ si = gsi_start_bb (new_bb);
+ gsi_insert_after (&si, new_stmt, GSI_NEW_STMT);
+
+ /* Create false and true edges from new_bb. */
+ make_edge_and_fix_phis_of_dest (new_bb, true_e);
+ make_edge_and_fix_phis_of_dest (new_bb, false_e);
+
+ /* Redirect one of original edges to point to new_bb. */
+ if (gimple_cond_code (cond_stmt) == NE_EXPR)
+ redirect_edge_succ (true_e, new_bb);
+ else
+ redirect_edge_succ (false_e, new_bb);
+}
+
+/* This function creates new condition statements corresponding
+ to original condition STMT, one for each new type, and
+ recursively redirect edges to newly generated basic blocks. */
+
+static void
+create_new_stmts_for_cond_expr (gimple stmt)
+{
+ tree arg0, arg1, arg;
+ unsigned str0, str1;
+ bool s0, s1;
+ d_str str;
+ tree type;
+ unsigned pos;
+ int i;
+ unsigned length = VEC_length (structure, structures);
+
+ gcc_assert (gimple_cond_code (stmt) == EQ_EXPR
+ || gimple_cond_code (stmt) == NE_EXPR);
+
+ arg0 = gimple_cond_lhs (stmt);
+ arg1 = gimple_cond_rhs (stmt);
+
+ str0 = find_structure (strip_type (get_type_of_var (arg0)));
+ str1 = find_structure (strip_type (get_type_of_var (arg1)));
+
+ s0 = (str0 != length) ? true : false;
+ s1 = (str1 != length) ? true : false;
+
+ gcc_assert (s0 || s1);
+ /* For now we allow only comparison with 0 or NULL. */
+ gcc_assert (integer_zerop (arg0) || integer_zerop (arg1));
+
+ str = integer_zerop (arg0) ?
+ VEC_index (structure, structures, str1):
+ VEC_index (structure, structures, str0);
+ arg = integer_zerop (arg0) ? arg1 : arg0;
+ pos = integer_zerop (arg0) ? 1 : 0;
+
+ FOR_EACH_VEC_ELT (tree, str->new_types, i, type)
+ {
+ tree new_arg;
+
+ new_arg = find_new_var_of_type (arg, type);
+ create_new_stmts_for_cond_expr_1 (new_arg, stmt, pos);
+ }
+}
+
+/* This function looks for VAR in STMT, and replace it with NEW_VAR.
+ If needed, it wraps NEW_VAR in pointers and indirect references
+ before insertion. */
+
+static void
+insert_new_var_in_stmt (gimple stmt, tree var, tree new_var)
+{
+ struct ref_pos r_pos;
+ tree *pos;
+
+ pos = find_pos_in_stmt (stmt, var, &r_pos);
+ gcc_assert (pos);
+
+ while (r_pos.container && (TREE_CODE(r_pos.container) == MEM_REF
+ || TREE_CODE(r_pos.container) == ADDR_EXPR))
+ {
+ if (TREE_CODE(r_pos.container) == MEM_REF)
+ new_var = build_simple_mem_ref (new_var);
+ else
+ new_var = build_fold_addr_expr (new_var);
+ pos = find_pos_in_stmt (stmt, r_pos.container, &r_pos);
+ }
+
+ *pos = new_var;
+}
+
+
+/* Create a new general access to replace original access ACC
+ for structure type NEW_TYPE. */
+
+static gimple
+create_general_new_stmt (struct access_site *acc, tree new_type)
+{
+ gimple old_stmt = acc->stmt;
+ tree var;
+ gimple new_stmt = gimple_copy (old_stmt);
+ unsigned i;
+
+ /* We are really building a new stmt, clear the virtual operands. */
+ if (gimple_has_mem_ops (new_stmt))
+ {
+ gimple_set_vuse (new_stmt, NULL_TREE);
+ gimple_set_vdef (new_stmt, NULL_TREE);
+ }
+
+ FOR_EACH_VEC_ELT (tree, acc->vars, i, var)
+ {
+ tree new_var = find_new_var_of_type (var, new_type);
+ tree lhs, rhs = NULL_TREE;
+
+ gcc_assert (new_var);
+ finalize_var_creation (new_var);
+
+ if (is_gimple_assign (new_stmt))
+ {
+ lhs = gimple_assign_lhs (new_stmt);
+
+ if (TREE_CODE (lhs) == SSA_NAME)
+ lhs = SSA_NAME_VAR (lhs);
+ if (gimple_assign_rhs_code (new_stmt) == SSA_NAME)
+ rhs = SSA_NAME_VAR (gimple_assign_rhs1 (new_stmt));
+
+ /* It can happen that rhs is a constructor.
+ Then we have to replace it to be of new_type. */
+ if (gimple_assign_rhs_code (new_stmt) == CONSTRUCTOR)
+ {
+ /* Dealing only with empty constructors right now. */
+ gcc_assert (VEC_empty (constructor_elt,
+ CONSTRUCTOR_ELTS (rhs)));
+ rhs = build_constructor (new_type, 0);
+ gimple_assign_set_rhs1 (new_stmt, rhs);
+ }
+
+ if (lhs == var)
+ gimple_assign_set_lhs (new_stmt, new_var);
+ else if (rhs == var)
+ gimple_assign_set_rhs1 (new_stmt, new_var);
+ else
+ insert_new_var_in_stmt (new_stmt, var, new_var);
+ }
+ else
+ insert_new_var_in_stmt (new_stmt, var, new_var);
+ }
+
+ finalize_stmt (new_stmt);
+ return new_stmt;
+}
+
+/* For each new type in STR this function creates new general accesses
+ corresponding to the original access ACC. */
+
+static void
+create_new_stmts_for_general_acc (struct access_site *acc, d_str str)
+{
+ tree type;
+ gimple stmt = acc->stmt;
+ unsigned i;
+
+ FOR_EACH_VEC_ELT (tree, str->new_types, i, type)
+ {
+ gimple new_stmt;
+
+ new_stmt = create_general_new_stmt (acc, type);
+ insert_after_stmt (stmt, new_stmt);
+ }
+}
+
+/* This function creates a new general access of structure STR
+ to replace the access ACC. */
+
+static void
+create_new_general_access (struct access_site *acc, d_str str)
+{
+ gimple stmt = acc->stmt;
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_COND:
+ create_new_stmts_for_cond_expr (stmt);
+ break;
+
+ case GIMPLE_DEBUG:
+ /* It is very hard to maintain usable debug info after struct peeling,
+ for now just reset all debug stmts referencing objects that have
+ been peeled. */
+ gimple_debug_bind_reset_value (stmt);
+ update_stmt (stmt);
+ break;
+
+ default:
+ create_new_stmts_for_general_acc (acc, str);
+ }
+}
+
+/* Auxiliary data for creation of accesses. */
+struct create_acc_data
+{
+ basic_block bb;
+ d_str str;
+ int field_index;
+};
+
+/* This function creates a new general access, defined by SLOT.
+ DATA is a pointer to create_acc_data structure. */
+
+static int
+create_new_acc (void **slot, void *data)
+{
+ struct access_site *acc = *(struct access_site **) slot;
+ basic_block bb = ((struct create_acc_data *)data)->bb;
+ d_str str = ((struct create_acc_data *)data)->str;
+
+ if (gimple_bb (acc->stmt) == bb)
+ create_new_general_access (acc, str);
+ return 1;
+}
+
+/* This function creates a new field access, defined by SLOT.
+ DATA is a pointer to create_acc_data structure. */
+
+static int
+create_new_field_acc (void **slot, void *data)
+{
+ struct field_access_site *f_acc = *(struct field_access_site **) slot;
+ basic_block bb = ((struct create_acc_data *)data)->bb;
+ d_str str = ((struct create_acc_data *)data)->str;
+ int i = ((struct create_acc_data *)data)->field_index;
+
+ if (gimple_bb (f_acc->stmt) == bb)
+ create_new_field_access (f_acc, str->fields[i]);
+ return 1;
+}
+
+/* This function creates new accesses for the structure
+ type STR in basic block BB. */
+
+static void
+create_new_accs_for_struct (d_str str, basic_block bb)
+{
+ int i;
+ struct create_acc_data dt;
+
+ dt.str = str;
+ dt.bb = bb;
+ dt.field_index = -1;
+
+ for (i = 0; i < str->num_fields; i++)
+ {
+ dt.field_index = i;
+
+ if (str->fields[i].acc_sites)
+ htab_traverse (str->fields[i].acc_sites,
+ create_new_field_acc, &dt);
+ }
+ if (str->accs)
+ htab_traverse (str->accs, create_new_acc, &dt);
+}
+
+/* This function inserts new variables from new_var,
+ defined by SLOT, into varpool. */
+
+static int
+update_varpool_with_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ new_var n_var = *(new_var *) slot;
+ tree var;
+ unsigned i;
+
+ FOR_EACH_VEC_ELT (tree, n_var->new_vars, i, var)
+ insert_global_to_varpool (var);
+ return 1;
+}
+
+/* This function prints a field access site, defined by SLOT. */
+
+static int
+dump_field_acc (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ struct field_access_site *f_acc =
+ *(struct field_access_site **) slot;
+
+ fprintf(dump_file, "\n");
+ if (f_acc->stmt)
+ print_gimple_stmt (dump_file, f_acc->stmt, 0, 0);
+ if (f_acc->ref_def_stmt)
+ print_gimple_stmt (dump_file, f_acc->ref_def_stmt, 0, 0);
+ if (f_acc->cast_stmt)
+ print_gimple_stmt (dump_file, f_acc->cast_stmt, 0, 0);
+ return 1;
+}
+
+/* Print field accesses from hashtable F_ACCS. */
+
+static void
+dump_field_acc_sites (htab_t f_accs)
+{
+ if (!dump_file)
+ return;
+
+ if (f_accs)
+ htab_traverse (f_accs, dump_field_acc, NULL);
+}
+
+/* Hash value for fallocs_t. */
+
+static hashval_t
+malloc_hash (const void *x)
+{
+ return htab_hash_pointer (((const_fallocs_t)x)->func);
+}
+
+/* This function returns nonzero if function of func_alloc_sites' X
+ is equal to Y. */
+
+static int
+malloc_eq (const void *x, const void *y)
+{
+ return ((const_fallocs_t)x)->func == (const_tree)y;
+}
+
+/* This function is a callback for traversal over a structure accesses.
+ It frees an access represented by SLOT. */
+
+static int
+free_accs (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ struct access_site * acc = *(struct access_site **) slot;
+
+ VEC_free (tree, heap, acc->vars);
+ free (acc);
+ return 1;
+}
+
+/* This is a callback function for traversal over field accesses.
+ It frees a field access represented by SLOT. */
+
+static int
+free_field_accs (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ struct field_access_site *f_acc = *(struct field_access_site **) slot;
+
+ free (f_acc);
+ return 1;
+}
+
+/* This function inserts TYPE into vector of UNSUITABLE_TYPES,
+ if it is not there yet. */
+
+static void
+add_unsuitable_type (VEC (tree, heap) **unsuitable_types, tree type)
+{
+ unsigned i;
+ tree t;
+
+ if (!type)
+ return;
+
+ type = TYPE_MAIN_VARIANT (type);
+
+ FOR_EACH_VEC_ELT (tree, *unsuitable_types, i, t)
+ if (is_equal_types (t, type))
+ break;
+
+ if (i == VEC_length (tree, *unsuitable_types))
+ VEC_safe_push (tree, heap, *unsuitable_types, type);
+}
+
+/* Given a type TYPE, this function returns the name of the type. */
+
+static const char *
+get_type_name (tree type)
+{
+ if (! TYPE_NAME (type))
+ return NULL;
+
+ if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
+ return IDENTIFIER_POINTER (TYPE_NAME (type));
+ else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
+ && DECL_NAME (TYPE_NAME (type)))
+ return IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
+ else
+ return NULL;
+}
+
+/* This function is a temporary hack to overcome the types problem.
+ When several compilation units are compiled together
+ with -combine, the TYPE_MAIN_VARIANT of the same type
+ can appear differently in different compilation units.
+ Therefore this function first compares type names.
+ If there are no names, structure bodies are recursively
+ compared. */
+
+static bool
+is_equal_types (tree type1, tree type2)
+{
+ const char * name1,* name2;
+
+ if ((!type1 && type2)
+ ||(!type2 && type1))
+ return false;
+
+ if (!type1 && !type2)
+ return true;
+
+ if (TREE_CODE (type1) != TREE_CODE (type2))
+ return false;
+
+ if (type1 == type2)
+ return true;
+
+ if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
+ return true;
+
+ name1 = get_type_name (type1);
+ name2 = get_type_name (type2);
+
+ if (name1 && name2)
+ return strcmp (name1, name2) == 0;
+
+ switch (TREE_CODE (type1))
+ {
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ {
+ return is_equal_types (TREE_TYPE (type1), TREE_TYPE (type2));
+ }
+ break;
+
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ case ENUMERAL_TYPE:
+ {
+ tree field1, field2;
+
+ /* Compare fields of structure. */
+ for (field1 = TYPE_FIELDS (type1), field2 = TYPE_FIELDS (type2);
+ field1 && field2;
+ field1 = TREE_CHAIN (field1), field2 = TREE_CHAIN (field2))
+ {
+ if (!compare_fields (field1, field2))
+ return false;
+ }
+ if (field1 || field2)
+ return false;
+ else
+ return true;
+ }
+ break;
+
+ case INTEGER_TYPE:
+ {
+ if (TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
+ && TYPE_PRECISION (type1) == TYPE_PRECISION (type2))
+ return true;
+ }
+ break;
+
+ case ARRAY_TYPE:
+ {
+ tree d1, d2;
+ tree max1, min1, max2, min2;
+
+ if (!is_equal_types (TREE_TYPE (type1), TREE_TYPE (type2)))
+ return false;
+
+ d1 = TYPE_DOMAIN (type1);
+ d2 = TYPE_DOMAIN (type2);
+
+ if (!d1 || !d2)
+ return false;
+
+ max1 = TYPE_MAX_VALUE (d1);
+ max2 = TYPE_MAX_VALUE (d2);
+ min1 = TYPE_MIN_VALUE (d1);
+ min2 = TYPE_MIN_VALUE (d2);
+
+ if (max1 && max2 && min1 && min2
+ && TREE_CODE (max1) == TREE_CODE (max2)
+ && TREE_CODE (max1) == INTEGER_CST
+ && TREE_CODE (min1) == TREE_CODE (min2)
+ && TREE_CODE (min1) == INTEGER_CST
+ && tree_int_cst_equal (max1, max2)
+ && tree_int_cst_equal (min1, min2))
+ return true;
+ }
+ break;
+
+ default:
+ gcc_unreachable();
+ }
+
+ return false;
+}
+
+/* This function free non-field accesses from hashtable ACCS. */
+
+static void
+free_accesses (htab_t accs)
+{
+ if (accs)
+ htab_traverse (accs, free_accs, NULL);
+ htab_delete (accs);
+}
+
+/* This function free field accesses hashtable F_ACCS. */
+
+static void
+free_field_accesses (htab_t f_accs)
+{
+ if (f_accs)
+ htab_traverse (f_accs, free_field_accs, NULL);
+ htab_delete (f_accs);
+}
+
+/* Update call graph with new edge generated by new MALLOC_STMT.
+ The edge origin is CONTEXT function. */
+
+static void
+update_cgraph_with_malloc_call (gimple malloc_stmt, tree context)
+{
+ struct cgraph_node *src, *dest;
+ tree malloc_fn_decl;
+
+ if (!malloc_stmt)
+ return;
+
+ malloc_fn_decl = gimple_call_fndecl (malloc_stmt);
+
+ src = cgraph_node (context);
+ dest = cgraph_node (malloc_fn_decl);
+ cgraph_create_edge (src, dest, malloc_stmt,
+ gimple_bb (malloc_stmt)->count,
+ compute_call_stmt_bb_frequency
+ (context, gimple_bb (malloc_stmt)),
+ gimple_bb (malloc_stmt)->loop_depth);
+}
+
+/* This function generates set of statements required
+ to allocate number NUM of structures of type NEW_TYPE.
+ The statements are stored in NEW_STMTS. The statement that contain
+ call to malloc is returned. MALLOC_STMT is an original call to malloc. */
+
+static gimple
+create_new_malloc (gimple malloc_stmt, tree new_type, gimple_seq *new_stmts,
+ tree num)
+{
+ tree new_malloc_size;
+ tree malloc_fn_decl;
+ gimple new_stmt;
+ tree malloc_res;
+ gimple call_stmt, final_stmt;
+ tree cast_res;
+
+ gcc_assert (num && malloc_stmt && new_type);
+ *new_stmts = gimple_seq_alloc ();
+
+ /* Generate argument to malloc as multiplication of num
+ and size of new_type. */
+ new_stmt = gen_size (num, new_type, &new_malloc_size);
+ gimple_seq_add_stmt (new_stmts, new_stmt);
+
+ /* Generate new call for malloc. */
+ malloc_res = create_tmp_var (ptr_type_node, NULL);
+ add_referenced_var (malloc_res);
+
+ malloc_fn_decl = gimple_call_fndecl (malloc_stmt);
+ call_stmt = gimple_build_call (malloc_fn_decl, 1, new_malloc_size);
+ gimple_call_set_lhs (call_stmt, malloc_res);
+ finalize_stmt_and_append (new_stmts, call_stmt);
+
+ /* Create new cast statement. */
+ final_stmt = get_final_alloc_stmt (malloc_stmt);
+ gcc_assert (final_stmt);
+ new_stmt = gen_cast_stmt (malloc_res, new_type, final_stmt, &cast_res);
+ gimple_seq_add_stmt (new_stmts, new_stmt);
+
+ return call_stmt;
+}
+
+/* This function returns a tree representing
+ the number of instances of structure STR_DECL allocated
+ by allocation STMT. If new statements are generated,
+ they are filled into NEW_STMTS_P. */
+
+static tree
+gen_num_of_structs_in_malloc (gimple stmt, tree str_decl,
+ gimple_seq *new_stmts_p)
+{
+ tree arg;
+ tree struct_size;
+ HOST_WIDE_INT struct_size_int;
+
+ if (!stmt)
+ return NULL_TREE;
+
+ /* Get malloc argument. */
+ if (!is_gimple_call (stmt))
+ return NULL_TREE;
+
+ arg = gimple_call_arg (stmt, 0);
+
+ if (TREE_CODE (arg) != SSA_NAME
+ && !TREE_CONSTANT (arg))
+ return NULL_TREE;
+
+ struct_size = TYPE_SIZE_UNIT (str_decl);
+ struct_size_int = TREE_INT_CST_LOW (struct_size);
+
+ gcc_assert (struct_size);
+
+ if (TREE_CODE (arg) == SSA_NAME)
+ {
+ tree num;
+ gimple div_stmt;
+
+ if (is_result_of_mult (arg, &num, struct_size))
+ return num;
+
+ num = create_tmp_var (integer_type_node, NULL);
+
+ if (num)
+ add_referenced_var (num);
+
+ if (exact_log2 (struct_size_int) == -1)
+ div_stmt = gimple_build_assign_with_ops (TRUNC_DIV_EXPR, num, arg,
+ struct_size);
+ else
+ {
+ tree C = build_int_cst (integer_type_node,
+ exact_log2 (struct_size_int));
+
+ div_stmt = gimple_build_assign_with_ops (RSHIFT_EXPR, num, arg, C);
+ }
+ gimple_seq_add_stmt (new_stmts_p, div_stmt);
+ finalize_stmt (div_stmt);
+ return num;
+ }
+
+ if (CONSTANT_CLASS_P (arg)
+ && multiple_of_p (TREE_TYPE (struct_size), arg, struct_size))
+ return int_const_binop (TRUNC_DIV_EXPR, arg, struct_size, 0);
+
+ return NULL_TREE;
+}
+
+/* This function is a callback for traversal on new_var's hashtable.
+ SLOT is a pointer to new_var. This function prints to dump_file
+ an original variable and all new variables from the new_var
+ pointed by *SLOT. */
+
+static int
+dump_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ new_var n_var = *(new_var *) slot;
+ tree var_type;
+ tree var;
+ unsigned i;
+
+ var_type = get_type_of_var (n_var->orig_var);
+
+ fprintf (dump_file, "\nOrig var: ");
+ print_generic_expr (dump_file, n_var->orig_var, 0);
+ fprintf (dump_file, " of type ");
+ print_generic_expr (dump_file, var_type, 0);
+ fprintf (dump_file, "\n");
+
+ for (i = 0;
+ VEC_iterate (tree, n_var->new_vars, i, var); i++)
+ {
+ var_type = get_type_of_var (var);
+
+ fprintf (dump_file, " ");
+ print_generic_expr (dump_file, var, 0);
+ fprintf (dump_file, " of type ");
+ print_generic_expr (dump_file, var_type, 0);
+ fprintf (dump_file, "\n");
+ }
+ return 1;
+}
+
+/* This function copies attributes form ORIG_DECL to NEW_DECL. */
+
+static inline void
+copy_decl_attributes (tree new_decl, tree orig_decl)
+{
+
+ DECL_ARTIFICIAL (new_decl) = 1;
+ DECL_EXTERNAL (new_decl) = DECL_EXTERNAL (orig_decl);
+ TREE_STATIC (new_decl) = TREE_STATIC (orig_decl);
+ TREE_PUBLIC (new_decl) = TREE_PUBLIC (orig_decl);
+ TREE_USED (new_decl) = TREE_USED (orig_decl);
+ DECL_CONTEXT (new_decl) = DECL_CONTEXT (orig_decl);
+ TREE_THIS_VOLATILE (new_decl) = TREE_THIS_VOLATILE (orig_decl);
+ TREE_ADDRESSABLE (new_decl) = TREE_ADDRESSABLE (orig_decl);
+
+ if (TREE_CODE (orig_decl) == VAR_DECL)
+ {
+ TREE_READONLY (new_decl) = TREE_READONLY (orig_decl);
+ DECL_TLS_MODEL (new_decl) = DECL_TLS_MODEL (orig_decl);
+ }
+}
+
+/* This function wraps NEW_STR_TYPE in pointers or arrays wrapper
+ the same way as a structure type is wrapped in DECL.
+ It returns the generated type. */
+
+static inline tree
+gen_struct_type (tree decl, tree new_str_type)
+{
+ tree type_orig = get_type_of_var (decl);
+ tree new_type = new_str_type;
+ VEC (type_wrapper_t, heap) *wrapper = VEC_alloc (type_wrapper_t, heap, 10);
+ type_wrapper_t wr;
+ type_wrapper_t *wr_p;
+
+ while (POINTER_TYPE_P (type_orig)
+ || TREE_CODE (type_orig) == ARRAY_TYPE)
+ {
+ if (POINTER_TYPE_P (type_orig))
+ {
+ wr.wrap = 0;
+ wr.domain = NULL_TREE;
+ }
+ else
+ {
+ gcc_assert (TREE_CODE (type_orig) == ARRAY_TYPE);
+ wr.wrap = 1;
+ wr.domain = TYPE_DOMAIN (type_orig);
+ }
+ VEC_safe_push (type_wrapper_t, heap, wrapper, &wr);
+ type_orig = TREE_TYPE (type_orig);
+ }
+
+ while (VEC_length (type_wrapper_t, wrapper) != 0)
+ {
+ wr_p = VEC_last (type_wrapper_t, wrapper);
+
+ if (wr_p->wrap) /* Array. */
+ new_type = build_array_type (new_type, wr_p->domain);
+ else /* Pointer. */
+ new_type = build_pointer_type (new_type);
+
+ VEC_pop (type_wrapper_t, wrapper);
+ }
+
+ VEC_free (type_wrapper_t, heap, wrapper);
+ return new_type;
+}
+
+/* This function generates and returns new variable name based on
+ ORIG_DECL name, combined with index I.
+ The form of the new name is <orig_name>.<I> . */
+
+static tree
+gen_var_name (tree orig_decl, unsigned HOST_WIDE_INT i)
+{
+ const char *old_name;
+ char *prefix;
+ char *new_name;
+
+ if (!DECL_NAME (orig_decl)
+ || !IDENTIFIER_POINTER (DECL_NAME (orig_decl)))
+ return NULL;
+
+ /* If the original variable has a name, create an
+ appropriate new name for the new variable. */
+
+ old_name = IDENTIFIER_POINTER (DECL_NAME (orig_decl));
+ prefix = XALLOCAVEC (char, strlen (old_name) + 1);
+ strcpy (prefix, old_name);
+ ASM_FORMAT_PRIVATE_NAME (new_name, prefix, i);
+ return get_identifier (new_name);
+}
+
+/* This function adds NEW_NODE to hashtable of new_var's NEW_VARS_HTAB. */
+
+static void
+add_to_new_vars_htab (new_var new_node, htab_t new_vars_htab)
+{
+ void **slot;
+
+ slot = htab_find_slot_with_hash (new_vars_htab, new_node->orig_var,
+ DECL_UID (new_node->orig_var),
+ INSERT);
+ *slot = new_node;
+}
+
+/* This function creates and returns new_var_data node
+ with empty new_vars and orig_var equal to VAR. */
+
+static new_var
+create_new_var_node (tree var, d_str str)
+{
+ new_var node;
+
+ node = XNEW (struct new_var_data);
+ node->orig_var = var;
+ node->new_vars = VEC_alloc (tree, heap, VEC_length (tree, str->new_types));
+ return node;
+}
+
+/* Check whether the type of VAR is potential candidate for peeling.
+ Returns true if yes, false otherwise. If yes, TYPE_P will contain
+ candidate type. If VAR is initialized, the type of VAR will be added
+ to UNSUITABLE_TYPES. */
+
+static bool
+is_candidate (tree var, tree *type_p, VEC (tree, heap) **unsuitable_types)
+{
+ tree type;
+ bool initialized = false;
+
+ *type_p = NULL;
+
+ if (!var)
+ return false;
+
+ /* There is no support of initialized vars. */
+ if (TREE_CODE (var) == VAR_DECL
+ && DECL_INITIAL (var) != NULL_TREE)
+ initialized = true;
+
+ type = get_type_of_var (var);
+
+ if (type)
+ {
+ type = TYPE_MAIN_VARIANT (strip_type (type));
+ if (TREE_CODE (type) != RECORD_TYPE)
+ return false;
+ else
+ {
+ if (initialized && unsuitable_types && *unsuitable_types)
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file, "The type ");
+ print_generic_expr (dump_file, type, 0);
+ fprintf (dump_file, " is initialized...Excluded.");
+ }
+ add_unsuitable_type (unsuitable_types, type);
+ }
+ *type_p = type;
+ return true;
+ }
+ }
+ else
+ return false;
+}
+
+/* Hash value for field_access_site. */
+
+static hashval_t
+field_acc_hash (const void *x)
+{
+ return htab_hash_pointer (((const struct field_access_site *)x)->stmt);
+}
+
+/* This function returns nonzero if stmt of field_access_site X
+ is equal to Y. */
+
+static int
+field_acc_eq (const void *x, const void *y)
+{
+ return ((const struct field_access_site *)x)->stmt == (const_gimple)y;
+}
+
+/* This function prints an access site, defined by SLOT. */
+
+static int
+dump_acc (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ struct access_site *acc = *(struct access_site **) slot;
+ tree var;
+ unsigned i;
+
+ fprintf(dump_file, "\n");
+ if (acc->stmt)
+ print_gimple_stmt (dump_file, acc->stmt, 0, 0);
+ fprintf(dump_file, " : ");
+
+ FOR_EACH_VEC_ELT (tree, acc->vars, i, var)
+ {
+ print_generic_expr (dump_file, var, 0);
+ fprintf(dump_file, ", ");
+ }
+ return 1;
+}
+
+/* This function frees memory allocated for structure clusters,
+ starting from CLUSTER. */
+
+static void
+free_struct_cluster (struct field_cluster* cluster)
+{
+ if (cluster)
+ {
+ if (cluster->fields_in_cluster)
+ sbitmap_free (cluster->fields_in_cluster);
+ if (cluster->sibling)
+ free_struct_cluster (cluster->sibling);
+ free (cluster);
+ }
+}
+
+/* Free all allocated memory under the structure node pointed by D_NODE. */
+
+static void
+free_data_struct (d_str d_node)
+{
+ int i;
+
+ if (!d_node)
+ return;
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nRemoving data structure \"");
+ print_generic_expr (dump_file, d_node->decl, 0);
+ fprintf (dump_file, "\" from data_struct_list.");
+ }
+
+ /* Free all space under d_node. */
+ if (d_node->fields)
+ {
+ for (i = 0; i < d_node->num_fields; i++)
+ free_field_accesses (d_node->fields[i].acc_sites);
+ free (d_node->fields);
+ }
+
+ if (d_node->accs)
+ free_accesses (d_node->accs);
+
+ if (d_node->struct_clustering)
+ free_struct_cluster (d_node->struct_clustering);
+
+ if (d_node->new_types)
+ VEC_free (tree, heap, d_node->new_types);
+}
+
+/* This function creates new general and field accesses in BB. */
+
+static void
+create_new_accesses_in_bb (basic_block bb)
+{
+ d_str str;
+ unsigned i;
+
+ FOR_EACH_VEC_ELT (structure, structures, i, str)
+ create_new_accs_for_struct (str, bb);
+}
+
+/* This function adds allocation sites for peeled structures.
+ M_DATA is vector of allocation sites of function CONTEXT. */
+
+static void
+create_new_alloc_sites (fallocs_t m_data, tree context)
+{
+ alloc_site_t *call;
+ unsigned j;
+
+ FOR_EACH_VEC_ELT (alloc_site_t, m_data->allocs, j, call)
+ {
+ gimple stmt = call->stmt;
+ d_str str = call->str;
+ tree num;
+ gimple_seq new_stmts = NULL;
+ gimple last_stmt = get_final_alloc_stmt (stmt);
+ unsigned i;
+ tree type;
+
+ num = gen_num_of_structs_in_malloc (stmt, str->decl, &new_stmts);
+ if (new_stmts)
+ {
+ gimple last_stmt_tmp = gimple_seq_last_stmt (new_stmts);
+ insert_seq_after_stmt (last_stmt, new_stmts);
+ last_stmt = last_stmt_tmp;
+ }
+
+ /* Generate an allocation sites for each new structure type. */
+ FOR_EACH_VEC_ELT (tree, str->new_types, i, type)
+ {
+ gimple new_malloc_stmt = NULL;
+ gimple last_stmt_tmp = NULL;
+
+ new_stmts = NULL;
+ new_malloc_stmt = create_new_malloc (stmt, type, &new_stmts, num);
+ last_stmt_tmp = gimple_seq_last_stmt (new_stmts);
+ insert_seq_after_stmt (last_stmt, new_stmts);
+ update_cgraph_with_malloc_call (new_malloc_stmt, context);
+ last_stmt = last_stmt_tmp;
+ }
+ }
+}
+
+/* This function prints new variables from hashtable
+ NEW_VARS_HTAB to dump_file. */
+
+static void
+dump_new_vars (htab_t new_vars_htab)
+{
+ if (!dump_file)
+ return;
+
+ if (new_vars_htab)
+ htab_traverse (new_vars_htab, dump_new_var, NULL);
+}
+
+/* Given an original variable ORIG_DECL of structure type STR,
+ this function generates new variables of the types defined
+ by STR->new_type. Generated types are saved in new_var node NODE.
+ ORIG_DECL should has VAR_DECL tree_code. */
+
+static void
+create_new_var_1 (tree orig_decl, d_str str, new_var node)
+{
+ unsigned i;
+ tree type;
+
+ for (i = 0;
+ VEC_iterate (tree, str->new_types, i, type); i++)
+ {
+ tree new_decl = NULL;
+ tree new_name;
+
+ new_name = gen_var_name (orig_decl, i);
+ type = gen_struct_type (orig_decl, type);
+
+ if (is_global_var (orig_decl))
+ new_decl = build_decl (DECL_SOURCE_LOCATION (orig_decl),
+ VAR_DECL, new_name, type);
+ else
+ {
+ const char *name = new_name ? IDENTIFIER_POINTER (new_name) : NULL;
+ new_decl = create_tmp_var (type, name);
+ }
+
+ copy_decl_attributes (new_decl, orig_decl);
+ VEC_safe_push (tree, heap, node->new_vars, new_decl);
+ }
+}
+
+/* This function creates new variables to
+ substitute the original variable VAR_DECL and adds
+ them to the new_var's hashtable NEW_VARS_HTAB. */
+
+static void
+create_new_var (tree var_decl, htab_t new_vars_htab)
+{
+ new_var node;
+ d_str str;
+ tree type;
+ unsigned i;
+
+ if (!var_decl || is_in_new_vars_htab (var_decl, new_vars_htab))
+ return;
+
+ if (!is_candidate (var_decl, &type, NULL))
+ return;
+
+ i = find_structure (type);
+ if (i == VEC_length (structure, structures))
+ return;
+
+ str = VEC_index (structure, structures, i);
+ node = create_new_var_node (var_decl, str);
+ create_new_var_1 (var_decl, str, node);
+ add_to_new_vars_htab (node, new_vars_htab);
+}
+
+/* Hash value for new_var. */
+
+static hashval_t
+new_var_hash (const void *x)
+{
+ return DECL_UID (((const_new_var)x)->orig_var);
+}
+
+/* This function returns nonzero if orig_var of new_var X
+ and tree Y have equal UIDs. */
+
+static int
+new_var_eq (const void *x, const void *y)
+{
+ if (DECL_P ((const_tree)y))
+ return DECL_UID (((const_new_var)x)->orig_var) == DECL_UID ((const_tree)y);
+ else
+ return 0;
+}
+
+/* This function check whether a structure type represented by STR
+ escapes due to ipa-type-escape analysis. If yes, this type is added
+ to UNSUITABLE_TYPES vector. */
+
+static void
+check_type_escape (d_str str, VEC (tree, heap) **unsuitable_types)
+{
+ tree type = str->decl;
+
+ if (!ipa_type_escape_type_contained_p (type))
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nEscaping type is ");
+ print_generic_expr (dump_file, type, 0);
+ }
+ add_unsuitable_type (unsuitable_types, type);
+ }
+}
+
+/* Hash value for access_site. */
+
+static hashval_t
+acc_hash (const void *x)
+{
+ return htab_hash_pointer (((const struct access_site *)x)->stmt);
+}
+
+/* Return nonzero if stmt of access_site X is equal to Y. */
+
+static int
+acc_eq (const void *x, const void *y)
+{
+ return ((const struct access_site *)x)->stmt == (const_gimple)y;
+}
+
+/* Given a structure declaration STRUCT_DECL, and number of fields
+ in the structure NUM_FIELDS, this function creates and returns
+ corresponding field_entry's. */
+
+static struct field_entry *
+get_fields (tree struct_decl, int num_fields)
+{
+ struct field_entry *list;
+ tree t = TYPE_FIELDS (struct_decl);
+ int idx = 0;
+
+ list = XNEWVEC (struct field_entry, num_fields);
+
+ for (idx = 0 ; t; t = TREE_CHAIN (t), idx++)
+ if (TREE_CODE (t) == FIELD_DECL)
+ {
+ list[idx].index = idx;
+ list[idx].decl = t;
+ list[idx].acc_sites =
+ htab_create (32, field_acc_hash, field_acc_eq, NULL);
+ list[idx].count = 0;
+ list[idx].field_mapping = NULL_TREE;
+ }
+
+ return list;
+}
+
+/* Print non-field accesses from hashtable ACCS of structure. */
+
+static void
+dump_access_sites (htab_t accs)
+{
+ if (!dump_file)
+ return;
+
+ if (accs)
+ htab_traverse (accs, dump_acc, NULL);
+}
+
+/* This function is a callback for alloc_sites hashtable
+ traversal. SLOT is a pointer to fallocs_t. This function
+ removes all allocations of the structure defined by DATA. */
+
+static int
+remove_str_allocs_in_func (void **slot, void *data)
+{
+ fallocs_t fallocs = *(fallocs_t *) slot;
+ unsigned i = 0;
+ alloc_site_t *call;
+
+ while (VEC_iterate (alloc_site_t, fallocs->allocs, i, call))
+ {
+ if (call->str == (d_str) data)
+ VEC_ordered_remove (alloc_site_t, fallocs->allocs, i);
+ else
+ i++;
+ }
+
+ return 1;
+}
+
+/* This function remove all entries corresponding to the STR structure
+ from alloc_sites hashtable. */
+
+static void
+remove_str_allocs (d_str str)
+{
+ if (!str)
+ return;
+
+ if (alloc_sites)
+ htab_traverse (alloc_sites, remove_str_allocs_in_func, str);
+}
+
+/* This function removes the structure with index I from structures vector. */
+
+static void
+remove_structure (unsigned i)
+{
+ d_str str;
+
+ if (i >= VEC_length (structure, structures))
+ return;
+
+ str = VEC_index (structure, structures, i);
+
+ /* Before removing the structure str, we have to remove its
+ allocations from alloc_sites hashtable. */
+ remove_str_allocs (str);
+ free_data_struct (str);
+ VEC_ordered_remove (structure, structures, i);
+}
+
+/* Currently we support only EQ_EXPR or NE_EXPR conditions.
+ COND_STMT is a condition statement to check. */
+
+static bool
+is_safe_cond_expr (gimple cond_stmt)
+{
+ tree arg0, arg1;
+ unsigned str0, str1;
+ bool s0, s1;
+ unsigned length = VEC_length (structure, structures);
+
+ if (gimple_cond_code (cond_stmt) != EQ_EXPR
+ && gimple_cond_code (cond_stmt) != NE_EXPR)
+ return false;
+
+ arg0 = gimple_cond_lhs (cond_stmt);
+ arg1 = gimple_cond_rhs (cond_stmt);
+
+ str0 = find_structure (strip_type (get_type_of_var (arg0)));
+ str1 = find_structure (strip_type (get_type_of_var (arg1)));
+
+ s0 = (str0 != length) ? true : false;
+ s1 = (str1 != length) ? true : false;
+
+ if (!s0 && !s1)
+ return false;
+
+ /* For now we allow only comparison with 0 or NULL. */
+ if (!integer_zerop (arg0) && !integer_zerop (arg1))
+ return false;
+
+ return true;
+}
+
+/* This function excludes statements, that are
+ part of allocation sites or field accesses, from the
+ hashtable of general accesses. SLOT represents general
+ access that will be checked. DATA is a pointer to
+ exclude_data structure. */
+
+static int
+exclude_from_accs (void **slot, void *data)
+{
+ struct access_site *acc = *(struct access_site **) slot;
+ tree fn_decl = ((struct exclude_data *)data)->fn_decl;
+ d_str str = ((struct exclude_data *)data)->str;
+
+ if (is_part_of_malloc (acc->stmt, fn_decl)
+ || is_part_of_field_access (acc->stmt, str))
+ {
+ VEC_free (tree, heap, acc->vars);
+ free (acc);
+ htab_clear_slot (str->accs, slot);
+ }
+ return 1;
+}
+
+/* Callback function for walk_tree called from collect_accesses_in_bb
+ function. DATA is the statement which is analyzed. */
+
+static tree
+get_stmt_accesses (tree *tp, int *walk_subtrees, void *data)
+{
+ struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
+ gimple stmt = (gimple) wi->info;
+ tree t = *tp;
+
+ if (!t)
+ return NULL;
+
+ switch (TREE_CODE (t))
+ {
+ case BIT_FIELD_REF:
+ {
+ tree var = TREE_OPERAND(t, 0);
+ tree type = TYPE_MAIN_VARIANT (strip_type (get_type_of_var (var)));
+ unsigned i = find_structure (type);
+
+ if (i != VEC_length (structure, structures))
+ {
+ if (is_gimple_debug (stmt))
+ {
+ d_str str;
+
+ str = VEC_index (structure, structures, i);
+ add_access_to_acc_sites (stmt, NULL, str->accs);
+ *walk_subtrees = 0;
+ break;
+ }
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nThe type ");
+ print_generic_expr (dump_file, type, 0);
+ fprintf (dump_file, " has bitfield.");
+ }
+ remove_structure (i);
+ }
+ }
+ break;
+
+ case COMPONENT_REF:
+ {
+ tree ref = TREE_OPERAND (t, 0);
+ tree field_decl = TREE_OPERAND (t, 1);
+
+
+ if ((TREE_CODE (ref) == MEM_REF
+ || TREE_CODE (ref) == ARRAY_REF
+ || TREE_CODE (ref) == VAR_DECL)
+ && TREE_CODE (field_decl) == FIELD_DECL)
+ {
+ tree type = TYPE_MAIN_VARIANT (TREE_TYPE (ref));
+ unsigned i = find_structure (type);
+
+ if (i != VEC_length (structure, structures))
+ {
+ d_str str = VEC_index (structure, structures, i);
+ struct field_entry * field =
+ find_field_in_struct (str, field_decl);
+
+ if (is_gimple_debug (stmt))
+ {
+ add_access_to_acc_sites (stmt, NULL, str->accs);
+ *walk_subtrees = 0;
+ break;
+ }
+
+ if (field)
+ {
+ struct field_access_site *acc = make_field_acc_node ();
+
+ gcc_assert (acc);
+
+ acc->stmt = stmt;
+ acc->comp_ref = t;
+ acc->ref = ref;
+ acc->field_decl = field_decl;
+
+ /* Check whether the access is of the form
+ we can deal with. */
+ if (!decompose_access (str->decl, acc))
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nThe type ");
+ print_generic_expr (dump_file, type, 0);
+ fprintf (dump_file,
+ " has complicate access in statement ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ }
+
+ remove_structure (i);
+ free (acc);
+ }
+ else
+ {
+ /* Increase count of field. */
+ basic_block bb = gimple_bb (stmt);
+ field->count += bb->count;
+
+ /* Add stmt to the acc_sites of field. */
+ add_field_acc_to_acc_sites (acc, field->acc_sites);
+ }
+ *walk_subtrees = 0;
+ }
+ }
+ }
+ }
+ break;
+
+ case COND_EXPR:
+ {
+ tree cond = COND_EXPR_COND (t);
+ int i;
+ for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (cond)); i++)
+ {
+ tree t = TREE_OPERAND (cond, i);
+
+ *walk_subtrees = 1;
+ walk_tree (&t, get_stmt_accesses, data, NULL);
+ }
+ *walk_subtrees = 0;
+ }
+ break;
+
+ case VAR_DECL:
+ case SSA_NAME:
+ {
+ unsigned i;
+
+ if (TREE_CODE (t) == SSA_NAME)
+ t = SSA_NAME_VAR (t);
+
+ i = find_structure (strip_type (get_type_of_var (t)));
+ if (i != VEC_length (structure, structures))
+ {
+ d_str str;
+
+ str = VEC_index (structure, structures, i);
+ add_access_to_acc_sites (stmt, t, str->accs);
+ }
+ *walk_subtrees = 0;
+ }
+ break;
+
+ default:
+ return NULL;
+ }
+
+ return NULL;
+}
+
+/* Free structures hashtable. */
+
+static void
+free_structures (void)
+{
+ d_str str;
+ unsigned i;
+
+ FOR_EACH_VEC_ELT (structure, structures, i, str)
+ free_data_struct (str);
+
+ VEC_free (structure, heap, structures);
+ structures = NULL;
+}
+
+/* This function is a callback for traversal over new_var's hashtable.
+ SLOT is a pointer to new_var. This function frees memory allocated
+ for new_var and pointed by *SLOT. */
+
+static int
+free_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ new_var n_var = *(new_var *) slot;
+
+ /* Free vector of new_vars. */
+ VEC_free (tree, heap, n_var->new_vars);
+ free (n_var);
+ return 1;
+}
+
+/* Free new_vars hashtable NEW_VARS_HTAB. */
+
+static void
+free_new_vars_htab (htab_t new_vars_htab)
+{
+ if (new_vars_htab)
+ htab_traverse (new_vars_htab, free_new_var, NULL);
+ htab_delete (new_vars_htab);
+ new_vars_htab = NULL;
+}
+
+/* This function creates new general and field accesses that appear in cfun. */
+
+static void
+create_new_accesses_for_func (void)
+{
+ basic_block bb;
+
+ FOR_EACH_BB_FN (bb, cfun)
+ create_new_accesses_in_bb (bb);
+}
+
+/* Create new allocation sites for the function represented by NODE. */
+
+static void
+create_new_alloc_sites_for_func (struct cgraph_node *node)
+{
+ fallocs_t fallocs = get_fallocs (node->decl);
+
+ if (fallocs)
+ create_new_alloc_sites (fallocs, node->decl);
+}
+
+/* For each local variable of structure type from the vector of structures
+ this function generates new variable(s) to replace it. */
+
+static void
+create_new_local_vars (void)
+{
+ tree var;
+ referenced_var_iterator rvi;
+
+ new_local_vars = htab_create (num_referenced_vars,
+ new_var_hash, new_var_eq, NULL);
+
+ FOR_EACH_REFERENCED_VAR (cfun, var, rvi)
+ {
+ if (!is_global_var (var))
+ create_new_var (var, new_local_vars);
+ }
+
+ if (new_local_vars)
+ htab_traverse (new_local_vars, finalize_new_vars_creation, NULL);
+ dump_new_vars (new_local_vars);
+}
+
+/* This function prints the SHIFT number of spaces to the DUMP_FILE. */
+
+static inline void
+print_shift (unsigned HOST_WIDE_INT shift)
+{
+ unsigned HOST_WIDE_INT sh = shift;
+
+ while (sh--)
+ fprintf (dump_file, " ");
+}
+
+/* This function updates field_mapping of FIELDS in CLUSTER with NEW_TYPE. */
+
+static inline void
+update_fields_mapping (struct field_cluster *cluster, tree new_type,
+ struct field_entry * fields, int num_fields)
+{
+ int i;
+
+ for (i = 0; i < num_fields; i++)
+ if (TEST_BIT (cluster->fields_in_cluster, i))
+ fields[i].field_mapping = new_type;
+}
+
+/* This functions builds structure with FIELDS,
+ NAME and attributes similar to ORIG_STRUCT.
+ It returns the newly created structure. */
+
+static tree
+build_basic_struct (tree fields, tree name, tree orig_struct)
+{
+ tree attributes = NULL_TREE;
+ tree ref = 0;
+ tree x;
+
+ if (TYPE_ATTRIBUTES (orig_struct))
+ attributes = unshare_expr (TYPE_ATTRIBUTES (orig_struct));
+ ref = make_node (RECORD_TYPE);
+ TYPE_SIZE (ref) = 0;
+ decl_attributes (&ref, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
+ TYPE_PACKED (ref) = TYPE_PACKED (orig_struct);
+ for (x = fields; x; x = TREE_CHAIN (x))
+ {
+ DECL_CONTEXT (x) = ref;
+ DECL_PACKED (x) |= TYPE_PACKED (ref);
+ }
+ TYPE_FIELDS (ref) = fields;
+ layout_type (ref);
+ TYPE_NAME (ref) = name;
+
+ return ref;
+}
+
+/* This function copies FIELDS from CLUSTER into TREE_CHAIN as part
+ of preparation for new structure building. NUM_FIELDS is a total
+ number of fields in the structure. The function returns newly
+ generated fields. */
+
+static tree
+create_fields (struct field_cluster * cluster,
+ struct field_entry * fields, int num_fields)
+{
+ int i;
+ tree new_types = NULL_TREE;
+ tree last = NULL_TREE;
+
+ for (i = 0; i < num_fields; i++)
+ if (TEST_BIT (cluster->fields_in_cluster, i))
+ {
+ tree new_decl = unshare_expr (fields[i].decl);
+
+ if (!new_types)
+ new_types = new_decl;
+ else
+ TREE_CHAIN (last) = new_decl;
+ last = new_decl;
+ }
+
+ TREE_CHAIN (last) = NULL_TREE;
+ return new_types;
+
+}
+
+/* This function creates a cluster name. The name is based on
+ the original structure name, if it is present. It has a form:
+
+ <original_struct_name>_sub.<CLUST_NUM>
+
+ The original structure name is taken from the type of DECL.
+ If an original structure name is not present, it's generated to be:
+
+ struct.<STR_NUM>
+
+ The function returns identifier of the new cluster name. */
+
+static inline tree
+gen_cluster_name (tree decl, int clust_num, int str_num)
+{
+ const char * orig_name = get_type_name (decl);
+ char * tmp_name = NULL;
+ char * prefix;
+ char * new_name;
+ size_t len;
+
+ if (!orig_name)
+ ASM_FORMAT_PRIVATE_NAME(tmp_name, "struct", str_num);
+
+ len = strlen (tmp_name ? tmp_name : orig_name) + strlen ("_sub");
+ prefix = XALLOCAVEC (char, len + 1);
+ memcpy (prefix, tmp_name ? tmp_name : orig_name,
+ strlen (tmp_name ? tmp_name : orig_name));
+ strcpy (prefix + strlen (tmp_name ? tmp_name : orig_name), "_sub");
+
+ ASM_FORMAT_PRIVATE_NAME (new_name, prefix, clust_num);
+ return get_identifier (new_name);
+}
+
+/* This function checks whether the structure STR has bitfields.
+ If yes, this structure type is added to UNSUITABLE_TYPES vector. */
+
+static void
+check_bitfields (d_str str, VEC (tree, heap) **unsuitable_types)
+{
+ tree type = str->decl;
+ int i;
+
+ for (i = 0; i < str->num_fields; i++)
+ if (DECL_BIT_FIELD (str->fields[i].decl))
+ {
+ add_unsuitable_type (unsuitable_types, type);
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nType ");
+ print_generic_expr (dump_file, type, 0);
+ fprintf (dump_file, "\nescapes due to bitfield ");
+ print_generic_expr (dump_file, str->fields[i].decl, 0);
+ }
+ break;
+ }
+}
+
+/* This function adds to UNSUITABLE_TYPES those types that escape
+ due to results of ipa-type-escape analysis. See ipa-type-escape.[c,h]. */
+
+static void
+exclude_escaping_types_1 (VEC (tree, heap) **unsuitable_types)
+{
+ d_str str;
+ unsigned i;
+
+ FOR_EACH_VEC_ELT (structure, structures, i, str)
+ check_type_escape (str, unsuitable_types);
+}
+
+/* If a structure type is a return type of any function,
+ we cannot transform it. Such type is added to UNSUITABLE_TYPES vector. */
+
+static void
+exclude_returned_types (VEC (tree, heap) **unsuitable_types)
+{
+ struct cgraph_node *c_node;
+
+ for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
+ {
+ tree ret_t = TREE_TYPE (TREE_TYPE (c_node->decl));
+
+ if (ret_t)
+ {
+ ret_t = strip_type (ret_t);
+ if (TREE_CODE (ret_t) == RECORD_TYPE)
+ {
+ add_unsuitable_type (unsuitable_types, TYPE_MAIN_VARIANT (ret_t));
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nThe type \"");
+ print_generic_expr (dump_file, ret_t, 0);
+ fprintf (dump_file,
+ "\" is return type of function...Excluded.");
+ }
+ }
+ }
+ }
+}
+
+/* This function looks for parameters of local functions
+ which are of structure types, or derived from them (arrays
+ of structures, pointers to structures, or their combinations).
+ We are not handling peeling of such structures right now.
+ The found structures types are added to UNSUITABLE_TYPES vector. */
+
+static void
+exclude_types_passed_to_local_func (VEC (tree, heap) **unsuitable_types)
+{
+ struct cgraph_node *c_node;
+
+ for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
+ if (cgraph_function_body_availability (c_node) == AVAIL_LOCAL)
+ {
+ tree fn = c_node->decl;
+ tree arg;
+
+ for (arg = DECL_ARGUMENTS (fn); arg; arg = DECL_CHAIN (arg))
+ {
+ tree type = TREE_TYPE (arg);
+
+ type = strip_type (type);
+ if (TREE_CODE (type) == RECORD_TYPE)
+ {
+ add_unsuitable_type (unsuitable_types,
+ TYPE_MAIN_VARIANT (type));
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nPointer to type \"");
+ print_generic_expr (dump_file, type, 0);
+ fprintf (dump_file,
+ "\" is passed to local function...Excluded.");
+ }
+ }
+ }
+ }
+}
+
+/* This function analyzes structure form of structures
+ potential for transformation. If we are not capable to transform
+ structure of some form, we remove it from the structures hashtable.
+ Right now we cannot handle nested structs, when nesting is
+ through any level of pointers or arrays.
+
+ TBD: release these constrains in future.
+
+ Note, that in this function we suppose that all structures
+ in the program are members of the structures hashtable right now,
+ without excluding escaping types. */
+
+static void
+check_struct_form (d_str str, VEC (tree, heap) **unsuitable_types)
+{
+ int i;
+
+ for (i = 0; i < str->num_fields; i++)
+ {
+ tree f_type = strip_type(TREE_TYPE (str->fields[i].decl));
+
+ if (TREE_CODE (f_type) == RECORD_TYPE)
+ {
+ add_unsuitable_type (unsuitable_types, TYPE_MAIN_VARIANT (f_type));
+ add_unsuitable_type (unsuitable_types, str->decl);
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nType ");
+ print_generic_expr (dump_file, f_type, 0);
+ fprintf (dump_file, " is a field in the structure ");
+ print_generic_expr (dump_file, str->decl, 0);
+ fprintf (dump_file, ". Escaping...");
+ }
+ }
+ }
+}
+
+/* This function adds a structure TYPE to the vector of structures,
+ if it's not already there. */
+
+static void
+add_structure (tree type)
+{
+ struct data_structure node;
+ unsigned i;
+ int num_fields;
+
+ type = TYPE_MAIN_VARIANT (type);
+
+ i = find_structure (type);
+
+ if (i != VEC_length (structure, structures))
+ return;
+
+ num_fields = fields_length (type);
+ node.decl = type;
+ node.num_fields = num_fields;
+ node.fields = get_fields (type, num_fields);
+ node.struct_clustering = NULL;
+ node.accs = htab_create (32, acc_hash, acc_eq, NULL);
+ node.new_types = VEC_alloc (tree, heap, num_fields);
+ node.count = 0;
+
+ VEC_safe_push (structure, heap, structures, &node);
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nAdding data structure \"");
+ print_generic_expr (dump_file, type, 0);
+ fprintf (dump_file, "\" to data_struct_list.");
+ }
+}
+
+/* This function adds an allocation site to alloc_sites hashtable.
+ The allocation site appears in STMT of function FN_DECL and
+ allocates the structure represented by STR. */
+
+static void
+add_alloc_site (tree fn_decl, gimple stmt, d_str str)
+{
+ fallocs_t fallocs = NULL;
+ alloc_site_t m_call;
+
+ m_call.stmt = stmt;
+ m_call.str = str;
+
+ fallocs =
+ (fallocs_t) htab_find_with_hash (alloc_sites,
+ fn_decl, htab_hash_pointer (fn_decl));
+
+ if (!fallocs)
+ {
+ void **slot;
+
+ fallocs = XNEW (struct func_alloc_sites);
+ fallocs->func = fn_decl;
+ fallocs->allocs = VEC_alloc (alloc_site_t, heap, 1);
+ slot = htab_find_slot_with_hash (alloc_sites, fn_decl,
+ htab_hash_pointer (fn_decl), INSERT);
+ *slot = fallocs;
+ }
+ VEC_safe_push (alloc_site_t, heap,
+ fallocs->allocs, &m_call);
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nAdding stmt ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ fprintf (dump_file, " to list of mallocs.");
+ }
+}
+
+/* This function returns true if the result of STMT, that contains a call
+ to an allocation function, is cast to one of the structure types.
+ STMT should be of the form: T.2 = <alloc_func> (T.1);
+ If true, I_P contains an index of an allocated structure.
+ Otherwise I_P contains the length of the vector of structures. */
+
+static bool
+is_alloc_of_struct (gimple stmt, unsigned *i_p)
+{
+ tree lhs;
+ tree type;
+ gimple final_stmt;
+
+ final_stmt = get_final_alloc_stmt (stmt);
+
+ if (!final_stmt)
+ return false;
+
+ /* final_stmt should be of the form:
+ T.3 = (struct_type *) T.2; */
+
+ if (gimple_code (final_stmt) != GIMPLE_ASSIGN)
+ return false;
+
+ lhs = gimple_assign_lhs (final_stmt);
+
+ type = get_type_of_var (lhs);
+
+ if (!type)
+ return false;
+
+ if (!POINTER_TYPE_P (type)
+ || TREE_CODE (strip_type (type)) != RECORD_TYPE)
+ return false;
+
+ *i_p = find_structure (strip_type (type));
+
+ if (*i_p == VEC_length (structure, structures))
+ return false;
+
+ return true;
+}
+
+/* This function prints non-field and field accesses
+ of the structure STR. */
+
+static void
+dump_accs (d_str str)
+{
+ int i;
+
+ fprintf (dump_file, "\nAccess sites of struct ");
+ print_generic_expr (dump_file, str->decl, 0);
+
+ for (i = 0; i < str->num_fields; i++)
+ {
+ fprintf (dump_file, "\nAccess site of field ");
+ print_generic_expr (dump_file, str->fields[i].decl, 0);
+ dump_field_acc_sites (str->fields[i].acc_sites);
+ fprintf (dump_file, ":\n");
+ }
+ fprintf (dump_file, "\nGeneral access sites\n");
+ dump_access_sites (str->accs);
+}
+
+/* This function checks whether an access statement, pointed by SLOT,
+ is a condition we are capable to transform. It returns false if not,
+ setting bool *DATA to false. */
+
+static int
+safe_cond_expr_check (void **slot, void *data)
+{
+ struct access_site *acc = *(struct access_site **) slot;
+
+ if (gimple_code (acc->stmt) == GIMPLE_COND
+ && !is_safe_cond_expr (acc->stmt))
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nUnsafe conditional statement ");
+ print_gimple_stmt (dump_file, acc->stmt, 0, 0);
+ }
+ *(bool *) data = false;
+ return 0;
+ }
+ return 1;
+}
+
+/* This function excludes statements that are part of allocation sites and
+ field accesses from the hashtable of general accesses of the structure
+ type STR. Only accesses that belong to the function represented by
+ NODE are treated. */
+
+static void
+exclude_alloc_and_field_accs_1 (d_str str, struct cgraph_node *node)
+{
+ struct exclude_data dt;
+ dt.str = str;
+ dt.fn_decl = node->decl;
+
+ if (dt.str->accs)
+ htab_traverse (dt.str->accs, exclude_from_accs, &dt);
+}
+
+/* Collect accesses to the structure types that appear in basic block BB. */
+
+static void
+collect_accesses_in_bb (basic_block bb)
+{
+ gimple_stmt_iterator bsi;
+ struct walk_stmt_info wi;
+
+ memset (&wi, 0, sizeof (wi));
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ {
+ gimple stmt = gsi_stmt (bsi);
+
+ /* In asm stmt we cannot always track the arguments,
+ so we just give up. */
+ if (gimple_code (stmt) == GIMPLE_ASM)
+ {
+ free_structures ();
+ break;
+ }
+
+ wi.info = (void *) stmt;
+ walk_gimple_op (stmt, get_stmt_accesses, &wi);
+ }
+}
+
+/* This function generates cluster substructure that contains FIELDS.
+ The cluster added to the set of clusters of the structure STR. */
+
+static void
+gen_cluster (sbitmap fields, d_str str)
+{
+ struct field_cluster *crr_cluster = XCNEW (struct field_cluster);
+
+ crr_cluster->sibling = str->struct_clustering;
+ str->struct_clustering = crr_cluster;
+ crr_cluster->fields_in_cluster = fields;
+}
+
+/* This function peels a field with the index I from the structure DS. */
+
+static void
+peel_field (int i, d_str ds)
+{
+ struct field_cluster *crr_cluster = XCNEW (struct field_cluster);
+
+ crr_cluster->sibling = ds->struct_clustering;
+ ds->struct_clustering = crr_cluster;
+ crr_cluster->fields_in_cluster =
+ sbitmap_alloc ((unsigned int) ds->num_fields);
+ sbitmap_zero (crr_cluster->fields_in_cluster);
+ SET_BIT (crr_cluster->fields_in_cluster, i);
+}
+
+/* This function calculates maximum field count in
+ the structure STR. */
+
+static gcov_type
+get_max_field_count (d_str str)
+{
+ gcov_type max = 0;
+ int i;
+
+ for (i = 0; i < str->num_fields; i++)
+ if (str->fields[i].count > max)
+ max = str->fields[i].count;
+
+ return max;
+}
+
+/* Do struct-reorg transformation for individual function
+ represented by NODE. All structure types relevant
+ for this function are transformed. */
+
+static void
+do_reorg_for_func (struct cgraph_node *node)
+{
+ create_new_local_vars ();
+ create_new_alloc_sites_for_func (node);
+ create_new_accesses_for_func ();
+ update_ssa (TODO_update_ssa);
+ cleanup_tree_cfg ();
+ cgraph_rebuild_references ();
+
+ /* Free auxiliary data representing local variables. */
+ free_new_vars_htab (new_local_vars);
+}
+
+/* Print structure TYPE, its name, if it exists, and body.
+ INDENT defines the level of indentation (similar
+ to the option -i of indent command). SHIFT parameter
+ defines a number of spaces by which a structure will
+ be shifted right. */
+
+static void
+dump_struct_type (tree type, unsigned HOST_WIDE_INT indent,
+ unsigned HOST_WIDE_INT shift)
+{
+ const char *struct_name;
+ tree field;
+
+ if (!type || !dump_file)
+ return;
+
+ if (TREE_CODE (type) != RECORD_TYPE)
+ {
+ print_generic_expr (dump_file, type, 0);
+ return;
+ }
+
+ print_shift (shift);
+ struct_name = get_type_name (type);
+ fprintf (dump_file, "struct ");
+ if (struct_name)
+ fprintf (dump_file, "%s\n",struct_name);
+ print_shift (shift);
+ fprintf (dump_file, "{\n");
+
+ for (field = TYPE_FIELDS (type); field;
+ field = TREE_CHAIN (field))
+ {
+ unsigned HOST_WIDE_INT s = indent;
+ tree f_type = TREE_TYPE (field);
+
+ print_shift (shift);
+ while (s--)
+ fprintf (dump_file, " ");
+ dump_struct_type (f_type, indent, shift + indent);
+ fprintf(dump_file, " ");
+ print_generic_expr (dump_file, field, 0);
+ fprintf(dump_file, ";\n");
+ }
+ print_shift (shift);
+ fprintf (dump_file, "}\n");
+}
+
+/* This function creates new structure types to replace original type,
+ indicated by STR->decl. The names of the new structure types are
+ derived from the original structure type. If the original structure
+ type has no name, we assume that its name is 'struct.<STR_NUM>'. */
+
+static void
+create_new_type (d_str str, int *str_num)
+{
+ int cluster_num = 0;
+
+ struct field_cluster *cluster = str->struct_clustering;
+ while (cluster)
+ {
+ tree name = gen_cluster_name (str->decl, cluster_num,
+ *str_num);
+ tree fields;
+ tree new_type;
+ cluster_num++;
+
+ fields = create_fields (cluster, str->fields,
+ str->num_fields);
+ new_type = build_basic_struct (fields, name, str->decl);
+
+ update_fields_mapping (cluster, new_type,
+ str->fields, str->num_fields);
+
+ VEC_safe_push (tree, heap, str->new_types, new_type);
+ cluster = cluster->sibling;
+ }
+ (*str_num)++;
+}
+
+/* This function is a callback for alloc_sites hashtable
+ traversal. SLOT is a pointer to fallocs_t.
+ This function frees memory pointed by *SLOT. */
+
+static int
+free_falloc_sites (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ fallocs_t fallocs = *(fallocs_t *) slot;
+
+ VEC_free (alloc_site_t, heap, fallocs->allocs);
+ free (fallocs);
+ return 1;
+}
+
+/* Remove structures collected in UNSUITABLE_TYPES
+ from structures vector. */
+
+static void
+remove_unsuitable_types (VEC (tree, heap) *unsuitable_types)
+{
+ d_str str;
+ tree type;
+ unsigned i, j;
+
+ FOR_EACH_VEC_ELT (tree, unsuitable_types, j, type)
+ FOR_EACH_VEC_ELT (structure, structures, i, str)
+ if (is_equal_types (str->decl, type))
+ {
+ remove_structure (i);
+ break;
+ }
+}
+
+/* Exclude structure types with bitfields.
+ We would not want to interfere with other optimizations
+ that can be done in this case. The structure types with
+ bitfields are added to UNSUITABLE_TYPES vector. */
+
+static void
+exclude_types_with_bit_fields (VEC (tree, heap) **unsuitable_types)
+{
+ d_str str;
+ unsigned i;
+
+ FOR_EACH_VEC_ELT (structure, structures, i, str)
+ check_bitfields (str, unsuitable_types);
+}
+
+/* This function checks three types of escape. A structure type escapes:
+
+ 1. if it's a type of parameter of a local function.
+ 2. if it's a type of function return value.
+ 3. if it escapes as a result of ipa-type-escape analysis.
+
+ The escaping structure types are added to UNSUITABLE_TYPES vector. */
+
+static void
+exclude_escaping_types (VEC (tree, heap) **unsuitable_types)
+{
+ exclude_types_passed_to_local_func (unsuitable_types);
+ exclude_returned_types (unsuitable_types);
+ exclude_escaping_types_1 (unsuitable_types);
+}
+
+/* This function analyzes whether the form of
+ structure is such that we are capable to transform it.
+ Nested structures are checked here. Unsuitable structure
+ types are added to UNSUITABLE_TYPE vector. */
+
+static void
+analyze_struct_form (VEC (tree, heap) **unsuitable_types)
+{
+ d_str str;
+ unsigned i;
+
+ FOR_EACH_VEC_ELT (structure, structures, i, str)
+ check_struct_form (str, unsuitable_types);
+}
+
+/* This function looks for structure types instantiated in the program.
+ The candidate types are added to the structures vector.
+ Unsuitable types are collected into UNSUITABLE_TYPES vector. */
+
+static void
+build_data_structure (VEC (tree, heap) **unsuitable_types)
+{
+ tree var, type;
+ struct varpool_node *current_varpool;
+ struct cgraph_node *c_node;
+
+ /* Check global variables. */
+ FOR_EACH_STATIC_VARIABLE (current_varpool)
+ {
+ var = current_varpool->decl;
+ if (is_candidate (var, &type, unsuitable_types))
+ add_structure (type);
+ }
+
+ /* Now add structures that are types of function parameters and
+ local variables. */
+ for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
+ {
+ enum availability avail =
+ cgraph_function_body_availability (c_node);
+
+ /* We need AVAIL_AVAILABLE for main function. */
+ if (avail == AVAIL_LOCAL || avail == AVAIL_AVAILABLE)
+ {
+ struct function *fn = DECL_STRUCT_FUNCTION (c_node->decl);
+ unsigned ix;
+
+ for (var = DECL_ARGUMENTS (c_node->decl); var;
+ var = TREE_CHAIN (var))
+ if (is_candidate (var, &type, unsuitable_types))
+ add_structure (type);
+
+ if (fn == NULL)
+ {
+ /* Skip cones that haven't been materialized yet. */
+ gcc_assert (c_node->clone_of
+ && c_node->clone_of->decl != c_node->decl);
+ continue;
+ }
+
+ /* Check function local variables. */
+ FOR_EACH_LOCAL_DECL (fn, ix, var)
+ if (is_candidate (var, &type, unsuitable_types))
+ add_structure (type);
+ }
+ }
+}
+
+/* This function returns true if the program contains
+ a call to user defined allocation function, or other
+ functions that can interfere with struct-reorg optimizations. */
+
+static bool
+program_redefines_malloc_p (void)
+{
+ struct cgraph_node *c_node;
+ struct cgraph_node *c_node2;
+ struct cgraph_edge *c_edge;
+ tree fndecl2;
+
+ for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
+ {
+ for (c_edge = c_node->callees; c_edge; c_edge = c_edge->next_callee)
+ {
+ c_node2 = c_edge->callee;
+ fndecl2 = c_node2->decl;
+ if (is_gimple_call (c_edge->call_stmt))
+ {
+ const char * fname = get_name (fndecl2);
+
+ if ((gimple_call_flags (c_edge->call_stmt) & ECF_MALLOC)
+ && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_MALLOC)
+ && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_CALLOC)
+ && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_ALLOCA))
+ return true;
+
+ /* Check that there is no __builtin_object_size,
+ __builtin_offsetof, or realloc's in the program. */
+ if (DECL_FUNCTION_CODE (fndecl2) == BUILT_IN_OBJECT_SIZE
+ || !strcmp (fname, "__builtin_offsetof")
+ || !strcmp (fname, "realloc"))
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+/* In this function we assume that an allocation statement
+
+ var = (type_cast) malloc (size);
+
+ is converted into the following set of statements:
+
+ T.1 = size;
+ T.2 = malloc (T.1);
+ T.3 = (type_cast) T.2;
+ var = T.3;
+
+ In this function we collect into alloc_sites the allocation
+ sites of variables of structure types that are present
+ in structures vector. */
+
+static void
+collect_alloc_sites (void)
+{
+ struct cgraph_node *node;
+ struct cgraph_edge *cs;
+
+ for (node = cgraph_nodes; node; node = node->next)
+ if (node->analyzed && node->decl)
+ {
+ for (cs = node->callees; cs; cs = cs->next_callee)
+ {
+ gimple stmt = cs->call_stmt;
+
+ if (stmt)
+ {
+ tree decl;
+
+ if (is_gimple_call (stmt)
+ && (decl = gimple_call_fndecl (stmt))
+ && gimple_call_lhs (stmt))
+ {
+ unsigned i;
+
+ if (is_alloc_of_struct (stmt, &i))
+ {
+ /* We support only malloc now. */
+ if (DECL_FUNCTION_CODE (decl) == BUILT_IN_MALLOC)
+ {
+ d_str str;
+
+ str = VEC_index (structure, structures, i);
+ add_alloc_site (node->decl, stmt, str);
+ }
+ else
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file,
+ "\nUnsupported allocation function ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ }
+ remove_structure (i);
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+/* Print collected accesses. */
+
+static void
+dump_accesses (void)
+{
+ d_str str;
+ unsigned i;
+
+ if (!dump_file)
+ return;
+
+ FOR_EACH_VEC_ELT (structure, structures, i, str)
+ dump_accs (str);
+}
+
+/* This function checks whether the accesses of structures in condition
+ expressions are of the kind we are capable to transform.
+ If not, such structures are removed from the vector of structures. */
+
+static void
+check_cond_exprs (void)
+{
+ d_str str;
+ unsigned i;
+
+ i = 0;
+ while (VEC_iterate (structure, structures, i, str))
+ {
+ bool safe_p = true;
+
+ if (str->accs)
+ htab_traverse (str->accs, safe_cond_expr_check, &safe_p);
+ if (!safe_p)
+ remove_structure (i);
+ else
+ i++;
+ }
+}
+
+/* We exclude from non-field accesses of the structure
+ all statements that will be treated as part of the structure
+ allocation sites or field accesses. */
+
+static void
+exclude_alloc_and_field_accs (struct cgraph_node *node)
+{
+ d_str str;
+ unsigned i;
+
+ FOR_EACH_VEC_ELT (structure, structures, i, str)
+ exclude_alloc_and_field_accs_1 (str, node);
+}
+
+/* This function collects accesses of the fields of the structures
+ that appear at function FN. */
+
+static void
+collect_accesses_in_func (struct function *fn)
+{
+ basic_block bb;
+
+ if (! fn)
+ return;
+
+ /* Collect accesses for each basic blocks separately. */
+ FOR_EACH_BB_FN (bb, fn)
+ collect_accesses_in_bb (bb);
+}
+
+/* This function summarizes counts of the fields into the structure count. */
+
+static void
+sum_counts (d_str str, gcov_type *hottest)
+{
+ int i;
+
+ str->count = 0;
+ for (i = 0; i < str->num_fields; i++)
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nCounter of field \"");
+ print_generic_expr (dump_file, str->fields[i].decl, 0);
+ fprintf (dump_file, "\" is " HOST_WIDEST_INT_PRINT_DEC,
+ str->fields[i].count);
+ }
+ str->count += str->fields[i].count;
+ }
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nCounter of struct \"");
+ print_generic_expr (dump_file, str->decl, 0);
+ fprintf (dump_file, "\" is " HOST_WIDEST_INT_PRINT_DEC, str->count);
+ }
+
+ if (str->count > *hottest)
+ *hottest = str->count;
+}
+
+/* This function peels the field into separate structure if it's
+ sufficiently hot, i.e. if its count provides at least 90% of
+ the maximum field count in the structure. */
+
+static void
+peel_hot_fields (d_str str)
+{
+ gcov_type max_field_count;
+ sbitmap fields_left = sbitmap_alloc (str->num_fields);
+ int i;
+
+ sbitmap_ones (fields_left);
+ max_field_count =
+ (gcov_type) (get_max_field_count (str)/100)*90;
+
+ str->struct_clustering = NULL;
+
+ for (i = 0; i < str->num_fields; i++)
+ {
+ if (str->count >= max_field_count)
+ {
+ RESET_BIT (fields_left, i);
+ peel_field (i, str);
+ }
+ }
+
+ i = sbitmap_first_set_bit (fields_left);
+ if (i != -1)
+ gen_cluster (fields_left, str);
+ else
+ sbitmap_free (fields_left);
+}
+
+/* This function is a helper for do_reorg. It goes over
+ functions in call graph and performs actual transformation
+ on them. */
+
+static void
+do_reorg_1 (void)
+{
+ struct cgraph_node *node;
+
+ /* Initialize the default bitmap obstack. */
+ bitmap_obstack_initialize (NULL);
+
+ for (node = cgraph_nodes; node; node = node->next)
+ if (node->analyzed && node->decl)
+ {
+ push_cfun (DECL_STRUCT_FUNCTION (node->decl));
+ current_function_decl = node->decl;
+ if (dump_file)
+ fprintf (dump_file, "\nFunction to do reorg is %s: \n",
+ (const char *) IDENTIFIER_POINTER (DECL_NAME (node->decl)));
+ do_reorg_for_func (node);
+ free_dominance_info (CDI_DOMINATORS);
+ free_dominance_info (CDI_POST_DOMINATORS);
+ current_function_decl = NULL;
+ pop_cfun ();
+ }
+
+ set_cfun (NULL);
+ bitmap_obstack_release (NULL);
+}
+
+/* This function creates new global struct variables.
+ For each original variable, the set of new variables
+ is created with the new structure types corresponding
+ to the structure type of original variable.
+ Only VAR_DECL variables are treated by this function. */
+
+static void
+create_new_global_vars (void)
+{
+ struct varpool_node *current_varpool;
+ unsigned HOST_WIDE_INT i;
+ unsigned HOST_WIDE_INT varpool_size = 0;
+
+ for (i = 0; i < 2; i++)
+ {
+ if (i)
+ new_global_vars = htab_create (varpool_size,
+ new_var_hash, new_var_eq, NULL);
+ FOR_EACH_STATIC_VARIABLE(current_varpool)
+ {
+ tree var_decl = current_varpool->decl;
+
+ if (!var_decl || TREE_CODE (var_decl) != VAR_DECL)
+ continue;
+ if (!i)
+ varpool_size++;
+ else
+ create_new_var (var_decl, new_global_vars);
+ }
+ }
+
+ if (new_global_vars)
+ htab_traverse (new_global_vars, update_varpool_with_new_var, NULL);
+}
+
+/* Dump all new types generated by this optimization. */
+
+static void
+dump_new_types (void)
+{
+ d_str str;
+ tree type;
+ unsigned i, j;
+
+ if (!dump_file)
+ return;
+
+ fprintf (dump_file, "\nThe following are the new types generated by"
+ " this optimization:\n");
+
+ FOR_EACH_VEC_ELT (structure, structures, i, str)
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nFor type ");
+ dump_struct_type (str->decl, 2, 0);
+ fprintf (dump_file, "\nthe number of new types is %d\n",
+ VEC_length (tree, str->new_types));
+ }
+ FOR_EACH_VEC_ELT (tree, str->new_types, j, type)
+ dump_struct_type (type, 2, 0);
+ }
+}
+
+/* This function creates new types to replace old structure types. */
+
+static void
+create_new_types (void)
+{
+ d_str str;
+ unsigned i;
+ int str_num = 0;
+
+ FOR_EACH_VEC_ELT (structure, structures, i, str)
+ create_new_type (str, &str_num);
+}
+
+/* Free allocation sites hashtable. */
+
+static void
+free_alloc_sites (void)
+{
+ if (alloc_sites)
+ htab_traverse (alloc_sites, free_falloc_sites, NULL);
+ htab_delete (alloc_sites);
+ alloc_sites = NULL;
+}
+
+/* This function collects structures potential
+ for peeling transformation, and inserts
+ them into structures hashtable. */
+
+static void
+collect_structures (void)
+{
+ VEC (tree, heap) *unsuitable_types = VEC_alloc (tree, heap, 32);
+
+ structures = VEC_alloc (structure, heap, 32);
+
+ /* If program contains user defined mallocs, we give up. */
+ if (program_redefines_malloc_p ())
+ return;
+
+ /* Build data structures hashtable of all data structures
+ in the program. */
+ build_data_structure (&unsuitable_types);
+
+ /* This function analyzes whether the form of
+ structure is such that we are capable to transform it.
+ Nested structures are checked here. */
+ analyze_struct_form (&unsuitable_types);
+
+ /* This function excludes those structure types
+ that escape compilation unit. */
+ exclude_escaping_types (&unsuitable_types);
+
+ /* We do not want to change data layout of the structures with bitfields. */
+ exclude_types_with_bit_fields (&unsuitable_types);
+
+ remove_unsuitable_types (unsuitable_types);
+ VEC_free (tree, heap, unsuitable_types);
+}
+
+/* Collect structure allocation sites. In case of arrays
+ we have nothing to do. */
+
+static void
+collect_allocation_sites (void)
+{
+ alloc_sites = htab_create (32, malloc_hash, malloc_eq, NULL);
+ collect_alloc_sites ();
+}
+
+/* This function collects data accesses for the
+ structures to be transformed. For each structure
+ field it updates the count field in field_entry. */
+
+static void
+collect_data_accesses (void)
+{
+ struct cgraph_node *c_node;
+
+ for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
+ {
+ enum availability avail = cgraph_function_body_availability (c_node);
+
+ if (avail == AVAIL_LOCAL || avail == AVAIL_AVAILABLE)
+ {
+ struct function *func = DECL_STRUCT_FUNCTION (c_node->decl);
+
+ collect_accesses_in_func (func);
+ exclude_alloc_and_field_accs (c_node);
+ }
+ }
+
+ check_cond_exprs ();
+ /* Print collected accesses. */
+ dump_accesses ();
+}
+
+/* We do not bother to transform cold structures.
+ Coldness of the structure is defined relatively
+ to the highest structure count among the structures
+ to be transformed. It's triggered by the compiler parameter
+
+ --param struct-reorg-cold-struct-ratio=<value>
+
+ where <value> ranges from 0 to 100. Structures with count ratios
+ that are less than this parameter are considered to be cold. */
+
+static void
+exclude_cold_structs (void)
+{
+ gcov_type hottest = 0;
+ unsigned i;
+ d_str str;
+
+ /* We summarize counts of fields of a structure into the structure count. */
+ FOR_EACH_VEC_ELT (structure, structures, i, str)
+ sum_counts (str, &hottest);
+
+ /* Remove cold structures from structures vector. */
+ i = 0;
+ while (VEC_iterate (structure, structures, i, str))
+ if (str->count * 100 < (hottest * STRUCT_REORG_COLD_STRUCT_RATIO))
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nThe structure ");
+ print_generic_expr (dump_file, str->decl, 0);
+ fprintf (dump_file, " is cold.");
+ }
+ remove_structure (i);
+ }
+ else
+ i++;
+}
+
+/* This function decomposes original structure into substructures,
+ i.e.clusters. */
+
+static void
+peel_structs (void)
+{
+ d_str str;
+ unsigned i;
+
+ FOR_EACH_VEC_ELT (structure, structures, i, str)
+ peel_hot_fields (str);
+}
+
+/* Stage 3. */
+/* Do the actual transformation for each structure
+ from the structures hashtable. */
+
+static void
+do_reorg (void)
+{
+ /* Check that there is a work to do. */
+ if (!VEC_length (structure, structures))
+ {
+ if (dump_file)
+ fprintf (dump_file, "\nNo structures to transform. Exiting...");
+ return;
+ }
+ else
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nNumber of structures to transform is %d",
+ VEC_length (structure, structures));
+ }
+ }
+
+ /* Generate new types. */
+ create_new_types ();
+ dump_new_types ();
+
+ /* Create new global variables. */
+ create_new_global_vars ();
+ dump_new_vars (new_global_vars);
+
+ /* Decompose structures for each function separately. */
+ do_reorg_1 ();
+
+ /* Free auxiliary data collected for global variables. */
+ free_new_vars_htab (new_global_vars);
+}
+
+/* Free all auxiliary data used by this optimization. */
+
+static void
+free_data_structs (void)
+{
+ free_structures ();
+ free_alloc_sites ();
+}
+
+/* Perform structure decomposition (peeling). */
+
+static void
+reorg_structs (void)
+{
+
+ /* Stage1. */
+ /* Collect structure types. */
+ collect_structures ();
+
+ /* Collect structure allocation sites. */
+ collect_allocation_sites ();
+
+ /* Collect structure accesses. */
+ collect_data_accesses ();
+
+ /* We transform only hot structures. */
+ exclude_cold_structs ();
+
+ /* Stage2. */
+ /* Decompose structures into substructures, i.e. clusters. */
+ peel_structs ();
+
+ /* Stage3. */
+ /* Do the actual transformation for each structure
+ from the structures hashtable. */
+ do_reorg ();
+
+ /* Free all auxiliary data used by this optimization. */
+ free_data_structs ();
+}
+
+/* Struct-reorg optimization entry point function. */
+
+static unsigned int
+reorg_structs_drive (void)
+{
+ /* IPA struct-reorg is completely broken - its analysis phase is
+ non-conservative (which is not the only reason it is broken). */
+ if (0)
+ reorg_structs ();
+ return 0;
+}
+
+/* Struct-reorg optimization gate function. */
+
+static bool
+struct_reorg_gate (void)
+{
+ return flag_ipa_struct_reorg
+ && flag_whole_program
+ && (optimize > 0);
+}
+
+struct simple_ipa_opt_pass pass_ipa_struct_reorg =
+{
+ {
+ SIMPLE_IPA_PASS,
+ "ipa_struct_reorg", /* name */
+ struct_reorg_gate, /* gate */
+ reorg_structs_drive, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ TV_INTEGRATION, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ TODO_verify_ssa, /* todo_flags_start */
+ TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
+ }
+};