summaryrefslogtreecommitdiff
path: root/gcc/matrix-reorg.c
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/matrix-reorg.c
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'gcc/matrix-reorg.c')
-rw-r--r--gcc/matrix-reorg.c2396
1 files changed, 2396 insertions, 0 deletions
diff --git a/gcc/matrix-reorg.c b/gcc/matrix-reorg.c
new file mode 100644
index 000000000..c3031430e
--- /dev/null
+++ b/gcc/matrix-reorg.c
@@ -0,0 +1,2396 @@
+/* Matrix layout transformations.
+ Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
+ Contributed by Razya Ladelsky <razya@il.ibm.com>
+ Originally written by Revital Eres and Mustafa Hagog.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/*
+ Matrix flattening optimization tries to replace a N-dimensional
+ matrix with its equivalent M-dimensional matrix, where M < N.
+ This first implementation focuses on global matrices defined dynamically.
+
+ When N==1, we actually flatten the whole matrix.
+ For instance consider a two-dimensional array a [dim1] [dim2].
+ The code for allocating space for it usually looks like:
+
+ a = (int **) malloc(dim1 * sizeof(int *));
+ for (i=0; i<dim1; i++)
+ a[i] = (int *) malloc (dim2 * sizeof(int));
+
+ If the array "a" is found suitable for this optimization,
+ its allocation is replaced by:
+
+ a = (int *) malloc (dim1 * dim2 *sizeof(int));
+
+ and all the references to a[i][j] are replaced by a[i * dim2 + j].
+
+ The two main phases of the optimization are the analysis
+ and transformation.
+ The driver of the optimization is matrix_reorg ().
+
+
+
+ Analysis phase:
+ ===============
+
+ We'll number the dimensions outside-in, meaning the most external
+ is 0, then 1, and so on.
+ The analysis part of the optimization determines K, the escape
+ level of a N-dimensional matrix (K <= N), that allows flattening of
+ the external dimensions 0,1,..., K-1. Escape level 0 means that the
+ whole matrix escapes and no flattening is possible.
+
+ The analysis part is implemented in analyze_matrix_allocation_site()
+ and analyze_matrix_accesses().
+
+ Transformation phase:
+ =====================
+ In this phase we define the new flattened matrices that replace the
+ original matrices in the code.
+ Implemented in transform_allocation_sites(),
+ transform_access_sites().
+
+ Matrix Transposing
+ ==================
+ The idea of Matrix Transposing is organizing the matrix in a different
+ layout such that the dimensions are reordered.
+ This could produce better cache behavior in some cases.
+
+ For example, lets look at the matrix accesses in the following loop:
+
+ for (i=0; i<N; i++)
+ for (j=0; j<M; j++)
+ access to a[i][j]
+
+ This loop can produce good cache behavior because the elements of
+ the inner dimension are accessed sequentially.
+
+ However, if the accesses of the matrix were of the following form:
+
+ for (i=0; i<N; i++)
+ for (j=0; j<M; j++)
+ access to a[j][i]
+
+ In this loop we iterate the columns and not the rows.
+ Therefore, replacing the rows and columns
+ would have had an organization with better (cache) locality.
+ Replacing the dimensions of the matrix is called matrix transposing.
+
+ This example, of course, could be enhanced to multiple dimensions matrices
+ as well.
+
+ Since a program could include all kind of accesses, there is a decision
+ mechanism, implemented in analyze_transpose(), which implements a
+ heuristic that tries to determine whether to transpose the matrix or not,
+ according to the form of the more dominant accesses.
+ This decision is transferred to the flattening mechanism, and whether
+ the matrix was transposed or not, the matrix is flattened (if possible).
+
+ This decision making is based on profiling information and loop information.
+ If profiling information is available, decision making mechanism will be
+ operated, otherwise the matrix will only be flattened (if possible).
+
+ Both optimizations are described in the paper "Matrix flattening and
+ transposing in GCC" which was presented in GCC summit 2006.
+ http://www.gccsummit.org/2006/2006-GCC-Summit-Proceedings.pdf. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "rtl.h"
+#include "tree-inline.h"
+#include "tree-flow.h"
+#include "tree-flow-inline.h"
+#include "langhooks.h"
+#include "hashtab.h"
+#include "flags.h"
+#include "ggc.h"
+#include "debug.h"
+#include "target.h"
+#include "cgraph.h"
+#include "diagnostic-core.h"
+#include "timevar.h"
+#include "params.h"
+#include "fibheap.h"
+#include "intl.h"
+#include "function.h"
+#include "basic-block.h"
+#include "cfgloop.h"
+#include "tree-iterator.h"
+#include "tree-pass.h"
+#include "opts.h"
+#include "tree-data-ref.h"
+#include "tree-chrec.h"
+#include "tree-scalar-evolution.h"
+#include "tree-ssa-sccvn.h"
+
+/* We need to collect a lot of data from the original malloc,
+ particularly as the gimplifier has converted:
+
+ orig_var = (struct_type *) malloc (x * sizeof (struct_type *));
+
+ into
+
+ T3 = <constant> ; ** <constant> is amount to malloc; precomputed **
+ T4 = malloc (T3);
+ T5 = (struct_type *) T4;
+ orig_var = T5;
+
+ The following struct fields allow us to collect all the necessary data from
+ the gimplified program. The comments in the struct below are all based
+ on the gimple example above. */
+
+struct malloc_call_data
+{
+ gimple call_stmt; /* Tree for "T4 = malloc (T3);" */
+ tree size_var; /* Var decl for T3. */
+ tree malloc_size; /* Tree for "<constant>", the rhs assigned to T3. */
+};
+
+static tree can_calculate_expr_before_stmt (tree, sbitmap);
+static tree can_calculate_stmt_before_stmt (gimple, sbitmap);
+
+/* The front end of the compiler, when parsing statements of the form:
+
+ var = (type_cast) malloc (sizeof (type));
+
+ always converts this single statement into the following statements
+ (GIMPLE form):
+
+ T.1 = sizeof (type);
+ T.2 = malloc (T.1);
+ T.3 = (type_cast) T.2;
+ var = T.3;
+
+ Since we need to create new malloc statements and modify the original
+ statements somewhat, we need to find all four of the above statements.
+ Currently record_call_1 (called for building cgraph edges) finds and
+ records the statements containing the actual call to malloc, but we
+ need to find the rest of the variables/statements on our own. That
+ is what the following function does. */
+static void
+collect_data_for_malloc_call (gimple stmt, struct malloc_call_data *m_data)
+{
+ tree size_var = NULL;
+ tree malloc_fn_decl;
+ tree arg1;
+
+ gcc_assert (is_gimple_call (stmt));
+
+ malloc_fn_decl = gimple_call_fndecl (stmt);
+ if (malloc_fn_decl == NULL
+ || DECL_FUNCTION_CODE (malloc_fn_decl) != BUILT_IN_MALLOC)
+ return;
+
+ arg1 = gimple_call_arg (stmt, 0);
+ size_var = arg1;
+
+ m_data->call_stmt = stmt;
+ m_data->size_var = size_var;
+ if (TREE_CODE (size_var) != VAR_DECL)
+ m_data->malloc_size = size_var;
+ else
+ m_data->malloc_size = NULL_TREE;
+}
+
+/* Information about matrix access site.
+ For example: if an access site of matrix arr is arr[i][j]
+ the ACCESS_SITE_INFO structure will have the address
+ of arr as its stmt. The INDEX_INFO will hold information about the
+ initial address and index of each dimension. */
+struct access_site_info
+{
+ /* The statement (MEM_REF or POINTER_PLUS_EXPR). */
+ gimple stmt;
+
+ /* In case of POINTER_PLUS_EXPR, what is the offset. */
+ tree offset;
+
+ /* The index which created the offset. */
+ tree index;
+
+ /* The indirection level of this statement. */
+ int level;
+
+ /* TRUE for allocation site FALSE for access site. */
+ bool is_alloc;
+
+ /* The function containing the access site. */
+ tree function_decl;
+
+ /* This access is iterated in the inner most loop */
+ bool iterated_by_inner_most_loop_p;
+};
+
+typedef struct access_site_info *access_site_info_p;
+DEF_VEC_P (access_site_info_p);
+DEF_VEC_ALLOC_P (access_site_info_p, heap);
+
+/* Calls to free when flattening a matrix. */
+
+struct free_info
+{
+ gimple stmt;
+ tree func;
+};
+
+/* Information about matrix to flatten. */
+struct matrix_info
+{
+ /* Decl tree of this matrix. */
+ tree decl;
+ /* Number of dimensions; number
+ of "*" in the type declaration. */
+ int num_dims;
+
+ /* Minimum indirection level that escapes, 0 means that
+ the whole matrix escapes, k means that dimensions
+ 0 to ACTUAL_DIM - k escapes. */
+ int min_indirect_level_escape;
+
+ gimple min_indirect_level_escape_stmt;
+
+ /* Hold the allocation site for each level (dimension).
+ We can use NUM_DIMS as the upper bound and allocate the array
+ once with this number of elements and no need to use realloc and
+ MAX_MALLOCED_LEVEL. */
+ gimple *malloc_for_level;
+
+ int max_malloced_level;
+
+ /* Is the matrix transposed. */
+ bool is_transposed_p;
+
+ /* The location of the allocation sites (they must be in one
+ function). */
+ tree allocation_function_decl;
+
+ /* The calls to free for each level of indirection. */
+ struct free_info *free_stmts;
+
+ /* An array which holds for each dimension its size. where
+ dimension 0 is the outer most (one that contains all the others).
+ */
+ tree *dimension_size;
+
+ /* An array which holds for each dimension it's original size
+ (before transposing and flattening take place). */
+ tree *dimension_size_orig;
+
+ /* An array which holds for each dimension the size of the type of
+ of elements accessed in that level (in bytes). */
+ HOST_WIDE_INT *dimension_type_size;
+
+ int dimension_type_size_len;
+
+ /* An array collecting the count of accesses for each dimension. */
+ gcov_type *dim_hot_level;
+
+ /* An array of the accesses to be flattened.
+ elements are of type "struct access_site_info *". */
+ VEC (access_site_info_p, heap) * access_l;
+
+ /* A map of how the dimensions will be organized at the end of
+ the analyses. */
+ int *dim_map;
+};
+
+/* In each phi node we want to record the indirection level we have when we
+ get to the phi node. Usually we will have phi nodes with more than two
+ arguments, then we must assure that all of them get to the phi node with
+ the same indirection level, otherwise it's not safe to do the flattening.
+ So we record the information regarding the indirection level each time we
+ get to the phi node in this hash table. */
+
+struct matrix_access_phi_node
+{
+ gimple phi;
+ int indirection_level;
+};
+
+/* We use this structure to find if the SSA variable is accessed inside the
+ tree and record the tree containing it. */
+
+struct ssa_acc_in_tree
+{
+ /* The variable whose accesses in the tree we are looking for. */
+ tree ssa_var;
+ /* The tree and code inside it the ssa_var is accessed, currently
+ it could be an MEM_REF or CALL_EXPR. */
+ enum tree_code t_code;
+ tree t_tree;
+ /* The place in the containing tree. */
+ tree *tp;
+ tree second_op;
+ bool var_found;
+};
+
+static void analyze_matrix_accesses (struct matrix_info *, tree, int, bool,
+ sbitmap, bool);
+static int transform_allocation_sites (void **, void *);
+static int transform_access_sites (void **, void *);
+static int analyze_transpose (void **, void *);
+static int dump_matrix_reorg_analysis (void **, void *);
+
+static bool check_transpose_p;
+
+/* Hash function used for the phi nodes. */
+
+static hashval_t
+mat_acc_phi_hash (const void *p)
+{
+ const struct matrix_access_phi_node *const ma_phi =
+ (const struct matrix_access_phi_node *) p;
+
+ return htab_hash_pointer (ma_phi->phi);
+}
+
+/* Equality means phi node pointers are the same. */
+
+static int
+mat_acc_phi_eq (const void *p1, const void *p2)
+{
+ const struct matrix_access_phi_node *const phi1 =
+ (const struct matrix_access_phi_node *) p1;
+ const struct matrix_access_phi_node *const phi2 =
+ (const struct matrix_access_phi_node *) p2;
+
+ if (phi1->phi == phi2->phi)
+ return 1;
+
+ return 0;
+}
+
+/* Hold the PHI nodes we visit during the traversal for escaping
+ analysis. */
+static htab_t htab_mat_acc_phi_nodes = NULL;
+
+/* This hash-table holds the information about the matrices we are
+ going to handle. */
+static htab_t matrices_to_reorg = NULL;
+
+/* Return a hash for MTT, which is really a "matrix_info *". */
+static hashval_t
+mtt_info_hash (const void *mtt)
+{
+ return htab_hash_pointer (((const struct matrix_info *) mtt)->decl);
+}
+
+/* Return true if MTT1 and MTT2 (which are really both of type
+ "matrix_info *") refer to the same decl. */
+static int
+mtt_info_eq (const void *mtt1, const void *mtt2)
+{
+ const struct matrix_info *const i1 = (const struct matrix_info *) mtt1;
+ const struct matrix_info *const i2 = (const struct matrix_info *) mtt2;
+
+ if (i1->decl == i2->decl)
+ return true;
+
+ return false;
+}
+
+/* Return false if STMT may contain a vector expression.
+ In this situation, all matrices should not be flattened. */
+static bool
+may_flatten_matrices_1 (gimple stmt)
+{
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_ASSIGN:
+ case GIMPLE_CALL:
+ if (!gimple_has_lhs (stmt))
+ return true;
+ if (TREE_CODE (TREE_TYPE (gimple_get_lhs (stmt))) == VECTOR_TYPE)
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "Found vector type, don't flatten matrix\n");
+ return false;
+ }
+ break;
+ case GIMPLE_ASM:
+ /* Asm code could contain vector operations. */
+ return false;
+ break;
+ default:
+ break;
+ }
+ return true;
+}
+
+/* Return false if there are hand-written vectors in the program.
+ We disable the flattening in such a case. */
+static bool
+may_flatten_matrices (struct cgraph_node *node)
+{
+ tree decl;
+ struct function *func;
+ basic_block bb;
+ gimple_stmt_iterator gsi;
+
+ decl = node->decl;
+ if (node->analyzed)
+ {
+ func = DECL_STRUCT_FUNCTION (decl);
+ FOR_EACH_BB_FN (bb, func)
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ if (!may_flatten_matrices_1 (gsi_stmt (gsi)))
+ return false;
+ }
+ return true;
+}
+
+/* Given a VAR_DECL, check its type to determine whether it is
+ a definition of a dynamic allocated matrix and therefore is
+ a suitable candidate for the matrix flattening optimization.
+ Return NULL if VAR_DECL is not such decl. Otherwise, allocate
+ a MATRIX_INFO structure, fill it with the relevant information
+ and return a pointer to it.
+ TODO: handle also statically defined arrays. */
+static struct matrix_info *
+analyze_matrix_decl (tree var_decl)
+{
+ struct matrix_info *m_node, tmpmi, *mi;
+ tree var_type;
+ int dim_num = 0;
+
+ gcc_assert (matrices_to_reorg);
+
+ if (TREE_CODE (var_decl) == PARM_DECL)
+ var_type = DECL_ARG_TYPE (var_decl);
+ else if (TREE_CODE (var_decl) == VAR_DECL)
+ var_type = TREE_TYPE (var_decl);
+ else
+ return NULL;
+
+ if (!POINTER_TYPE_P (var_type))
+ return NULL;
+
+ while (POINTER_TYPE_P (var_type))
+ {
+ var_type = TREE_TYPE (var_type);
+ dim_num++;
+ }
+
+ if (dim_num <= 1)
+ return NULL;
+
+ if (!COMPLETE_TYPE_P (var_type)
+ || TREE_CODE (TYPE_SIZE_UNIT (var_type)) != INTEGER_CST)
+ return NULL;
+
+ /* Check to see if this pointer is already in there. */
+ tmpmi.decl = var_decl;
+ mi = (struct matrix_info *) htab_find (matrices_to_reorg, &tmpmi);
+
+ if (mi)
+ return NULL;
+
+ /* Record the matrix. */
+
+ m_node = (struct matrix_info *) xcalloc (1, sizeof (struct matrix_info));
+ m_node->decl = var_decl;
+ m_node->num_dims = dim_num;
+ m_node->free_stmts
+ = (struct free_info *) xcalloc (dim_num, sizeof (struct free_info));
+
+ /* Init min_indirect_level_escape to -1 to indicate that no escape
+ analysis has been done yet. */
+ m_node->min_indirect_level_escape = -1;
+ m_node->is_transposed_p = false;
+
+ return m_node;
+}
+
+/* Free matrix E. */
+static void
+mat_free (void *e)
+{
+ struct matrix_info *mat = (struct matrix_info *) e;
+
+ if (!mat)
+ return;
+
+ if (mat->free_stmts)
+ free (mat->free_stmts);
+ if (mat->dim_hot_level)
+ free (mat->dim_hot_level);
+ if (mat->malloc_for_level)
+ free (mat->malloc_for_level);
+}
+
+/* Find all potential matrices.
+ TODO: currently we handle only multidimensional
+ dynamically allocated arrays. */
+static void
+find_matrices_decl (void)
+{
+ struct matrix_info *tmp;
+ PTR *slot;
+ struct varpool_node *vnode;
+
+ gcc_assert (matrices_to_reorg);
+
+ /* For every global variable in the program:
+ Check to see if it's of a candidate type and record it. */
+ for (vnode = varpool_nodes_queue; vnode; vnode = vnode->next_needed)
+ {
+ tree var_decl = vnode->decl;
+
+ if (!var_decl || TREE_CODE (var_decl) != VAR_DECL)
+ continue;
+
+ if (matrices_to_reorg)
+ if ((tmp = analyze_matrix_decl (var_decl)))
+ {
+ if (!TREE_ADDRESSABLE (var_decl))
+ {
+ slot = htab_find_slot (matrices_to_reorg, tmp, INSERT);
+ *slot = tmp;
+ }
+ }
+ }
+ return;
+}
+
+/* Mark that the matrix MI escapes at level L. */
+static void
+mark_min_matrix_escape_level (struct matrix_info *mi, int l, gimple s)
+{
+ if (mi->min_indirect_level_escape == -1
+ || (mi->min_indirect_level_escape > l))
+ {
+ mi->min_indirect_level_escape = l;
+ mi->min_indirect_level_escape_stmt = s;
+ }
+}
+
+/* Find if the SSA variable is accessed inside the
+ tree and record the tree containing it.
+ The only relevant uses are the case of SSA_NAME, or SSA inside
+ MEM_REF, PLUS_EXPR, POINTER_PLUS_EXPR, MULT_EXPR. */
+static void
+ssa_accessed_in_tree (tree t, struct ssa_acc_in_tree *a)
+{
+ a->t_code = TREE_CODE (t);
+ switch (a->t_code)
+ {
+ case SSA_NAME:
+ if (t == a->ssa_var)
+ a->var_found = true;
+ break;
+ case MEM_REF:
+ if (SSA_VAR_P (TREE_OPERAND (t, 0))
+ && TREE_OPERAND (t, 0) == a->ssa_var)
+ a->var_found = true;
+ break;
+ default:
+ break;
+ }
+}
+
+/* Find if the SSA variable is accessed on the right hand side of
+ gimple call STMT. */
+
+static void
+ssa_accessed_in_call_rhs (gimple stmt, struct ssa_acc_in_tree *a)
+{
+ tree decl;
+ tree arg;
+ size_t i;
+
+ a->t_code = CALL_EXPR;
+ for (i = 0; i < gimple_call_num_args (stmt); i++)
+ {
+ arg = gimple_call_arg (stmt, i);
+ if (arg == a->ssa_var)
+ {
+ a->var_found = true;
+ decl = gimple_call_fndecl (stmt);
+ a->t_tree = decl;
+ break;
+ }
+ }
+}
+
+/* Find if the SSA variable is accessed on the right hand side of
+ gimple assign STMT. */
+
+static void
+ssa_accessed_in_assign_rhs (gimple stmt, struct ssa_acc_in_tree *a)
+{
+
+ a->t_code = gimple_assign_rhs_code (stmt);
+ switch (a->t_code)
+ {
+ tree op1, op2;
+
+ case SSA_NAME:
+ case MEM_REF:
+ CASE_CONVERT:
+ case VIEW_CONVERT_EXPR:
+ ssa_accessed_in_tree (gimple_assign_rhs1 (stmt), a);
+ break;
+ case POINTER_PLUS_EXPR:
+ case PLUS_EXPR:
+ case MULT_EXPR:
+ op1 = gimple_assign_rhs1 (stmt);
+ op2 = gimple_assign_rhs2 (stmt);
+
+ if (op1 == a->ssa_var)
+ {
+ a->var_found = true;
+ a->second_op = op2;
+ }
+ else if (op2 == a->ssa_var)
+ {
+ a->var_found = true;
+ a->second_op = op1;
+ }
+ break;
+ default:
+ break;
+ }
+}
+
+/* Record the access/allocation site information for matrix MI so we can
+ handle it later in transformation. */
+static void
+record_access_alloc_site_info (struct matrix_info *mi, gimple stmt, tree offset,
+ tree index, int level, bool is_alloc)
+{
+ struct access_site_info *acc_info;
+
+ if (!mi->access_l)
+ mi->access_l = VEC_alloc (access_site_info_p, heap, 100);
+
+ acc_info
+ = (struct access_site_info *)
+ xcalloc (1, sizeof (struct access_site_info));
+ acc_info->stmt = stmt;
+ acc_info->offset = offset;
+ acc_info->index = index;
+ acc_info->function_decl = current_function_decl;
+ acc_info->level = level;
+ acc_info->is_alloc = is_alloc;
+
+ VEC_safe_push (access_site_info_p, heap, mi->access_l, acc_info);
+
+}
+
+/* Record the malloc as the allocation site of the given LEVEL. But
+ first we Make sure that all the size parameters passed to malloc in
+ all the allocation sites could be pre-calculated before the call to
+ the malloc of level 0 (the main malloc call). */
+static void
+add_allocation_site (struct matrix_info *mi, gimple stmt, int level)
+{
+ struct malloc_call_data mcd;
+
+ /* Make sure that the allocation sites are in the same function. */
+ if (!mi->allocation_function_decl)
+ mi->allocation_function_decl = current_function_decl;
+ else if (mi->allocation_function_decl != current_function_decl)
+ {
+ int min_malloc_level;
+
+ gcc_assert (mi->malloc_for_level);
+
+ /* Find the minimum malloc level that already has been seen;
+ we known its allocation function must be
+ MI->allocation_function_decl since it's different than
+ CURRENT_FUNCTION_DECL then the escaping level should be
+ MIN (LEVEL, MIN_MALLOC_LEVEL) - 1 , and the allocation function
+ must be set accordingly. */
+ for (min_malloc_level = 0;
+ min_malloc_level < mi->max_malloced_level
+ && mi->malloc_for_level[min_malloc_level]; min_malloc_level++);
+ if (level < min_malloc_level)
+ {
+ mi->allocation_function_decl = current_function_decl;
+ mark_min_matrix_escape_level (mi, min_malloc_level, stmt);
+ }
+ else
+ {
+ mark_min_matrix_escape_level (mi, level, stmt);
+ /* cannot be that (level == min_malloc_level)
+ we would have returned earlier. */
+ return;
+ }
+ }
+
+ /* Find the correct malloc information. */
+ collect_data_for_malloc_call (stmt, &mcd);
+
+ /* We accept only calls to malloc function; we do not accept
+ calls like calloc and realloc. */
+ if (!mi->malloc_for_level)
+ {
+ mi->malloc_for_level = XCNEWVEC (gimple, level + 1);
+ mi->max_malloced_level = level + 1;
+ }
+ else if (mi->max_malloced_level <= level)
+ {
+ mi->malloc_for_level
+ = XRESIZEVEC (gimple, mi->malloc_for_level, level + 1);
+
+ /* Zero the newly allocated items. */
+ memset (&(mi->malloc_for_level[mi->max_malloced_level + 1]),
+ 0, (level - mi->max_malloced_level) * sizeof (tree));
+
+ mi->max_malloced_level = level + 1;
+ }
+ mi->malloc_for_level[level] = stmt;
+}
+
+/* Given an assignment statement STMT that we know that its
+ left-hand-side is the matrix MI variable, we traverse the immediate
+ uses backwards until we get to a malloc site. We make sure that
+ there is one and only one malloc site that sets this variable. When
+ we are performing the flattening we generate a new variable that
+ will hold the size for each dimension; each malloc that allocates a
+ dimension has the size parameter; we use that parameter to
+ initialize the dimension size variable so we can use it later in
+ the address calculations. LEVEL is the dimension we're inspecting.
+ Return if STMT is related to an allocation site. */
+
+static void
+analyze_matrix_allocation_site (struct matrix_info *mi, gimple stmt,
+ int level, sbitmap visited)
+{
+ if (gimple_assign_copy_p (stmt) || gimple_assign_cast_p (stmt))
+ {
+ tree rhs = gimple_assign_rhs1 (stmt);
+
+ if (TREE_CODE (rhs) == SSA_NAME)
+ {
+ gimple def = SSA_NAME_DEF_STMT (rhs);
+
+ analyze_matrix_allocation_site (mi, def, level, visited);
+ return;
+ }
+ /* If we are back to the original matrix variable then we
+ are sure that this is analyzed as an access site. */
+ else if (rhs == mi->decl)
+ return;
+ }
+ /* A result of call to malloc. */
+ else if (is_gimple_call (stmt))
+ {
+ int call_flags = gimple_call_flags (stmt);
+
+ if (!(call_flags & ECF_MALLOC))
+ {
+ mark_min_matrix_escape_level (mi, level, stmt);
+ return;
+ }
+ else
+ {
+ tree malloc_fn_decl;
+
+ malloc_fn_decl = gimple_call_fndecl (stmt);
+ if (malloc_fn_decl == NULL_TREE)
+ {
+ mark_min_matrix_escape_level (mi, level, stmt);
+ return;
+ }
+ if (DECL_FUNCTION_CODE (malloc_fn_decl) != BUILT_IN_MALLOC)
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "Matrix %s is an argument to function %s\n",
+ get_name (mi->decl), get_name (malloc_fn_decl));
+ mark_min_matrix_escape_level (mi, level, stmt);
+ return;
+ }
+ }
+ /* This is a call to malloc of level 'level'.
+ mi->max_malloced_level-1 == level means that we've
+ seen a malloc statement of level 'level' before.
+ If the statement is not the same one that we've
+ seen before, then there's another malloc statement
+ for the same level, which means that we need to mark
+ it escaping. */
+ if (mi->malloc_for_level
+ && mi->max_malloced_level-1 == level
+ && mi->malloc_for_level[level] != stmt)
+ {
+ mark_min_matrix_escape_level (mi, level, stmt);
+ return;
+ }
+ else
+ add_allocation_site (mi, stmt, level);
+ return;
+ }
+ /* Looks like we don't know what is happening in this
+ statement so be in the safe side and mark it as escaping. */
+ mark_min_matrix_escape_level (mi, level, stmt);
+}
+
+/* The transposing decision making.
+ In order to to calculate the profitability of transposing, we collect two
+ types of information regarding the accesses:
+ 1. profiling information used to express the hotness of an access, that
+ is how often the matrix is accessed by this access site (count of the
+ access site).
+ 2. which dimension in the access site is iterated by the inner
+ most loop containing this access.
+
+ The matrix will have a calculated value of weighted hotness for each
+ dimension.
+ Intuitively the hotness level of a dimension is a function of how
+ many times it was the most frequently accessed dimension in the
+ highly executed access sites of this matrix.
+
+ As computed by following equation:
+ m n
+ __ __
+ \ \ dim_hot_level[i] +=
+ /_ /_
+ j i
+ acc[j]->dim[i]->iter_by_inner_loop * count(j)
+
+ Where n is the number of dims and m is the number of the matrix
+ access sites. acc[j]->dim[i]->iter_by_inner_loop is 1 if acc[j]
+ iterates over dim[i] in innermost loop, and is 0 otherwise.
+
+ The organization of the new matrix should be according to the
+ hotness of each dimension. The hotness of the dimension implies
+ the locality of the elements.*/
+static int
+analyze_transpose (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ struct matrix_info *mi = (struct matrix_info *) *slot;
+ int min_escape_l = mi->min_indirect_level_escape;
+ struct loop *loop;
+ affine_iv iv;
+ struct access_site_info *acc_info;
+ int i;
+
+ if (min_escape_l < 2 || !mi->access_l)
+ {
+ if (mi->access_l)
+ {
+ FOR_EACH_VEC_ELT (access_site_info_p, mi->access_l, i, acc_info)
+ free (acc_info);
+ VEC_free (access_site_info_p, heap, mi->access_l);
+
+ }
+ return 1;
+ }
+ if (!mi->dim_hot_level)
+ mi->dim_hot_level =
+ (gcov_type *) xcalloc (min_escape_l, sizeof (gcov_type));
+
+
+ for (i = 0; VEC_iterate (access_site_info_p, mi->access_l, i, acc_info);
+ i++)
+ {
+ if (gimple_assign_rhs_code (acc_info->stmt) == POINTER_PLUS_EXPR
+ && acc_info->level < min_escape_l)
+ {
+ loop = loop_containing_stmt (acc_info->stmt);
+ if (!loop || loop->inner)
+ {
+ free (acc_info);
+ continue;
+ }
+ if (simple_iv (loop, loop, acc_info->offset, &iv, true))
+ {
+ if (iv.step != NULL)
+ {
+ HOST_WIDE_INT istep;
+
+ istep = int_cst_value (iv.step);
+ if (istep != 0)
+ {
+ acc_info->iterated_by_inner_most_loop_p = 1;
+ mi->dim_hot_level[acc_info->level] +=
+ gimple_bb (acc_info->stmt)->count;
+ }
+
+ }
+ }
+ }
+ free (acc_info);
+ }
+ VEC_free (access_site_info_p, heap, mi->access_l);
+
+ return 1;
+}
+
+/* Find the index which defines the OFFSET from base.
+ We walk from use to def until we find how the offset was defined. */
+static tree
+get_index_from_offset (tree offset, gimple def_stmt)
+{
+ tree op1, op2, index;
+
+ if (gimple_code (def_stmt) == GIMPLE_PHI)
+ return NULL;
+ if ((gimple_assign_copy_p (def_stmt) || gimple_assign_cast_p (def_stmt))
+ && TREE_CODE (gimple_assign_rhs1 (def_stmt)) == SSA_NAME)
+ return get_index_from_offset (offset,
+ SSA_NAME_DEF_STMT (gimple_assign_rhs1 (def_stmt)));
+ else if (is_gimple_assign (def_stmt)
+ && gimple_assign_rhs_code (def_stmt) == MULT_EXPR)
+ {
+ op1 = gimple_assign_rhs1 (def_stmt);
+ op2 = gimple_assign_rhs2 (def_stmt);
+ if (TREE_CODE (op1) != INTEGER_CST && TREE_CODE (op2) != INTEGER_CST)
+ return NULL;
+ index = (TREE_CODE (op1) == INTEGER_CST) ? op2 : op1;
+ return index;
+ }
+ else
+ return NULL_TREE;
+}
+
+/* update MI->dimension_type_size[CURRENT_INDIRECT_LEVEL] with the size
+ of the type related to the SSA_VAR, or the type related to the
+ lhs of STMT, in the case that it is an MEM_REF. */
+static void
+update_type_size (struct matrix_info *mi, gimple stmt, tree ssa_var,
+ int current_indirect_level)
+{
+ tree lhs;
+ HOST_WIDE_INT type_size;
+
+ /* Update type according to the type of the MEM_REF expr. */
+ if (is_gimple_assign (stmt)
+ && TREE_CODE (gimple_assign_lhs (stmt)) == MEM_REF)
+ {
+ lhs = gimple_assign_lhs (stmt);
+ gcc_assert (POINTER_TYPE_P
+ (TREE_TYPE (SSA_NAME_VAR (TREE_OPERAND (lhs, 0)))));
+ type_size =
+ int_size_in_bytes (TREE_TYPE
+ (TREE_TYPE
+ (SSA_NAME_VAR (TREE_OPERAND (lhs, 0)))));
+ }
+ else
+ type_size = int_size_in_bytes (TREE_TYPE (ssa_var));
+
+ /* Record the size of elements accessed (as a whole)
+ in the current indirection level (dimension). If the size of
+ elements is not known at compile time, mark it as escaping. */
+ if (type_size <= 0)
+ mark_min_matrix_escape_level (mi, current_indirect_level, stmt);
+ else
+ {
+ int l = current_indirect_level;
+
+ if (!mi->dimension_type_size)
+ {
+ mi->dimension_type_size
+ = (HOST_WIDE_INT *) xcalloc (l + 1, sizeof (HOST_WIDE_INT));
+ mi->dimension_type_size_len = l + 1;
+ }
+ else if (mi->dimension_type_size_len < l + 1)
+ {
+ mi->dimension_type_size
+ = (HOST_WIDE_INT *) xrealloc (mi->dimension_type_size,
+ (l + 1) * sizeof (HOST_WIDE_INT));
+ memset (&mi->dimension_type_size[mi->dimension_type_size_len],
+ 0, (l + 1 - mi->dimension_type_size_len)
+ * sizeof (HOST_WIDE_INT));
+ mi->dimension_type_size_len = l + 1;
+ }
+ /* Make sure all the accesses in the same level have the same size
+ of the type. */
+ if (!mi->dimension_type_size[l])
+ mi->dimension_type_size[l] = type_size;
+ else if (mi->dimension_type_size[l] != type_size)
+ mark_min_matrix_escape_level (mi, l, stmt);
+ }
+}
+
+/* USE_STMT represents a GIMPLE_CALL, where one of the arguments is the
+ ssa var that we want to check because it came from some use of matrix
+ MI. CURRENT_INDIRECT_LEVEL is the indirection level we reached so
+ far. */
+
+static int
+analyze_accesses_for_call_stmt (struct matrix_info *mi, tree ssa_var,
+ gimple use_stmt, int current_indirect_level)
+{
+ tree fndecl = gimple_call_fndecl (use_stmt);
+
+ if (gimple_call_lhs (use_stmt))
+ {
+ tree lhs = gimple_call_lhs (use_stmt);
+ struct ssa_acc_in_tree lhs_acc, rhs_acc;
+
+ memset (&lhs_acc, 0, sizeof (lhs_acc));
+ memset (&rhs_acc, 0, sizeof (rhs_acc));
+
+ lhs_acc.ssa_var = ssa_var;
+ lhs_acc.t_code = ERROR_MARK;
+ ssa_accessed_in_tree (lhs, &lhs_acc);
+ rhs_acc.ssa_var = ssa_var;
+ rhs_acc.t_code = ERROR_MARK;
+ ssa_accessed_in_call_rhs (use_stmt, &rhs_acc);
+
+ /* The SSA must be either in the left side or in the right side,
+ to understand what is happening.
+ In case the SSA_NAME is found in both sides we should be escaping
+ at this level because in this case we cannot calculate the
+ address correctly. */
+ if ((lhs_acc.var_found && rhs_acc.var_found
+ && lhs_acc.t_code == MEM_REF)
+ || (!rhs_acc.var_found && !lhs_acc.var_found))
+ {
+ mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
+ return current_indirect_level;
+ }
+ gcc_assert (!rhs_acc.var_found || !lhs_acc.var_found);
+
+ /* If we are storing to the matrix at some level, then mark it as
+ escaping at that level. */
+ if (lhs_acc.var_found)
+ {
+ int l = current_indirect_level + 1;
+
+ gcc_assert (lhs_acc.t_code == MEM_REF);
+ mark_min_matrix_escape_level (mi, l, use_stmt);
+ return current_indirect_level;
+ }
+ }
+
+ if (fndecl)
+ {
+ if (DECL_FUNCTION_CODE (fndecl) != BUILT_IN_FREE)
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "Matrix %s: Function call %s, level %d escapes.\n",
+ get_name (mi->decl), get_name (fndecl),
+ current_indirect_level);
+ mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
+ }
+ else if (mi->free_stmts[current_indirect_level].stmt != NULL
+ && mi->free_stmts[current_indirect_level].stmt != use_stmt)
+ mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
+ else
+ {
+ /*Record the free statements so we can delete them
+ later. */
+ int l = current_indirect_level;
+
+ mi->free_stmts[l].stmt = use_stmt;
+ mi->free_stmts[l].func = current_function_decl;
+ }
+ }
+ return current_indirect_level;
+}
+
+/* USE_STMT represents a phi node of the ssa var that we want to
+ check because it came from some use of matrix
+ MI.
+ We check all the escaping levels that get to the PHI node
+ and make sure they are all the same escaping;
+ if not (which is rare) we let the escaping level be the
+ minimum level that gets into that PHI because starting from
+ that level we cannot expect the behavior of the indirections.
+ CURRENT_INDIRECT_LEVEL is the indirection level we reached so far. */
+
+static void
+analyze_accesses_for_phi_node (struct matrix_info *mi, gimple use_stmt,
+ int current_indirect_level, sbitmap visited,
+ bool record_accesses)
+{
+
+ struct matrix_access_phi_node tmp_maphi, *maphi, **pmaphi;
+
+ tmp_maphi.phi = use_stmt;
+ if ((maphi = (struct matrix_access_phi_node *)
+ htab_find (htab_mat_acc_phi_nodes, &tmp_maphi)))
+ {
+ if (maphi->indirection_level == current_indirect_level)
+ return;
+ else
+ {
+ int level = MIN (maphi->indirection_level,
+ current_indirect_level);
+ size_t j;
+ gimple stmt = NULL;
+
+ maphi->indirection_level = level;
+ for (j = 0; j < gimple_phi_num_args (use_stmt); j++)
+ {
+ tree def = PHI_ARG_DEF (use_stmt, j);
+
+ if (gimple_code (SSA_NAME_DEF_STMT (def)) != GIMPLE_PHI)
+ stmt = SSA_NAME_DEF_STMT (def);
+ }
+ mark_min_matrix_escape_level (mi, level, stmt);
+ }
+ return;
+ }
+ maphi = (struct matrix_access_phi_node *)
+ xcalloc (1, sizeof (struct matrix_access_phi_node));
+ maphi->phi = use_stmt;
+ maphi->indirection_level = current_indirect_level;
+
+ /* Insert to hash table. */
+ pmaphi = (struct matrix_access_phi_node **)
+ htab_find_slot (htab_mat_acc_phi_nodes, maphi, INSERT);
+ gcc_assert (pmaphi);
+ *pmaphi = maphi;
+
+ if (!TEST_BIT (visited, SSA_NAME_VERSION (PHI_RESULT (use_stmt))))
+ {
+ SET_BIT (visited, SSA_NAME_VERSION (PHI_RESULT (use_stmt)));
+ analyze_matrix_accesses (mi, PHI_RESULT (use_stmt),
+ current_indirect_level, false, visited,
+ record_accesses);
+ RESET_BIT (visited, SSA_NAME_VERSION (PHI_RESULT (use_stmt)));
+ }
+}
+
+/* USE_STMT represents an assign statement (the rhs or lhs include
+ the ssa var that we want to check because it came from some use of matrix
+ MI. CURRENT_INDIRECT_LEVEL is the indirection level we reached so far. */
+
+static int
+analyze_accesses_for_assign_stmt (struct matrix_info *mi, tree ssa_var,
+ gimple use_stmt, int current_indirect_level,
+ bool last_op, sbitmap visited,
+ bool record_accesses)
+{
+ tree lhs = gimple_get_lhs (use_stmt);
+ struct ssa_acc_in_tree lhs_acc, rhs_acc;
+
+ memset (&lhs_acc, 0, sizeof (lhs_acc));
+ memset (&rhs_acc, 0, sizeof (rhs_acc));
+
+ lhs_acc.ssa_var = ssa_var;
+ lhs_acc.t_code = ERROR_MARK;
+ ssa_accessed_in_tree (lhs, &lhs_acc);
+ rhs_acc.ssa_var = ssa_var;
+ rhs_acc.t_code = ERROR_MARK;
+ ssa_accessed_in_assign_rhs (use_stmt, &rhs_acc);
+
+ /* The SSA must be either in the left side or in the right side,
+ to understand what is happening.
+ In case the SSA_NAME is found in both sides we should be escaping
+ at this level because in this case we cannot calculate the
+ address correctly. */
+ if ((lhs_acc.var_found && rhs_acc.var_found
+ && lhs_acc.t_code == MEM_REF)
+ || (!rhs_acc.var_found && !lhs_acc.var_found))
+ {
+ mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
+ return current_indirect_level;
+ }
+ gcc_assert (!rhs_acc.var_found || !lhs_acc.var_found);
+
+ /* If we are storing to the matrix at some level, then mark it as
+ escaping at that level. */
+ if (lhs_acc.var_found)
+ {
+ int l = current_indirect_level + 1;
+
+ gcc_assert (lhs_acc.t_code == MEM_REF);
+
+ if (!(gimple_assign_copy_p (use_stmt)
+ || gimple_assign_cast_p (use_stmt))
+ || (TREE_CODE (gimple_assign_rhs1 (use_stmt)) != SSA_NAME))
+ mark_min_matrix_escape_level (mi, l, use_stmt);
+ else
+ {
+ gimple def_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (use_stmt));
+ analyze_matrix_allocation_site (mi, def_stmt, l, visited);
+ if (record_accesses)
+ record_access_alloc_site_info (mi, use_stmt, NULL_TREE,
+ NULL_TREE, l, true);
+ update_type_size (mi, use_stmt, NULL, l);
+ }
+ return current_indirect_level;
+ }
+ /* Now, check the right-hand-side, to see how the SSA variable
+ is used. */
+ if (rhs_acc.var_found)
+ {
+ if (rhs_acc.t_code != MEM_REF
+ && rhs_acc.t_code != POINTER_PLUS_EXPR && rhs_acc.t_code != SSA_NAME)
+ {
+ mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
+ return current_indirect_level;
+ }
+ /* If the access in the RHS has an indirection increase the
+ indirection level. */
+ if (rhs_acc.t_code == MEM_REF)
+ {
+ if (record_accesses)
+ record_access_alloc_site_info (mi, use_stmt, NULL_TREE,
+ NULL_TREE,
+ current_indirect_level, true);
+ current_indirect_level += 1;
+ }
+ else if (rhs_acc.t_code == POINTER_PLUS_EXPR)
+ {
+ gcc_assert (rhs_acc.second_op);
+ if (last_op)
+ /* Currently we support only one PLUS expression on the
+ SSA_NAME that holds the base address of the current
+ indirection level; to support more general case there
+ is a need to hold a stack of expressions and regenerate
+ the calculation later. */
+ mark_min_matrix_escape_level (mi, current_indirect_level,
+ use_stmt);
+ else
+ {
+ tree index;
+ tree op1, op2;
+
+ op1 = gimple_assign_rhs1 (use_stmt);
+ op2 = gimple_assign_rhs2 (use_stmt);
+
+ op2 = (op1 == ssa_var) ? op2 : op1;
+ if (TREE_CODE (op2) == INTEGER_CST)
+ index =
+ build_int_cst (TREE_TYPE (op1),
+ TREE_INT_CST_LOW (op2) /
+ int_size_in_bytes (TREE_TYPE (op1)));
+ else
+ {
+ index =
+ get_index_from_offset (op2, SSA_NAME_DEF_STMT (op2));
+ if (index == NULL_TREE)
+ {
+ mark_min_matrix_escape_level (mi,
+ current_indirect_level,
+ use_stmt);
+ return current_indirect_level;
+ }
+ }
+ if (record_accesses)
+ record_access_alloc_site_info (mi, use_stmt, op2,
+ index,
+ current_indirect_level, false);
+ }
+ }
+ /* If we are storing this level of indirection mark it as
+ escaping. */
+ if (lhs_acc.t_code == MEM_REF || TREE_CODE (lhs) != SSA_NAME)
+ {
+ int l = current_indirect_level;
+
+ /* One exception is when we are storing to the matrix
+ variable itself; this is the case of malloc, we must make
+ sure that it's the one and only one call to malloc so
+ we call analyze_matrix_allocation_site to check
+ this out. */
+ if (TREE_CODE (lhs) != VAR_DECL || lhs != mi->decl)
+ mark_min_matrix_escape_level (mi, current_indirect_level,
+ use_stmt);
+ else
+ {
+ /* Also update the escaping level. */
+ analyze_matrix_allocation_site (mi, use_stmt, l, visited);
+ if (record_accesses)
+ record_access_alloc_site_info (mi, use_stmt, NULL_TREE,
+ NULL_TREE, l, true);
+ }
+ }
+ else
+ {
+ /* We are placing it in an SSA, follow that SSA. */
+ analyze_matrix_accesses (mi, lhs,
+ current_indirect_level,
+ rhs_acc.t_code == POINTER_PLUS_EXPR,
+ visited, record_accesses);
+ }
+ }
+ return current_indirect_level;
+}
+
+/* Given a SSA_VAR (coming from a use statement of the matrix MI),
+ follow its uses and level of indirection and find out the minimum
+ indirection level it escapes in (the highest dimension) and the maximum
+ level it is accessed in (this will be the actual dimension of the
+ matrix). The information is accumulated in MI.
+ We look at the immediate uses, if one escapes we finish; if not,
+ we make a recursive call for each one of the immediate uses of the
+ resulting SSA name. */
+static void
+analyze_matrix_accesses (struct matrix_info *mi, tree ssa_var,
+ int current_indirect_level, bool last_op,
+ sbitmap visited, bool record_accesses)
+{
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+
+ update_type_size (mi, SSA_NAME_DEF_STMT (ssa_var), ssa_var,
+ current_indirect_level);
+
+ /* We don't go beyond the escaping level when we are performing the
+ flattening. NOTE: we keep the last indirection level that doesn't
+ escape. */
+ if (mi->min_indirect_level_escape > -1
+ && mi->min_indirect_level_escape <= current_indirect_level)
+ return;
+
+/* Now go over the uses of the SSA_NAME and check how it is used in
+ each one of them. We are mainly looking for the pattern MEM_REF,
+ then a POINTER_PLUS_EXPR, then MEM_REF etc. while in between there could
+ be any number of copies and casts. */
+ gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
+
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ssa_var)
+ {
+ gimple use_stmt = USE_STMT (use_p);
+ if (gimple_code (use_stmt) == GIMPLE_PHI)
+ /* We check all the escaping levels that get to the PHI node
+ and make sure they are all the same escaping;
+ if not (which is rare) we let the escaping level be the
+ minimum level that gets into that PHI because starting from
+ that level we cannot expect the behavior of the indirections. */
+
+ analyze_accesses_for_phi_node (mi, use_stmt, current_indirect_level,
+ visited, record_accesses);
+
+ else if (is_gimple_call (use_stmt))
+ analyze_accesses_for_call_stmt (mi, ssa_var, use_stmt,
+ current_indirect_level);
+ else if (is_gimple_assign (use_stmt))
+ current_indirect_level =
+ analyze_accesses_for_assign_stmt (mi, ssa_var, use_stmt,
+ current_indirect_level, last_op,
+ visited, record_accesses);
+ }
+}
+
+typedef struct
+{
+ tree fn;
+ gimple stmt;
+} check_var_data;
+
+/* A walk_tree function to go over the VAR_DECL, PARM_DECL nodes of
+ the malloc size expression and check that those aren't changed
+ over the function. */
+static tree
+check_var_notmodified_p (tree * tp, int *walk_subtrees, void *data)
+{
+ basic_block bb;
+ tree t = *tp;
+ check_var_data *callback_data = (check_var_data*) data;
+ tree fn = callback_data->fn;
+ gimple_stmt_iterator gsi;
+ gimple stmt;
+
+ if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
+ return NULL_TREE;
+
+ FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (fn))
+ {
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ stmt = gsi_stmt (gsi);
+ if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
+ continue;
+ if (gimple_get_lhs (stmt) == t)
+ {
+ callback_data->stmt = stmt;
+ return t;
+ }
+ }
+ }
+ *walk_subtrees = 1;
+ return NULL_TREE;
+}
+
+/* Go backwards in the use-def chains and find out the expression
+ represented by the possible SSA name in STMT, until it is composed
+ of only VAR_DECL, PARM_DECL and INT_CST. In case of phi nodes
+ we make sure that all the arguments represent the same subexpression,
+ otherwise we fail. */
+
+static tree
+can_calculate_stmt_before_stmt (gimple stmt, sbitmap visited)
+{
+ tree op1, op2, res;
+ enum tree_code code;
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_ASSIGN:
+ code = gimple_assign_rhs_code (stmt);
+ op1 = gimple_assign_rhs1 (stmt);
+
+ switch (code)
+ {
+ case POINTER_PLUS_EXPR:
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case MULT_EXPR:
+
+ op2 = gimple_assign_rhs2 (stmt);
+ op1 = can_calculate_expr_before_stmt (op1, visited);
+ if (!op1)
+ return NULL_TREE;
+ op2 = can_calculate_expr_before_stmt (op2, visited);
+ if (op2)
+ return fold_build2 (code, gimple_expr_type (stmt), op1, op2);
+ return NULL_TREE;
+
+ CASE_CONVERT:
+ res = can_calculate_expr_before_stmt (op1, visited);
+ if (res != NULL_TREE)
+ return build1 (code, gimple_expr_type (stmt), res);
+ else
+ return NULL_TREE;
+
+ default:
+ if (gimple_assign_single_p (stmt))
+ return can_calculate_expr_before_stmt (op1, visited);
+ else
+ return NULL_TREE;
+ }
+
+ case GIMPLE_PHI:
+ {
+ size_t j;
+
+ res = NULL_TREE;
+ /* Make sure all the arguments represent the same value. */
+ for (j = 0; j < gimple_phi_num_args (stmt); j++)
+ {
+ tree new_res;
+ tree def = PHI_ARG_DEF (stmt, j);
+
+ new_res = can_calculate_expr_before_stmt (def, visited);
+ if (res == NULL_TREE)
+ res = new_res;
+ else if (!new_res || !expressions_equal_p (res, new_res))
+ return NULL_TREE;
+ }
+ return res;
+ }
+
+ default:
+ return NULL_TREE;
+ }
+}
+
+/* Go backwards in the use-def chains and find out the expression
+ represented by the possible SSA name in EXPR, until it is composed
+ of only VAR_DECL, PARM_DECL and INT_CST. In case of phi nodes
+ we make sure that all the arguments represent the same subexpression,
+ otherwise we fail. */
+static tree
+can_calculate_expr_before_stmt (tree expr, sbitmap visited)
+{
+ gimple def_stmt;
+ tree res;
+
+ switch (TREE_CODE (expr))
+ {
+ case SSA_NAME:
+ /* Case of loop, we don't know to represent this expression. */
+ if (TEST_BIT (visited, SSA_NAME_VERSION (expr)))
+ return NULL_TREE;
+
+ SET_BIT (visited, SSA_NAME_VERSION (expr));
+ def_stmt = SSA_NAME_DEF_STMT (expr);
+ res = can_calculate_stmt_before_stmt (def_stmt, visited);
+ RESET_BIT (visited, SSA_NAME_VERSION (expr));
+ return res;
+ case VAR_DECL:
+ case PARM_DECL:
+ case INTEGER_CST:
+ return expr;
+
+ default:
+ return NULL_TREE;
+ }
+}
+
+/* There should be only one allocation function for the dimensions
+ that don't escape. Here we check the allocation sites in this
+ function. We must make sure that all the dimensions are allocated
+ using malloc and that the malloc size parameter expression could be
+ pre-calculated before the call to the malloc of dimension 0.
+
+ Given a candidate matrix for flattening -- MI -- check if it's
+ appropriate for flattening -- we analyze the allocation
+ sites that we recorded in the previous analysis. The result of the
+ analysis is a level of indirection (matrix dimension) in which the
+ flattening is safe. We check the following conditions:
+ 1. There is only one allocation site for each dimension.
+ 2. The allocation sites of all the dimensions are in the same
+ function.
+ (The above two are being taken care of during the analysis when
+ we check the allocation site).
+ 3. All the dimensions that we flatten are allocated at once; thus
+ the total size must be known before the allocation of the
+ dimension 0 (top level) -- we must make sure we represent the
+ size of the allocation as an expression of global parameters or
+ constants and that those doesn't change over the function. */
+
+static int
+check_allocation_function (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ int level;
+ struct matrix_info *mi = (struct matrix_info *) *slot;
+ sbitmap visited;
+
+ if (!mi->malloc_for_level)
+ return 1;
+
+ visited = sbitmap_alloc (num_ssa_names);
+
+ /* Do nothing if the current function is not the allocation
+ function of MI. */
+ if (mi->allocation_function_decl != current_function_decl
+ /* We aren't in the main allocation function yet. */
+ || !mi->malloc_for_level[0])
+ return 1;
+
+ for (level = 1; level < mi->max_malloced_level; level++)
+ if (!mi->malloc_for_level[level])
+ break;
+
+ mark_min_matrix_escape_level (mi, level, NULL);
+
+ /* Check if the expression of the size passed to malloc could be
+ pre-calculated before the malloc of level 0. */
+ for (level = 1; level < mi->min_indirect_level_escape; level++)
+ {
+ gimple call_stmt;
+ tree size;
+ struct malloc_call_data mcd = {NULL, NULL_TREE, NULL_TREE};
+
+ call_stmt = mi->malloc_for_level[level];
+
+ /* Find the correct malloc information. */
+ collect_data_for_malloc_call (call_stmt, &mcd);
+
+ /* No need to check anticipation for constants. */
+ if (TREE_CODE (mcd.size_var) == INTEGER_CST)
+ {
+ if (!mi->dimension_size)
+ {
+ mi->dimension_size =
+ (tree *) xcalloc (mi->min_indirect_level_escape,
+ sizeof (tree));
+ mi->dimension_size_orig =
+ (tree *) xcalloc (mi->min_indirect_level_escape,
+ sizeof (tree));
+ }
+ mi->dimension_size[level] = mcd.size_var;
+ mi->dimension_size_orig[level] = mcd.size_var;
+ continue;
+ }
+ /* ??? Here we should also add the way to calculate the size
+ expression not only know that it is anticipated. */
+ sbitmap_zero (visited);
+ size = can_calculate_expr_before_stmt (mcd.size_var, visited);
+ if (size == NULL_TREE)
+ {
+ mark_min_matrix_escape_level (mi, level, call_stmt);
+ if (dump_file)
+ fprintf (dump_file,
+ "Matrix %s: Cannot calculate the size of allocation, escaping at level %d\n",
+ get_name (mi->decl), level);
+ break;
+ }
+ if (!mi->dimension_size)
+ {
+ mi->dimension_size =
+ (tree *) xcalloc (mi->min_indirect_level_escape, sizeof (tree));
+ mi->dimension_size_orig =
+ (tree *) xcalloc (mi->min_indirect_level_escape, sizeof (tree));
+ }
+ mi->dimension_size[level] = size;
+ mi->dimension_size_orig[level] = size;
+ }
+
+ /* We don't need those anymore. */
+ for (level = mi->min_indirect_level_escape;
+ level < mi->max_malloced_level; level++)
+ mi->malloc_for_level[level] = NULL;
+ return 1;
+}
+
+/* Track all access and allocation sites. */
+static void
+find_sites_in_func (bool record)
+{
+ sbitmap visited_stmts_1;
+
+ gimple_stmt_iterator gsi;
+ gimple stmt;
+ basic_block bb;
+ struct matrix_info tmpmi, *mi;
+
+ visited_stmts_1 = sbitmap_alloc (num_ssa_names);
+
+ FOR_EACH_BB (bb)
+ {
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ tree lhs;
+
+ stmt = gsi_stmt (gsi);
+ lhs = gimple_get_lhs (stmt);
+ if (lhs != NULL_TREE
+ && TREE_CODE (lhs) == VAR_DECL)
+ {
+ tmpmi.decl = lhs;
+ if ((mi = (struct matrix_info *) htab_find (matrices_to_reorg,
+ &tmpmi)))
+ {
+ sbitmap_zero (visited_stmts_1);
+ analyze_matrix_allocation_site (mi, stmt, 0, visited_stmts_1);
+ }
+ }
+ if (is_gimple_assign (stmt)
+ && gimple_assign_single_p (stmt)
+ && TREE_CODE (lhs) == SSA_NAME
+ && TREE_CODE (gimple_assign_rhs1 (stmt)) == VAR_DECL)
+ {
+ tmpmi.decl = gimple_assign_rhs1 (stmt);
+ if ((mi = (struct matrix_info *) htab_find (matrices_to_reorg,
+ &tmpmi)))
+ {
+ sbitmap_zero (visited_stmts_1);
+ analyze_matrix_accesses (mi, lhs, 0,
+ false, visited_stmts_1, record);
+ }
+ }
+ }
+ }
+ sbitmap_free (visited_stmts_1);
+}
+
+/* Traverse the use-def chains to see if there are matrices that
+ are passed through pointers and we cannot know how they are accessed.
+ For each SSA-name defined by a global variable of our interest,
+ we traverse the use-def chains of the SSA and follow the indirections,
+ and record in what level of indirection the use of the variable
+ escapes. A use of a pointer escapes when it is passed to a function,
+ stored into memory or assigned (except in malloc and free calls). */
+
+static void
+record_all_accesses_in_func (void)
+{
+ unsigned i;
+ sbitmap visited_stmts_1;
+
+ visited_stmts_1 = sbitmap_alloc (num_ssa_names);
+
+ for (i = 0; i < num_ssa_names; i++)
+ {
+ struct matrix_info tmpmi, *mi;
+ tree ssa_var = ssa_name (i);
+ tree rhs, lhs;
+
+ if (!ssa_var
+ || !is_gimple_assign (SSA_NAME_DEF_STMT (ssa_var))
+ || !gimple_assign_single_p (SSA_NAME_DEF_STMT (ssa_var)))
+ continue;
+ rhs = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (ssa_var));
+ lhs = gimple_assign_lhs (SSA_NAME_DEF_STMT (ssa_var));
+ if (TREE_CODE (rhs) != VAR_DECL && TREE_CODE (lhs) != VAR_DECL)
+ continue;
+
+ /* If the RHS is a matrix that we want to analyze, follow the def-use
+ chain for this SSA_VAR and check for escapes or apply the
+ flattening. */
+ tmpmi.decl = rhs;
+ if ((mi = (struct matrix_info *) htab_find (matrices_to_reorg, &tmpmi)))
+ {
+ /* This variable will track the visited PHI nodes, so we can limit
+ its size to the maximum number of SSA names. */
+ sbitmap_zero (visited_stmts_1);
+ analyze_matrix_accesses (mi, ssa_var,
+ 0, false, visited_stmts_1, true);
+
+ }
+ }
+ sbitmap_free (visited_stmts_1);
+}
+
+/* Used when we want to convert the expression: RESULT = something *
+ ORIG to RESULT = something * NEW_VAL. If ORIG and NEW_VAL are power
+ of 2, shift operations can be done, else division and
+ multiplication. */
+
+static tree
+compute_offset (HOST_WIDE_INT orig, HOST_WIDE_INT new_val, tree result)
+{
+
+ int x, y;
+ tree result1, ratio, log, orig_tree, new_tree;
+
+ x = exact_log2 (orig);
+ y = exact_log2 (new_val);
+
+ if (x != -1 && y != -1)
+ {
+ if (x == y)
+ return result;
+ else if (x > y)
+ {
+ log = build_int_cst (TREE_TYPE (result), x - y);
+ result1 =
+ fold_build2 (LSHIFT_EXPR, TREE_TYPE (result), result, log);
+ return result1;
+ }
+ log = build_int_cst (TREE_TYPE (result), y - x);
+ result1 = fold_build2 (RSHIFT_EXPR, TREE_TYPE (result), result, log);
+
+ return result1;
+ }
+ orig_tree = build_int_cst (TREE_TYPE (result), orig);
+ new_tree = build_int_cst (TREE_TYPE (result), new_val);
+ ratio = fold_build2 (TRUNC_DIV_EXPR, TREE_TYPE (result), result, orig_tree);
+ result1 = fold_build2 (MULT_EXPR, TREE_TYPE (result), ratio, new_tree);
+
+ return result1;
+}
+
+
+/* We know that we are allowed to perform matrix flattening (according to the
+ escape analysis), so we traverse the use-def chains of the SSA vars
+ defined by the global variables pointing to the matrices of our interest.
+ in each use of the SSA we calculate the offset from the base address
+ according to the following equation:
+
+ a[I1][I2]...[Ik] , where D1..Dk is the length of each dimension and the
+ escaping level is m <= k, and a' is the new allocated matrix,
+ will be translated to :
+
+ b[I(m+1)]...[Ik]
+
+ where
+ b = a' + I1*D2...*Dm + I2*D3...Dm + ... + Im
+ */
+
+static int
+transform_access_sites (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ gimple_stmt_iterator gsi;
+ struct matrix_info *mi = (struct matrix_info *) *slot;
+ int min_escape_l = mi->min_indirect_level_escape;
+ struct access_site_info *acc_info;
+ enum tree_code code;
+ int i;
+
+ if (min_escape_l < 2 || !mi->access_l)
+ return 1;
+ for (i = 0; VEC_iterate (access_site_info_p, mi->access_l, i, acc_info);
+ i++)
+ {
+ /* This is possible because we collect the access sites before
+ we determine the final minimum indirection level. */
+ if (acc_info->level >= min_escape_l)
+ {
+ free (acc_info);
+ continue;
+ }
+ if (acc_info->is_alloc)
+ {
+ if (acc_info->level >= 0 && gimple_bb (acc_info->stmt))
+ {
+ ssa_op_iter iter;
+ tree def;
+ gimple stmt = acc_info->stmt;
+ tree lhs;
+
+ FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
+ mark_sym_for_renaming (SSA_NAME_VAR (def));
+ gsi = gsi_for_stmt (stmt);
+ gcc_assert (is_gimple_assign (acc_info->stmt));
+ lhs = gimple_assign_lhs (acc_info->stmt);
+ if (TREE_CODE (lhs) == SSA_NAME
+ && acc_info->level < min_escape_l - 1)
+ {
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ gimple use_stmt;
+
+ FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
+ FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
+ {
+ tree rhs, tmp;
+ gimple new_stmt;
+
+ gcc_assert (gimple_assign_rhs_code (acc_info->stmt)
+ == MEM_REF);
+ /* Emit convert statement to convert to type of use. */
+ tmp = create_tmp_var (TREE_TYPE (lhs), "new");
+ add_referenced_var (tmp);
+ rhs = gimple_assign_rhs1 (acc_info->stmt);
+ rhs = fold_convert (TREE_TYPE (tmp),
+ TREE_OPERAND (rhs, 0));
+ new_stmt = gimple_build_assign (tmp, rhs);
+ tmp = make_ssa_name (tmp, new_stmt);
+ gimple_assign_set_lhs (new_stmt, tmp);
+ gsi = gsi_for_stmt (acc_info->stmt);
+ gsi_insert_after (&gsi, new_stmt, GSI_SAME_STMT);
+ SET_USE (use_p, tmp);
+ }
+ }
+ if (acc_info->level < min_escape_l - 1)
+ gsi_remove (&gsi, true);
+ }
+ free (acc_info);
+ continue;
+ }
+ code = gimple_assign_rhs_code (acc_info->stmt);
+ if (code == MEM_REF
+ && acc_info->level < min_escape_l - 1)
+ {
+ /* Replace the MEM_REF with NOP (cast) usually we are casting
+ from "pointer to type" to "type". */
+ tree t =
+ build1 (NOP_EXPR, TREE_TYPE (gimple_assign_rhs1 (acc_info->stmt)),
+ TREE_OPERAND (gimple_assign_rhs1 (acc_info->stmt), 0));
+ gimple_assign_set_rhs_code (acc_info->stmt, NOP_EXPR);
+ gimple_assign_set_rhs1 (acc_info->stmt, t);
+ }
+ else if (code == POINTER_PLUS_EXPR
+ && acc_info->level < (min_escape_l))
+ {
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+
+ tree offset;
+ int k = acc_info->level;
+ tree num_elements, total_elements;
+ tree tmp1;
+ tree d_size = mi->dimension_size[k];
+
+ /* We already make sure in the analysis that the first operand
+ is the base and the second is the offset. */
+ offset = acc_info->offset;
+ if (mi->dim_map[k] == min_escape_l - 1)
+ {
+ if (!check_transpose_p || mi->is_transposed_p == false)
+ tmp1 = offset;
+ else
+ {
+ tree new_offset;
+
+ new_offset =
+ compute_offset (mi->dimension_type_size[min_escape_l],
+ mi->dimension_type_size[k + 1], offset);
+
+ total_elements = new_offset;
+ if (new_offset != offset)
+ {
+ gsi = gsi_for_stmt (acc_info->stmt);
+ tmp1 = force_gimple_operand_gsi (&gsi, total_elements,
+ true, NULL,
+ true, GSI_SAME_STMT);
+ }
+ else
+ tmp1 = offset;
+ }
+ }
+ else
+ {
+ d_size = mi->dimension_size[mi->dim_map[k] + 1];
+ num_elements =
+ fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, acc_info->index),
+ fold_convert (sizetype, d_size));
+ add_referenced_var (d_size);
+ gsi = gsi_for_stmt (acc_info->stmt);
+ tmp1 = force_gimple_operand_gsi (&gsi, num_elements, true,
+ NULL, true, GSI_SAME_STMT);
+ }
+ /* Replace the offset if needed. */
+ if (tmp1 != offset)
+ {
+ if (TREE_CODE (offset) == SSA_NAME)
+ {
+ gimple use_stmt;
+
+ FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, offset)
+ FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
+ if (use_stmt == acc_info->stmt)
+ SET_USE (use_p, tmp1);
+ }
+ else
+ {
+ gcc_assert (TREE_CODE (offset) == INTEGER_CST);
+ gimple_assign_set_rhs2 (acc_info->stmt, tmp1);
+ update_stmt (acc_info->stmt);
+ }
+ }
+ }
+ /* ??? meanwhile this happens because we record the same access
+ site more than once; we should be using a hash table to
+ avoid this and insert the STMT of the access site only
+ once.
+ else
+ gcc_unreachable (); */
+ free (acc_info);
+ }
+ VEC_free (access_site_info_p, heap, mi->access_l);
+
+ update_ssa (TODO_update_ssa);
+#ifdef ENABLE_CHECKING
+ verify_ssa (true);
+#endif
+ return 1;
+}
+
+/* Sort A array of counts. Arrange DIM_MAP to reflect the new order. */
+
+static void
+sort_dim_hot_level (gcov_type * a, int *dim_map, int n)
+{
+ int i, j, tmp1;
+ gcov_type tmp;
+
+ for (i = 0; i < n - 1; i++)
+ {
+ for (j = 0; j < n - 1 - i; j++)
+ {
+ if (a[j + 1] < a[j])
+ {
+ tmp = a[j]; /* swap a[j] and a[j+1] */
+ a[j] = a[j + 1];
+ a[j + 1] = tmp;
+ tmp1 = dim_map[j];
+ dim_map[j] = dim_map[j + 1];
+ dim_map[j + 1] = tmp1;
+ }
+ }
+ }
+}
+
+/* Replace multiple mallocs (one for each dimension) to one malloc
+ with the size of DIM1*DIM2*...*DIMN*size_of_element
+ Make sure that we hold the size in the malloc site inside a
+ new global variable; this way we ensure that the size doesn't
+ change and it is accessible from all the other functions that
+ uses the matrix. Also, the original calls to free are deleted,
+ and replaced by a new call to free the flattened matrix. */
+
+static int
+transform_allocation_sites (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ int i;
+ struct matrix_info *mi;
+ tree type, oldfn, prev_dim_size;
+ gimple call_stmt_0, use_stmt;
+ struct cgraph_node *c_node;
+ struct cgraph_edge *e;
+ gimple_stmt_iterator gsi;
+ struct malloc_call_data mcd = {NULL, NULL_TREE, NULL_TREE};
+ HOST_WIDE_INT element_size;
+
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ tree old_size_0, tmp;
+ int min_escape_l;
+ int id;
+
+ mi = (struct matrix_info *) *slot;
+
+ min_escape_l = mi->min_indirect_level_escape;
+
+ if (!mi->malloc_for_level)
+ mi->min_indirect_level_escape = 0;
+
+ if (mi->min_indirect_level_escape < 2)
+ return 1;
+
+ mi->dim_map = (int *) xcalloc (mi->min_indirect_level_escape, sizeof (int));
+ for (i = 0; i < mi->min_indirect_level_escape; i++)
+ mi->dim_map[i] = i;
+ if (check_transpose_p)
+ {
+ int i;
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "Matrix %s:\n", get_name (mi->decl));
+ for (i = 0; i < min_escape_l; i++)
+ {
+ fprintf (dump_file, "dim %d before sort ", i);
+ if (mi->dim_hot_level)
+ fprintf (dump_file,
+ "count is " HOST_WIDEST_INT_PRINT_DEC " \n",
+ mi->dim_hot_level[i]);
+ }
+ }
+ sort_dim_hot_level (mi->dim_hot_level, mi->dim_map,
+ mi->min_indirect_level_escape);
+ if (dump_file)
+ for (i = 0; i < min_escape_l; i++)
+ {
+ fprintf (dump_file, "dim %d after sort\n", i);
+ if (mi->dim_hot_level)
+ fprintf (dump_file, "count is " HOST_WIDE_INT_PRINT_DEC
+ " \n", (HOST_WIDE_INT) mi->dim_hot_level[i]);
+ }
+ for (i = 0; i < mi->min_indirect_level_escape; i++)
+ {
+ if (dump_file)
+ fprintf (dump_file, "dim_map[%d] after sort %d\n", i,
+ mi->dim_map[i]);
+ if (mi->dim_map[i] != i)
+ {
+ if (dump_file)
+ fprintf (dump_file,
+ "Transposed dimensions: dim %d is now dim %d\n",
+ mi->dim_map[i], i);
+ mi->is_transposed_p = true;
+ }
+ }
+ }
+ else
+ {
+ for (i = 0; i < mi->min_indirect_level_escape; i++)
+ mi->dim_map[i] = i;
+ }
+ /* Call statement of allocation site of level 0. */
+ call_stmt_0 = mi->malloc_for_level[0];
+
+ /* Finds the correct malloc information. */
+ collect_data_for_malloc_call (call_stmt_0, &mcd);
+
+ mi->dimension_size[0] = mcd.size_var;
+ mi->dimension_size_orig[0] = mcd.size_var;
+ /* Make sure that the variables in the size expression for
+ all the dimensions (above level 0) aren't modified in
+ the allocation function. */
+ for (i = 1; i < mi->min_indirect_level_escape; i++)
+ {
+ tree t;
+ check_var_data data;
+
+ /* mi->dimension_size must contain the expression of the size calculated
+ in check_allocation_function. */
+ gcc_assert (mi->dimension_size[i]);
+
+ data.fn = mi->allocation_function_decl;
+ data.stmt = NULL;
+ t = walk_tree_without_duplicates (&(mi->dimension_size[i]),
+ check_var_notmodified_p,
+ &data);
+ if (t != NULL_TREE)
+ {
+ mark_min_matrix_escape_level (mi, i, data.stmt);
+ break;
+ }
+ }
+
+ if (mi->min_indirect_level_escape < 2)
+ return 1;
+
+ /* Since we should make sure that the size expression is available
+ before the call to malloc of level 0. */
+ gsi = gsi_for_stmt (call_stmt_0);
+
+ /* Find out the size of each dimension by looking at the malloc
+ sites and create a global variable to hold it.
+ We add the assignment to the global before the malloc of level 0. */
+
+ /* To be able to produce gimple temporaries. */
+ oldfn = current_function_decl;
+ current_function_decl = mi->allocation_function_decl;
+ push_cfun (DECL_STRUCT_FUNCTION (mi->allocation_function_decl));
+
+ /* Set the dimension sizes as follows:
+ DIM_SIZE[i] = DIM_SIZE[n] * ... * DIM_SIZE[i]
+ where n is the maximum non escaping level. */
+ element_size = mi->dimension_type_size[mi->min_indirect_level_escape];
+ prev_dim_size = NULL_TREE;
+
+ for (i = mi->min_indirect_level_escape - 1; i >= 0; i--)
+ {
+ tree dim_size, dim_var;
+ gimple stmt;
+ tree d_type_size;
+
+ /* Now put the size expression in a global variable and initialize it to
+ the size expression before the malloc of level 0. */
+ dim_var =
+ add_new_static_var (TREE_TYPE
+ (mi->dimension_size_orig[mi->dim_map[i]]));
+ type = TREE_TYPE (mi->dimension_size_orig[mi->dim_map[i]]);
+
+ /* DIM_SIZE = MALLOC_SIZE_PARAM / TYPE_SIZE. */
+ /* Find which dim ID becomes dim I. */
+ for (id = 0; id < mi->min_indirect_level_escape; id++)
+ if (mi->dim_map[id] == i)
+ break;
+ d_type_size =
+ build_int_cst (type, mi->dimension_type_size[id + 1]);
+ if (!prev_dim_size)
+ prev_dim_size = build_int_cst (type, element_size);
+ if (!check_transpose_p && i == mi->min_indirect_level_escape - 1)
+ {
+ dim_size = mi->dimension_size_orig[id];
+ }
+ else
+ {
+ dim_size =
+ fold_build2 (TRUNC_DIV_EXPR, type, mi->dimension_size_orig[id],
+ d_type_size);
+
+ dim_size = fold_build2 (MULT_EXPR, type, dim_size, prev_dim_size);
+ }
+ dim_size = force_gimple_operand_gsi (&gsi, dim_size, true, NULL,
+ true, GSI_SAME_STMT);
+ /* GLOBAL_HOLDING_THE_SIZE = DIM_SIZE. */
+ stmt = gimple_build_assign (dim_var, dim_size);
+ mark_symbols_for_renaming (stmt);
+ gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
+
+ prev_dim_size = mi->dimension_size[i] = dim_var;
+ }
+ update_ssa (TODO_update_ssa);
+ /* Replace the malloc size argument in the malloc of level 0 to be
+ the size of all the dimensions. */
+ c_node = cgraph_node (mi->allocation_function_decl);
+ old_size_0 = gimple_call_arg (call_stmt_0, 0);
+ tmp = force_gimple_operand_gsi (&gsi, mi->dimension_size[0], true,
+ NULL, true, GSI_SAME_STMT);
+ if (TREE_CODE (old_size_0) == SSA_NAME)
+ {
+ FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, old_size_0)
+ FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
+ if (use_stmt == call_stmt_0)
+ SET_USE (use_p, tmp);
+ }
+ /* When deleting the calls to malloc we need also to remove the edge from
+ the call graph to keep it consistent. Notice that cgraph_edge may
+ create a new node in the call graph if there is no node for the given
+ declaration; this shouldn't be the case but currently there is no way to
+ check this outside of "cgraph.c". */
+ for (i = 1; i < mi->min_indirect_level_escape; i++)
+ {
+ gimple_stmt_iterator gsi;
+
+ gimple call_stmt = mi->malloc_for_level[i];
+ gcc_assert (is_gimple_call (call_stmt));
+ e = cgraph_edge (c_node, call_stmt);
+ gcc_assert (e);
+ cgraph_remove_edge (e);
+ gsi = gsi_for_stmt (call_stmt);
+ /* Remove the call stmt. */
+ gsi_remove (&gsi, true);
+ /* Remove the assignment of the allocated area. */
+ FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter,
+ gimple_call_lhs (call_stmt))
+ {
+ gsi = gsi_for_stmt (use_stmt);
+ gsi_remove (&gsi, true);
+ }
+ }
+ update_ssa (TODO_update_ssa);
+#ifdef ENABLE_CHECKING
+ verify_ssa (true);
+#endif
+ /* Delete the calls to free. */
+ for (i = 1; i < mi->min_indirect_level_escape; i++)
+ {
+ gimple_stmt_iterator gsi;
+
+ /* ??? wonder why this case is possible but we failed on it once. */
+ if (!mi->free_stmts[i].stmt)
+ continue;
+
+ c_node = cgraph_node (mi->free_stmts[i].func);
+ gcc_assert (is_gimple_call (mi->free_stmts[i].stmt));
+ e = cgraph_edge (c_node, mi->free_stmts[i].stmt);
+ gcc_assert (e);
+ cgraph_remove_edge (e);
+ current_function_decl = mi->free_stmts[i].func;
+ set_cfun (DECL_STRUCT_FUNCTION (mi->free_stmts[i].func));
+ gsi = gsi_for_stmt (mi->free_stmts[i].stmt);
+ gsi_remove (&gsi, true);
+ }
+ /* Return to the previous situation. */
+ current_function_decl = oldfn;
+ pop_cfun ();
+ return 1;
+
+}
+
+
+/* Print out the results of the escape analysis. */
+static int
+dump_matrix_reorg_analysis (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ struct matrix_info *mi = (struct matrix_info *) *slot;
+
+ if (!dump_file)
+ return 1;
+ fprintf (dump_file, "Matrix \"%s\"; Escaping Level: %d, Num Dims: %d,",
+ get_name (mi->decl), mi->min_indirect_level_escape, mi->num_dims);
+ fprintf (dump_file, " Malloc Dims: %d, ", mi->max_malloced_level);
+ fprintf (dump_file, "\n");
+ if (mi->min_indirect_level_escape >= 2)
+ fprintf (dump_file, "Flattened %d dimensions \n",
+ mi->min_indirect_level_escape);
+ return 1;
+}
+
+/* Perform matrix flattening. */
+
+static unsigned int
+matrix_reorg (void)
+{
+ struct cgraph_node *node;
+
+ if (profile_info)
+ check_transpose_p = true;
+ else
+ check_transpose_p = false;
+ /* If there are hand written vectors, we skip this optimization. */
+ for (node = cgraph_nodes; node; node = node->next)
+ if (!may_flatten_matrices (node))
+ return 0;
+ matrices_to_reorg = htab_create (37, mtt_info_hash, mtt_info_eq, mat_free);
+ /* Find and record all potential matrices in the program. */
+ find_matrices_decl ();
+ /* Analyze the accesses of the matrices (escaping analysis). */
+ for (node = cgraph_nodes; node; node = node->next)
+ if (node->analyzed)
+ {
+ tree temp_fn;
+
+ temp_fn = current_function_decl;
+ current_function_decl = node->decl;
+ push_cfun (DECL_STRUCT_FUNCTION (node->decl));
+ bitmap_obstack_initialize (NULL);
+ gimple_register_cfg_hooks ();
+
+ if (!gimple_in_ssa_p (cfun))
+ {
+ free_dominance_info (CDI_DOMINATORS);
+ free_dominance_info (CDI_POST_DOMINATORS);
+ pop_cfun ();
+ current_function_decl = temp_fn;
+ bitmap_obstack_release (NULL);
+
+ return 0;
+ }
+
+#ifdef ENABLE_CHECKING
+ verify_flow_info ();
+#endif
+
+ if (!matrices_to_reorg)
+ {
+ free_dominance_info (CDI_DOMINATORS);
+ free_dominance_info (CDI_POST_DOMINATORS);
+ pop_cfun ();
+ current_function_decl = temp_fn;
+ bitmap_obstack_release (NULL);
+
+ return 0;
+ }
+
+ /* Create htap for phi nodes. */
+ htab_mat_acc_phi_nodes = htab_create (37, mat_acc_phi_hash,
+ mat_acc_phi_eq, free);
+ if (!check_transpose_p)
+ find_sites_in_func (false);
+ else
+ {
+ find_sites_in_func (true);
+ loop_optimizer_init (LOOPS_NORMAL);
+ if (current_loops)
+ scev_initialize ();
+ htab_traverse (matrices_to_reorg, analyze_transpose, NULL);
+ if (current_loops)
+ {
+ scev_finalize ();
+ loop_optimizer_finalize ();
+ current_loops = NULL;
+ }
+ }
+ /* If the current function is the allocation function for any of
+ the matrices we check its allocation and the escaping level. */
+ htab_traverse (matrices_to_reorg, check_allocation_function, NULL);
+ free_dominance_info (CDI_DOMINATORS);
+ free_dominance_info (CDI_POST_DOMINATORS);
+ pop_cfun ();
+ current_function_decl = temp_fn;
+ bitmap_obstack_release (NULL);
+ }
+ htab_traverse (matrices_to_reorg, transform_allocation_sites, NULL);
+ /* Now transform the accesses. */
+ for (node = cgraph_nodes; node; node = node->next)
+ if (node->analyzed)
+ {
+ /* Remember that allocation sites have been handled. */
+ tree temp_fn;
+
+ temp_fn = current_function_decl;
+ current_function_decl = node->decl;
+ push_cfun (DECL_STRUCT_FUNCTION (node->decl));
+ bitmap_obstack_initialize (NULL);
+ gimple_register_cfg_hooks ();
+ record_all_accesses_in_func ();
+ htab_traverse (matrices_to_reorg, transform_access_sites, NULL);
+ cgraph_rebuild_references ();
+ free_dominance_info (CDI_DOMINATORS);
+ free_dominance_info (CDI_POST_DOMINATORS);
+ pop_cfun ();
+ current_function_decl = temp_fn;
+ bitmap_obstack_release (NULL);
+ }
+ htab_traverse (matrices_to_reorg, dump_matrix_reorg_analysis, NULL);
+
+ current_function_decl = NULL;
+ set_cfun (NULL);
+ matrices_to_reorg = NULL;
+ return 0;
+}
+
+
+/* The condition for matrix flattening to be performed. */
+static bool
+gate_matrix_reorg (void)
+{
+ return flag_ipa_matrix_reorg && flag_whole_program;
+}
+
+struct simple_ipa_opt_pass pass_ipa_matrix_reorg =
+{
+ {
+ SIMPLE_IPA_PASS,
+ "matrix-reorg", /* name */
+ gate_matrix_reorg, /* gate */
+ matrix_reorg, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ TV_NONE, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_dump_cgraph | TODO_dump_func /* todo_flags_finish */
+ }
+};