summaryrefslogtreecommitdiff
path: root/gcc/testsuite/ada/acats/tests/cxg/cxg2010.a
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/testsuite/ada/acats/tests/cxg/cxg2010.a
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'gcc/testsuite/ada/acats/tests/cxg/cxg2010.a')
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2010.a892
1 files changed, 892 insertions, 0 deletions
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2010.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2010.a
new file mode 100644
index 000000000..4140a4875
--- /dev/null
+++ b/gcc/testsuite/ada/acats/tests/cxg/cxg2010.a
@@ -0,0 +1,892 @@
+-- CXG2010.A
+--
+-- Grant of Unlimited Rights
+--
+-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
+-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
+-- unlimited rights in the software and documentation contained herein.
+-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
+-- this public release, the Government intends to confer upon all
+-- recipients unlimited rights equal to those held by the Government.
+-- These rights include rights to use, duplicate, release or disclose the
+-- released technical data and computer software in whole or in part, in
+-- any manner and for any purpose whatsoever, and to have or permit others
+-- to do so.
+--
+-- DISCLAIMER
+--
+-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
+-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
+-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
+-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
+-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
+-- PARTICULAR PURPOSE OF SAID MATERIAL.
+--*
+--
+-- OBJECTIVE:
+-- Check that the exp function returns
+-- results that are within the error bound allowed.
+--
+-- TEST DESCRIPTION:
+-- This test contains three test packages that are almost
+-- identical. The first two packages differ only in the
+-- floating point type that is being tested. The first
+-- and third package differ only in whether the generic
+-- elementary functions package or the pre-instantiated
+-- package is used.
+-- The test package is not generic so that the arguments
+-- and expected results for some of the test values
+-- can be expressed as universal real instead of being
+-- computed at runtime.
+--
+-- SPECIAL REQUIREMENTS
+-- The Strict Mode for the numerical accuracy must be
+-- selected. The method by which this mode is selected
+-- is implementation dependent.
+--
+-- APPLICABILITY CRITERIA:
+-- This test applies only to implementations supporting the
+-- Numerics Annex and where the Machine_Radix is 2, 4, 8, or 16.
+-- This test only applies to the Strict Mode for numerical
+-- accuracy.
+--
+--
+-- CHANGE HISTORY:
+-- 1 Mar 96 SAIC Initial release for 2.1
+-- 2 Sep 96 SAIC Improved check routine
+--
+--!
+
+--
+-- References:
+--
+-- Software Manual for the Elementary Functions
+-- William J. Cody, Jr. and William Waite
+-- Prentice-Hall, 1980
+--
+-- CRC Standard Mathematical Tables
+-- 23rd Edition
+--
+-- Implementation and Testing of Function Software
+-- W. J. Cody
+-- Problems and Methodologies in Mathematical Software Production
+-- editors P. C. Messina and A. Murli
+-- Lecture Notes in Computer Science Volume 142
+-- Springer Verlag, 1982
+--
+
+--
+-- Notes on derivation of error bound for exp(p)*exp(-p)
+--
+-- Let a = true value of exp(p) and ac be the computed value.
+-- Then a = ac(1+e1), where |e1| <= 4*Model_Epsilon.
+-- Similarly, let b = true value of exp(-p) and bc be the computed value.
+-- Then b = bc(1+e2), where |e2| <= 4*ME.
+--
+-- The product of x and y is (x*y)(1+e3), where |e3| <= 1.0ME
+--
+-- Hence, the computed ab is [ac(1+e1)*bc(1+e2)](1+e3) =
+-- (ac*bc)[1 + e1 + e2 + e3 + e1e2 + e1e3 + e2e3 + e1e2e3).
+--
+-- Throwing away the last four tiny terms, we have (ac*bc)(1 + eta),
+--
+-- where |eta| <= (4+4+1)ME = 9.0Model_Epsilon.
+
+with System;
+with Report;
+with Ada.Numerics.Generic_Elementary_Functions;
+with Ada.Numerics.Elementary_Functions;
+procedure CXG2010 is
+ Verbose : constant Boolean := False;
+ Max_Samples : constant := 1000;
+ Accuracy_Error_Reported : Boolean := False;
+
+ package Float_Check is
+ subtype Real is Float;
+ procedure Do_Test;
+ end Float_Check;
+
+ package body Float_Check is
+ package Elementary_Functions is new
+ Ada.Numerics.Generic_Elementary_Functions (Real);
+ function Sqrt (X : Real) return Real renames
+ Elementary_Functions.Sqrt;
+ function Exp (X : Real) return Real renames
+ Elementary_Functions.Exp;
+
+
+ -- The following value is a lower bound on the accuracy
+ -- required. It is normally 0.0 so that the lower bound
+ -- is computed from Model_Epsilon. However, for tests
+ -- where the expected result is only known to a certain
+ -- amount of precision this bound takes on a non-zero
+ -- value to account for that level of precision.
+ Error_Low_Bound : Real := 0.0;
+
+ procedure Check (Actual, Expected : Real;
+ Test_Name : String;
+ MRE : Real) is
+ Max_Error : Real;
+ Rel_Error : Real;
+ Abs_Error : Real;
+ begin
+ -- In the case where the expected result is very small or 0
+ -- we compute the maximum error as a multiple of Model_Epsilon
+ -- instead of Model_Epsilon and Expected.
+ Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
+ Abs_Error := MRE * Real'Model_Epsilon;
+ if Rel_Error > Abs_Error then
+ Max_Error := Rel_Error;
+ else
+ Max_Error := Abs_Error;
+ end if;
+
+ -- take into account the low bound on the error
+ if Max_Error < Error_Low_Bound then
+ Max_Error := Error_Low_Bound;
+ end if;
+
+ if abs (Actual - Expected) > Max_Error then
+ Accuracy_Error_Reported := True;
+ Report.Failed (Test_Name &
+ " actual: " & Real'Image (Actual) &
+ " expected: " & Real'Image (Expected) &
+ " difference: " & Real'Image (Actual - Expected) &
+ " max err:" & Real'Image (Max_Error) );
+ elsif Verbose then
+ if Actual = Expected then
+ Report.Comment (Test_Name & " exact result");
+ else
+ Report.Comment (Test_Name & " passed");
+ end if;
+ end if;
+ end Check;
+
+
+ procedure Argument_Range_Check_1 (A, B : Real;
+ Test : String) is
+ -- test a evenly distributed selection of
+ -- arguments selected from the range A to B.
+ -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
+ -- The parameter One_Minus_Exp_Minus_V is the value
+ -- 1.0 - Exp (-V)
+ -- accurate to machine precision.
+ -- This procedure is a translation of part of Cody's test
+ X : Real;
+ Y : Real;
+ ZX, ZY : Real;
+ V : constant := 1.0 / 16.0;
+ One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;
+
+ begin
+ Accuracy_Error_Reported := False;
+ for I in 1..Max_Samples loop
+ X := (B - A) * Real (I) / Real (Max_Samples) + A;
+ Y := X - V;
+ if Y < 0.0 then
+ X := Y + V;
+ end if;
+
+ ZX := Exp (X);
+ ZY := Exp (Y);
+
+ -- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);
+ -- which simplifies to ZX := Exp (X-V);
+ ZX := ZX - ZX * One_Minus_Exp_Minus_V;
+
+ -- note that since the expected value is computed, we
+ -- must take the error in that computation into account.
+ Check (ZY, ZX,
+ "test " & Test & " -" &
+ Integer'Image (I) &
+ " exp (" & Real'Image (X) & ")",
+ 9.0);
+ exit when Accuracy_Error_Reported;
+ end loop;
+ exception
+ when Constraint_Error =>
+ Report.Failed
+ ("Constraint_Error raised in argument range check 1");
+ when others =>
+ Report.Failed ("exception in argument range check 1");
+ end Argument_Range_Check_1;
+
+
+
+ procedure Argument_Range_Check_2 (A, B : Real;
+ Test : String) is
+ -- test a evenly distributed selection of
+ -- arguments selected from the range A to B.
+ -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
+ -- The parameter One_Minus_Exp_Minus_V is the value
+ -- 1.0 - Exp (-V)
+ -- accurate to machine precision.
+ -- This procedure is a translation of part of Cody's test
+ X : Real;
+ Y : Real;
+ ZX, ZY : Real;
+ V : constant := 45.0 / 16.0;
+ -- 1/16 - Exp(45/16)
+ Coeff : constant := 2.4453321046920570389E-3;
+
+ begin
+ Accuracy_Error_Reported := False;
+ for I in 1..Max_Samples loop
+ X := (B - A) * Real (I) / Real (Max_Samples) + A;
+ Y := X - V;
+ if Y < 0.0 then
+ X := Y + V;
+ end if;
+
+ ZX := Exp (X);
+ ZY := Exp (Y);
+
+ -- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;
+ -- where Coeff is 1/16 - Exp(45/16)
+ -- which simplifies to ZX := Exp (X-V);
+ ZX := ZX * 0.0625 - ZX * Coeff;
+
+ -- note that since the expected value is computed, we
+ -- must take the error in that computation into account.
+ Check (ZY, ZX,
+ "test " & Test & " -" &
+ Integer'Image (I) &
+ " exp (" & Real'Image (X) & ")",
+ 9.0);
+ exit when Accuracy_Error_Reported;
+ end loop;
+ exception
+ when Constraint_Error =>
+ Report.Failed
+ ("Constraint_Error raised in argument range check 2");
+ when others =>
+ Report.Failed ("exception in argument range check 2");
+ end Argument_Range_Check_2;
+
+
+ procedure Do_Test is
+ begin
+
+ --- test 1 ---
+ declare
+ Y : Real;
+ begin
+ Y := Exp(1.0);
+ -- normal accuracy requirements
+ Check (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 1");
+ when others =>
+ Report.Failed ("exception in test 1");
+ end;
+
+ --- test 2 ---
+ declare
+ Y : Real;
+ begin
+ Y := Exp(16.0) * Exp(-16.0);
+ Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 2");
+ when others =>
+ Report.Failed ("exception in test 2");
+ end;
+
+ --- test 3 ---
+ declare
+ Y : Real;
+ begin
+ Y := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);
+ Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 3");
+ when others =>
+ Report.Failed ("exception in test 3");
+ end;
+
+ --- test 4 ---
+ declare
+ Y : Real;
+ begin
+ Y := Exp(0.0);
+ Check (Y, 1.0, "test 4 -- exp(0.0)",
+ 0.0); -- no error allowed
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 4");
+ when others =>
+ Report.Failed ("exception in test 4");
+ end;
+
+ --- test 5 ---
+ -- constants used here only have 19 digits of precision
+ if Real'Digits > 19 then
+ Error_Low_Bound := 0.00000_00000_00000_0001;
+ Report.Comment ("exp accuracy checked to 19 digits");
+ end if;
+
+ Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)),
+ 1.0,
+ "5");
+ Error_Low_Bound := 0.0; -- reset
+
+ --- test 6 ---
+ -- constants used here only have 19 digits of precision
+ if Real'Digits > 19 then
+ Error_Low_Bound := 0.00000_00000_00000_0001;
+ Report.Comment ("exp accuracy checked to 19 digits");
+ end if;
+
+ Argument_Range_Check_2 (1.0,
+ Sqrt(Real(Real'Machine_Radix)),
+ "6");
+ Error_Low_Bound := 0.0; -- reset
+
+ end Do_Test;
+ end Float_Check;
+
+ -----------------------------------------------------------------------
+ -----------------------------------------------------------------------
+ -- check the floating point type with the most digits
+ type A_Long_Float is digits System.Max_Digits;
+
+
+ package A_Long_Float_Check is
+ subtype Real is A_Long_Float;
+ procedure Do_Test;
+ end A_Long_Float_Check;
+
+ package body A_Long_Float_Check is
+ package Elementary_Functions is new
+ Ada.Numerics.Generic_Elementary_Functions (Real);
+ function Sqrt (X : Real) return Real renames
+ Elementary_Functions.Sqrt;
+ function Exp (X : Real) return Real renames
+ Elementary_Functions.Exp;
+
+
+ -- The following value is a lower bound on the accuracy
+ -- required. It is normally 0.0 so that the lower bound
+ -- is computed from Model_Epsilon. However, for tests
+ -- where the expected result is only known to a certain
+ -- amount of precision this bound takes on a non-zero
+ -- value to account for that level of precision.
+ Error_Low_Bound : Real := 0.0;
+
+ procedure Check (Actual, Expected : Real;
+ Test_Name : String;
+ MRE : Real) is
+ Max_Error : Real;
+ Rel_Error : Real;
+ Abs_Error : Real;
+ begin
+ -- In the case where the expected result is very small or 0
+ -- we compute the maximum error as a multiple of Model_Epsilon
+ -- instead of Model_Epsilon and Expected.
+ Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
+ Abs_Error := MRE * Real'Model_Epsilon;
+ if Rel_Error > Abs_Error then
+ Max_Error := Rel_Error;
+ else
+ Max_Error := Abs_Error;
+ end if;
+
+ -- take into account the low bound on the error
+ if Max_Error < Error_Low_Bound then
+ Max_Error := Error_Low_Bound;
+ end if;
+
+ if abs (Actual - Expected) > Max_Error then
+ Accuracy_Error_Reported := True;
+ Report.Failed (Test_Name &
+ " actual: " & Real'Image (Actual) &
+ " expected: " & Real'Image (Expected) &
+ " difference: " & Real'Image (Actual - Expected) &
+ " max err:" & Real'Image (Max_Error) );
+ elsif Verbose then
+ if Actual = Expected then
+ Report.Comment (Test_Name & " exact result");
+ else
+ Report.Comment (Test_Name & " passed");
+ end if;
+ end if;
+ end Check;
+
+
+ procedure Argument_Range_Check_1 (A, B : Real;
+ Test : String) is
+ -- test a evenly distributed selection of
+ -- arguments selected from the range A to B.
+ -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
+ -- The parameter One_Minus_Exp_Minus_V is the value
+ -- 1.0 - Exp (-V)
+ -- accurate to machine precision.
+ -- This procedure is a translation of part of Cody's test
+ X : Real;
+ Y : Real;
+ ZX, ZY : Real;
+ V : constant := 1.0 / 16.0;
+ One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;
+
+ begin
+ Accuracy_Error_Reported := False;
+ for I in 1..Max_Samples loop
+ X := (B - A) * Real (I) / Real (Max_Samples) + A;
+ Y := X - V;
+ if Y < 0.0 then
+ X := Y + V;
+ end if;
+
+ ZX := Exp (X);
+ ZY := Exp (Y);
+
+ -- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);
+ -- which simplifies to ZX := Exp (X-V);
+ ZX := ZX - ZX * One_Minus_Exp_Minus_V;
+
+ -- note that since the expected value is computed, we
+ -- must take the error in that computation into account.
+ Check (ZY, ZX,
+ "test " & Test & " -" &
+ Integer'Image (I) &
+ " exp (" & Real'Image (X) & ")",
+ 9.0);
+ exit when Accuracy_Error_Reported;
+ end loop;
+ exception
+ when Constraint_Error =>
+ Report.Failed
+ ("Constraint_Error raised in argument range check 1");
+ when others =>
+ Report.Failed ("exception in argument range check 1");
+ end Argument_Range_Check_1;
+
+
+
+ procedure Argument_Range_Check_2 (A, B : Real;
+ Test : String) is
+ -- test a evenly distributed selection of
+ -- arguments selected from the range A to B.
+ -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
+ -- The parameter One_Minus_Exp_Minus_V is the value
+ -- 1.0 - Exp (-V)
+ -- accurate to machine precision.
+ -- This procedure is a translation of part of Cody's test
+ X : Real;
+ Y : Real;
+ ZX, ZY : Real;
+ V : constant := 45.0 / 16.0;
+ -- 1/16 - Exp(45/16)
+ Coeff : constant := 2.4453321046920570389E-3;
+
+ begin
+ Accuracy_Error_Reported := False;
+ for I in 1..Max_Samples loop
+ X := (B - A) * Real (I) / Real (Max_Samples) + A;
+ Y := X - V;
+ if Y < 0.0 then
+ X := Y + V;
+ end if;
+
+ ZX := Exp (X);
+ ZY := Exp (Y);
+
+ -- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;
+ -- where Coeff is 1/16 - Exp(45/16)
+ -- which simplifies to ZX := Exp (X-V);
+ ZX := ZX * 0.0625 - ZX * Coeff;
+
+ -- note that since the expected value is computed, we
+ -- must take the error in that computation into account.
+ Check (ZY, ZX,
+ "test " & Test & " -" &
+ Integer'Image (I) &
+ " exp (" & Real'Image (X) & ")",
+ 9.0);
+ exit when Accuracy_Error_Reported;
+ end loop;
+ exception
+ when Constraint_Error =>
+ Report.Failed
+ ("Constraint_Error raised in argument range check 2");
+ when others =>
+ Report.Failed ("exception in argument range check 2");
+ end Argument_Range_Check_2;
+
+
+ procedure Do_Test is
+ begin
+
+ --- test 1 ---
+ declare
+ Y : Real;
+ begin
+ Y := Exp(1.0);
+ -- normal accuracy requirements
+ Check (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 1");
+ when others =>
+ Report.Failed ("exception in test 1");
+ end;
+
+ --- test 2 ---
+ declare
+ Y : Real;
+ begin
+ Y := Exp(16.0) * Exp(-16.0);
+ Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 2");
+ when others =>
+ Report.Failed ("exception in test 2");
+ end;
+
+ --- test 3 ---
+ declare
+ Y : Real;
+ begin
+ Y := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);
+ Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 3");
+ when others =>
+ Report.Failed ("exception in test 3");
+ end;
+
+ --- test 4 ---
+ declare
+ Y : Real;
+ begin
+ Y := Exp(0.0);
+ Check (Y, 1.0, "test 4 -- exp(0.0)",
+ 0.0); -- no error allowed
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 4");
+ when others =>
+ Report.Failed ("exception in test 4");
+ end;
+
+ --- test 5 ---
+ -- constants used here only have 19 digits of precision
+ if Real'Digits > 19 then
+ Error_Low_Bound := 0.00000_00000_00000_0001;
+ Report.Comment ("exp accuracy checked to 19 digits");
+ end if;
+
+ Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)),
+ 1.0,
+ "5");
+ Error_Low_Bound := 0.0; -- reset
+
+ --- test 6 ---
+ -- constants used here only have 19 digits of precision
+ if Real'Digits > 19 then
+ Error_Low_Bound := 0.00000_00000_00000_0001;
+ Report.Comment ("exp accuracy checked to 19 digits");
+ end if;
+
+ Argument_Range_Check_2 (1.0,
+ Sqrt(Real(Real'Machine_Radix)),
+ "6");
+ Error_Low_Bound := 0.0; -- reset
+
+ end Do_Test;
+ end A_Long_Float_Check;
+
+ -----------------------------------------------------------------------
+ -----------------------------------------------------------------------
+
+ package Non_Generic_Check is
+ procedure Do_Test;
+ subtype Real is Float;
+ end Non_Generic_Check;
+
+ package body Non_Generic_Check is
+
+ package Elementary_Functions renames
+ Ada.Numerics.Elementary_Functions;
+ function Sqrt (X : Real) return Real renames
+ Elementary_Functions.Sqrt;
+ function Exp (X : Real) return Real renames
+ Elementary_Functions.Exp;
+
+
+ -- The following value is a lower bound on the accuracy
+ -- required. It is normally 0.0 so that the lower bound
+ -- is computed from Model_Epsilon. However, for tests
+ -- where the expected result is only known to a certain
+ -- amount of precision this bound takes on a non-zero
+ -- value to account for that level of precision.
+ Error_Low_Bound : Real := 0.0;
+
+ procedure Check (Actual, Expected : Real;
+ Test_Name : String;
+ MRE : Real) is
+ Max_Error : Real;
+ Rel_Error : Real;
+ Abs_Error : Real;
+ begin
+ -- In the case where the expected result is very small or 0
+ -- we compute the maximum error as a multiple of Model_Epsilon
+ -- instead of Model_Epsilon and Expected.
+ Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
+ Abs_Error := MRE * Real'Model_Epsilon;
+ if Rel_Error > Abs_Error then
+ Max_Error := Rel_Error;
+ else
+ Max_Error := Abs_Error;
+ end if;
+
+ -- take into account the low bound on the error
+ if Max_Error < Error_Low_Bound then
+ Max_Error := Error_Low_Bound;
+ end if;
+
+ if abs (Actual - Expected) > Max_Error then
+ Accuracy_Error_Reported := True;
+ Report.Failed (Test_Name &
+ " actual: " & Real'Image (Actual) &
+ " expected: " & Real'Image (Expected) &
+ " difference: " & Real'Image (Actual - Expected) &
+ " max err:" & Real'Image (Max_Error) );
+ elsif Verbose then
+ if Actual = Expected then
+ Report.Comment (Test_Name & " exact result");
+ else
+ Report.Comment (Test_Name & " passed");
+ end if;
+ end if;
+ end Check;
+
+
+ procedure Argument_Range_Check_1 (A, B : Real;
+ Test : String) is
+ -- test a evenly distributed selection of
+ -- arguments selected from the range A to B.
+ -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
+ -- The parameter One_Minus_Exp_Minus_V is the value
+ -- 1.0 - Exp (-V)
+ -- accurate to machine precision.
+ -- This procedure is a translation of part of Cody's test
+ X : Real;
+ Y : Real;
+ ZX, ZY : Real;
+ V : constant := 1.0 / 16.0;
+ One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;
+
+ begin
+ Accuracy_Error_Reported := False;
+ for I in 1..Max_Samples loop
+ X := (B - A) * Real (I) / Real (Max_Samples) + A;
+ Y := X - V;
+ if Y < 0.0 then
+ X := Y + V;
+ end if;
+
+ ZX := Exp (X);
+ ZY := Exp (Y);
+
+ -- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);
+ -- which simplifies to ZX := Exp (X-V);
+ ZX := ZX - ZX * One_Minus_Exp_Minus_V;
+
+ -- note that since the expected value is computed, we
+ -- must take the error in that computation into account.
+ Check (ZY, ZX,
+ "test " & Test & " -" &
+ Integer'Image (I) &
+ " exp (" & Real'Image (X) & ")",
+ 9.0);
+ exit when Accuracy_Error_Reported;
+ end loop;
+ exception
+ when Constraint_Error =>
+ Report.Failed
+ ("Constraint_Error raised in argument range check 1");
+ when others =>
+ Report.Failed ("exception in argument range check 1");
+ end Argument_Range_Check_1;
+
+
+
+ procedure Argument_Range_Check_2 (A, B : Real;
+ Test : String) is
+ -- test a evenly distributed selection of
+ -- arguments selected from the range A to B.
+ -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
+ -- The parameter One_Minus_Exp_Minus_V is the value
+ -- 1.0 - Exp (-V)
+ -- accurate to machine precision.
+ -- This procedure is a translation of part of Cody's test
+ X : Real;
+ Y : Real;
+ ZX, ZY : Real;
+ V : constant := 45.0 / 16.0;
+ -- 1/16 - Exp(45/16)
+ Coeff : constant := 2.4453321046920570389E-3;
+
+ begin
+ Accuracy_Error_Reported := False;
+ for I in 1..Max_Samples loop
+ X := (B - A) * Real (I) / Real (Max_Samples) + A;
+ Y := X - V;
+ if Y < 0.0 then
+ X := Y + V;
+ end if;
+
+ ZX := Exp (X);
+ ZY := Exp (Y);
+
+ -- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;
+ -- where Coeff is 1/16 - Exp(45/16)
+ -- which simplifies to ZX := Exp (X-V);
+ ZX := ZX * 0.0625 - ZX * Coeff;
+
+ -- note that since the expected value is computed, we
+ -- must take the error in that computation into account.
+ Check (ZY, ZX,
+ "test " & Test & " -" &
+ Integer'Image (I) &
+ " exp (" & Real'Image (X) & ")",
+ 9.0);
+ exit when Accuracy_Error_Reported;
+ end loop;
+ exception
+ when Constraint_Error =>
+ Report.Failed
+ ("Constraint_Error raised in argument range check 2");
+ when others =>
+ Report.Failed ("exception in argument range check 2");
+ end Argument_Range_Check_2;
+
+
+ procedure Do_Test is
+ begin
+
+ --- test 1 ---
+ declare
+ Y : Real;
+ begin
+ Y := Exp(1.0);
+ -- normal accuracy requirements
+ Check (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 1");
+ when others =>
+ Report.Failed ("exception in test 1");
+ end;
+
+ --- test 2 ---
+ declare
+ Y : Real;
+ begin
+ Y := Exp(16.0) * Exp(-16.0);
+ Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 2");
+ when others =>
+ Report.Failed ("exception in test 2");
+ end;
+
+ --- test 3 ---
+ declare
+ Y : Real;
+ begin
+ Y := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);
+ Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 3");
+ when others =>
+ Report.Failed ("exception in test 3");
+ end;
+
+ --- test 4 ---
+ declare
+ Y : Real;
+ begin
+ Y := Exp(0.0);
+ Check (Y, 1.0, "test 4 -- exp(0.0)",
+ 0.0); -- no error allowed
+ exception
+ when Constraint_Error =>
+ Report.Failed ("Constraint_Error raised in test 4");
+ when others =>
+ Report.Failed ("exception in test 4");
+ end;
+
+ --- test 5 ---
+ -- constants used here only have 19 digits of precision
+ if Real'Digits > 19 then
+ Error_Low_Bound := 0.00000_00000_00000_0001;
+ Report.Comment ("exp accuracy checked to 19 digits");
+ end if;
+
+ Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)),
+ 1.0,
+ "5");
+ Error_Low_Bound := 0.0; -- reset
+
+ --- test 6 ---
+ -- constants used here only have 19 digits of precision
+ if Real'Digits > 19 then
+ Error_Low_Bound := 0.00000_00000_00000_0001;
+ Report.Comment ("exp accuracy checked to 19 digits");
+ end if;
+
+ Argument_Range_Check_2 (1.0,
+ Sqrt(Real(Real'Machine_Radix)),
+ "6");
+ Error_Low_Bound := 0.0; -- reset
+
+ end Do_Test;
+ end Non_Generic_Check;
+
+ -----------------------------------------------------------------------
+ -----------------------------------------------------------------------
+
+begin
+ Report.Test ("CXG2010",
+ "Check the accuracy of the exp function");
+
+ -- the test only applies to machines with a radix of 2,4,8, or 16
+ case Float'Machine_Radix is
+ when 2 | 4 | 8 | 16 => null;
+ when others =>
+ Report.Not_Applicable ("only applicable to binary radix");
+ Report.Result;
+ return;
+ end case;
+
+ if Verbose then
+ Report.Comment ("checking Standard.Float");
+ end if;
+
+ Float_Check.Do_Test;
+
+ if Verbose then
+ Report.Comment ("checking a digits" &
+ Integer'Image (System.Max_Digits) &
+ " floating point type");
+ end if;
+
+ A_Long_Float_Check.Do_Test;
+
+ if Verbose then
+ Report.Comment ("checking non-generic package");
+ end if;
+
+ Non_Generic_Check.Do_Test;
+
+ Report.Result;
+end CXG2010;