summaryrefslogtreecommitdiff
path: root/gcc/tree-loop-distribution.c
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/tree-loop-distribution.c
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'gcc/tree-loop-distribution.c')
-rw-r--r--gcc/tree-loop-distribution.c1329
1 files changed, 1329 insertions, 0 deletions
diff --git a/gcc/tree-loop-distribution.c b/gcc/tree-loop-distribution.c
new file mode 100644
index 000000000..6b9b98d6b
--- /dev/null
+++ b/gcc/tree-loop-distribution.c
@@ -0,0 +1,1329 @@
+/* Loop distribution.
+ Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
+ Free Software Foundation, Inc.
+ Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
+ and Sebastian Pop <sebastian.pop@amd.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 3, or (at your option) any
+later version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* This pass performs loop distribution: for example, the loop
+
+ |DO I = 2, N
+ | A(I) = B(I) + C
+ | D(I) = A(I-1)*E
+ |ENDDO
+
+ is transformed to
+
+ |DOALL I = 2, N
+ | A(I) = B(I) + C
+ |ENDDO
+ |
+ |DOALL I = 2, N
+ | D(I) = A(I-1)*E
+ |ENDDO
+
+ This pass uses an RDG, Reduced Dependence Graph built on top of the
+ data dependence relations. The RDG is then topologically sorted to
+ obtain a map of information producers/consumers based on which it
+ generates the new loops. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tree-flow.h"
+#include "cfgloop.h"
+#include "tree-chrec.h"
+#include "tree-data-ref.h"
+#include "tree-scalar-evolution.h"
+#include "tree-pass.h"
+
+/* If bit I is not set, it means that this node represents an
+ operation that has already been performed, and that should not be
+ performed again. This is the subgraph of remaining important
+ computations that is passed to the DFS algorithm for avoiding to
+ include several times the same stores in different loops. */
+static bitmap remaining_stmts;
+
+/* A node of the RDG is marked in this bitmap when it has as a
+ predecessor a node that writes to memory. */
+static bitmap upstream_mem_writes;
+
+/* Returns true when DEF is an SSA_NAME defined in LOOP and used after
+ the LOOP. */
+
+static bool
+ssa_name_has_uses_outside_loop_p (tree def, loop_p loop)
+{
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
+ if (loop != loop_containing_stmt (USE_STMT (use_p)))
+ return true;
+
+ return false;
+}
+
+/* Returns true when STMT defines a scalar variable used after the
+ loop. */
+
+static bool
+stmt_has_scalar_dependences_outside_loop (gimple stmt)
+{
+ tree name;
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_CALL:
+ case GIMPLE_ASSIGN:
+ name = gimple_get_lhs (stmt);
+ break;
+
+ case GIMPLE_PHI:
+ name = gimple_phi_result (stmt);
+ break;
+
+ default:
+ return false;
+ }
+
+ return (name
+ && TREE_CODE (name) == SSA_NAME
+ && ssa_name_has_uses_outside_loop_p (name,
+ loop_containing_stmt (stmt)));
+}
+
+/* Update the PHI nodes of NEW_LOOP. NEW_LOOP is a duplicate of
+ ORIG_LOOP. */
+
+static void
+update_phis_for_loop_copy (struct loop *orig_loop, struct loop *new_loop)
+{
+ tree new_ssa_name;
+ gimple_stmt_iterator si_new, si_orig;
+ edge orig_loop_latch = loop_latch_edge (orig_loop);
+ edge orig_entry_e = loop_preheader_edge (orig_loop);
+ edge new_loop_entry_e = loop_preheader_edge (new_loop);
+
+ /* Scan the phis in the headers of the old and new loops
+ (they are organized in exactly the same order). */
+ for (si_new = gsi_start_phis (new_loop->header),
+ si_orig = gsi_start_phis (orig_loop->header);
+ !gsi_end_p (si_new) && !gsi_end_p (si_orig);
+ gsi_next (&si_new), gsi_next (&si_orig))
+ {
+ tree def;
+ source_location locus;
+ gimple phi_new = gsi_stmt (si_new);
+ gimple phi_orig = gsi_stmt (si_orig);
+
+ /* Add the first phi argument for the phi in NEW_LOOP (the one
+ associated with the entry of NEW_LOOP) */
+ def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_entry_e);
+ locus = gimple_phi_arg_location_from_edge (phi_orig, orig_entry_e);
+ add_phi_arg (phi_new, def, new_loop_entry_e, locus);
+
+ /* Add the second phi argument for the phi in NEW_LOOP (the one
+ associated with the latch of NEW_LOOP) */
+ def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
+ locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
+
+ if (TREE_CODE (def) == SSA_NAME)
+ {
+ new_ssa_name = get_current_def (def);
+
+ if (!new_ssa_name)
+ /* This only happens if there are no definitions inside the
+ loop. Use the the invariant in the new loop as is. */
+ new_ssa_name = def;
+ }
+ else
+ /* Could be an integer. */
+ new_ssa_name = def;
+
+ add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
+ }
+}
+
+/* Return a copy of LOOP placed before LOOP. */
+
+static struct loop *
+copy_loop_before (struct loop *loop)
+{
+ struct loop *res;
+ edge preheader = loop_preheader_edge (loop);
+
+ if (!single_exit (loop))
+ return NULL;
+
+ initialize_original_copy_tables ();
+ res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, preheader);
+ free_original_copy_tables ();
+
+ if (!res)
+ return NULL;
+
+ update_phis_for_loop_copy (loop, res);
+ rename_variables_in_loop (res);
+
+ return res;
+}
+
+/* Creates an empty basic block after LOOP. */
+
+static void
+create_bb_after_loop (struct loop *loop)
+{
+ edge exit = single_exit (loop);
+
+ if (!exit)
+ return;
+
+ split_edge (exit);
+}
+
+/* Generate code for PARTITION from the code in LOOP. The loop is
+ copied when COPY_P is true. All the statements not flagged in the
+ PARTITION bitmap are removed from the loop or from its copy. The
+ statements are indexed in sequence inside a basic block, and the
+ basic blocks of a loop are taken in dom order. Returns true when
+ the code gen succeeded. */
+
+static bool
+generate_loops_for_partition (struct loop *loop, bitmap partition, bool copy_p)
+{
+ unsigned i, x;
+ gimple_stmt_iterator bsi;
+ basic_block *bbs;
+
+ if (copy_p)
+ {
+ loop = copy_loop_before (loop);
+ create_preheader (loop, CP_SIMPLE_PREHEADERS);
+ create_bb_after_loop (loop);
+ }
+
+ if (loop == NULL)
+ return false;
+
+ /* Remove stmts not in the PARTITION bitmap. The order in which we
+ visit the phi nodes and the statements is exactly as in
+ stmts_from_loop. */
+ bbs = get_loop_body_in_dom_order (loop);
+
+ if (MAY_HAVE_DEBUG_STMTS)
+ for (x = 0, i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = bbs[i];
+
+ for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ if (!bitmap_bit_p (partition, x++))
+ reset_debug_uses (gsi_stmt (bsi));
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ {
+ gimple stmt = gsi_stmt (bsi);
+ if (gimple_code (stmt) != GIMPLE_LABEL
+ && !is_gimple_debug (stmt)
+ && !bitmap_bit_p (partition, x++))
+ reset_debug_uses (stmt);
+ }
+ }
+
+ for (x = 0, i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = bbs[i];
+
+ for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
+ if (!bitmap_bit_p (partition, x++))
+ {
+ gimple phi = gsi_stmt (bsi);
+ if (!is_gimple_reg (gimple_phi_result (phi)))
+ mark_virtual_phi_result_for_renaming (phi);
+ remove_phi_node (&bsi, true);
+ }
+ else
+ gsi_next (&bsi);
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
+ {
+ gimple stmt = gsi_stmt (bsi);
+ if (gimple_code (stmt) != GIMPLE_LABEL
+ && !is_gimple_debug (stmt)
+ && !bitmap_bit_p (partition, x++))
+ {
+ unlink_stmt_vdef (stmt);
+ gsi_remove (&bsi, true);
+ release_defs (stmt);
+ }
+ else
+ gsi_next (&bsi);
+ }
+ }
+
+ free (bbs);
+ return true;
+}
+
+/* Build the size argument for a memset call. */
+
+static inline tree
+build_size_arg_loc (location_t loc, tree nb_iter, tree op,
+ gimple_seq *stmt_list)
+{
+ gimple_seq stmts;
+ tree x = size_binop_loc (loc, MULT_EXPR,
+ fold_convert_loc (loc, sizetype, nb_iter),
+ TYPE_SIZE_UNIT (TREE_TYPE (op)));
+ x = force_gimple_operand (x, &stmts, true, NULL);
+ gimple_seq_add_seq (stmt_list, stmts);
+
+ return x;
+}
+
+/* Generate a call to memset. Return true when the operation succeeded. */
+
+static void
+generate_memset_zero (gimple stmt, tree op0, tree nb_iter,
+ gimple_stmt_iterator bsi)
+{
+ tree addr_base, nb_bytes;
+ bool res = false;
+ gimple_seq stmt_list = NULL, stmts;
+ gimple fn_call;
+ tree mem, fn;
+ struct data_reference *dr = XCNEW (struct data_reference);
+ location_t loc = gimple_location (stmt);
+
+ DR_STMT (dr) = stmt;
+ DR_REF (dr) = op0;
+ res = dr_analyze_innermost (dr);
+ gcc_assert (res && stride_of_unit_type_p (DR_STEP (dr), TREE_TYPE (op0)));
+
+ nb_bytes = build_size_arg_loc (loc, nb_iter, op0, &stmt_list);
+ addr_base = size_binop_loc (loc, PLUS_EXPR, DR_OFFSET (dr), DR_INIT (dr));
+ addr_base = fold_convert_loc (loc, sizetype, addr_base);
+
+ /* Test for a negative stride, iterating over every element. */
+ if (integer_zerop (size_binop (PLUS_EXPR,
+ TYPE_SIZE_UNIT (TREE_TYPE (op0)),
+ fold_convert (sizetype, DR_STEP (dr)))))
+ {
+ addr_base = size_binop_loc (loc, MINUS_EXPR, addr_base,
+ fold_convert_loc (loc, sizetype, nb_bytes));
+ addr_base = size_binop_loc (loc, PLUS_EXPR, addr_base,
+ TYPE_SIZE_UNIT (TREE_TYPE (op0)));
+ }
+
+ addr_base = fold_build2_loc (loc, POINTER_PLUS_EXPR,
+ TREE_TYPE (DR_BASE_ADDRESS (dr)),
+ DR_BASE_ADDRESS (dr), addr_base);
+ mem = force_gimple_operand (addr_base, &stmts, true, NULL);
+ gimple_seq_add_seq (&stmt_list, stmts);
+
+ fn = build_fold_addr_expr (implicit_built_in_decls [BUILT_IN_MEMSET]);
+ fn_call = gimple_build_call (fn, 3, mem, integer_zero_node, nb_bytes);
+ gimple_seq_add_stmt (&stmt_list, fn_call);
+ gsi_insert_seq_after (&bsi, stmt_list, GSI_CONTINUE_LINKING);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "generated memset zero\n");
+
+ free_data_ref (dr);
+}
+
+/* Tries to generate a builtin function for the instructions of LOOP
+ pointed to by the bits set in PARTITION. Returns true when the
+ operation succeeded. */
+
+static bool
+generate_builtin (struct loop *loop, bitmap partition, bool copy_p)
+{
+ bool res = false;
+ unsigned i, x = 0;
+ basic_block *bbs;
+ gimple write = NULL;
+ gimple_stmt_iterator bsi;
+ tree nb_iter = number_of_exit_cond_executions (loop);
+
+ if (!nb_iter || nb_iter == chrec_dont_know)
+ return false;
+
+ bbs = get_loop_body_in_dom_order (loop);
+
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ basic_block bb = bbs[i];
+
+ for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ x++;
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ {
+ gimple stmt = gsi_stmt (bsi);
+
+ if (gimple_code (stmt) == GIMPLE_LABEL
+ || is_gimple_debug (stmt))
+ continue;
+
+ if (!bitmap_bit_p (partition, x++))
+ continue;
+
+ /* If the stmt has uses outside of the loop fail. */
+ if (stmt_has_scalar_dependences_outside_loop (stmt))
+ goto end;
+
+ if (is_gimple_assign (stmt)
+ && !is_gimple_reg (gimple_assign_lhs (stmt)))
+ {
+ /* Don't generate the builtins when there are more than
+ one memory write. */
+ if (write != NULL)
+ goto end;
+
+ write = stmt;
+ if (bb == loop->latch)
+ nb_iter = number_of_latch_executions (loop);
+ }
+ }
+ }
+
+ if (!stmt_with_adjacent_zero_store_dr_p (write))
+ goto end;
+
+ /* The new statements will be placed before LOOP. */
+ bsi = gsi_last_bb (loop_preheader_edge (loop)->src);
+ generate_memset_zero (write, gimple_assign_lhs (write), nb_iter, bsi);
+ res = true;
+
+ /* If this is the last partition for which we generate code, we have
+ to destroy the loop. */
+ if (!copy_p)
+ {
+ unsigned nbbs = loop->num_nodes;
+ edge exit = single_exit (loop);
+ basic_block src = loop_preheader_edge (loop)->src, dest = exit->dest;
+ redirect_edge_pred (exit, src);
+ exit->flags &= ~(EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
+ exit->flags |= EDGE_FALLTHRU;
+ cancel_loop_tree (loop);
+ rescan_loop_exit (exit, false, true);
+
+ for (i = 0; i < nbbs; i++)
+ delete_basic_block (bbs[i]);
+
+ set_immediate_dominator (CDI_DOMINATORS, dest,
+ recompute_dominator (CDI_DOMINATORS, dest));
+ }
+
+ end:
+ free (bbs);
+ return res;
+}
+
+/* Generates code for PARTITION. For simple loops, this function can
+ generate a built-in. */
+
+static bool
+generate_code_for_partition (struct loop *loop, bitmap partition, bool copy_p)
+{
+ if (generate_builtin (loop, partition, copy_p))
+ return true;
+
+ return generate_loops_for_partition (loop, partition, copy_p);
+}
+
+
+/* Returns true if the node V of RDG cannot be recomputed. */
+
+static bool
+rdg_cannot_recompute_vertex_p (struct graph *rdg, int v)
+{
+ if (RDG_MEM_WRITE_STMT (rdg, v))
+ return true;
+
+ return false;
+}
+
+/* Returns true when the vertex V has already been generated in the
+ current partition (V is in PROCESSED), or when V belongs to another
+ partition and cannot be recomputed (V is not in REMAINING_STMTS). */
+
+static inline bool
+already_processed_vertex_p (bitmap processed, int v)
+{
+ return (bitmap_bit_p (processed, v)
+ || !bitmap_bit_p (remaining_stmts, v));
+}
+
+/* Returns NULL when there is no anti-dependence among the successors
+ of vertex V, otherwise returns the edge with the anti-dep. */
+
+static struct graph_edge *
+has_anti_dependence (struct vertex *v)
+{
+ struct graph_edge *e;
+
+ if (v->succ)
+ for (e = v->succ; e; e = e->succ_next)
+ if (RDGE_TYPE (e) == anti_dd)
+ return e;
+
+ return NULL;
+}
+
+/* Returns true when V has an anti-dependence edge among its successors. */
+
+static bool
+predecessor_has_mem_write (struct graph *rdg, struct vertex *v)
+{
+ struct graph_edge *e;
+
+ if (v->pred)
+ for (e = v->pred; e; e = e->pred_next)
+ if (bitmap_bit_p (upstream_mem_writes, e->src)
+ /* Don't consider flow channels: a write to memory followed
+ by a read from memory. These channels allow the split of
+ the RDG in different partitions. */
+ && !RDG_MEM_WRITE_STMT (rdg, e->src))
+ return true;
+
+ return false;
+}
+
+/* Initializes the upstream_mem_writes bitmap following the
+ information from RDG. */
+
+static void
+mark_nodes_having_upstream_mem_writes (struct graph *rdg)
+{
+ int v, x;
+ bitmap seen = BITMAP_ALLOC (NULL);
+
+ for (v = rdg->n_vertices - 1; v >= 0; v--)
+ if (!bitmap_bit_p (seen, v))
+ {
+ unsigned i;
+ VEC (int, heap) *nodes = VEC_alloc (int, heap, 3);
+
+ graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
+
+ FOR_EACH_VEC_ELT (int, nodes, i, x)
+ {
+ if (!bitmap_set_bit (seen, x))
+ continue;
+
+ if (RDG_MEM_WRITE_STMT (rdg, x)
+ || predecessor_has_mem_write (rdg, &(rdg->vertices[x]))
+ /* In anti dependences the read should occur before
+ the write, this is why both the read and the write
+ should be placed in the same partition. */
+ || has_anti_dependence (&(rdg->vertices[x])))
+ {
+ bitmap_set_bit (upstream_mem_writes, x);
+ }
+ }
+
+ VEC_free (int, heap, nodes);
+ }
+}
+
+/* Returns true when vertex u has a memory write node as a predecessor
+ in RDG. */
+
+static bool
+has_upstream_mem_writes (int u)
+{
+ return bitmap_bit_p (upstream_mem_writes, u);
+}
+
+static void rdg_flag_vertex_and_dependent (struct graph *, int, bitmap, bitmap,
+ bitmap, bool *);
+
+/* Flag the uses of U stopping following the information from
+ upstream_mem_writes. */
+
+static void
+rdg_flag_uses (struct graph *rdg, int u, bitmap partition, bitmap loops,
+ bitmap processed, bool *part_has_writes)
+{
+ use_operand_p use_p;
+ struct vertex *x = &(rdg->vertices[u]);
+ gimple stmt = RDGV_STMT (x);
+ struct graph_edge *anti_dep = has_anti_dependence (x);
+
+ /* Keep in the same partition the destination of an antidependence,
+ because this is a store to the exact same location. Putting this
+ in another partition is bad for cache locality. */
+ if (anti_dep)
+ {
+ int v = anti_dep->dest;
+
+ if (!already_processed_vertex_p (processed, v))
+ rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
+ processed, part_has_writes);
+ }
+
+ if (gimple_code (stmt) != GIMPLE_PHI)
+ {
+ if ((use_p = gimple_vuse_op (stmt)) != NULL_USE_OPERAND_P)
+ {
+ tree use = USE_FROM_PTR (use_p);
+
+ if (TREE_CODE (use) == SSA_NAME)
+ {
+ gimple def_stmt = SSA_NAME_DEF_STMT (use);
+ int v = rdg_vertex_for_stmt (rdg, def_stmt);
+
+ if (v >= 0
+ && !already_processed_vertex_p (processed, v))
+ rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
+ processed, part_has_writes);
+ }
+ }
+ }
+
+ if (is_gimple_assign (stmt) && has_upstream_mem_writes (u))
+ {
+ tree op0 = gimple_assign_lhs (stmt);
+
+ /* Scalar channels don't have enough space for transmitting data
+ between tasks, unless we add more storage by privatizing. */
+ if (is_gimple_reg (op0))
+ {
+ use_operand_p use_p;
+ imm_use_iterator iter;
+
+ FOR_EACH_IMM_USE_FAST (use_p, iter, op0)
+ {
+ int v = rdg_vertex_for_stmt (rdg, USE_STMT (use_p));
+
+ if (!already_processed_vertex_p (processed, v))
+ rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
+ processed, part_has_writes);
+ }
+ }
+ }
+}
+
+/* Flag V from RDG as part of PARTITION, and also flag its loop number
+ in LOOPS. */
+
+static void
+rdg_flag_vertex (struct graph *rdg, int v, bitmap partition, bitmap loops,
+ bool *part_has_writes)
+{
+ struct loop *loop;
+
+ if (!bitmap_set_bit (partition, v))
+ return;
+
+ loop = loop_containing_stmt (RDG_STMT (rdg, v));
+ bitmap_set_bit (loops, loop->num);
+
+ if (rdg_cannot_recompute_vertex_p (rdg, v))
+ {
+ *part_has_writes = true;
+ bitmap_clear_bit (remaining_stmts, v);
+ }
+}
+
+/* Flag in the bitmap PARTITION the vertex V and all its predecessors.
+ Also flag their loop number in LOOPS. */
+
+static void
+rdg_flag_vertex_and_dependent (struct graph *rdg, int v, bitmap partition,
+ bitmap loops, bitmap processed,
+ bool *part_has_writes)
+{
+ unsigned i;
+ VEC (int, heap) *nodes = VEC_alloc (int, heap, 3);
+ int x;
+
+ bitmap_set_bit (processed, v);
+ rdg_flag_uses (rdg, v, partition, loops, processed, part_has_writes);
+ graphds_dfs (rdg, &v, 1, &nodes, false, remaining_stmts);
+ rdg_flag_vertex (rdg, v, partition, loops, part_has_writes);
+
+ FOR_EACH_VEC_ELT (int, nodes, i, x)
+ if (!already_processed_vertex_p (processed, x))
+ rdg_flag_vertex_and_dependent (rdg, x, partition, loops, processed,
+ part_has_writes);
+
+ VEC_free (int, heap, nodes);
+}
+
+/* Initialize CONDS with all the condition statements from the basic
+ blocks of LOOP. */
+
+static void
+collect_condition_stmts (struct loop *loop, VEC (gimple, heap) **conds)
+{
+ unsigned i;
+ edge e;
+ VEC (edge, heap) *exits = get_loop_exit_edges (loop);
+
+ FOR_EACH_VEC_ELT (edge, exits, i, e)
+ {
+ gimple cond = last_stmt (e->src);
+
+ if (cond)
+ VEC_safe_push (gimple, heap, *conds, cond);
+ }
+
+ VEC_free (edge, heap, exits);
+}
+
+/* Add to PARTITION all the exit condition statements for LOOPS
+ together with all their dependent statements determined from
+ RDG. */
+
+static void
+rdg_flag_loop_exits (struct graph *rdg, bitmap loops, bitmap partition,
+ bitmap processed, bool *part_has_writes)
+{
+ unsigned i;
+ bitmap_iterator bi;
+ VEC (gimple, heap) *conds = VEC_alloc (gimple, heap, 3);
+
+ EXECUTE_IF_SET_IN_BITMAP (loops, 0, i, bi)
+ collect_condition_stmts (get_loop (i), &conds);
+
+ while (!VEC_empty (gimple, conds))
+ {
+ gimple cond = VEC_pop (gimple, conds);
+ int v = rdg_vertex_for_stmt (rdg, cond);
+ bitmap new_loops = BITMAP_ALLOC (NULL);
+
+ if (!already_processed_vertex_p (processed, v))
+ rdg_flag_vertex_and_dependent (rdg, v, partition, new_loops, processed,
+ part_has_writes);
+
+ EXECUTE_IF_SET_IN_BITMAP (new_loops, 0, i, bi)
+ if (bitmap_set_bit (loops, i))
+ collect_condition_stmts (get_loop (i), &conds);
+
+ BITMAP_FREE (new_loops);
+ }
+
+ VEC_free (gimple, heap, conds);
+}
+
+/* Returns a bitmap in which all the statements needed for computing
+ the strongly connected component C of the RDG are flagged, also
+ including the loop exit conditions. */
+
+static bitmap
+build_rdg_partition_for_component (struct graph *rdg, rdgc c,
+ bool *part_has_writes)
+{
+ int i, v;
+ bitmap partition = BITMAP_ALLOC (NULL);
+ bitmap loops = BITMAP_ALLOC (NULL);
+ bitmap processed = BITMAP_ALLOC (NULL);
+
+ FOR_EACH_VEC_ELT (int, c->vertices, i, v)
+ if (!already_processed_vertex_p (processed, v))
+ rdg_flag_vertex_and_dependent (rdg, v, partition, loops, processed,
+ part_has_writes);
+
+ rdg_flag_loop_exits (rdg, loops, partition, processed, part_has_writes);
+
+ BITMAP_FREE (processed);
+ BITMAP_FREE (loops);
+ return partition;
+}
+
+/* Free memory for COMPONENTS. */
+
+static void
+free_rdg_components (VEC (rdgc, heap) *components)
+{
+ int i;
+ rdgc x;
+
+ FOR_EACH_VEC_ELT (rdgc, components, i, x)
+ {
+ VEC_free (int, heap, x->vertices);
+ free (x);
+ }
+
+ VEC_free (rdgc, heap, components);
+}
+
+/* Build the COMPONENTS vector with the strongly connected components
+ of RDG in which the STARTING_VERTICES occur. */
+
+static void
+rdg_build_components (struct graph *rdg, VEC (int, heap) *starting_vertices,
+ VEC (rdgc, heap) **components)
+{
+ int i, v;
+ bitmap saved_components = BITMAP_ALLOC (NULL);
+ int n_components = graphds_scc (rdg, NULL);
+ VEC (int, heap) **all_components = XNEWVEC (VEC (int, heap) *, n_components);
+
+ for (i = 0; i < n_components; i++)
+ all_components[i] = VEC_alloc (int, heap, 3);
+
+ for (i = 0; i < rdg->n_vertices; i++)
+ VEC_safe_push (int, heap, all_components[rdg->vertices[i].component], i);
+
+ FOR_EACH_VEC_ELT (int, starting_vertices, i, v)
+ {
+ int c = rdg->vertices[v].component;
+
+ if (bitmap_set_bit (saved_components, c))
+ {
+ rdgc x = XCNEW (struct rdg_component);
+ x->num = c;
+ x->vertices = all_components[c];
+
+ VEC_safe_push (rdgc, heap, *components, x);
+ }
+ }
+
+ for (i = 0; i < n_components; i++)
+ if (!bitmap_bit_p (saved_components, i))
+ VEC_free (int, heap, all_components[i]);
+
+ free (all_components);
+ BITMAP_FREE (saved_components);
+}
+
+/* Returns true when it is possible to generate a builtin pattern for
+ the PARTITION of RDG. For the moment we detect only the memset
+ zero pattern. */
+
+static bool
+can_generate_builtin (struct graph *rdg, bitmap partition)
+{
+ unsigned i;
+ bitmap_iterator bi;
+ int nb_reads = 0;
+ int nb_writes = 0;
+ int stores_zero = 0;
+
+ EXECUTE_IF_SET_IN_BITMAP (partition, 0, i, bi)
+ if (RDG_MEM_READS_STMT (rdg, i))
+ nb_reads++;
+ else if (RDG_MEM_WRITE_STMT (rdg, i))
+ {
+ nb_writes++;
+ if (stmt_with_adjacent_zero_store_dr_p (RDG_STMT (rdg, i)))
+ stores_zero++;
+ }
+
+ return stores_zero == 1 && nb_writes == 1 && nb_reads == 0;
+}
+
+/* Returns true when PARTITION1 and PARTITION2 have similar memory
+ accesses in RDG. */
+
+static bool
+similar_memory_accesses (struct graph *rdg, bitmap partition1,
+ bitmap partition2)
+{
+ unsigned i, j;
+ bitmap_iterator bi, bj;
+
+ EXECUTE_IF_SET_IN_BITMAP (partition1, 0, i, bi)
+ if (RDG_MEM_WRITE_STMT (rdg, i)
+ || RDG_MEM_READS_STMT (rdg, i))
+ EXECUTE_IF_SET_IN_BITMAP (partition2, 0, j, bj)
+ if (RDG_MEM_WRITE_STMT (rdg, j)
+ || RDG_MEM_READS_STMT (rdg, j))
+ if (rdg_has_similar_memory_accesses (rdg, i, j))
+ return true;
+
+ return false;
+}
+
+/* Fuse all the partitions from PARTITIONS that contain similar memory
+ references, i.e., we're taking care of cache locality. This
+ function does not fuse those partitions that contain patterns that
+ can be code generated with builtins. */
+
+static void
+fuse_partitions_with_similar_memory_accesses (struct graph *rdg,
+ VEC (bitmap, heap) **partitions)
+{
+ int p1, p2;
+ bitmap partition1, partition2;
+
+ FOR_EACH_VEC_ELT (bitmap, *partitions, p1, partition1)
+ if (!can_generate_builtin (rdg, partition1))
+ FOR_EACH_VEC_ELT (bitmap, *partitions, p2, partition2)
+ if (p1 != p2
+ && !can_generate_builtin (rdg, partition2)
+ && similar_memory_accesses (rdg, partition1, partition2))
+ {
+ bitmap_ior_into (partition1, partition2);
+ VEC_ordered_remove (bitmap, *partitions, p2);
+ p2--;
+ }
+}
+
+/* Returns true when STMT will be code generated in a partition of RDG
+ different than PART and that will not be code generated as a
+ builtin. */
+
+static bool
+stmt_generated_in_another_partition (struct graph *rdg, gimple stmt, int part,
+ VEC (bitmap, heap) *partitions)
+{
+ int p;
+ bitmap pp;
+ unsigned i;
+ bitmap_iterator bi;
+
+ FOR_EACH_VEC_ELT (bitmap, partitions, p, pp)
+ if (p != part
+ && !can_generate_builtin (rdg, pp))
+ EXECUTE_IF_SET_IN_BITMAP (pp, 0, i, bi)
+ if (stmt == RDG_STMT (rdg, i))
+ return true;
+
+ return false;
+}
+
+/* For each partition in PARTITIONS that will be code generated using
+ a builtin, add its scalar computations used after the loop to
+ PARTITION. */
+
+static void
+add_scalar_computations_to_partition (struct graph *rdg,
+ VEC (bitmap, heap) *partitions,
+ bitmap partition)
+{
+ int p;
+ bitmap pp;
+ unsigned i;
+ bitmap_iterator bi;
+ bitmap l = BITMAP_ALLOC (NULL);
+ bitmap pr = BITMAP_ALLOC (NULL);
+ bool f = false;
+
+ FOR_EACH_VEC_ELT (bitmap, partitions, p, pp)
+ if (can_generate_builtin (rdg, pp))
+ EXECUTE_IF_SET_IN_BITMAP (pp, 0, i, bi)
+ if (stmt_has_scalar_dependences_outside_loop (RDG_STMT (rdg, i))
+ && !stmt_generated_in_another_partition (rdg, RDG_STMT (rdg, i), p,
+ partitions))
+ rdg_flag_vertex_and_dependent (rdg, i, partition, l, pr, &f);
+
+ rdg_flag_loop_exits (rdg, l, partition, pr, &f);
+
+ BITMAP_FREE (pr);
+ BITMAP_FREE (l);
+}
+
+/* Aggregate several components into a useful partition that is
+ registered in the PARTITIONS vector. Partitions will be
+ distributed in different loops. */
+
+static void
+rdg_build_partitions (struct graph *rdg, VEC (rdgc, heap) *components,
+ VEC (int, heap) **other_stores,
+ VEC (bitmap, heap) **partitions, bitmap processed)
+{
+ int i;
+ rdgc x;
+ bitmap partition = BITMAP_ALLOC (NULL);
+
+ FOR_EACH_VEC_ELT (rdgc, components, i, x)
+ {
+ bitmap np;
+ bool part_has_writes = false;
+ int v = VEC_index (int, x->vertices, 0);
+
+ if (bitmap_bit_p (processed, v))
+ continue;
+
+ np = build_rdg_partition_for_component (rdg, x, &part_has_writes);
+ bitmap_ior_into (partition, np);
+ bitmap_ior_into (processed, np);
+ BITMAP_FREE (np);
+
+ if (part_has_writes)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "ldist useful partition:\n");
+ dump_bitmap (dump_file, partition);
+ }
+
+ VEC_safe_push (bitmap, heap, *partitions, partition);
+ partition = BITMAP_ALLOC (NULL);
+ }
+ }
+
+ /* Add the nodes from the RDG that were not marked as processed, and
+ that are used outside the current loop. These are scalar
+ computations that are not yet part of previous partitions. */
+ for (i = 0; i < rdg->n_vertices; i++)
+ if (!bitmap_bit_p (processed, i)
+ && rdg_defs_used_in_other_loops_p (rdg, i))
+ VEC_safe_push (int, heap, *other_stores, i);
+
+ /* If there are still statements left in the OTHER_STORES array,
+ create other components and partitions with these stores and
+ their dependences. */
+ if (VEC_length (int, *other_stores) > 0)
+ {
+ VEC (rdgc, heap) *comps = VEC_alloc (rdgc, heap, 3);
+ VEC (int, heap) *foo = VEC_alloc (int, heap, 3);
+
+ rdg_build_components (rdg, *other_stores, &comps);
+ rdg_build_partitions (rdg, comps, &foo, partitions, processed);
+
+ VEC_free (int, heap, foo);
+ free_rdg_components (comps);
+ }
+
+ add_scalar_computations_to_partition (rdg, *partitions, partition);
+
+ /* If there is something left in the last partition, save it. */
+ if (bitmap_count_bits (partition) > 0)
+ VEC_safe_push (bitmap, heap, *partitions, partition);
+ else
+ BITMAP_FREE (partition);
+
+ fuse_partitions_with_similar_memory_accesses (rdg, partitions);
+}
+
+/* Dump to FILE the PARTITIONS. */
+
+static void
+dump_rdg_partitions (FILE *file, VEC (bitmap, heap) *partitions)
+{
+ int i;
+ bitmap partition;
+
+ FOR_EACH_VEC_ELT (bitmap, partitions, i, partition)
+ debug_bitmap_file (file, partition);
+}
+
+/* Debug PARTITIONS. */
+extern void debug_rdg_partitions (VEC (bitmap, heap) *);
+
+DEBUG_FUNCTION void
+debug_rdg_partitions (VEC (bitmap, heap) *partitions)
+{
+ dump_rdg_partitions (stderr, partitions);
+}
+
+/* Returns the number of read and write operations in the RDG. */
+
+static int
+number_of_rw_in_rdg (struct graph *rdg)
+{
+ int i, res = 0;
+
+ for (i = 0; i < rdg->n_vertices; i++)
+ {
+ if (RDG_MEM_WRITE_STMT (rdg, i))
+ ++res;
+
+ if (RDG_MEM_READS_STMT (rdg, i))
+ ++res;
+ }
+
+ return res;
+}
+
+/* Returns the number of read and write operations in a PARTITION of
+ the RDG. */
+
+static int
+number_of_rw_in_partition (struct graph *rdg, bitmap partition)
+{
+ int res = 0;
+ unsigned i;
+ bitmap_iterator ii;
+
+ EXECUTE_IF_SET_IN_BITMAP (partition, 0, i, ii)
+ {
+ if (RDG_MEM_WRITE_STMT (rdg, i))
+ ++res;
+
+ if (RDG_MEM_READS_STMT (rdg, i))
+ ++res;
+ }
+
+ return res;
+}
+
+/* Returns true when one of the PARTITIONS contains all the read or
+ write operations of RDG. */
+
+static bool
+partition_contains_all_rw (struct graph *rdg, VEC (bitmap, heap) *partitions)
+{
+ int i;
+ bitmap partition;
+ int nrw = number_of_rw_in_rdg (rdg);
+
+ FOR_EACH_VEC_ELT (bitmap, partitions, i, partition)
+ if (nrw == number_of_rw_in_partition (rdg, partition))
+ return true;
+
+ return false;
+}
+
+/* Generate code from STARTING_VERTICES in RDG. Returns the number of
+ distributed loops. */
+
+static int
+ldist_gen (struct loop *loop, struct graph *rdg,
+ VEC (int, heap) *starting_vertices)
+{
+ int i, nbp;
+ VEC (rdgc, heap) *components = VEC_alloc (rdgc, heap, 3);
+ VEC (bitmap, heap) *partitions = VEC_alloc (bitmap, heap, 3);
+ VEC (int, heap) *other_stores = VEC_alloc (int, heap, 3);
+ bitmap partition, processed = BITMAP_ALLOC (NULL);
+
+ remaining_stmts = BITMAP_ALLOC (NULL);
+ upstream_mem_writes = BITMAP_ALLOC (NULL);
+
+ for (i = 0; i < rdg->n_vertices; i++)
+ {
+ bitmap_set_bit (remaining_stmts, i);
+
+ /* Save in OTHER_STORES all the memory writes that are not in
+ STARTING_VERTICES. */
+ if (RDG_MEM_WRITE_STMT (rdg, i))
+ {
+ int v;
+ unsigned j;
+ bool found = false;
+
+ FOR_EACH_VEC_ELT (int, starting_vertices, j, v)
+ if (i == v)
+ {
+ found = true;
+ break;
+ }
+
+ if (!found)
+ VEC_safe_push (int, heap, other_stores, i);
+ }
+ }
+
+ mark_nodes_having_upstream_mem_writes (rdg);
+ rdg_build_components (rdg, starting_vertices, &components);
+ rdg_build_partitions (rdg, components, &other_stores, &partitions,
+ processed);
+ BITMAP_FREE (processed);
+ nbp = VEC_length (bitmap, partitions);
+
+ if (nbp <= 1
+ || partition_contains_all_rw (rdg, partitions))
+ goto ldist_done;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_rdg_partitions (dump_file, partitions);
+
+ FOR_EACH_VEC_ELT (bitmap, partitions, i, partition)
+ if (!generate_code_for_partition (loop, partition, i < nbp - 1))
+ goto ldist_done;
+
+ rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
+ update_ssa (TODO_update_ssa_only_virtuals | TODO_update_ssa);
+
+ ldist_done:
+
+ BITMAP_FREE (remaining_stmts);
+ BITMAP_FREE (upstream_mem_writes);
+
+ FOR_EACH_VEC_ELT (bitmap, partitions, i, partition)
+ BITMAP_FREE (partition);
+
+ VEC_free (int, heap, other_stores);
+ VEC_free (bitmap, heap, partitions);
+ free_rdg_components (components);
+ return nbp;
+}
+
+/* Distributes the code from LOOP in such a way that producer
+ statements are placed before consumer statements. When STMTS is
+ NULL, performs the maximal distribution, if STMTS is not NULL,
+ tries to separate only these statements from the LOOP's body.
+ Returns the number of distributed loops. */
+
+static int
+distribute_loop (struct loop *loop, VEC (gimple, heap) *stmts)
+{
+ int res = 0;
+ struct graph *rdg;
+ gimple s;
+ unsigned i;
+ VEC (int, heap) *vertices;
+ VEC (ddr_p, heap) *dependence_relations;
+ VEC (data_reference_p, heap) *datarefs;
+ VEC (loop_p, heap) *loop_nest;
+
+ if (loop->num_nodes > 2)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "FIXME: Loop %d not distributed: it has more than two basic blocks.\n",
+ loop->num);
+
+ return res;
+ }
+
+ datarefs = VEC_alloc (data_reference_p, heap, 10);
+ dependence_relations = VEC_alloc (ddr_p, heap, 100);
+ loop_nest = VEC_alloc (loop_p, heap, 3);
+ rdg = build_rdg (loop, &loop_nest, &dependence_relations, &datarefs);
+
+ if (!rdg)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "FIXME: Loop %d not distributed: failed to build the RDG.\n",
+ loop->num);
+
+ free_dependence_relations (dependence_relations);
+ free_data_refs (datarefs);
+ VEC_free (loop_p, heap, loop_nest);
+ return res;
+ }
+
+ vertices = VEC_alloc (int, heap, 3);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_rdg (dump_file, rdg);
+
+ FOR_EACH_VEC_ELT (gimple, stmts, i, s)
+ {
+ int v = rdg_vertex_for_stmt (rdg, s);
+
+ if (v >= 0)
+ {
+ VEC_safe_push (int, heap, vertices, v);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "ldist asked to generate code for vertex %d\n", v);
+ }
+ }
+
+ res = ldist_gen (loop, rdg, vertices);
+ VEC_free (int, heap, vertices);
+ free_rdg (rdg);
+ free_dependence_relations (dependence_relations);
+ free_data_refs (datarefs);
+ VEC_free (loop_p, heap, loop_nest);
+ return res;
+}
+
+/* Distribute all loops in the current function. */
+
+static unsigned int
+tree_loop_distribution (void)
+{
+ struct loop *loop;
+ loop_iterator li;
+ int nb_generated_loops = 0;
+
+ FOR_EACH_LOOP (li, loop, 0)
+ {
+ VEC (gimple, heap) *work_list = NULL;
+ int num = loop->num;
+
+ /* If the loop doesn't have a single exit we will fail anyway,
+ so do that early. */
+ if (!single_exit (loop))
+ continue;
+
+ /* If both flag_tree_loop_distribute_patterns and
+ flag_tree_loop_distribution are set, then only
+ distribute_patterns is executed. */
+ if (flag_tree_loop_distribute_patterns)
+ {
+ /* With the following working list, we're asking
+ distribute_loop to separate from the rest of the loop the
+ stores of the form "A[i] = 0". */
+ stores_zero_from_loop (loop, &work_list);
+
+ /* Do nothing if there are no patterns to be distributed. */
+ if (VEC_length (gimple, work_list) > 0)
+ nb_generated_loops = distribute_loop (loop, work_list);
+ }
+ else if (flag_tree_loop_distribution)
+ {
+ /* With the following working list, we're asking
+ distribute_loop to separate the stores of the loop: when
+ dependences allow, it will end on having one store per
+ loop. */
+ stores_from_loop (loop, &work_list);
+
+ /* A simple heuristic for cache locality is to not split
+ stores to the same array. Without this call, an unrolled
+ loop would be split into as many loops as unroll factor,
+ each loop storing in the same array. */
+ remove_similar_memory_refs (&work_list);
+
+ nb_generated_loops = distribute_loop (loop, work_list);
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ if (nb_generated_loops > 1)
+ fprintf (dump_file, "Loop %d distributed: split to %d loops.\n",
+ num, nb_generated_loops);
+ else
+ fprintf (dump_file, "Loop %d is the same.\n", num);
+ }
+
+ verify_loop_structure ();
+
+ VEC_free (gimple, heap, work_list);
+ }
+
+ return 0;
+}
+
+static bool
+gate_tree_loop_distribution (void)
+{
+ return flag_tree_loop_distribution
+ || flag_tree_loop_distribute_patterns;
+}
+
+struct gimple_opt_pass pass_loop_distribution =
+{
+ {
+ GIMPLE_PASS,
+ "ldist", /* name */
+ gate_tree_loop_distribution, /* gate */
+ tree_loop_distribution, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
+ PROP_cfg | PROP_ssa, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_dump_func /* todo_flags_finish */
+ }
+};