summaryrefslogtreecommitdiff
path: root/gcc/tree-vect-stmts.c
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /gcc/tree-vect-stmts.c
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'gcc/tree-vect-stmts.c')
-rw-r--r--gcc/tree-vect-stmts.c5749
1 files changed, 5749 insertions, 0 deletions
diff --git a/gcc/tree-vect-stmts.c b/gcc/tree-vect-stmts.c
new file mode 100644
index 000000000..7a263785e
--- /dev/null
+++ b/gcc/tree-vect-stmts.c
@@ -0,0 +1,5749 @@
+/* Statement Analysis and Transformation for Vectorization
+ Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
+ Free Software Foundation, Inc.
+ Contributed by Dorit Naishlos <dorit@il.ibm.com>
+ and Ira Rosen <irar@il.ibm.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "ggc.h"
+#include "tree.h"
+#include "target.h"
+#include "basic-block.h"
+#include "tree-pretty-print.h"
+#include "gimple-pretty-print.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "cfgloop.h"
+#include "cfglayout.h"
+#include "expr.h"
+#include "recog.h"
+#include "optabs.h"
+#include "diagnostic-core.h"
+#include "tree-vectorizer.h"
+#include "langhooks.h"
+
+
+/* Utility functions used by vect_mark_stmts_to_be_vectorized. */
+
+/* Function vect_mark_relevant.
+
+ Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
+
+static void
+vect_mark_relevant (VEC(gimple,heap) **worklist, gimple stmt,
+ enum vect_relevant relevant, bool live_p)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ enum vect_relevant save_relevant = STMT_VINFO_RELEVANT (stmt_info);
+ bool save_live_p = STMT_VINFO_LIVE_P (stmt_info);
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "mark relevant %d, live %d.", relevant, live_p);
+
+ if (STMT_VINFO_IN_PATTERN_P (stmt_info))
+ {
+ gimple pattern_stmt;
+
+ /* This is the last stmt in a sequence that was detected as a
+ pattern that can potentially be vectorized. Don't mark the stmt
+ as relevant/live because it's not going to be vectorized.
+ Instead mark the pattern-stmt that replaces it. */
+
+ pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "last stmt in pattern. don't mark relevant/live.");
+ stmt_info = vinfo_for_stmt (pattern_stmt);
+ gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt);
+ save_relevant = STMT_VINFO_RELEVANT (stmt_info);
+ save_live_p = STMT_VINFO_LIVE_P (stmt_info);
+ stmt = pattern_stmt;
+ }
+
+ STMT_VINFO_LIVE_P (stmt_info) |= live_p;
+ if (relevant > STMT_VINFO_RELEVANT (stmt_info))
+ STMT_VINFO_RELEVANT (stmt_info) = relevant;
+
+ if (STMT_VINFO_RELEVANT (stmt_info) == save_relevant
+ && STMT_VINFO_LIVE_P (stmt_info) == save_live_p)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "already marked relevant/live.");
+ return;
+ }
+
+ VEC_safe_push (gimple, heap, *worklist, stmt);
+}
+
+
+/* Function vect_stmt_relevant_p.
+
+ Return true if STMT in loop that is represented by LOOP_VINFO is
+ "relevant for vectorization".
+
+ A stmt is considered "relevant for vectorization" if:
+ - it has uses outside the loop.
+ - it has vdefs (it alters memory).
+ - control stmts in the loop (except for the exit condition).
+
+ CHECKME: what other side effects would the vectorizer allow? */
+
+static bool
+vect_stmt_relevant_p (gimple stmt, loop_vec_info loop_vinfo,
+ enum vect_relevant *relevant, bool *live_p)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ ssa_op_iter op_iter;
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ def_operand_p def_p;
+
+ *relevant = vect_unused_in_scope;
+ *live_p = false;
+
+ /* cond stmt other than loop exit cond. */
+ if (is_ctrl_stmt (stmt)
+ && STMT_VINFO_TYPE (vinfo_for_stmt (stmt))
+ != loop_exit_ctrl_vec_info_type)
+ *relevant = vect_used_in_scope;
+
+ /* changing memory. */
+ if (gimple_code (stmt) != GIMPLE_PHI)
+ if (gimple_vdef (stmt))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "vec_stmt_relevant_p: stmt has vdefs.");
+ *relevant = vect_used_in_scope;
+ }
+
+ /* uses outside the loop. */
+ FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
+ {
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
+ {
+ basic_block bb = gimple_bb (USE_STMT (use_p));
+ if (!flow_bb_inside_loop_p (loop, bb))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "vec_stmt_relevant_p: used out of loop.");
+
+ if (is_gimple_debug (USE_STMT (use_p)))
+ continue;
+
+ /* We expect all such uses to be in the loop exit phis
+ (because of loop closed form) */
+ gcc_assert (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI);
+ gcc_assert (bb == single_exit (loop)->dest);
+
+ *live_p = true;
+ }
+ }
+ }
+
+ return (*live_p || *relevant);
+}
+
+
+/* Function exist_non_indexing_operands_for_use_p
+
+ USE is one of the uses attached to STMT. Check if USE is
+ used in STMT for anything other than indexing an array. */
+
+static bool
+exist_non_indexing_operands_for_use_p (tree use, gimple stmt)
+{
+ tree operand;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+ /* USE corresponds to some operand in STMT. If there is no data
+ reference in STMT, then any operand that corresponds to USE
+ is not indexing an array. */
+ if (!STMT_VINFO_DATA_REF (stmt_info))
+ return true;
+
+ /* STMT has a data_ref. FORNOW this means that its of one of
+ the following forms:
+ -1- ARRAY_REF = var
+ -2- var = ARRAY_REF
+ (This should have been verified in analyze_data_refs).
+
+ 'var' in the second case corresponds to a def, not a use,
+ so USE cannot correspond to any operands that are not used
+ for array indexing.
+
+ Therefore, all we need to check is if STMT falls into the
+ first case, and whether var corresponds to USE. */
+
+ if (!gimple_assign_copy_p (stmt))
+ return false;
+ if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
+ return false;
+ operand = gimple_assign_rhs1 (stmt);
+ if (TREE_CODE (operand) != SSA_NAME)
+ return false;
+
+ if (operand == use)
+ return true;
+
+ return false;
+}
+
+
+/*
+ Function process_use.
+
+ Inputs:
+ - a USE in STMT in a loop represented by LOOP_VINFO
+ - LIVE_P, RELEVANT - enum values to be set in the STMT_VINFO of the stmt
+ that defined USE. This is done by calling mark_relevant and passing it
+ the WORKLIST (to add DEF_STMT to the WORKLIST in case it is relevant).
+
+ Outputs:
+ Generally, LIVE_P and RELEVANT are used to define the liveness and
+ relevance info of the DEF_STMT of this USE:
+ STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p
+ STMT_VINFO_RELEVANT (DEF_STMT_info) <-- relevant
+ Exceptions:
+ - case 1: If USE is used only for address computations (e.g. array indexing),
+ which does not need to be directly vectorized, then the liveness/relevance
+ of the respective DEF_STMT is left unchanged.
+ - case 2: If STMT is a reduction phi and DEF_STMT is a reduction stmt, we
+ skip DEF_STMT cause it had already been processed.
+ - case 3: If DEF_STMT and STMT are in different nests, then "relevant" will
+ be modified accordingly.
+
+ Return true if everything is as expected. Return false otherwise. */
+
+static bool
+process_use (gimple stmt, tree use, loop_vec_info loop_vinfo, bool live_p,
+ enum vect_relevant relevant, VEC(gimple,heap) **worklist)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
+ stmt_vec_info dstmt_vinfo;
+ basic_block bb, def_bb;
+ tree def;
+ gimple def_stmt;
+ enum vect_def_type dt;
+
+ /* case 1: we are only interested in uses that need to be vectorized. Uses
+ that are used for address computation are not considered relevant. */
+ if (!exist_non_indexing_operands_for_use_p (use, stmt))
+ return true;
+
+ if (!vect_is_simple_use (use, loop_vinfo, NULL, &def_stmt, &def, &dt))
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
+ fprintf (vect_dump, "not vectorized: unsupported use in stmt.");
+ return false;
+ }
+
+ if (!def_stmt || gimple_nop_p (def_stmt))
+ return true;
+
+ def_bb = gimple_bb (def_stmt);
+ if (!flow_bb_inside_loop_p (loop, def_bb))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "def_stmt is out of loop.");
+ return true;
+ }
+
+ /* case 2: A reduction phi (STMT) defined by a reduction stmt (DEF_STMT).
+ DEF_STMT must have already been processed, because this should be the
+ only way that STMT, which is a reduction-phi, was put in the worklist,
+ as there should be no other uses for DEF_STMT in the loop. So we just
+ check that everything is as expected, and we are done. */
+ dstmt_vinfo = vinfo_for_stmt (def_stmt);
+ bb = gimple_bb (stmt);
+ if (gimple_code (stmt) == GIMPLE_PHI
+ && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
+ && gimple_code (def_stmt) != GIMPLE_PHI
+ && STMT_VINFO_DEF_TYPE (dstmt_vinfo) == vect_reduction_def
+ && bb->loop_father == def_bb->loop_father)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "reduc-stmt defining reduc-phi in the same nest.");
+ if (STMT_VINFO_IN_PATTERN_P (dstmt_vinfo))
+ dstmt_vinfo = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (dstmt_vinfo));
+ gcc_assert (STMT_VINFO_RELEVANT (dstmt_vinfo) < vect_used_by_reduction);
+ gcc_assert (STMT_VINFO_LIVE_P (dstmt_vinfo)
+ || STMT_VINFO_RELEVANT (dstmt_vinfo) > vect_unused_in_scope);
+ return true;
+ }
+
+ /* case 3a: outer-loop stmt defining an inner-loop stmt:
+ outer-loop-header-bb:
+ d = def_stmt
+ inner-loop:
+ stmt # use (d)
+ outer-loop-tail-bb:
+ ... */
+ if (flow_loop_nested_p (def_bb->loop_father, bb->loop_father))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "outer-loop def-stmt defining inner-loop stmt.");
+
+ switch (relevant)
+ {
+ case vect_unused_in_scope:
+ relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_nested_cycle) ?
+ vect_used_in_scope : vect_unused_in_scope;
+ break;
+
+ case vect_used_in_outer_by_reduction:
+ gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
+ relevant = vect_used_by_reduction;
+ break;
+
+ case vect_used_in_outer:
+ gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
+ relevant = vect_used_in_scope;
+ break;
+
+ case vect_used_in_scope:
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ /* case 3b: inner-loop stmt defining an outer-loop stmt:
+ outer-loop-header-bb:
+ ...
+ inner-loop:
+ d = def_stmt
+ outer-loop-tail-bb (or outer-loop-exit-bb in double reduction):
+ stmt # use (d) */
+ else if (flow_loop_nested_p (bb->loop_father, def_bb->loop_father))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "inner-loop def-stmt defining outer-loop stmt.");
+
+ switch (relevant)
+ {
+ case vect_unused_in_scope:
+ relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
+ || STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_double_reduction_def) ?
+ vect_used_in_outer_by_reduction : vect_unused_in_scope;
+ break;
+
+ case vect_used_by_reduction:
+ relevant = vect_used_in_outer_by_reduction;
+ break;
+
+ case vect_used_in_scope:
+ relevant = vect_used_in_outer;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ vect_mark_relevant (worklist, def_stmt, relevant, live_p);
+ return true;
+}
+
+
+/* Function vect_mark_stmts_to_be_vectorized.
+
+ Not all stmts in the loop need to be vectorized. For example:
+
+ for i...
+ for j...
+ 1. T0 = i + j
+ 2. T1 = a[T0]
+
+ 3. j = j + 1
+
+ Stmt 1 and 3 do not need to be vectorized, because loop control and
+ addressing of vectorized data-refs are handled differently.
+
+ This pass detects such stmts. */
+
+bool
+vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
+{
+ VEC(gimple,heap) *worklist;
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
+ unsigned int nbbs = loop->num_nodes;
+ gimple_stmt_iterator si;
+ gimple stmt;
+ unsigned int i;
+ stmt_vec_info stmt_vinfo;
+ basic_block bb;
+ gimple phi;
+ bool live_p;
+ enum vect_relevant relevant, tmp_relevant;
+ enum vect_def_type def_type;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vect_mark_stmts_to_be_vectorized ===");
+
+ worklist = VEC_alloc (gimple, heap, 64);
+
+ /* 1. Init worklist. */
+ for (i = 0; i < nbbs; i++)
+ {
+ bb = bbs[i];
+ for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
+ {
+ phi = gsi_stmt (si);
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "init: phi relevant? ");
+ print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
+ }
+
+ if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant, &live_p))
+ vect_mark_relevant (&worklist, phi, relevant, live_p);
+ }
+ for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
+ {
+ stmt = gsi_stmt (si);
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "init: stmt relevant? ");
+ print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
+ }
+
+ if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant, &live_p))
+ vect_mark_relevant (&worklist, stmt, relevant, live_p);
+ }
+ }
+
+ /* 2. Process_worklist */
+ while (VEC_length (gimple, worklist) > 0)
+ {
+ use_operand_p use_p;
+ ssa_op_iter iter;
+
+ stmt = VEC_pop (gimple, worklist);
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "worklist: examine stmt: ");
+ print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
+ }
+
+ /* Examine the USEs of STMT. For each USE, mark the stmt that defines it
+ (DEF_STMT) as relevant/irrelevant and live/dead according to the
+ liveness and relevance properties of STMT. */
+ stmt_vinfo = vinfo_for_stmt (stmt);
+ relevant = STMT_VINFO_RELEVANT (stmt_vinfo);
+ live_p = STMT_VINFO_LIVE_P (stmt_vinfo);
+
+ /* Generally, the liveness and relevance properties of STMT are
+ propagated as is to the DEF_STMTs of its USEs:
+ live_p <-- STMT_VINFO_LIVE_P (STMT_VINFO)
+ relevant <-- STMT_VINFO_RELEVANT (STMT_VINFO)
+
+ One exception is when STMT has been identified as defining a reduction
+ variable; in this case we set the liveness/relevance as follows:
+ live_p = false
+ relevant = vect_used_by_reduction
+ This is because we distinguish between two kinds of relevant stmts -
+ those that are used by a reduction computation, and those that are
+ (also) used by a regular computation. This allows us later on to
+ identify stmts that are used solely by a reduction, and therefore the
+ order of the results that they produce does not have to be kept. */
+
+ def_type = STMT_VINFO_DEF_TYPE (stmt_vinfo);
+ tmp_relevant = relevant;
+ switch (def_type)
+ {
+ case vect_reduction_def:
+ switch (tmp_relevant)
+ {
+ case vect_unused_in_scope:
+ relevant = vect_used_by_reduction;
+ break;
+
+ case vect_used_by_reduction:
+ if (gimple_code (stmt) == GIMPLE_PHI)
+ break;
+ /* fall through */
+
+ default:
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "unsupported use of reduction.");
+
+ VEC_free (gimple, heap, worklist);
+ return false;
+ }
+
+ live_p = false;
+ break;
+
+ case vect_nested_cycle:
+ if (tmp_relevant != vect_unused_in_scope
+ && tmp_relevant != vect_used_in_outer_by_reduction
+ && tmp_relevant != vect_used_in_outer)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "unsupported use of nested cycle.");
+
+ VEC_free (gimple, heap, worklist);
+ return false;
+ }
+
+ live_p = false;
+ break;
+
+ case vect_double_reduction_def:
+ if (tmp_relevant != vect_unused_in_scope
+ && tmp_relevant != vect_used_by_reduction)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "unsupported use of double reduction.");
+
+ VEC_free (gimple, heap, worklist);
+ return false;
+ }
+
+ live_p = false;
+ break;
+
+ default:
+ break;
+ }
+
+ FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
+ {
+ tree op = USE_FROM_PTR (use_p);
+ if (!process_use (stmt, op, loop_vinfo, live_p, relevant, &worklist))
+ {
+ VEC_free (gimple, heap, worklist);
+ return false;
+ }
+ }
+ } /* while worklist */
+
+ VEC_free (gimple, heap, worklist);
+ return true;
+}
+
+
+/* Get cost by calling cost target builtin. */
+
+static inline
+int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
+{
+ tree dummy_type = NULL;
+ int dummy = 0;
+
+ return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
+ dummy_type, dummy);
+}
+
+
+/* Get cost for STMT. */
+
+int
+cost_for_stmt (gimple stmt)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+ switch (STMT_VINFO_TYPE (stmt_info))
+ {
+ case load_vec_info_type:
+ return vect_get_stmt_cost (scalar_load);
+ case store_vec_info_type:
+ return vect_get_stmt_cost (scalar_store);
+ case op_vec_info_type:
+ case condition_vec_info_type:
+ case assignment_vec_info_type:
+ case reduc_vec_info_type:
+ case induc_vec_info_type:
+ case type_promotion_vec_info_type:
+ case type_demotion_vec_info_type:
+ case type_conversion_vec_info_type:
+ case call_vec_info_type:
+ return vect_get_stmt_cost (scalar_stmt);
+ case undef_vec_info_type:
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Function vect_model_simple_cost.
+
+ Models cost for simple operations, i.e. those that only emit ncopies of a
+ single op. Right now, this does not account for multiple insns that could
+ be generated for the single vector op. We will handle that shortly. */
+
+void
+vect_model_simple_cost (stmt_vec_info stmt_info, int ncopies,
+ enum vect_def_type *dt, slp_tree slp_node)
+{
+ int i;
+ int inside_cost = 0, outside_cost = 0;
+
+ /* The SLP costs were already calculated during SLP tree build. */
+ if (PURE_SLP_STMT (stmt_info))
+ return;
+
+ inside_cost = ncopies * vect_get_stmt_cost (vector_stmt);
+
+ /* FORNOW: Assuming maximum 2 args per stmts. */
+ for (i = 0; i < 2; i++)
+ {
+ if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
+ outside_cost += vect_get_stmt_cost (vector_stmt);
+ }
+
+ if (vect_print_dump_info (REPORT_COST))
+ fprintf (vect_dump, "vect_model_simple_cost: inside_cost = %d, "
+ "outside_cost = %d .", inside_cost, outside_cost);
+
+ /* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
+ stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
+ stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
+}
+
+
+/* Model cost for type demotion and promotion operations. PWR is normally
+ zero for single-step promotions and demotions. It will be one if
+ two-step promotion/demotion is required, and so on. Each additional
+ step doubles the number of instructions required. */
+
+static void
+vect_model_promotion_demotion_cost (stmt_vec_info stmt_info,
+ enum vect_def_type *dt, int pwr)
+{
+ int i, tmp;
+ int inside_cost = 0, outside_cost = 0, single_stmt_cost;
+
+ /* The SLP costs were already calculated during SLP tree build. */
+ if (PURE_SLP_STMT (stmt_info))
+ return;
+
+ single_stmt_cost = vect_get_stmt_cost (vec_promote_demote);
+ for (i = 0; i < pwr + 1; i++)
+ {
+ tmp = (STMT_VINFO_TYPE (stmt_info) == type_promotion_vec_info_type) ?
+ (i + 1) : i;
+ inside_cost += vect_pow2 (tmp) * single_stmt_cost;
+ }
+
+ /* FORNOW: Assuming maximum 2 args per stmts. */
+ for (i = 0; i < 2; i++)
+ {
+ if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
+ outside_cost += vect_get_stmt_cost (vector_stmt);
+ }
+
+ if (vect_print_dump_info (REPORT_COST))
+ fprintf (vect_dump, "vect_model_promotion_demotion_cost: inside_cost = %d, "
+ "outside_cost = %d .", inside_cost, outside_cost);
+
+ /* Set the costs in STMT_INFO. */
+ stmt_vinfo_set_inside_of_loop_cost (stmt_info, NULL, inside_cost);
+ stmt_vinfo_set_outside_of_loop_cost (stmt_info, NULL, outside_cost);
+}
+
+/* Function vect_cost_strided_group_size
+
+ For strided load or store, return the group_size only if it is the first
+ load or store of a group, else return 1. This ensures that group size is
+ only returned once per group. */
+
+static int
+vect_cost_strided_group_size (stmt_vec_info stmt_info)
+{
+ gimple first_stmt = DR_GROUP_FIRST_DR (stmt_info);
+
+ if (first_stmt == STMT_VINFO_STMT (stmt_info))
+ return DR_GROUP_SIZE (stmt_info);
+
+ return 1;
+}
+
+
+/* Function vect_model_store_cost
+
+ Models cost for stores. In the case of strided accesses, one access
+ has the overhead of the strided access attributed to it. */
+
+void
+vect_model_store_cost (stmt_vec_info stmt_info, int ncopies,
+ enum vect_def_type dt, slp_tree slp_node)
+{
+ int group_size;
+ unsigned int inside_cost = 0, outside_cost = 0;
+ struct data_reference *first_dr;
+ gimple first_stmt;
+
+ /* The SLP costs were already calculated during SLP tree build. */
+ if (PURE_SLP_STMT (stmt_info))
+ return;
+
+ if (dt == vect_constant_def || dt == vect_external_def)
+ outside_cost = vect_get_stmt_cost (scalar_to_vec);
+
+ /* Strided access? */
+ if (DR_GROUP_FIRST_DR (stmt_info))
+ {
+ if (slp_node)
+ {
+ first_stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (slp_node), 0);
+ group_size = 1;
+ }
+ else
+ {
+ first_stmt = DR_GROUP_FIRST_DR (stmt_info);
+ group_size = vect_cost_strided_group_size (stmt_info);
+ }
+
+ first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
+ }
+ /* Not a strided access. */
+ else
+ {
+ group_size = 1;
+ first_dr = STMT_VINFO_DATA_REF (stmt_info);
+ }
+
+ /* Is this an access in a group of stores, which provide strided access?
+ If so, add in the cost of the permutes. */
+ if (group_size > 1)
+ {
+ /* Uses a high and low interleave operation for each needed permute. */
+ inside_cost = ncopies * exact_log2(group_size) * group_size
+ * vect_get_stmt_cost (vec_perm);
+
+ if (vect_print_dump_info (REPORT_COST))
+ fprintf (vect_dump, "vect_model_store_cost: strided group_size = %d .",
+ group_size);
+
+ }
+
+ /* Costs of the stores. */
+ vect_get_store_cost (first_dr, ncopies, &inside_cost);
+
+ if (vect_print_dump_info (REPORT_COST))
+ fprintf (vect_dump, "vect_model_store_cost: inside_cost = %d, "
+ "outside_cost = %d .", inside_cost, outside_cost);
+
+ /* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
+ stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
+ stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
+}
+
+
+/* Calculate cost of DR's memory access. */
+void
+vect_get_store_cost (struct data_reference *dr, int ncopies,
+ unsigned int *inside_cost)
+{
+ int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
+
+ switch (alignment_support_scheme)
+ {
+ case dr_aligned:
+ {
+ *inside_cost += ncopies * vect_get_stmt_cost (vector_store);
+
+ if (vect_print_dump_info (REPORT_COST))
+ fprintf (vect_dump, "vect_model_store_cost: aligned.");
+
+ break;
+ }
+
+ case dr_unaligned_supported:
+ {
+ gimple stmt = DR_STMT (dr);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+
+ /* Here, we assign an additional cost for the unaligned store. */
+ *inside_cost += ncopies
+ * targetm.vectorize.builtin_vectorization_cost (unaligned_store,
+ vectype, DR_MISALIGNMENT (dr));
+
+ if (vect_print_dump_info (REPORT_COST))
+ fprintf (vect_dump, "vect_model_store_cost: unaligned supported by "
+ "hardware.");
+
+ break;
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+/* Function vect_model_load_cost
+
+ Models cost for loads. In the case of strided accesses, the last access
+ has the overhead of the strided access attributed to it. Since unaligned
+ accesses are supported for loads, we also account for the costs of the
+ access scheme chosen. */
+
+void
+vect_model_load_cost (stmt_vec_info stmt_info, int ncopies, slp_tree slp_node)
+
+{
+ int group_size;
+ gimple first_stmt;
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
+ unsigned int inside_cost = 0, outside_cost = 0;
+
+ /* The SLP costs were already calculated during SLP tree build. */
+ if (PURE_SLP_STMT (stmt_info))
+ return;
+
+ /* Strided accesses? */
+ first_stmt = DR_GROUP_FIRST_DR (stmt_info);
+ if (first_stmt && !slp_node)
+ {
+ group_size = vect_cost_strided_group_size (stmt_info);
+ first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
+ }
+ /* Not a strided access. */
+ else
+ {
+ group_size = 1;
+ first_dr = dr;
+ }
+
+ /* Is this an access in a group of loads providing strided access?
+ If so, add in the cost of the permutes. */
+ if (group_size > 1)
+ {
+ /* Uses an even and odd extract operations for each needed permute. */
+ inside_cost = ncopies * exact_log2(group_size) * group_size
+ * vect_get_stmt_cost (vec_perm);
+
+ if (vect_print_dump_info (REPORT_COST))
+ fprintf (vect_dump, "vect_model_load_cost: strided group_size = %d .",
+ group_size);
+ }
+
+ /* The loads themselves. */
+ vect_get_load_cost (first_dr, ncopies,
+ ((!DR_GROUP_FIRST_DR (stmt_info)) || group_size > 1 || slp_node),
+ &inside_cost, &outside_cost);
+
+ if (vect_print_dump_info (REPORT_COST))
+ fprintf (vect_dump, "vect_model_load_cost: inside_cost = %d, "
+ "outside_cost = %d .", inside_cost, outside_cost);
+
+ /* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
+ stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
+ stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
+}
+
+
+/* Calculate cost of DR's memory access. */
+void
+vect_get_load_cost (struct data_reference *dr, int ncopies,
+ bool add_realign_cost, unsigned int *inside_cost,
+ unsigned int *outside_cost)
+{
+ int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
+
+ switch (alignment_support_scheme)
+ {
+ case dr_aligned:
+ {
+ *inside_cost += ncopies * vect_get_stmt_cost (vector_load);
+
+ if (vect_print_dump_info (REPORT_COST))
+ fprintf (vect_dump, "vect_model_load_cost: aligned.");
+
+ break;
+ }
+ case dr_unaligned_supported:
+ {
+ gimple stmt = DR_STMT (dr);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+
+ /* Here, we assign an additional cost for the unaligned load. */
+ *inside_cost += ncopies
+ * targetm.vectorize.builtin_vectorization_cost (unaligned_load,
+ vectype, DR_MISALIGNMENT (dr));
+ if (vect_print_dump_info (REPORT_COST))
+ fprintf (vect_dump, "vect_model_load_cost: unaligned supported by "
+ "hardware.");
+
+ break;
+ }
+ case dr_explicit_realign:
+ {
+ *inside_cost += ncopies * (2 * vect_get_stmt_cost (vector_load)
+ + vect_get_stmt_cost (vec_perm));
+
+ /* FIXME: If the misalignment remains fixed across the iterations of
+ the containing loop, the following cost should be added to the
+ outside costs. */
+ if (targetm.vectorize.builtin_mask_for_load)
+ *inside_cost += vect_get_stmt_cost (vector_stmt);
+
+ if (vect_print_dump_info (REPORT_COST))
+ fprintf (vect_dump, "vect_model_load_cost: explicit realign");
+
+ break;
+ }
+ case dr_explicit_realign_optimized:
+ {
+ if (vect_print_dump_info (REPORT_COST))
+ fprintf (vect_dump, "vect_model_load_cost: unaligned software "
+ "pipelined.");
+
+ /* Unaligned software pipeline has a load of an address, an initial
+ load, and possibly a mask operation to "prime" the loop. However,
+ if this is an access in a group of loads, which provide strided
+ access, then the above cost should only be considered for one
+ access in the group. Inside the loop, there is a load op
+ and a realignment op. */
+
+ if (add_realign_cost)
+ {
+ *outside_cost = 2 * vect_get_stmt_cost (vector_stmt);
+ if (targetm.vectorize.builtin_mask_for_load)
+ *outside_cost += vect_get_stmt_cost (vector_stmt);
+ }
+
+ *inside_cost += ncopies * (vect_get_stmt_cost (vector_load)
+ + vect_get_stmt_cost (vec_perm));
+
+ if (vect_print_dump_info (REPORT_COST))
+ fprintf (vect_dump,
+ "vect_model_load_cost: explicit realign optimized");
+
+ break;
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+/* Function vect_init_vector.
+
+ Insert a new stmt (INIT_STMT) that initializes a new vector variable with
+ the vector elements of VECTOR_VAR. Place the initialization at BSI if it
+ is not NULL. Otherwise, place the initialization at the loop preheader.
+ Return the DEF of INIT_STMT.
+ It will be used in the vectorization of STMT. */
+
+tree
+vect_init_vector (gimple stmt, tree vector_var, tree vector_type,
+ gimple_stmt_iterator *gsi)
+{
+ stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
+ tree new_var;
+ gimple init_stmt;
+ tree vec_oprnd;
+ edge pe;
+ tree new_temp;
+ basic_block new_bb;
+
+ new_var = vect_get_new_vect_var (vector_type, vect_simple_var, "cst_");
+ add_referenced_var (new_var);
+ init_stmt = gimple_build_assign (new_var, vector_var);
+ new_temp = make_ssa_name (new_var, init_stmt);
+ gimple_assign_set_lhs (init_stmt, new_temp);
+
+ if (gsi)
+ vect_finish_stmt_generation (stmt, init_stmt, gsi);
+ else
+ {
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
+
+ if (loop_vinfo)
+ {
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ if (nested_in_vect_loop_p (loop, stmt))
+ loop = loop->inner;
+
+ pe = loop_preheader_edge (loop);
+ new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
+ gcc_assert (!new_bb);
+ }
+ else
+ {
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
+ basic_block bb;
+ gimple_stmt_iterator gsi_bb_start;
+
+ gcc_assert (bb_vinfo);
+ bb = BB_VINFO_BB (bb_vinfo);
+ gsi_bb_start = gsi_after_labels (bb);
+ gsi_insert_before (&gsi_bb_start, init_stmt, GSI_SAME_STMT);
+ }
+ }
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "created new init_stmt: ");
+ print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
+ }
+
+ vec_oprnd = gimple_assign_lhs (init_stmt);
+ return vec_oprnd;
+}
+
+
+/* Function vect_get_vec_def_for_operand.
+
+ OP is an operand in STMT. This function returns a (vector) def that will be
+ used in the vectorized stmt for STMT.
+
+ In the case that OP is an SSA_NAME which is defined in the loop, then
+ STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
+
+ In case OP is an invariant or constant, a new stmt that creates a vector def
+ needs to be introduced. */
+
+tree
+vect_get_vec_def_for_operand (tree op, gimple stmt, tree *scalar_def)
+{
+ tree vec_oprnd;
+ gimple vec_stmt;
+ gimple def_stmt;
+ stmt_vec_info def_stmt_info = NULL;
+ stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
+ unsigned int nunits;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
+ tree vec_inv;
+ tree vec_cst;
+ tree t = NULL_TREE;
+ tree def;
+ int i;
+ enum vect_def_type dt;
+ bool is_simple_use;
+ tree vector_type;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "vect_get_vec_def_for_operand: ");
+ print_generic_expr (vect_dump, op, TDF_SLIM);
+ }
+
+ is_simple_use = vect_is_simple_use (op, loop_vinfo, NULL, &def_stmt, &def,
+ &dt);
+ gcc_assert (is_simple_use);
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ if (def)
+ {
+ fprintf (vect_dump, "def = ");
+ print_generic_expr (vect_dump, def, TDF_SLIM);
+ }
+ if (def_stmt)
+ {
+ fprintf (vect_dump, " def_stmt = ");
+ print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
+ }
+ }
+
+ switch (dt)
+ {
+ /* Case 1: operand is a constant. */
+ case vect_constant_def:
+ {
+ vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
+ gcc_assert (vector_type);
+ nunits = TYPE_VECTOR_SUBPARTS (vector_type);
+
+ if (scalar_def)
+ *scalar_def = op;
+
+ /* Create 'vect_cst_ = {cst,cst,...,cst}' */
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Create vector_cst. nunits = %d", nunits);
+
+ vec_cst = build_vector_from_val (vector_type, op);
+ return vect_init_vector (stmt, vec_cst, vector_type, NULL);
+ }
+
+ /* Case 2: operand is defined outside the loop - loop invariant. */
+ case vect_external_def:
+ {
+ vector_type = get_vectype_for_scalar_type (TREE_TYPE (def));
+ gcc_assert (vector_type);
+ nunits = TYPE_VECTOR_SUBPARTS (vector_type);
+
+ if (scalar_def)
+ *scalar_def = def;
+
+ /* Create 'vec_inv = {inv,inv,..,inv}' */
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Create vector_inv.");
+
+ for (i = nunits - 1; i >= 0; --i)
+ {
+ t = tree_cons (NULL_TREE, def, t);
+ }
+
+ /* FIXME: use build_constructor directly. */
+ vec_inv = build_constructor_from_list (vector_type, t);
+ return vect_init_vector (stmt, vec_inv, vector_type, NULL);
+ }
+
+ /* Case 3: operand is defined inside the loop. */
+ case vect_internal_def:
+ {
+ if (scalar_def)
+ *scalar_def = NULL/* FIXME tuples: def_stmt*/;
+
+ /* Get the def from the vectorized stmt. */
+ def_stmt_info = vinfo_for_stmt (def_stmt);
+ vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
+ gcc_assert (vec_stmt);
+ if (gimple_code (vec_stmt) == GIMPLE_PHI)
+ vec_oprnd = PHI_RESULT (vec_stmt);
+ else if (is_gimple_call (vec_stmt))
+ vec_oprnd = gimple_call_lhs (vec_stmt);
+ else
+ vec_oprnd = gimple_assign_lhs (vec_stmt);
+ return vec_oprnd;
+ }
+
+ /* Case 4: operand is defined by a loop header phi - reduction */
+ case vect_reduction_def:
+ case vect_double_reduction_def:
+ case vect_nested_cycle:
+ {
+ struct loop *loop;
+
+ gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
+ loop = (gimple_bb (def_stmt))->loop_father;
+
+ /* Get the def before the loop */
+ op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
+ return get_initial_def_for_reduction (stmt, op, scalar_def);
+ }
+
+ /* Case 5: operand is defined by loop-header phi - induction. */
+ case vect_induction_def:
+ {
+ gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
+
+ /* Get the def from the vectorized stmt. */
+ def_stmt_info = vinfo_for_stmt (def_stmt);
+ vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
+ if (gimple_code (vec_stmt) == GIMPLE_PHI)
+ vec_oprnd = PHI_RESULT (vec_stmt);
+ else
+ vec_oprnd = gimple_get_lhs (vec_stmt);
+ return vec_oprnd;
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+/* Function vect_get_vec_def_for_stmt_copy
+
+ Return a vector-def for an operand. This function is used when the
+ vectorized stmt to be created (by the caller to this function) is a "copy"
+ created in case the vectorized result cannot fit in one vector, and several
+ copies of the vector-stmt are required. In this case the vector-def is
+ retrieved from the vector stmt recorded in the STMT_VINFO_RELATED_STMT field
+ of the stmt that defines VEC_OPRND.
+ DT is the type of the vector def VEC_OPRND.
+
+ Context:
+ In case the vectorization factor (VF) is bigger than the number
+ of elements that can fit in a vectype (nunits), we have to generate
+ more than one vector stmt to vectorize the scalar stmt. This situation
+ arises when there are multiple data-types operated upon in the loop; the
+ smallest data-type determines the VF, and as a result, when vectorizing
+ stmts operating on wider types we need to create 'VF/nunits' "copies" of the
+ vector stmt (each computing a vector of 'nunits' results, and together
+ computing 'VF' results in each iteration). This function is called when
+ vectorizing such a stmt (e.g. vectorizing S2 in the illustration below, in
+ which VF=16 and nunits=4, so the number of copies required is 4):
+
+ scalar stmt: vectorized into: STMT_VINFO_RELATED_STMT
+
+ S1: x = load VS1.0: vx.0 = memref0 VS1.1
+ VS1.1: vx.1 = memref1 VS1.2
+ VS1.2: vx.2 = memref2 VS1.3
+ VS1.3: vx.3 = memref3
+
+ S2: z = x + ... VSnew.0: vz0 = vx.0 + ... VSnew.1
+ VSnew.1: vz1 = vx.1 + ... VSnew.2
+ VSnew.2: vz2 = vx.2 + ... VSnew.3
+ VSnew.3: vz3 = vx.3 + ...
+
+ The vectorization of S1 is explained in vectorizable_load.
+ The vectorization of S2:
+ To create the first vector-stmt out of the 4 copies - VSnew.0 -
+ the function 'vect_get_vec_def_for_operand' is called to
+ get the relevant vector-def for each operand of S2. For operand x it
+ returns the vector-def 'vx.0'.
+
+ To create the remaining copies of the vector-stmt (VSnew.j), this
+ function is called to get the relevant vector-def for each operand. It is
+ obtained from the respective VS1.j stmt, which is recorded in the
+ STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND.
+
+ For example, to obtain the vector-def 'vx.1' in order to create the
+ vector stmt 'VSnew.1', this function is called with VEC_OPRND='vx.0'.
+ Given 'vx0' we obtain the stmt that defines it ('VS1.0'); from the
+ STMT_VINFO_RELATED_STMT field of 'VS1.0' we obtain the next copy - 'VS1.1',
+ and return its def ('vx.1').
+ Overall, to create the above sequence this function will be called 3 times:
+ vx.1 = vect_get_vec_def_for_stmt_copy (dt, vx.0);
+ vx.2 = vect_get_vec_def_for_stmt_copy (dt, vx.1);
+ vx.3 = vect_get_vec_def_for_stmt_copy (dt, vx.2); */
+
+tree
+vect_get_vec_def_for_stmt_copy (enum vect_def_type dt, tree vec_oprnd)
+{
+ gimple vec_stmt_for_operand;
+ stmt_vec_info def_stmt_info;
+
+ /* Do nothing; can reuse same def. */
+ if (dt == vect_external_def || dt == vect_constant_def )
+ return vec_oprnd;
+
+ vec_stmt_for_operand = SSA_NAME_DEF_STMT (vec_oprnd);
+ def_stmt_info = vinfo_for_stmt (vec_stmt_for_operand);
+ gcc_assert (def_stmt_info);
+ vec_stmt_for_operand = STMT_VINFO_RELATED_STMT (def_stmt_info);
+ gcc_assert (vec_stmt_for_operand);
+ vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
+ if (gimple_code (vec_stmt_for_operand) == GIMPLE_PHI)
+ vec_oprnd = PHI_RESULT (vec_stmt_for_operand);
+ else
+ vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
+ return vec_oprnd;
+}
+
+
+/* Get vectorized definitions for the operands to create a copy of an original
+ stmt. See vect_get_vec_def_for_stmt_copy () for details. */
+
+static void
+vect_get_vec_defs_for_stmt_copy (enum vect_def_type *dt,
+ VEC(tree,heap) **vec_oprnds0,
+ VEC(tree,heap) **vec_oprnds1)
+{
+ tree vec_oprnd = VEC_pop (tree, *vec_oprnds0);
+
+ vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd);
+ VEC_quick_push (tree, *vec_oprnds0, vec_oprnd);
+
+ if (vec_oprnds1 && *vec_oprnds1)
+ {
+ vec_oprnd = VEC_pop (tree, *vec_oprnds1);
+ vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd);
+ VEC_quick_push (tree, *vec_oprnds1, vec_oprnd);
+ }
+}
+
+
+/* Get vectorized definitions for OP0 and OP1, or SLP_NODE if it is not
+ NULL. */
+
+static void
+vect_get_vec_defs (tree op0, tree op1, gimple stmt,
+ VEC(tree,heap) **vec_oprnds0, VEC(tree,heap) **vec_oprnds1,
+ slp_tree slp_node)
+{
+ if (slp_node)
+ vect_get_slp_defs (op0, op1, slp_node, vec_oprnds0, vec_oprnds1, -1);
+ else
+ {
+ tree vec_oprnd;
+
+ *vec_oprnds0 = VEC_alloc (tree, heap, 1);
+ vec_oprnd = vect_get_vec_def_for_operand (op0, stmt, NULL);
+ VEC_quick_push (tree, *vec_oprnds0, vec_oprnd);
+
+ if (op1)
+ {
+ *vec_oprnds1 = VEC_alloc (tree, heap, 1);
+ vec_oprnd = vect_get_vec_def_for_operand (op1, stmt, NULL);
+ VEC_quick_push (tree, *vec_oprnds1, vec_oprnd);
+ }
+ }
+}
+
+
+/* Function vect_finish_stmt_generation.
+
+ Insert a new stmt. */
+
+void
+vect_finish_stmt_generation (gimple stmt, gimple vec_stmt,
+ gimple_stmt_iterator *gsi)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+
+ gcc_assert (gimple_code (stmt) != GIMPLE_LABEL);
+
+ gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
+
+ set_vinfo_for_stmt (vec_stmt, new_stmt_vec_info (vec_stmt, loop_vinfo,
+ bb_vinfo));
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "add new stmt: ");
+ print_gimple_stmt (vect_dump, vec_stmt, 0, TDF_SLIM);
+ }
+
+ gimple_set_location (vec_stmt, gimple_location (gsi_stmt (*gsi)));
+}
+
+/* Checks if CALL can be vectorized in type VECTYPE. Returns
+ a function declaration if the target has a vectorized version
+ of the function, or NULL_TREE if the function cannot be vectorized. */
+
+tree
+vectorizable_function (gimple call, tree vectype_out, tree vectype_in)
+{
+ tree fndecl = gimple_call_fndecl (call);
+
+ /* We only handle functions that do not read or clobber memory -- i.e.
+ const or novops ones. */
+ if (!(gimple_call_flags (call) & (ECF_CONST | ECF_NOVOPS)))
+ return NULL_TREE;
+
+ if (!fndecl
+ || TREE_CODE (fndecl) != FUNCTION_DECL
+ || !DECL_BUILT_IN (fndecl))
+ return NULL_TREE;
+
+ return targetm.vectorize.builtin_vectorized_function (fndecl, vectype_out,
+ vectype_in);
+}
+
+/* Function vectorizable_call.
+
+ Check if STMT performs a function call that can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_call (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree op, type;
+ tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info;
+ tree vectype_out, vectype_in;
+ int nunits_in;
+ int nunits_out;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ tree fndecl, new_temp, def, rhs_type;
+ gimple def_stmt;
+ enum vect_def_type dt[3]
+ = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
+ gimple new_stmt = NULL;
+ int ncopies, j;
+ VEC(tree, heap) *vargs = NULL;
+ enum { NARROW, NONE, WIDEN } modifier;
+ size_t i, nargs;
+
+ /* FORNOW: unsupported in basic block SLP. */
+ gcc_assert (loop_vinfo);
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info))
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ /* FORNOW: SLP not supported. */
+ if (STMT_SLP_TYPE (stmt_info))
+ return false;
+
+ /* Is STMT a vectorizable call? */
+ if (!is_gimple_call (stmt))
+ return false;
+
+ if (TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
+ return false;
+
+ if (stmt_can_throw_internal (stmt))
+ return false;
+
+ vectype_out = STMT_VINFO_VECTYPE (stmt_info);
+
+ /* Process function arguments. */
+ rhs_type = NULL_TREE;
+ vectype_in = NULL_TREE;
+ nargs = gimple_call_num_args (stmt);
+
+ /* Bail out if the function has more than three arguments, we do not have
+ interesting builtin functions to vectorize with more than two arguments
+ except for fma. No arguments is also not good. */
+ if (nargs == 0 || nargs > 3)
+ return false;
+
+ for (i = 0; i < nargs; i++)
+ {
+ tree opvectype;
+
+ op = gimple_call_arg (stmt, i);
+
+ /* We can only handle calls with arguments of the same type. */
+ if (rhs_type
+ && !types_compatible_p (rhs_type, TREE_TYPE (op)))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "argument types differ.");
+ return false;
+ }
+ if (!rhs_type)
+ rhs_type = TREE_TYPE (op);
+
+ if (!vect_is_simple_use_1 (op, loop_vinfo, NULL,
+ &def_stmt, &def, &dt[i], &opvectype))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "use not simple.");
+ return false;
+ }
+
+ if (!vectype_in)
+ vectype_in = opvectype;
+ else if (opvectype
+ && opvectype != vectype_in)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "argument vector types differ.");
+ return false;
+ }
+ }
+ /* If all arguments are external or constant defs use a vector type with
+ the same size as the output vector type. */
+ if (!vectype_in)
+ vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
+ if (vec_stmt)
+ gcc_assert (vectype_in);
+ if (!vectype_in)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "no vectype for scalar type ");
+ print_generic_expr (vect_dump, rhs_type, TDF_SLIM);
+ }
+
+ return false;
+ }
+
+ /* FORNOW */
+ nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
+ nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
+ if (nunits_in == nunits_out / 2)
+ modifier = NARROW;
+ else if (nunits_out == nunits_in)
+ modifier = NONE;
+ else if (nunits_out == nunits_in / 2)
+ modifier = WIDEN;
+ else
+ return false;
+
+ /* For now, we only vectorize functions if a target specific builtin
+ is available. TODO -- in some cases, it might be profitable to
+ insert the calls for pieces of the vector, in order to be able
+ to vectorize other operations in the loop. */
+ fndecl = vectorizable_function (stmt, vectype_out, vectype_in);
+ if (fndecl == NULL_TREE)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "function is not vectorizable.");
+
+ return false;
+ }
+
+ gcc_assert (!gimple_vuse (stmt));
+
+ if (modifier == NARROW)
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
+ else
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
+
+ /* Sanity check: make sure that at least one copy of the vectorized stmt
+ needs to be generated. */
+ gcc_assert (ncopies >= 1);
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vectorizable_call ===");
+ vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
+ return true;
+ }
+
+ /** Transform. **/
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "transform operation.");
+
+ /* Handle def. */
+ scalar_dest = gimple_call_lhs (stmt);
+ vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
+
+ prev_stmt_info = NULL;
+ switch (modifier)
+ {
+ case NONE:
+ for (j = 0; j < ncopies; ++j)
+ {
+ /* Build argument list for the vectorized call. */
+ if (j == 0)
+ vargs = VEC_alloc (tree, heap, nargs);
+ else
+ VEC_truncate (tree, vargs, 0);
+
+ for (i = 0; i < nargs; i++)
+ {
+ op = gimple_call_arg (stmt, i);
+ if (j == 0)
+ vec_oprnd0
+ = vect_get_vec_def_for_operand (op, stmt, NULL);
+ else
+ {
+ vec_oprnd0 = gimple_call_arg (new_stmt, i);
+ vec_oprnd0
+ = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
+ }
+
+ VEC_quick_push (tree, vargs, vec_oprnd0);
+ }
+
+ new_stmt = gimple_build_call_vec (fndecl, vargs);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_call_set_lhs (new_stmt, new_temp);
+
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ mark_symbols_for_renaming (new_stmt);
+
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+
+ break;
+
+ case NARROW:
+ for (j = 0; j < ncopies; ++j)
+ {
+ /* Build argument list for the vectorized call. */
+ if (j == 0)
+ vargs = VEC_alloc (tree, heap, nargs * 2);
+ else
+ VEC_truncate (tree, vargs, 0);
+
+ for (i = 0; i < nargs; i++)
+ {
+ op = gimple_call_arg (stmt, i);
+ if (j == 0)
+ {
+ vec_oprnd0
+ = vect_get_vec_def_for_operand (op, stmt, NULL);
+ vec_oprnd1
+ = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
+ }
+ else
+ {
+ vec_oprnd1 = gimple_call_arg (new_stmt, 2*i + 1);
+ vec_oprnd0
+ = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd1);
+ vec_oprnd1
+ = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
+ }
+
+ VEC_quick_push (tree, vargs, vec_oprnd0);
+ VEC_quick_push (tree, vargs, vec_oprnd1);
+ }
+
+ new_stmt = gimple_build_call_vec (fndecl, vargs);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_call_set_lhs (new_stmt, new_temp);
+
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ mark_symbols_for_renaming (new_stmt);
+
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+
+ *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
+
+ break;
+
+ case WIDEN:
+ /* No current target implements this case. */
+ return false;
+ }
+
+ VEC_free (tree, heap, vargs);
+
+ /* Update the exception handling table with the vector stmt if necessary. */
+ if (maybe_clean_or_replace_eh_stmt (stmt, *vec_stmt))
+ gimple_purge_dead_eh_edges (gimple_bb (stmt));
+
+ /* The call in STMT might prevent it from being removed in dce.
+ We however cannot remove it here, due to the way the ssa name
+ it defines is mapped to the new definition. So just replace
+ rhs of the statement with something harmless. */
+
+ type = TREE_TYPE (scalar_dest);
+ new_stmt = gimple_build_assign (gimple_call_lhs (stmt),
+ build_zero_cst (type));
+ set_vinfo_for_stmt (new_stmt, stmt_info);
+ /* For pattern statements make the related statement to point to
+ NEW_STMT in order to be able to retrieve the original statement
+ information later. */
+ if (is_pattern_stmt_p (stmt_info))
+ {
+ gimple related = STMT_VINFO_RELATED_STMT (stmt_info);
+ STMT_VINFO_RELATED_STMT (vinfo_for_stmt (related)) = new_stmt;
+ }
+ set_vinfo_for_stmt (stmt, NULL);
+ STMT_VINFO_STMT (stmt_info) = new_stmt;
+ gsi_replace (gsi, new_stmt, false);
+ SSA_NAME_DEF_STMT (gimple_assign_lhs (new_stmt)) = new_stmt;
+
+ return true;
+}
+
+
+/* Function vect_gen_widened_results_half
+
+ Create a vector stmt whose code, type, number of arguments, and result
+ variable are CODE, OP_TYPE, and VEC_DEST, and its arguments are
+ VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at BSI.
+ In the case that CODE is a CALL_EXPR, this means that a call to DECL
+ needs to be created (DECL is a function-decl of a target-builtin).
+ STMT is the original scalar stmt that we are vectorizing. */
+
+static gimple
+vect_gen_widened_results_half (enum tree_code code,
+ tree decl,
+ tree vec_oprnd0, tree vec_oprnd1, int op_type,
+ tree vec_dest, gimple_stmt_iterator *gsi,
+ gimple stmt)
+{
+ gimple new_stmt;
+ tree new_temp;
+
+ /* Generate half of the widened result: */
+ if (code == CALL_EXPR)
+ {
+ /* Target specific support */
+ if (op_type == binary_op)
+ new_stmt = gimple_build_call (decl, 2, vec_oprnd0, vec_oprnd1);
+ else
+ new_stmt = gimple_build_call (decl, 1, vec_oprnd0);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_call_set_lhs (new_stmt, new_temp);
+ }
+ else
+ {
+ /* Generic support */
+ gcc_assert (op_type == TREE_CODE_LENGTH (code));
+ if (op_type != binary_op)
+ vec_oprnd1 = NULL;
+ new_stmt = gimple_build_assign_with_ops (code, vec_dest, vec_oprnd0,
+ vec_oprnd1);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ }
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ return new_stmt;
+}
+
+
+/* Check if STMT performs a conversion operation, that can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_conversion (gimple stmt, gimple_stmt_iterator *gsi,
+ gimple *vec_stmt, slp_tree slp_node)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree op0;
+ tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
+ tree decl1 = NULL_TREE, decl2 = NULL_TREE;
+ tree new_temp;
+ tree def;
+ gimple def_stmt;
+ enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
+ gimple new_stmt = NULL;
+ stmt_vec_info prev_stmt_info;
+ int nunits_in;
+ int nunits_out;
+ tree vectype_out, vectype_in;
+ int ncopies, j;
+ tree rhs_type;
+ tree builtin_decl;
+ enum { NARROW, NONE, WIDEN } modifier;
+ int i;
+ VEC(tree,heap) *vec_oprnds0 = NULL;
+ tree vop0;
+ VEC(tree,heap) *dummy = NULL;
+ int dummy_int;
+
+ /* Is STMT a vectorizable conversion? */
+
+ /* FORNOW: unsupported in basic block SLP. */
+ gcc_assert (loop_vinfo);
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info))
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ if (!is_gimple_assign (stmt))
+ return false;
+
+ if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
+ return false;
+
+ code = gimple_assign_rhs_code (stmt);
+ if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
+ return false;
+
+ /* Check types of lhs and rhs. */
+ scalar_dest = gimple_assign_lhs (stmt);
+ vectype_out = STMT_VINFO_VECTYPE (stmt_info);
+
+ op0 = gimple_assign_rhs1 (stmt);
+ rhs_type = TREE_TYPE (op0);
+ /* Check the operands of the operation. */
+ if (!vect_is_simple_use_1 (op0, loop_vinfo, NULL,
+ &def_stmt, &def, &dt[0], &vectype_in))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "use not simple.");
+ return false;
+ }
+ /* If op0 is an external or constant defs use a vector type of
+ the same size as the output vector type. */
+ if (!vectype_in)
+ vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
+ if (vec_stmt)
+ gcc_assert (vectype_in);
+ if (!vectype_in)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "no vectype for scalar type ");
+ print_generic_expr (vect_dump, rhs_type, TDF_SLIM);
+ }
+
+ return false;
+ }
+
+ /* FORNOW */
+ nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
+ nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
+ if (nunits_in == nunits_out / 2)
+ modifier = NARROW;
+ else if (nunits_out == nunits_in)
+ modifier = NONE;
+ else if (nunits_out == nunits_in / 2)
+ modifier = WIDEN;
+ else
+ return false;
+
+ if (modifier == NARROW)
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
+ else
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
+
+ /* Multiple types in SLP are handled by creating the appropriate number of
+ vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
+ case of SLP. */
+ if (slp_node)
+ ncopies = 1;
+
+ /* Sanity check: make sure that at least one copy of the vectorized stmt
+ needs to be generated. */
+ gcc_assert (ncopies >= 1);
+
+ /* Supportable by target? */
+ if ((modifier == NONE
+ && !targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
+ || (modifier == WIDEN
+ && !supportable_widening_operation (code, stmt,
+ vectype_out, vectype_in,
+ &decl1, &decl2,
+ &code1, &code2,
+ &dummy_int, &dummy))
+ || (modifier == NARROW
+ && !supportable_narrowing_operation (code, vectype_out, vectype_in,
+ &code1, &dummy_int, &dummy)))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "conversion not supported by target.");
+ return false;
+ }
+
+ if (modifier != NONE)
+ {
+ /* FORNOW: SLP not supported. */
+ if (STMT_SLP_TYPE (stmt_info))
+ return false;
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type;
+ return true;
+ }
+
+ /** Transform. **/
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "transform conversion.");
+
+ /* Handle def. */
+ vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
+
+ if (modifier == NONE && !slp_node)
+ vec_oprnds0 = VEC_alloc (tree, heap, 1);
+
+ prev_stmt_info = NULL;
+ switch (modifier)
+ {
+ case NONE:
+ for (j = 0; j < ncopies; j++)
+ {
+ if (j == 0)
+ vect_get_vec_defs (op0, NULL, stmt, &vec_oprnds0, NULL, slp_node);
+ else
+ vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, NULL);
+
+ builtin_decl =
+ targetm.vectorize.builtin_conversion (code,
+ vectype_out, vectype_in);
+ FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, vop0)
+ {
+ /* Arguments are ready. create the new vector stmt. */
+ new_stmt = gimple_build_call (builtin_decl, 1, vop0);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_call_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ if (slp_node)
+ VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
+ }
+
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+ break;
+
+ case WIDEN:
+ /* In case the vectorization factor (VF) is bigger than the number
+ of elements that we can fit in a vectype (nunits), we have to
+ generate more than one vector stmt - i.e - we need to "unroll"
+ the vector stmt by a factor VF/nunits. */
+ for (j = 0; j < ncopies; j++)
+ {
+ if (j == 0)
+ vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
+ else
+ vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
+
+ /* Generate first half of the widened result: */
+ new_stmt
+ = vect_gen_widened_results_half (code1, decl1,
+ vec_oprnd0, vec_oprnd1,
+ unary_op, vec_dest, gsi, stmt);
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+
+ /* Generate second half of the widened result: */
+ new_stmt
+ = vect_gen_widened_results_half (code2, decl2,
+ vec_oprnd0, vec_oprnd1,
+ unary_op, vec_dest, gsi, stmt);
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+ break;
+
+ case NARROW:
+ /* In case the vectorization factor (VF) is bigger than the number
+ of elements that we can fit in a vectype (nunits), we have to
+ generate more than one vector stmt - i.e - we need to "unroll"
+ the vector stmt by a factor VF/nunits. */
+ for (j = 0; j < ncopies; j++)
+ {
+ /* Handle uses. */
+ if (j == 0)
+ {
+ vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
+ vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
+ }
+ else
+ {
+ vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd1);
+ vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
+ }
+
+ /* Arguments are ready. Create the new vector stmt. */
+ new_stmt = gimple_build_assign_with_ops (code1, vec_dest, vec_oprnd0,
+ vec_oprnd1);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+
+ *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
+ }
+
+ if (vec_oprnds0)
+ VEC_free (tree, heap, vec_oprnds0);
+
+ return true;
+}
+
+
+/* Function vectorizable_assignment.
+
+ Check if STMT performs an assignment (copy) that can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_assignment (gimple stmt, gimple_stmt_iterator *gsi,
+ gimple *vec_stmt, slp_tree slp_node)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree op;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ tree new_temp;
+ tree def;
+ gimple def_stmt;
+ enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
+ unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
+ int ncopies;
+ int i, j;
+ VEC(tree,heap) *vec_oprnds = NULL;
+ tree vop;
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ gimple new_stmt = NULL;
+ stmt_vec_info prev_stmt_info = NULL;
+ enum tree_code code;
+ tree vectype_in;
+
+ /* Multiple types in SLP are handled by creating the appropriate number of
+ vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
+ case of SLP. */
+ if (slp_node)
+ ncopies = 1;
+ else
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
+
+ gcc_assert (ncopies >= 1);
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ /* Is vectorizable assignment? */
+ if (!is_gimple_assign (stmt))
+ return false;
+
+ scalar_dest = gimple_assign_lhs (stmt);
+ if (TREE_CODE (scalar_dest) != SSA_NAME)
+ return false;
+
+ code = gimple_assign_rhs_code (stmt);
+ if (gimple_assign_single_p (stmt)
+ || code == PAREN_EXPR
+ || CONVERT_EXPR_CODE_P (code))
+ op = gimple_assign_rhs1 (stmt);
+ else
+ return false;
+
+ if (!vect_is_simple_use_1 (op, loop_vinfo, bb_vinfo,
+ &def_stmt, &def, &dt[0], &vectype_in))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "use not simple.");
+ return false;
+ }
+
+ /* We can handle NOP_EXPR conversions that do not change the number
+ of elements or the vector size. */
+ if (CONVERT_EXPR_CODE_P (code)
+ && (!vectype_in
+ || TYPE_VECTOR_SUBPARTS (vectype_in) != nunits
+ || (GET_MODE_SIZE (TYPE_MODE (vectype))
+ != GET_MODE_SIZE (TYPE_MODE (vectype_in)))))
+ return false;
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vectorizable_assignment ===");
+ vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
+ return true;
+ }
+
+ /** Transform. **/
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "transform assignment.");
+
+ /* Handle def. */
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+ /* Handle use. */
+ for (j = 0; j < ncopies; j++)
+ {
+ /* Handle uses. */
+ if (j == 0)
+ vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node);
+ else
+ vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds, NULL);
+
+ /* Arguments are ready. create the new vector stmt. */
+ FOR_EACH_VEC_ELT (tree, vec_oprnds, i, vop)
+ {
+ if (CONVERT_EXPR_CODE_P (code))
+ vop = build1 (VIEW_CONVERT_EXPR, vectype, vop);
+ new_stmt = gimple_build_assign (vec_dest, vop);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ if (slp_node)
+ VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
+ }
+
+ if (slp_node)
+ continue;
+
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+
+ VEC_free (tree, heap, vec_oprnds);
+ return true;
+}
+
+
+/* Function vectorizable_shift.
+
+ Check if STMT performs a shift operation that can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_shift (gimple stmt, gimple_stmt_iterator *gsi,
+ gimple *vec_stmt, slp_tree slp_node)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree op0, op1 = NULL;
+ tree vec_oprnd1 = NULL_TREE;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ enum tree_code code;
+ enum machine_mode vec_mode;
+ tree new_temp;
+ optab optab;
+ int icode;
+ enum machine_mode optab_op2_mode;
+ tree def;
+ gimple def_stmt;
+ enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
+ gimple new_stmt = NULL;
+ stmt_vec_info prev_stmt_info;
+ int nunits_in;
+ int nunits_out;
+ tree vectype_out;
+ int ncopies;
+ int j, i;
+ VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL;
+ tree vop0, vop1;
+ unsigned int k;
+ bool scalar_shift_arg = true;
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ int vf;
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ /* Is STMT a vectorizable binary/unary operation? */
+ if (!is_gimple_assign (stmt))
+ return false;
+
+ if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
+ return false;
+
+ code = gimple_assign_rhs_code (stmt);
+
+ if (!(code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
+ || code == RROTATE_EXPR))
+ return false;
+
+ scalar_dest = gimple_assign_lhs (stmt);
+ vectype_out = STMT_VINFO_VECTYPE (stmt_info);
+
+ op0 = gimple_assign_rhs1 (stmt);
+ if (!vect_is_simple_use_1 (op0, loop_vinfo, bb_vinfo,
+ &def_stmt, &def, &dt[0], &vectype))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "use not simple.");
+ return false;
+ }
+ /* If op0 is an external or constant def use a vector type with
+ the same size as the output vector type. */
+ if (!vectype)
+ vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
+ if (vec_stmt)
+ gcc_assert (vectype);
+ if (!vectype)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "no vectype for scalar type ");
+ print_generic_expr (vect_dump, TREE_TYPE (op0), TDF_SLIM);
+ }
+
+ return false;
+ }
+
+ nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
+ nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
+ if (nunits_out != nunits_in)
+ return false;
+
+ op1 = gimple_assign_rhs2 (stmt);
+ if (!vect_is_simple_use (op1, loop_vinfo, bb_vinfo, &def_stmt, &def, &dt[1]))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "use not simple.");
+ return false;
+ }
+
+ if (loop_vinfo)
+ vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+ else
+ vf = 1;
+
+ /* Multiple types in SLP are handled by creating the appropriate number of
+ vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
+ case of SLP. */
+ if (slp_node)
+ ncopies = 1;
+ else
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
+
+ gcc_assert (ncopies >= 1);
+
+ /* Determine whether the shift amount is a vector, or scalar. If the
+ shift/rotate amount is a vector, use the vector/vector shift optabs. */
+
+ if (dt[1] == vect_internal_def && !slp_node)
+ scalar_shift_arg = false;
+ else if (dt[1] == vect_constant_def
+ || dt[1] == vect_external_def
+ || dt[1] == vect_internal_def)
+ {
+ /* In SLP, need to check whether the shift count is the same,
+ in loops if it is a constant or invariant, it is always
+ a scalar shift. */
+ if (slp_node)
+ {
+ VEC (gimple, heap) *stmts = SLP_TREE_SCALAR_STMTS (slp_node);
+ gimple slpstmt;
+
+ FOR_EACH_VEC_ELT (gimple, stmts, k, slpstmt)
+ if (!operand_equal_p (gimple_assign_rhs2 (slpstmt), op1, 0))
+ scalar_shift_arg = false;
+ }
+ }
+ else
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "operand mode requires invariant argument.");
+ return false;
+ }
+
+ /* Vector shifted by vector. */
+ if (!scalar_shift_arg)
+ {
+ optab = optab_for_tree_code (code, vectype, optab_vector);
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "vector/vector shift/rotate found.");
+ }
+ /* See if the machine has a vector shifted by scalar insn and if not
+ then see if it has a vector shifted by vector insn. */
+ else
+ {
+ optab = optab_for_tree_code (code, vectype, optab_scalar);
+ if (optab
+ && optab_handler (optab, TYPE_MODE (vectype)) != CODE_FOR_nothing)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "vector/scalar shift/rotate found.");
+ }
+ else
+ {
+ optab = optab_for_tree_code (code, vectype, optab_vector);
+ if (optab
+ && (optab_handler (optab, TYPE_MODE (vectype))
+ != CODE_FOR_nothing))
+ {
+ scalar_shift_arg = false;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "vector/vector shift/rotate found.");
+
+ /* Unlike the other binary operators, shifts/rotates have
+ the rhs being int, instead of the same type as the lhs,
+ so make sure the scalar is the right type if we are
+ dealing with vectors of short/char. */
+ if (dt[1] == vect_constant_def)
+ op1 = fold_convert (TREE_TYPE (vectype), op1);
+ }
+ }
+ }
+
+ /* Supportable by target? */
+ if (!optab)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "no optab.");
+ return false;
+ }
+ vec_mode = TYPE_MODE (vectype);
+ icode = (int) optab_handler (optab, vec_mode);
+ if (icode == CODE_FOR_nothing)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "op not supported by target.");
+ /* Check only during analysis. */
+ if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
+ || (vf < vect_min_worthwhile_factor (code)
+ && !vec_stmt))
+ return false;
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "proceeding using word mode.");
+ }
+
+ /* Worthwhile without SIMD support? Check only during analysis. */
+ if (!VECTOR_MODE_P (TYPE_MODE (vectype))
+ && vf < vect_min_worthwhile_factor (code)
+ && !vec_stmt)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "not worthwhile without SIMD support.");
+ return false;
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = shift_vec_info_type;
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vectorizable_shift ===");
+ vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
+ return true;
+ }
+
+ /** Transform. **/
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "transform binary/unary operation.");
+
+ /* Handle def. */
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+ /* Allocate VECs for vector operands. In case of SLP, vector operands are
+ created in the previous stages of the recursion, so no allocation is
+ needed, except for the case of shift with scalar shift argument. In that
+ case we store the scalar operand in VEC_OPRNDS1 for every vector stmt to
+ be created to vectorize the SLP group, i.e., SLP_NODE->VEC_STMTS_SIZE.
+ In case of loop-based vectorization we allocate VECs of size 1. We
+ allocate VEC_OPRNDS1 only in case of binary operation. */
+ if (!slp_node)
+ {
+ vec_oprnds0 = VEC_alloc (tree, heap, 1);
+ vec_oprnds1 = VEC_alloc (tree, heap, 1);
+ }
+ else if (scalar_shift_arg)
+ vec_oprnds1 = VEC_alloc (tree, heap, slp_node->vec_stmts_size);
+
+ prev_stmt_info = NULL;
+ for (j = 0; j < ncopies; j++)
+ {
+ /* Handle uses. */
+ if (j == 0)
+ {
+ if (scalar_shift_arg)
+ {
+ /* Vector shl and shr insn patterns can be defined with scalar
+ operand 2 (shift operand). In this case, use constant or loop
+ invariant op1 directly, without extending it to vector mode
+ first. */
+ optab_op2_mode = insn_data[icode].operand[2].mode;
+ if (!VECTOR_MODE_P (optab_op2_mode))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "operand 1 using scalar mode.");
+ vec_oprnd1 = op1;
+ VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
+ if (slp_node)
+ {
+ /* Store vec_oprnd1 for every vector stmt to be created
+ for SLP_NODE. We check during the analysis that all
+ the shift arguments are the same.
+ TODO: Allow different constants for different vector
+ stmts generated for an SLP instance. */
+ for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
+ VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
+ }
+ }
+ }
+
+ /* vec_oprnd1 is available if operand 1 should be of a scalar-type
+ (a special case for certain kind of vector shifts); otherwise,
+ operand 1 should be of a vector type (the usual case). */
+ if (vec_oprnd1)
+ vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
+ slp_node);
+ else
+ vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
+ slp_node);
+ }
+ else
+ vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
+
+ /* Arguments are ready. Create the new vector stmt. */
+ FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, vop0)
+ {
+ vop1 = VEC_index (tree, vec_oprnds1, i);
+ new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ if (slp_node)
+ VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
+ }
+
+ if (slp_node)
+ continue;
+
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+
+ VEC_free (tree, heap, vec_oprnds0);
+ VEC_free (tree, heap, vec_oprnds1);
+
+ return true;
+}
+
+
+/* Function vectorizable_operation.
+
+ Check if STMT performs a binary, unary or ternary operation that can
+ be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_operation (gimple stmt, gimple_stmt_iterator *gsi,
+ gimple *vec_stmt, slp_tree slp_node)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree op0, op1 = NULL_TREE, op2 = NULL_TREE;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ enum tree_code code;
+ enum machine_mode vec_mode;
+ tree new_temp;
+ int op_type;
+ optab optab;
+ int icode;
+ tree def;
+ gimple def_stmt;
+ enum vect_def_type dt[3]
+ = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
+ gimple new_stmt = NULL;
+ stmt_vec_info prev_stmt_info;
+ int nunits_in;
+ int nunits_out;
+ tree vectype_out;
+ int ncopies;
+ int j, i;
+ VEC(tree,heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL, *vec_oprnds2 = NULL;
+ tree vop0, vop1, vop2;
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ int vf;
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ /* Is STMT a vectorizable binary/unary operation? */
+ if (!is_gimple_assign (stmt))
+ return false;
+
+ if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
+ return false;
+
+ code = gimple_assign_rhs_code (stmt);
+
+ /* For pointer addition, we should use the normal plus for
+ the vector addition. */
+ if (code == POINTER_PLUS_EXPR)
+ code = PLUS_EXPR;
+
+ /* Support only unary or binary operations. */
+ op_type = TREE_CODE_LENGTH (code);
+ if (op_type != unary_op && op_type != binary_op && op_type != ternary_op)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "num. args = %d (not unary/binary/ternary op).",
+ op_type);
+ return false;
+ }
+
+ scalar_dest = gimple_assign_lhs (stmt);
+ vectype_out = STMT_VINFO_VECTYPE (stmt_info);
+
+ op0 = gimple_assign_rhs1 (stmt);
+ if (!vect_is_simple_use_1 (op0, loop_vinfo, bb_vinfo,
+ &def_stmt, &def, &dt[0], &vectype))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "use not simple.");
+ return false;
+ }
+ /* If op0 is an external or constant def use a vector type with
+ the same size as the output vector type. */
+ if (!vectype)
+ vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
+ if (vec_stmt)
+ gcc_assert (vectype);
+ if (!vectype)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "no vectype for scalar type ");
+ print_generic_expr (vect_dump, TREE_TYPE (op0), TDF_SLIM);
+ }
+
+ return false;
+ }
+
+ nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
+ nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
+ if (nunits_out != nunits_in)
+ return false;
+
+ if (op_type == binary_op || op_type == ternary_op)
+ {
+ op1 = gimple_assign_rhs2 (stmt);
+ if (!vect_is_simple_use (op1, loop_vinfo, bb_vinfo, &def_stmt, &def,
+ &dt[1]))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "use not simple.");
+ return false;
+ }
+ }
+ if (op_type == ternary_op)
+ {
+ op2 = gimple_assign_rhs3 (stmt);
+ if (!vect_is_simple_use (op2, loop_vinfo, bb_vinfo, &def_stmt, &def,
+ &dt[2]))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "use not simple.");
+ return false;
+ }
+ }
+
+ if (loop_vinfo)
+ vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+ else
+ vf = 1;
+
+ /* Multiple types in SLP are handled by creating the appropriate number of
+ vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
+ case of SLP. */
+ if (slp_node)
+ ncopies = 1;
+ else
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
+
+ gcc_assert (ncopies >= 1);
+
+ /* Shifts are handled in vectorizable_shift (). */
+ if (code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
+ || code == RROTATE_EXPR)
+ return false;
+
+ optab = optab_for_tree_code (code, vectype, optab_default);
+
+ /* Supportable by target? */
+ if (!optab)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "no optab.");
+ return false;
+ }
+ vec_mode = TYPE_MODE (vectype);
+ icode = (int) optab_handler (optab, vec_mode);
+ if (icode == CODE_FOR_nothing)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "op not supported by target.");
+ /* Check only during analysis. */
+ if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
+ || (vf < vect_min_worthwhile_factor (code)
+ && !vec_stmt))
+ return false;
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "proceeding using word mode.");
+ }
+
+ /* Worthwhile without SIMD support? Check only during analysis. */
+ if (!VECTOR_MODE_P (TYPE_MODE (vectype))
+ && vf < vect_min_worthwhile_factor (code)
+ && !vec_stmt)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "not worthwhile without SIMD support.");
+ return false;
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vectorizable_operation ===");
+ vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
+ return true;
+ }
+
+ /** Transform. **/
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "transform binary/unary operation.");
+
+ /* Handle def. */
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+ /* Allocate VECs for vector operands. In case of SLP, vector operands are
+ created in the previous stages of the recursion, so no allocation is
+ needed, except for the case of shift with scalar shift argument. In that
+ case we store the scalar operand in VEC_OPRNDS1 for every vector stmt to
+ be created to vectorize the SLP group, i.e., SLP_NODE->VEC_STMTS_SIZE.
+ In case of loop-based vectorization we allocate VECs of size 1. We
+ allocate VEC_OPRNDS1 only in case of binary operation. */
+ if (!slp_node)
+ {
+ vec_oprnds0 = VEC_alloc (tree, heap, 1);
+ if (op_type == binary_op || op_type == ternary_op)
+ vec_oprnds1 = VEC_alloc (tree, heap, 1);
+ if (op_type == ternary_op)
+ vec_oprnds2 = VEC_alloc (tree, heap, 1);
+ }
+
+ /* In case the vectorization factor (VF) is bigger than the number
+ of elements that we can fit in a vectype (nunits), we have to generate
+ more than one vector stmt - i.e - we need to "unroll" the
+ vector stmt by a factor VF/nunits. In doing so, we record a pointer
+ from one copy of the vector stmt to the next, in the field
+ STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
+ stages to find the correct vector defs to be used when vectorizing
+ stmts that use the defs of the current stmt. The example below
+ illustrates the vectorization process when VF=16 and nunits=4 (i.e.,
+ we need to create 4 vectorized stmts):
+
+ before vectorization:
+ RELATED_STMT VEC_STMT
+ S1: x = memref - -
+ S2: z = x + 1 - -
+
+ step 1: vectorize stmt S1 (done in vectorizable_load. See more details
+ there):
+ RELATED_STMT VEC_STMT
+ VS1_0: vx0 = memref0 VS1_1 -
+ VS1_1: vx1 = memref1 VS1_2 -
+ VS1_2: vx2 = memref2 VS1_3 -
+ VS1_3: vx3 = memref3 - -
+ S1: x = load - VS1_0
+ S2: z = x + 1 - -
+
+ step2: vectorize stmt S2 (done here):
+ To vectorize stmt S2 we first need to find the relevant vector
+ def for the first operand 'x'. This is, as usual, obtained from
+ the vector stmt recorded in the STMT_VINFO_VEC_STMT of the stmt
+ that defines 'x' (S1). This way we find the stmt VS1_0, and the
+ relevant vector def 'vx0'. Having found 'vx0' we can generate
+ the vector stmt VS2_0, and as usual, record it in the
+ STMT_VINFO_VEC_STMT of stmt S2.
+ When creating the second copy (VS2_1), we obtain the relevant vector
+ def from the vector stmt recorded in the STMT_VINFO_RELATED_STMT of
+ stmt VS1_0. This way we find the stmt VS1_1 and the relevant
+ vector def 'vx1'. Using 'vx1' we create stmt VS2_1 and record a
+ pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS2_0.
+ Similarly when creating stmts VS2_2 and VS2_3. This is the resulting
+ chain of stmts and pointers:
+ RELATED_STMT VEC_STMT
+ VS1_0: vx0 = memref0 VS1_1 -
+ VS1_1: vx1 = memref1 VS1_2 -
+ VS1_2: vx2 = memref2 VS1_3 -
+ VS1_3: vx3 = memref3 - -
+ S1: x = load - VS1_0
+ VS2_0: vz0 = vx0 + v1 VS2_1 -
+ VS2_1: vz1 = vx1 + v1 VS2_2 -
+ VS2_2: vz2 = vx2 + v1 VS2_3 -
+ VS2_3: vz3 = vx3 + v1 - -
+ S2: z = x + 1 - VS2_0 */
+
+ prev_stmt_info = NULL;
+ for (j = 0; j < ncopies; j++)
+ {
+ /* Handle uses. */
+ if (j == 0)
+ {
+ if (op_type == binary_op || op_type == ternary_op)
+ vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
+ slp_node);
+ else
+ vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
+ slp_node);
+ if (op_type == ternary_op)
+ {
+ vec_oprnds2 = VEC_alloc (tree, heap, 1);
+ VEC_quick_push (tree, vec_oprnds2,
+ vect_get_vec_def_for_operand (op2, stmt, NULL));
+ }
+ }
+ else
+ {
+ vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
+ if (op_type == ternary_op)
+ {
+ tree vec_oprnd = VEC_pop (tree, vec_oprnds2);
+ VEC_quick_push (tree, vec_oprnds2,
+ vect_get_vec_def_for_stmt_copy (dt[2],
+ vec_oprnd));
+ }
+ }
+
+ /* Arguments are ready. Create the new vector stmt. */
+ FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, vop0)
+ {
+ vop1 = ((op_type == binary_op || op_type == ternary_op)
+ ? VEC_index (tree, vec_oprnds1, i) : NULL_TREE);
+ vop2 = ((op_type == ternary_op)
+ ? VEC_index (tree, vec_oprnds2, i) : NULL_TREE);
+ new_stmt = gimple_build_assign_with_ops3 (code, vec_dest,
+ vop0, vop1, vop2);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ if (slp_node)
+ VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
+ }
+
+ if (slp_node)
+ continue;
+
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+
+ VEC_free (tree, heap, vec_oprnds0);
+ if (vec_oprnds1)
+ VEC_free (tree, heap, vec_oprnds1);
+ if (vec_oprnds2)
+ VEC_free (tree, heap, vec_oprnds2);
+
+ return true;
+}
+
+
+/* Get vectorized definitions for loop-based vectorization. For the first
+ operand we call vect_get_vec_def_for_operand() (with OPRND containing
+ scalar operand), and for the rest we get a copy with
+ vect_get_vec_def_for_stmt_copy() using the previous vector definition
+ (stored in OPRND). See vect_get_vec_def_for_stmt_copy() for details.
+ The vectors are collected into VEC_OPRNDS. */
+
+static void
+vect_get_loop_based_defs (tree *oprnd, gimple stmt, enum vect_def_type dt,
+ VEC (tree, heap) **vec_oprnds, int multi_step_cvt)
+{
+ tree vec_oprnd;
+
+ /* Get first vector operand. */
+ /* All the vector operands except the very first one (that is scalar oprnd)
+ are stmt copies. */
+ if (TREE_CODE (TREE_TYPE (*oprnd)) != VECTOR_TYPE)
+ vec_oprnd = vect_get_vec_def_for_operand (*oprnd, stmt, NULL);
+ else
+ vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, *oprnd);
+
+ VEC_quick_push (tree, *vec_oprnds, vec_oprnd);
+
+ /* Get second vector operand. */
+ vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
+ VEC_quick_push (tree, *vec_oprnds, vec_oprnd);
+
+ *oprnd = vec_oprnd;
+
+ /* For conversion in multiple steps, continue to get operands
+ recursively. */
+ if (multi_step_cvt)
+ vect_get_loop_based_defs (oprnd, stmt, dt, vec_oprnds, multi_step_cvt - 1);
+}
+
+
+/* Create vectorized demotion statements for vector operands from VEC_OPRNDS.
+ For multi-step conversions store the resulting vectors and call the function
+ recursively. */
+
+static void
+vect_create_vectorized_demotion_stmts (VEC (tree, heap) **vec_oprnds,
+ int multi_step_cvt, gimple stmt,
+ VEC (tree, heap) *vec_dsts,
+ gimple_stmt_iterator *gsi,
+ slp_tree slp_node, enum tree_code code,
+ stmt_vec_info *prev_stmt_info)
+{
+ unsigned int i;
+ tree vop0, vop1, new_tmp, vec_dest;
+ gimple new_stmt;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+ vec_dest = VEC_pop (tree, vec_dsts);
+
+ for (i = 0; i < VEC_length (tree, *vec_oprnds); i += 2)
+ {
+ /* Create demotion operation. */
+ vop0 = VEC_index (tree, *vec_oprnds, i);
+ vop1 = VEC_index (tree, *vec_oprnds, i + 1);
+ new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
+ new_tmp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_tmp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ if (multi_step_cvt)
+ /* Store the resulting vector for next recursive call. */
+ VEC_replace (tree, *vec_oprnds, i/2, new_tmp);
+ else
+ {
+ /* This is the last step of the conversion sequence. Store the
+ vectors in SLP_NODE or in vector info of the scalar statement
+ (or in STMT_VINFO_RELATED_STMT chain). */
+ if (slp_node)
+ VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
+ else
+ {
+ if (!*prev_stmt_info)
+ STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt;
+
+ *prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+ }
+ }
+
+ /* For multi-step demotion operations we first generate demotion operations
+ from the source type to the intermediate types, and then combine the
+ results (stored in VEC_OPRNDS) in demotion operation to the destination
+ type. */
+ if (multi_step_cvt)
+ {
+ /* At each level of recursion we have have of the operands we had at the
+ previous level. */
+ VEC_truncate (tree, *vec_oprnds, (i+1)/2);
+ vect_create_vectorized_demotion_stmts (vec_oprnds, multi_step_cvt - 1,
+ stmt, vec_dsts, gsi, slp_node,
+ code, prev_stmt_info);
+ }
+}
+
+
+/* Function vectorizable_type_demotion
+
+ Check if STMT performs a binary or unary operation that involves
+ type demotion, and if it can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_type_demotion (gimple stmt, gimple_stmt_iterator *gsi,
+ gimple *vec_stmt, slp_tree slp_node)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree op0;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ enum tree_code code, code1 = ERROR_MARK;
+ tree def;
+ gimple def_stmt;
+ enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
+ stmt_vec_info prev_stmt_info;
+ int nunits_in;
+ int nunits_out;
+ tree vectype_out;
+ int ncopies;
+ int j, i;
+ tree vectype_in;
+ int multi_step_cvt = 0;
+ VEC (tree, heap) *vec_oprnds0 = NULL;
+ VEC (tree, heap) *vec_dsts = NULL, *interm_types = NULL, *tmp_vec_dsts = NULL;
+ tree last_oprnd, intermediate_type;
+
+ /* FORNOW: not supported by basic block SLP vectorization. */
+ gcc_assert (loop_vinfo);
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info))
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ /* Is STMT a vectorizable type-demotion operation? */
+ if (!is_gimple_assign (stmt))
+ return false;
+
+ if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
+ return false;
+
+ code = gimple_assign_rhs_code (stmt);
+ if (!CONVERT_EXPR_CODE_P (code))
+ return false;
+
+ scalar_dest = gimple_assign_lhs (stmt);
+ vectype_out = STMT_VINFO_VECTYPE (stmt_info);
+
+ /* Check the operands of the operation. */
+ op0 = gimple_assign_rhs1 (stmt);
+ if (! ((INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
+ && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
+ || (SCALAR_FLOAT_TYPE_P (TREE_TYPE (scalar_dest))
+ && SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0))
+ && CONVERT_EXPR_CODE_P (code))))
+ return false;
+ if (!vect_is_simple_use_1 (op0, loop_vinfo, NULL,
+ &def_stmt, &def, &dt[0], &vectype_in))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "use not simple.");
+ return false;
+ }
+ /* If op0 is an external def use a vector type with the
+ same size as the output vector type if possible. */
+ if (!vectype_in)
+ vectype_in = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
+ if (vec_stmt)
+ gcc_assert (vectype_in);
+ if (!vectype_in)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "no vectype for scalar type ");
+ print_generic_expr (vect_dump, TREE_TYPE (op0), TDF_SLIM);
+ }
+
+ return false;
+ }
+
+ nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
+ nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
+ if (nunits_in >= nunits_out)
+ return false;
+
+ /* Multiple types in SLP are handled by creating the appropriate number of
+ vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
+ case of SLP. */
+ if (slp_node)
+ ncopies = 1;
+ else
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
+ gcc_assert (ncopies >= 1);
+
+ /* Supportable by target? */
+ if (!supportable_narrowing_operation (code, vectype_out, vectype_in,
+ &code1, &multi_step_cvt, &interm_types))
+ return false;
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type;
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vectorizable_demotion ===");
+ vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
+ return true;
+ }
+
+ /** Transform. **/
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "transform type demotion operation. ncopies = %d.",
+ ncopies);
+
+ /* In case of multi-step demotion, we first generate demotion operations to
+ the intermediate types, and then from that types to the final one.
+ We create vector destinations for the intermediate type (TYPES) received
+ from supportable_narrowing_operation, and store them in the correct order
+ for future use in vect_create_vectorized_demotion_stmts(). */
+ if (multi_step_cvt)
+ vec_dsts = VEC_alloc (tree, heap, multi_step_cvt + 1);
+ else
+ vec_dsts = VEC_alloc (tree, heap, 1);
+
+ vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
+ VEC_quick_push (tree, vec_dsts, vec_dest);
+
+ if (multi_step_cvt)
+ {
+ for (i = VEC_length (tree, interm_types) - 1;
+ VEC_iterate (tree, interm_types, i, intermediate_type); i--)
+ {
+ vec_dest = vect_create_destination_var (scalar_dest,
+ intermediate_type);
+ VEC_quick_push (tree, vec_dsts, vec_dest);
+ }
+ }
+
+ /* In case the vectorization factor (VF) is bigger than the number
+ of elements that we can fit in a vectype (nunits), we have to generate
+ more than one vector stmt - i.e - we need to "unroll" the
+ vector stmt by a factor VF/nunits. */
+ last_oprnd = op0;
+ prev_stmt_info = NULL;
+ for (j = 0; j < ncopies; j++)
+ {
+ /* Handle uses. */
+ if (slp_node)
+ vect_get_slp_defs (op0, NULL_TREE, slp_node, &vec_oprnds0, NULL, -1);
+ else
+ {
+ VEC_free (tree, heap, vec_oprnds0);
+ vec_oprnds0 = VEC_alloc (tree, heap,
+ (multi_step_cvt ? vect_pow2 (multi_step_cvt) * 2 : 2));
+ vect_get_loop_based_defs (&last_oprnd, stmt, dt[0], &vec_oprnds0,
+ vect_pow2 (multi_step_cvt) - 1);
+ }
+
+ /* Arguments are ready. Create the new vector stmts. */
+ tmp_vec_dsts = VEC_copy (tree, heap, vec_dsts);
+ vect_create_vectorized_demotion_stmts (&vec_oprnds0,
+ multi_step_cvt, stmt, tmp_vec_dsts,
+ gsi, slp_node, code1,
+ &prev_stmt_info);
+ }
+
+ VEC_free (tree, heap, vec_oprnds0);
+ VEC_free (tree, heap, vec_dsts);
+ VEC_free (tree, heap, tmp_vec_dsts);
+ VEC_free (tree, heap, interm_types);
+
+ *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
+ return true;
+}
+
+
+/* Create vectorized promotion statements for vector operands from VEC_OPRNDS0
+ and VEC_OPRNDS1 (for binary operations). For multi-step conversions store
+ the resulting vectors and call the function recursively. */
+
+static void
+vect_create_vectorized_promotion_stmts (VEC (tree, heap) **vec_oprnds0,
+ VEC (tree, heap) **vec_oprnds1,
+ int multi_step_cvt, gimple stmt,
+ VEC (tree, heap) *vec_dsts,
+ gimple_stmt_iterator *gsi,
+ slp_tree slp_node, enum tree_code code1,
+ enum tree_code code2, tree decl1,
+ tree decl2, int op_type,
+ stmt_vec_info *prev_stmt_info)
+{
+ int i;
+ tree vop0, vop1, new_tmp1, new_tmp2, vec_dest;
+ gimple new_stmt1, new_stmt2;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ VEC (tree, heap) *vec_tmp;
+
+ vec_dest = VEC_pop (tree, vec_dsts);
+ vec_tmp = VEC_alloc (tree, heap, VEC_length (tree, *vec_oprnds0) * 2);
+
+ FOR_EACH_VEC_ELT (tree, *vec_oprnds0, i, vop0)
+ {
+ if (op_type == binary_op)
+ vop1 = VEC_index (tree, *vec_oprnds1, i);
+ else
+ vop1 = NULL_TREE;
+
+ /* Generate the two halves of promotion operation. */
+ new_stmt1 = vect_gen_widened_results_half (code1, decl1, vop0, vop1,
+ op_type, vec_dest, gsi, stmt);
+ new_stmt2 = vect_gen_widened_results_half (code2, decl2, vop0, vop1,
+ op_type, vec_dest, gsi, stmt);
+ if (is_gimple_call (new_stmt1))
+ {
+ new_tmp1 = gimple_call_lhs (new_stmt1);
+ new_tmp2 = gimple_call_lhs (new_stmt2);
+ }
+ else
+ {
+ new_tmp1 = gimple_assign_lhs (new_stmt1);
+ new_tmp2 = gimple_assign_lhs (new_stmt2);
+ }
+
+ if (multi_step_cvt)
+ {
+ /* Store the results for the recursive call. */
+ VEC_quick_push (tree, vec_tmp, new_tmp1);
+ VEC_quick_push (tree, vec_tmp, new_tmp2);
+ }
+ else
+ {
+ /* Last step of promotion sequience - store the results. */
+ if (slp_node)
+ {
+ VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt1);
+ VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt2);
+ }
+ else
+ {
+ if (!*prev_stmt_info)
+ STMT_VINFO_VEC_STMT (stmt_info) = new_stmt1;
+ else
+ STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt1;
+
+ *prev_stmt_info = vinfo_for_stmt (new_stmt1);
+ STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt2;
+ *prev_stmt_info = vinfo_for_stmt (new_stmt2);
+ }
+ }
+ }
+
+ if (multi_step_cvt)
+ {
+ /* For multi-step promotion operation we first generate we call the
+ function recurcively for every stage. We start from the input type,
+ create promotion operations to the intermediate types, and then
+ create promotions to the output type. */
+ *vec_oprnds0 = VEC_copy (tree, heap, vec_tmp);
+ vect_create_vectorized_promotion_stmts (vec_oprnds0, vec_oprnds1,
+ multi_step_cvt - 1, stmt,
+ vec_dsts, gsi, slp_node, code1,
+ code2, decl2, decl2, op_type,
+ prev_stmt_info);
+ }
+
+ VEC_free (tree, heap, vec_tmp);
+}
+
+
+/* Function vectorizable_type_promotion
+
+ Check if STMT performs a binary or unary operation that involves
+ type promotion, and if it can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_type_promotion (gimple stmt, gimple_stmt_iterator *gsi,
+ gimple *vec_stmt, slp_tree slp_node)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree op0, op1 = NULL;
+ tree vec_oprnd0=NULL, vec_oprnd1=NULL;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
+ tree decl1 = NULL_TREE, decl2 = NULL_TREE;
+ int op_type;
+ tree def;
+ gimple def_stmt;
+ enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
+ stmt_vec_info prev_stmt_info;
+ int nunits_in;
+ int nunits_out;
+ tree vectype_out;
+ int ncopies;
+ int j, i;
+ tree vectype_in;
+ tree intermediate_type = NULL_TREE;
+ int multi_step_cvt = 0;
+ VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL;
+ VEC (tree, heap) *vec_dsts = NULL, *interm_types = NULL, *tmp_vec_dsts = NULL;
+
+ /* FORNOW: not supported by basic block SLP vectorization. */
+ gcc_assert (loop_vinfo);
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info))
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ /* Is STMT a vectorizable type-promotion operation? */
+ if (!is_gimple_assign (stmt))
+ return false;
+
+ if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
+ return false;
+
+ code = gimple_assign_rhs_code (stmt);
+ if (!CONVERT_EXPR_CODE_P (code)
+ && code != WIDEN_MULT_EXPR)
+ return false;
+
+ scalar_dest = gimple_assign_lhs (stmt);
+ vectype_out = STMT_VINFO_VECTYPE (stmt_info);
+
+ /* Check the operands of the operation. */
+ op0 = gimple_assign_rhs1 (stmt);
+ if (! ((INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
+ && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
+ || (SCALAR_FLOAT_TYPE_P (TREE_TYPE (scalar_dest))
+ && SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0))
+ && CONVERT_EXPR_CODE_P (code))))
+ return false;
+ if (!vect_is_simple_use_1 (op0, loop_vinfo, NULL,
+ &def_stmt, &def, &dt[0], &vectype_in))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "use not simple.");
+ return false;
+ }
+ /* If op0 is an external or constant def use a vector type with
+ the same size as the output vector type. */
+ if (!vectype_in)
+ vectype_in = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
+ if (vec_stmt)
+ gcc_assert (vectype_in);
+ if (!vectype_in)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "no vectype for scalar type ");
+ print_generic_expr (vect_dump, TREE_TYPE (op0), TDF_SLIM);
+ }
+
+ return false;
+ }
+
+ nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
+ nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
+ if (nunits_in <= nunits_out)
+ return false;
+
+ /* Multiple types in SLP are handled by creating the appropriate number of
+ vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
+ case of SLP. */
+ if (slp_node)
+ ncopies = 1;
+ else
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
+
+ gcc_assert (ncopies >= 1);
+
+ op_type = TREE_CODE_LENGTH (code);
+ if (op_type == binary_op)
+ {
+ op1 = gimple_assign_rhs2 (stmt);
+ if (!vect_is_simple_use (op1, loop_vinfo, NULL, &def_stmt, &def, &dt[1]))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "use not simple.");
+ return false;
+ }
+ }
+
+ /* Supportable by target? */
+ if (!supportable_widening_operation (code, stmt, vectype_out, vectype_in,
+ &decl1, &decl2, &code1, &code2,
+ &multi_step_cvt, &interm_types))
+ return false;
+
+ /* Binary widening operation can only be supported directly by the
+ architecture. */
+ gcc_assert (!(multi_step_cvt && op_type == binary_op));
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type;
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "=== vectorizable_promotion ===");
+ vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
+ return true;
+ }
+
+ /** Transform. **/
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "transform type promotion operation. ncopies = %d.",
+ ncopies);
+
+ /* Handle def. */
+ /* In case of multi-step promotion, we first generate promotion operations
+ to the intermediate types, and then from that types to the final one.
+ We store vector destination in VEC_DSTS in the correct order for
+ recursive creation of promotion operations in
+ vect_create_vectorized_promotion_stmts(). Vector destinations are created
+ according to TYPES recieved from supportable_widening_operation(). */
+ if (multi_step_cvt)
+ vec_dsts = VEC_alloc (tree, heap, multi_step_cvt + 1);
+ else
+ vec_dsts = VEC_alloc (tree, heap, 1);
+
+ vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
+ VEC_quick_push (tree, vec_dsts, vec_dest);
+
+ if (multi_step_cvt)
+ {
+ for (i = VEC_length (tree, interm_types) - 1;
+ VEC_iterate (tree, interm_types, i, intermediate_type); i--)
+ {
+ vec_dest = vect_create_destination_var (scalar_dest,
+ intermediate_type);
+ VEC_quick_push (tree, vec_dsts, vec_dest);
+ }
+ }
+
+ if (!slp_node)
+ {
+ vec_oprnds0 = VEC_alloc (tree, heap,
+ (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1));
+ if (op_type == binary_op)
+ vec_oprnds1 = VEC_alloc (tree, heap, 1);
+ }
+
+ /* In case the vectorization factor (VF) is bigger than the number
+ of elements that we can fit in a vectype (nunits), we have to generate
+ more than one vector stmt - i.e - we need to "unroll" the
+ vector stmt by a factor VF/nunits. */
+
+ prev_stmt_info = NULL;
+ for (j = 0; j < ncopies; j++)
+ {
+ /* Handle uses. */
+ if (j == 0)
+ {
+ if (slp_node)
+ vect_get_slp_defs (op0, op1, slp_node, &vec_oprnds0,
+ &vec_oprnds1, -1);
+ else
+ {
+ vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
+ VEC_quick_push (tree, vec_oprnds0, vec_oprnd0);
+ if (op_type == binary_op)
+ {
+ vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt, NULL);
+ VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
+ }
+ }
+ }
+ else
+ {
+ vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
+ VEC_replace (tree, vec_oprnds0, 0, vec_oprnd0);
+ if (op_type == binary_op)
+ {
+ vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd1);
+ VEC_replace (tree, vec_oprnds1, 0, vec_oprnd1);
+ }
+ }
+
+ /* Arguments are ready. Create the new vector stmts. */
+ tmp_vec_dsts = VEC_copy (tree, heap, vec_dsts);
+ vect_create_vectorized_promotion_stmts (&vec_oprnds0, &vec_oprnds1,
+ multi_step_cvt, stmt,
+ tmp_vec_dsts,
+ gsi, slp_node, code1, code2,
+ decl1, decl2, op_type,
+ &prev_stmt_info);
+ }
+
+ VEC_free (tree, heap, vec_dsts);
+ VEC_free (tree, heap, tmp_vec_dsts);
+ VEC_free (tree, heap, interm_types);
+ VEC_free (tree, heap, vec_oprnds0);
+ VEC_free (tree, heap, vec_oprnds1);
+
+ *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
+ return true;
+}
+
+
+/* Function vectorizable_store.
+
+ Check if STMT defines a non scalar data-ref (array/pointer/structure) that
+ can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_store (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
+ slp_tree slp_node)
+{
+ tree scalar_dest;
+ tree data_ref;
+ tree op;
+ tree vec_oprnd = NULL_TREE;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop *loop = NULL;
+ enum machine_mode vec_mode;
+ tree dummy;
+ enum dr_alignment_support alignment_support_scheme;
+ tree def;
+ gimple def_stmt;
+ enum vect_def_type dt;
+ stmt_vec_info prev_stmt_info = NULL;
+ tree dataref_ptr = NULL_TREE;
+ int nunits = TYPE_VECTOR_SUBPARTS (vectype);
+ int ncopies;
+ int j;
+ gimple next_stmt, first_stmt = NULL;
+ bool strided_store = false;
+ unsigned int group_size, i;
+ VEC(tree,heap) *dr_chain = NULL, *oprnds = NULL, *result_chain = NULL;
+ bool inv_p;
+ VEC(tree,heap) *vec_oprnds = NULL;
+ bool slp = (slp_node != NULL);
+ unsigned int vec_num;
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+
+ if (loop_vinfo)
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ /* Multiple types in SLP are handled by creating the appropriate number of
+ vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
+ case of SLP. */
+ if (slp)
+ ncopies = 1;
+ else
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
+
+ gcc_assert (ncopies >= 1);
+
+ /* FORNOW. This restriction should be relaxed. */
+ if (loop && nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "multiple types in nested loop.");
+ return false;
+ }
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ /* Is vectorizable store? */
+
+ if (!is_gimple_assign (stmt))
+ return false;
+
+ scalar_dest = gimple_assign_lhs (stmt);
+ if (TREE_CODE (scalar_dest) != ARRAY_REF
+ && TREE_CODE (scalar_dest) != INDIRECT_REF
+ && TREE_CODE (scalar_dest) != COMPONENT_REF
+ && TREE_CODE (scalar_dest) != IMAGPART_EXPR
+ && TREE_CODE (scalar_dest) != REALPART_EXPR
+ && TREE_CODE (scalar_dest) != MEM_REF)
+ return false;
+
+ gcc_assert (gimple_assign_single_p (stmt));
+ op = gimple_assign_rhs1 (stmt);
+ if (!vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt, &def, &dt))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "use not simple.");
+ return false;
+ }
+
+ /* The scalar rhs type needs to be trivially convertible to the vector
+ component type. This should always be the case. */
+ if (!useless_type_conversion_p (TREE_TYPE (vectype), TREE_TYPE (op)))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "??? operands of different types");
+ return false;
+ }
+
+ vec_mode = TYPE_MODE (vectype);
+ /* FORNOW. In some cases can vectorize even if data-type not supported
+ (e.g. - array initialization with 0). */
+ if (optab_handler (mov_optab, vec_mode) == CODE_FOR_nothing)
+ return false;
+
+ if (!STMT_VINFO_DATA_REF (stmt_info))
+ return false;
+
+ if (tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "negative step for store.");
+ return false;
+ }
+
+ if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
+ {
+ strided_store = true;
+ first_stmt = DR_GROUP_FIRST_DR (stmt_info);
+ if (!vect_strided_store_supported (vectype)
+ && !PURE_SLP_STMT (stmt_info) && !slp)
+ return false;
+
+ if (first_stmt == stmt)
+ {
+ /* STMT is the leader of the group. Check the operands of all the
+ stmts of the group. */
+ next_stmt = DR_GROUP_NEXT_DR (stmt_info);
+ while (next_stmt)
+ {
+ gcc_assert (gimple_assign_single_p (next_stmt));
+ op = gimple_assign_rhs1 (next_stmt);
+ if (!vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt,
+ &def, &dt))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "use not simple.");
+ return false;
+ }
+ next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
+ }
+ }
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
+ vect_model_store_cost (stmt_info, ncopies, dt, NULL);
+ return true;
+ }
+
+ /** Transform. **/
+
+ if (strided_store)
+ {
+ first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
+ group_size = DR_GROUP_SIZE (vinfo_for_stmt (first_stmt));
+
+ DR_GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))++;
+
+ /* FORNOW */
+ gcc_assert (!loop || !nested_in_vect_loop_p (loop, stmt));
+
+ /* We vectorize all the stmts of the interleaving group when we
+ reach the last stmt in the group. */
+ if (DR_GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))
+ < DR_GROUP_SIZE (vinfo_for_stmt (first_stmt))
+ && !slp)
+ {
+ *vec_stmt = NULL;
+ return true;
+ }
+
+ if (slp)
+ {
+ strided_store = false;
+ /* VEC_NUM is the number of vect stmts to be created for this
+ group. */
+ vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
+ first_stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (slp_node), 0);
+ first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
+ }
+ else
+ /* VEC_NUM is the number of vect stmts to be created for this
+ group. */
+ vec_num = group_size;
+ }
+ else
+ {
+ first_stmt = stmt;
+ first_dr = dr;
+ group_size = vec_num = 1;
+ }
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "transform store. ncopies = %d",ncopies);
+
+ dr_chain = VEC_alloc (tree, heap, group_size);
+ oprnds = VEC_alloc (tree, heap, group_size);
+
+ alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
+ gcc_assert (alignment_support_scheme);
+
+ /* In case the vectorization factor (VF) is bigger than the number
+ of elements that we can fit in a vectype (nunits), we have to generate
+ more than one vector stmt - i.e - we need to "unroll" the
+ vector stmt by a factor VF/nunits. For more details see documentation in
+ vect_get_vec_def_for_copy_stmt. */
+
+ /* In case of interleaving (non-unit strided access):
+
+ S1: &base + 2 = x2
+ S2: &base = x0
+ S3: &base + 1 = x1
+ S4: &base + 3 = x3
+
+ We create vectorized stores starting from base address (the access of the
+ first stmt in the chain (S2 in the above example), when the last store stmt
+ of the chain (S4) is reached:
+
+ VS1: &base = vx2
+ VS2: &base + vec_size*1 = vx0
+ VS3: &base + vec_size*2 = vx1
+ VS4: &base + vec_size*3 = vx3
+
+ Then permutation statements are generated:
+
+ VS5: vx5 = VEC_INTERLEAVE_HIGH_EXPR < vx0, vx3 >
+ VS6: vx6 = VEC_INTERLEAVE_LOW_EXPR < vx0, vx3 >
+ ...
+
+ And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
+ (the order of the data-refs in the output of vect_permute_store_chain
+ corresponds to the order of scalar stmts in the interleaving chain - see
+ the documentation of vect_permute_store_chain()).
+
+ In case of both multiple types and interleaving, above vector stores and
+ permutation stmts are created for every copy. The result vector stmts are
+ put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
+ STMT_VINFO_RELATED_STMT for the next copies.
+ */
+
+ prev_stmt_info = NULL;
+ for (j = 0; j < ncopies; j++)
+ {
+ gimple new_stmt;
+ gimple ptr_incr;
+
+ if (j == 0)
+ {
+ if (slp)
+ {
+ /* Get vectorized arguments for SLP_NODE. */
+ vect_get_slp_defs (NULL_TREE, NULL_TREE, slp_node, &vec_oprnds,
+ NULL, -1);
+
+ vec_oprnd = VEC_index (tree, vec_oprnds, 0);
+ }
+ else
+ {
+ /* For interleaved stores we collect vectorized defs for all the
+ stores in the group in DR_CHAIN and OPRNDS. DR_CHAIN is then
+ used as an input to vect_permute_store_chain(), and OPRNDS as
+ an input to vect_get_vec_def_for_stmt_copy() for the next copy.
+
+ If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and
+ OPRNDS are of size 1. */
+ next_stmt = first_stmt;
+ for (i = 0; i < group_size; i++)
+ {
+ /* Since gaps are not supported for interleaved stores,
+ GROUP_SIZE is the exact number of stmts in the chain.
+ Therefore, NEXT_STMT can't be NULL_TREE. In case that
+ there is no interleaving, GROUP_SIZE is 1, and only one
+ iteration of the loop will be executed. */
+ gcc_assert (next_stmt
+ && gimple_assign_single_p (next_stmt));
+ op = gimple_assign_rhs1 (next_stmt);
+
+ vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt,
+ NULL);
+ VEC_quick_push(tree, dr_chain, vec_oprnd);
+ VEC_quick_push(tree, oprnds, vec_oprnd);
+ next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
+ }
+ }
+
+ /* We should have catched mismatched types earlier. */
+ gcc_assert (useless_type_conversion_p (vectype,
+ TREE_TYPE (vec_oprnd)));
+ dataref_ptr = vect_create_data_ref_ptr (first_stmt, NULL, NULL_TREE,
+ &dummy, &ptr_incr, false,
+ &inv_p);
+ gcc_assert (bb_vinfo || !inv_p);
+ }
+ else
+ {
+ /* For interleaved stores we created vectorized defs for all the
+ defs stored in OPRNDS in the previous iteration (previous copy).
+ DR_CHAIN is then used as an input to vect_permute_store_chain(),
+ and OPRNDS as an input to vect_get_vec_def_for_stmt_copy() for the
+ next copy.
+ If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and
+ OPRNDS are of size 1. */
+ for (i = 0; i < group_size; i++)
+ {
+ op = VEC_index (tree, oprnds, i);
+ vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt, &def,
+ &dt);
+ vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, op);
+ VEC_replace(tree, dr_chain, i, vec_oprnd);
+ VEC_replace(tree, oprnds, i, vec_oprnd);
+ }
+ dataref_ptr =
+ bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt, NULL_TREE);
+ }
+
+ if (strided_store)
+ {
+ result_chain = VEC_alloc (tree, heap, group_size);
+ /* Permute. */
+ if (!vect_permute_store_chain (dr_chain, group_size, stmt, gsi,
+ &result_chain))
+ return false;
+ }
+
+ next_stmt = first_stmt;
+ for (i = 0; i < vec_num; i++)
+ {
+ struct ptr_info_def *pi;
+
+ if (i > 0)
+ /* Bump the vector pointer. */
+ dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
+ NULL_TREE);
+
+ if (slp)
+ vec_oprnd = VEC_index (tree, vec_oprnds, i);
+ else if (strided_store)
+ /* For strided stores vectorized defs are interleaved in
+ vect_permute_store_chain(). */
+ vec_oprnd = VEC_index (tree, result_chain, i);
+
+ data_ref = build2 (MEM_REF, TREE_TYPE (vec_oprnd), dataref_ptr,
+ build_int_cst (reference_alias_ptr_type
+ (DR_REF (first_dr)), 0));
+ pi = get_ptr_info (dataref_ptr);
+ pi->align = TYPE_ALIGN_UNIT (vectype);
+ if (aligned_access_p (first_dr))
+ pi->misalign = 0;
+ else if (DR_MISALIGNMENT (first_dr) == -1)
+ {
+ TREE_TYPE (data_ref)
+ = build_aligned_type (TREE_TYPE (data_ref),
+ TYPE_ALIGN (TREE_TYPE (vectype)));
+ pi->align = TYPE_ALIGN_UNIT (TREE_TYPE (vectype));
+ pi->misalign = 0;
+ }
+ else
+ {
+ TREE_TYPE (data_ref)
+ = build_aligned_type (TREE_TYPE (data_ref),
+ TYPE_ALIGN (TREE_TYPE (vectype)));
+ pi->misalign = DR_MISALIGNMENT (first_dr);
+ }
+
+ /* Arguments are ready. Create the new vector stmt. */
+ new_stmt = gimple_build_assign (data_ref, vec_oprnd);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ mark_symbols_for_renaming (new_stmt);
+
+ if (slp)
+ continue;
+
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
+ if (!next_stmt)
+ break;
+ }
+ }
+
+ VEC_free (tree, heap, dr_chain);
+ VEC_free (tree, heap, oprnds);
+ if (result_chain)
+ VEC_free (tree, heap, result_chain);
+ if (vec_oprnds)
+ VEC_free (tree, heap, vec_oprnds);
+
+ return true;
+}
+
+/* Given a vector type VECTYPE returns a builtin DECL to be used
+ for vector permutation and stores a mask into *MASK that implements
+ reversal of the vector elements. If that is impossible to do
+ returns NULL (and *MASK is unchanged). */
+
+static tree
+perm_mask_for_reverse (tree vectype, tree *mask)
+{
+ tree builtin_decl;
+ tree mask_element_type, mask_type;
+ tree mask_vec = NULL;
+ int i;
+ int nunits;
+ if (!targetm.vectorize.builtin_vec_perm)
+ return NULL;
+
+ builtin_decl = targetm.vectorize.builtin_vec_perm (vectype,
+ &mask_element_type);
+ if (!builtin_decl || !mask_element_type)
+ return NULL;
+
+ mask_type = get_vectype_for_scalar_type (mask_element_type);
+ nunits = TYPE_VECTOR_SUBPARTS (vectype);
+ if (!mask_type
+ || TYPE_VECTOR_SUBPARTS (vectype) != TYPE_VECTOR_SUBPARTS (mask_type))
+ return NULL;
+
+ for (i = 0; i < nunits; i++)
+ mask_vec = tree_cons (NULL, build_int_cst (mask_element_type, i), mask_vec);
+ mask_vec = build_vector (mask_type, mask_vec);
+
+ if (!targetm.vectorize.builtin_vec_perm_ok (vectype, mask_vec))
+ return NULL;
+ if (mask)
+ *mask = mask_vec;
+ return builtin_decl;
+}
+
+/* Given a vector variable X, that was generated for the scalar LHS of
+ STMT, generate instructions to reverse the vector elements of X,
+ insert them a *GSI and return the permuted vector variable. */
+
+static tree
+reverse_vec_elements (tree x, gimple stmt, gimple_stmt_iterator *gsi)
+{
+ tree vectype = TREE_TYPE (x);
+ tree mask_vec, builtin_decl;
+ tree perm_dest, data_ref;
+ gimple perm_stmt;
+
+ builtin_decl = perm_mask_for_reverse (vectype, &mask_vec);
+
+ perm_dest = vect_create_destination_var (gimple_assign_lhs (stmt), vectype);
+
+ /* Generate the permute statement. */
+ perm_stmt = gimple_build_call (builtin_decl, 3, x, x, mask_vec);
+ if (!useless_type_conversion_p (vectype,
+ TREE_TYPE (TREE_TYPE (builtin_decl))))
+ {
+ tree tem = create_tmp_reg (TREE_TYPE (TREE_TYPE (builtin_decl)), NULL);
+ tem = make_ssa_name (tem, perm_stmt);
+ gimple_call_set_lhs (perm_stmt, tem);
+ vect_finish_stmt_generation (stmt, perm_stmt, gsi);
+ perm_stmt = gimple_build_assign (NULL_TREE,
+ build1 (VIEW_CONVERT_EXPR,
+ vectype, tem));
+ }
+ data_ref = make_ssa_name (perm_dest, perm_stmt);
+ gimple_set_lhs (perm_stmt, data_ref);
+ vect_finish_stmt_generation (stmt, perm_stmt, gsi);
+
+ return data_ref;
+}
+
+/* vectorizable_load.
+
+ Check if STMT reads a non scalar data-ref (array/pointer/structure) that
+ can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_load (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
+ slp_tree slp_node, slp_instance slp_node_instance)
+{
+ tree scalar_dest;
+ tree vec_dest = NULL;
+ tree data_ref = NULL;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ stmt_vec_info prev_stmt_info;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop *loop = NULL;
+ struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
+ bool nested_in_vect_loop = false;
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ tree new_temp;
+ enum machine_mode mode;
+ gimple new_stmt = NULL;
+ tree dummy;
+ enum dr_alignment_support alignment_support_scheme;
+ tree dataref_ptr = NULL_TREE;
+ gimple ptr_incr;
+ int nunits = TYPE_VECTOR_SUBPARTS (vectype);
+ int ncopies;
+ int i, j, group_size;
+ tree msq = NULL_TREE, lsq;
+ tree offset = NULL_TREE;
+ tree realignment_token = NULL_TREE;
+ gimple phi = NULL;
+ VEC(tree,heap) *dr_chain = NULL;
+ bool strided_load = false;
+ gimple first_stmt;
+ tree scalar_type;
+ bool inv_p;
+ bool negative;
+ bool compute_in_loop = false;
+ struct loop *at_loop;
+ int vec_num;
+ bool slp = (slp_node != NULL);
+ bool slp_perm = false;
+ enum tree_code code;
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ int vf;
+
+ if (loop_vinfo)
+ {
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+ nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
+ vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+ }
+ else
+ vf = 1;
+
+ /* Multiple types in SLP are handled by creating the appropriate number of
+ vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
+ case of SLP. */
+ if (slp)
+ ncopies = 1;
+ else
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
+
+ gcc_assert (ncopies >= 1);
+
+ /* FORNOW. This restriction should be relaxed. */
+ if (nested_in_vect_loop && ncopies > 1)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "multiple types in nested loop.");
+ return false;
+ }
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ /* Is vectorizable load? */
+ if (!is_gimple_assign (stmt))
+ return false;
+
+ scalar_dest = gimple_assign_lhs (stmt);
+ if (TREE_CODE (scalar_dest) != SSA_NAME)
+ return false;
+
+ code = gimple_assign_rhs_code (stmt);
+ if (code != ARRAY_REF
+ && code != INDIRECT_REF
+ && code != COMPONENT_REF
+ && code != IMAGPART_EXPR
+ && code != REALPART_EXPR
+ && code != MEM_REF)
+ return false;
+
+ if (!STMT_VINFO_DATA_REF (stmt_info))
+ return false;
+
+ negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
+ if (negative && ncopies > 1)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "multiple types with negative step.");
+ return false;
+ }
+
+ scalar_type = TREE_TYPE (DR_REF (dr));
+ mode = TYPE_MODE (vectype);
+
+ /* FORNOW. In some cases can vectorize even if data-type not supported
+ (e.g. - data copies). */
+ if (optab_handler (mov_optab, mode) == CODE_FOR_nothing)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Aligned load, but unsupported type.");
+ return false;
+ }
+
+ /* The vector component type needs to be trivially convertible to the
+ scalar lhs. This should always be the case. */
+ if (!useless_type_conversion_p (TREE_TYPE (scalar_dest), TREE_TYPE (vectype)))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "??? operands of different types");
+ return false;
+ }
+
+ /* Check if the load is a part of an interleaving chain. */
+ if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
+ {
+ strided_load = true;
+ /* FORNOW */
+ gcc_assert (! nested_in_vect_loop);
+
+ /* Check if interleaving is supported. */
+ if (!vect_strided_load_supported (vectype)
+ && !PURE_SLP_STMT (stmt_info) && !slp)
+ return false;
+ }
+
+ if (negative)
+ {
+ gcc_assert (!strided_load);
+ alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
+ if (alignment_support_scheme != dr_aligned
+ && alignment_support_scheme != dr_unaligned_supported)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "negative step but alignment required.");
+ return false;
+ }
+ if (!perm_mask_for_reverse (vectype, NULL))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "negative step and reversing not supported.");
+ return false;
+ }
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
+ vect_model_load_cost (stmt_info, ncopies, NULL);
+ return true;
+ }
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "transform load.");
+
+ /** Transform. **/
+
+ if (strided_load)
+ {
+ first_stmt = DR_GROUP_FIRST_DR (stmt_info);
+ /* Check if the chain of loads is already vectorized. */
+ if (STMT_VINFO_VEC_STMT (vinfo_for_stmt (first_stmt)))
+ {
+ *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
+ return true;
+ }
+ first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
+ group_size = DR_GROUP_SIZE (vinfo_for_stmt (first_stmt));
+
+ /* VEC_NUM is the number of vect stmts to be created for this group. */
+ if (slp)
+ {
+ strided_load = false;
+ vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
+ if (SLP_INSTANCE_LOAD_PERMUTATION (slp_node_instance))
+ slp_perm = true;
+ }
+ else
+ vec_num = group_size;
+
+ dr_chain = VEC_alloc (tree, heap, vec_num);
+ }
+ else
+ {
+ first_stmt = stmt;
+ first_dr = dr;
+ group_size = vec_num = 1;
+ }
+
+ alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
+ gcc_assert (alignment_support_scheme);
+
+ /* In case the vectorization factor (VF) is bigger than the number
+ of elements that we can fit in a vectype (nunits), we have to generate
+ more than one vector stmt - i.e - we need to "unroll" the
+ vector stmt by a factor VF/nunits. In doing so, we record a pointer
+ from one copy of the vector stmt to the next, in the field
+ STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
+ stages to find the correct vector defs to be used when vectorizing
+ stmts that use the defs of the current stmt. The example below
+ illustrates the vectorization process when VF=16 and nunits=4 (i.e., we
+ need to create 4 vectorized stmts):
+
+ before vectorization:
+ RELATED_STMT VEC_STMT
+ S1: x = memref - -
+ S2: z = x + 1 - -
+
+ step 1: vectorize stmt S1:
+ We first create the vector stmt VS1_0, and, as usual, record a
+ pointer to it in the STMT_VINFO_VEC_STMT of the scalar stmt S1.
+ Next, we create the vector stmt VS1_1, and record a pointer to
+ it in the STMT_VINFO_RELATED_STMT of the vector stmt VS1_0.
+ Similarly, for VS1_2 and VS1_3. This is the resulting chain of
+ stmts and pointers:
+ RELATED_STMT VEC_STMT
+ VS1_0: vx0 = memref0 VS1_1 -
+ VS1_1: vx1 = memref1 VS1_2 -
+ VS1_2: vx2 = memref2 VS1_3 -
+ VS1_3: vx3 = memref3 - -
+ S1: x = load - VS1_0
+ S2: z = x + 1 - -
+
+ See in documentation in vect_get_vec_def_for_stmt_copy for how the
+ information we recorded in RELATED_STMT field is used to vectorize
+ stmt S2. */
+
+ /* In case of interleaving (non-unit strided access):
+
+ S1: x2 = &base + 2
+ S2: x0 = &base
+ S3: x1 = &base + 1
+ S4: x3 = &base + 3
+
+ Vectorized loads are created in the order of memory accesses
+ starting from the access of the first stmt of the chain:
+
+ VS1: vx0 = &base
+ VS2: vx1 = &base + vec_size*1
+ VS3: vx3 = &base + vec_size*2
+ VS4: vx4 = &base + vec_size*3
+
+ Then permutation statements are generated:
+
+ VS5: vx5 = VEC_EXTRACT_EVEN_EXPR < vx0, vx1 >
+ VS6: vx6 = VEC_EXTRACT_ODD_EXPR < vx0, vx1 >
+ ...
+
+ And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
+ (the order of the data-refs in the output of vect_permute_load_chain
+ corresponds to the order of scalar stmts in the interleaving chain - see
+ the documentation of vect_permute_load_chain()).
+ The generation of permutation stmts and recording them in
+ STMT_VINFO_VEC_STMT is done in vect_transform_strided_load().
+
+ In case of both multiple types and interleaving, the vector loads and
+ permutation stmts above are created for every copy. The result vector
+ stmts are put in STMT_VINFO_VEC_STMT for the first copy and in the
+ corresponding STMT_VINFO_RELATED_STMT for the next copies. */
+
+ /* If the data reference is aligned (dr_aligned) or potentially unaligned
+ on a target that supports unaligned accesses (dr_unaligned_supported)
+ we generate the following code:
+ p = initial_addr;
+ indx = 0;
+ loop {
+ p = p + indx * vectype_size;
+ vec_dest = *(p);
+ indx = indx + 1;
+ }
+
+ Otherwise, the data reference is potentially unaligned on a target that
+ does not support unaligned accesses (dr_explicit_realign_optimized) -
+ then generate the following code, in which the data in each iteration is
+ obtained by two vector loads, one from the previous iteration, and one
+ from the current iteration:
+ p1 = initial_addr;
+ msq_init = *(floor(p1))
+ p2 = initial_addr + VS - 1;
+ realignment_token = call target_builtin;
+ indx = 0;
+ loop {
+ p2 = p2 + indx * vectype_size
+ lsq = *(floor(p2))
+ vec_dest = realign_load (msq, lsq, realignment_token)
+ indx = indx + 1;
+ msq = lsq;
+ } */
+
+ /* If the misalignment remains the same throughout the execution of the
+ loop, we can create the init_addr and permutation mask at the loop
+ preheader. Otherwise, it needs to be created inside the loop.
+ This can only occur when vectorizing memory accesses in the inner-loop
+ nested within an outer-loop that is being vectorized. */
+
+ if (loop && nested_in_vect_loop_p (loop, stmt)
+ && (TREE_INT_CST_LOW (DR_STEP (dr))
+ % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0))
+ {
+ gcc_assert (alignment_support_scheme != dr_explicit_realign_optimized);
+ compute_in_loop = true;
+ }
+
+ if ((alignment_support_scheme == dr_explicit_realign_optimized
+ || alignment_support_scheme == dr_explicit_realign)
+ && !compute_in_loop)
+ {
+ msq = vect_setup_realignment (first_stmt, gsi, &realignment_token,
+ alignment_support_scheme, NULL_TREE,
+ &at_loop);
+ if (alignment_support_scheme == dr_explicit_realign_optimized)
+ {
+ phi = SSA_NAME_DEF_STMT (msq);
+ offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
+ }
+ }
+ else
+ at_loop = loop;
+
+ if (negative)
+ offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1);
+
+ prev_stmt_info = NULL;
+ for (j = 0; j < ncopies; j++)
+ {
+ /* 1. Create the vector pointer update chain. */
+ if (j == 0)
+ dataref_ptr = vect_create_data_ref_ptr (first_stmt,
+ at_loop, offset,
+ &dummy, &ptr_incr, false,
+ &inv_p);
+ else
+ dataref_ptr =
+ bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt, NULL_TREE);
+
+ for (i = 0; i < vec_num; i++)
+ {
+ if (i > 0)
+ dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
+ NULL_TREE);
+
+ /* 2. Create the vector-load in the loop. */
+ switch (alignment_support_scheme)
+ {
+ case dr_aligned:
+ case dr_unaligned_supported:
+ {
+ struct ptr_info_def *pi;
+ data_ref
+ = build2 (MEM_REF, vectype, dataref_ptr,
+ build_int_cst (reference_alias_ptr_type
+ (DR_REF (first_dr)), 0));
+ pi = get_ptr_info (dataref_ptr);
+ pi->align = TYPE_ALIGN_UNIT (vectype);
+ if (alignment_support_scheme == dr_aligned)
+ {
+ gcc_assert (aligned_access_p (first_dr));
+ pi->misalign = 0;
+ }
+ else if (DR_MISALIGNMENT (first_dr) == -1)
+ {
+ TREE_TYPE (data_ref)
+ = build_aligned_type (TREE_TYPE (data_ref),
+ TYPE_ALIGN (TREE_TYPE (vectype)));
+ pi->align = TYPE_ALIGN_UNIT (TREE_TYPE (vectype));
+ pi->misalign = 0;
+ }
+ else
+ {
+ TREE_TYPE (data_ref)
+ = build_aligned_type (TREE_TYPE (data_ref),
+ TYPE_ALIGN (TREE_TYPE (vectype)));
+ pi->misalign = DR_MISALIGNMENT (first_dr);
+ }
+ break;
+ }
+ case dr_explicit_realign:
+ {
+ tree ptr, bump;
+ tree vs_minus_1 = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
+
+ if (compute_in_loop)
+ msq = vect_setup_realignment (first_stmt, gsi,
+ &realignment_token,
+ dr_explicit_realign,
+ dataref_ptr, NULL);
+
+ new_stmt = gimple_build_assign_with_ops
+ (BIT_AND_EXPR, NULL_TREE, dataref_ptr,
+ build_int_cst
+ (TREE_TYPE (dataref_ptr),
+ -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
+ ptr = make_ssa_name (SSA_NAME_VAR (dataref_ptr), new_stmt);
+ gimple_assign_set_lhs (new_stmt, ptr);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ data_ref
+ = build2 (MEM_REF, vectype, ptr,
+ build_int_cst (reference_alias_ptr_type
+ (DR_REF (first_dr)), 0));
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ new_stmt = gimple_build_assign (vec_dest, data_ref);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ gimple_set_vdef (new_stmt, gimple_vdef (stmt));
+ gimple_set_vuse (new_stmt, gimple_vuse (stmt));
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ msq = new_temp;
+
+ bump = size_binop (MULT_EXPR, vs_minus_1,
+ TYPE_SIZE_UNIT (scalar_type));
+ ptr = bump_vector_ptr (dataref_ptr, NULL, gsi, stmt, bump);
+ new_stmt = gimple_build_assign_with_ops
+ (BIT_AND_EXPR, NULL_TREE, ptr,
+ build_int_cst
+ (TREE_TYPE (ptr),
+ -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
+ ptr = make_ssa_name (SSA_NAME_VAR (dataref_ptr), new_stmt);
+ gimple_assign_set_lhs (new_stmt, ptr);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ data_ref
+ = build2 (MEM_REF, vectype, ptr,
+ build_int_cst (reference_alias_ptr_type
+ (DR_REF (first_dr)), 0));
+ break;
+ }
+ case dr_explicit_realign_optimized:
+ new_stmt = gimple_build_assign_with_ops
+ (BIT_AND_EXPR, NULL_TREE, dataref_ptr,
+ build_int_cst
+ (TREE_TYPE (dataref_ptr),
+ -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
+ new_temp = make_ssa_name (SSA_NAME_VAR (dataref_ptr), new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ data_ref
+ = build2 (MEM_REF, vectype, new_temp,
+ build_int_cst (reference_alias_ptr_type
+ (DR_REF (first_dr)), 0));
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ new_stmt = gimple_build_assign (vec_dest, data_ref);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ mark_symbols_for_renaming (new_stmt);
+
+ /* 3. Handle explicit realignment if necessary/supported. Create in
+ loop: vec_dest = realign_load (msq, lsq, realignment_token) */
+ if (alignment_support_scheme == dr_explicit_realign_optimized
+ || alignment_support_scheme == dr_explicit_realign)
+ {
+ tree tmp;
+
+ lsq = gimple_assign_lhs (new_stmt);
+ if (!realignment_token)
+ realignment_token = dataref_ptr;
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ tmp = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq,
+ realignment_token);
+ new_stmt = gimple_build_assign (vec_dest, tmp);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ if (alignment_support_scheme == dr_explicit_realign_optimized)
+ {
+ gcc_assert (phi);
+ if (i == vec_num - 1 && j == ncopies - 1)
+ add_phi_arg (phi, lsq, loop_latch_edge (containing_loop),
+ UNKNOWN_LOCATION);
+ msq = lsq;
+ }
+ }
+
+ /* 4. Handle invariant-load. */
+ if (inv_p && !bb_vinfo)
+ {
+ gcc_assert (!strided_load);
+ gcc_assert (nested_in_vect_loop_p (loop, stmt));
+ if (j == 0)
+ {
+ int k;
+ tree t = NULL_TREE;
+ tree vec_inv, bitpos, bitsize = TYPE_SIZE (scalar_type);
+
+ /* CHECKME: bitpos depends on endianess? */
+ bitpos = bitsize_zero_node;
+ vec_inv = build3 (BIT_FIELD_REF, scalar_type, new_temp,
+ bitsize, bitpos);
+ vec_dest =
+ vect_create_destination_var (scalar_dest, NULL_TREE);
+ new_stmt = gimple_build_assign (vec_dest, vec_inv);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ for (k = nunits - 1; k >= 0; --k)
+ t = tree_cons (NULL_TREE, new_temp, t);
+ /* FIXME: use build_constructor directly. */
+ vec_inv = build_constructor_from_list (vectype, t);
+ new_temp = vect_init_vector (stmt, vec_inv, vectype, gsi);
+ new_stmt = SSA_NAME_DEF_STMT (new_temp);
+ }
+ else
+ gcc_unreachable (); /* FORNOW. */
+ }
+
+ if (negative)
+ {
+ new_temp = reverse_vec_elements (new_temp, stmt, gsi);
+ new_stmt = SSA_NAME_DEF_STMT (new_temp);
+ }
+
+ /* Collect vector loads and later create their permutation in
+ vect_transform_strided_load (). */
+ if (strided_load || slp_perm)
+ VEC_quick_push (tree, dr_chain, new_temp);
+
+ /* Store vector loads in the corresponding SLP_NODE. */
+ if (slp && !slp_perm)
+ VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
+ }
+
+ if (slp && !slp_perm)
+ continue;
+
+ if (slp_perm)
+ {
+ if (!vect_transform_slp_perm_load (stmt, dr_chain, gsi, vf,
+ slp_node_instance, false))
+ {
+ VEC_free (tree, heap, dr_chain);
+ return false;
+ }
+ }
+ else
+ {
+ if (strided_load)
+ {
+ if (!vect_transform_strided_load (stmt, dr_chain, group_size, gsi))
+ return false;
+
+ *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
+ VEC_free (tree, heap, dr_chain);
+ dr_chain = VEC_alloc (tree, heap, group_size);
+ }
+ else
+ {
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+ }
+ }
+
+ if (dr_chain)
+ VEC_free (tree, heap, dr_chain);
+
+ return true;
+}
+
+/* Function vect_is_simple_cond.
+
+ Input:
+ LOOP - the loop that is being vectorized.
+ COND - Condition that is checked for simple use.
+
+ Returns whether a COND can be vectorized. Checks whether
+ condition operands are supportable using vec_is_simple_use. */
+
+static bool
+vect_is_simple_cond (tree cond, loop_vec_info loop_vinfo)
+{
+ tree lhs, rhs;
+ tree def;
+ enum vect_def_type dt;
+
+ if (!COMPARISON_CLASS_P (cond))
+ return false;
+
+ lhs = TREE_OPERAND (cond, 0);
+ rhs = TREE_OPERAND (cond, 1);
+
+ if (TREE_CODE (lhs) == SSA_NAME)
+ {
+ gimple lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
+ if (!vect_is_simple_use (lhs, loop_vinfo, NULL, &lhs_def_stmt, &def,
+ &dt))
+ return false;
+ }
+ else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST
+ && TREE_CODE (lhs) != FIXED_CST)
+ return false;
+
+ if (TREE_CODE (rhs) == SSA_NAME)
+ {
+ gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
+ if (!vect_is_simple_use (rhs, loop_vinfo, NULL, &rhs_def_stmt, &def,
+ &dt))
+ return false;
+ }
+ else if (TREE_CODE (rhs) != INTEGER_CST && TREE_CODE (rhs) != REAL_CST
+ && TREE_CODE (rhs) != FIXED_CST)
+ return false;
+
+ return true;
+}
+
+/* vectorizable_condition.
+
+ Check if STMT is conditional modify expression that can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it
+ at GSI.
+
+ When STMT is vectorized as nested cycle, REDUC_DEF is the vector variable
+ to be used at REDUC_INDEX (in then clause if REDUC_INDEX is 1, and in
+ else caluse if it is 2).
+
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+bool
+vectorizable_condition (gimple stmt, gimple_stmt_iterator *gsi,
+ gimple *vec_stmt, tree reduc_def, int reduc_index)
+{
+ tree scalar_dest = NULL_TREE;
+ tree vec_dest = NULL_TREE;
+ tree op = NULL_TREE;
+ tree cond_expr, then_clause, else_clause;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ tree vec_cond_lhs = NULL_TREE, vec_cond_rhs = NULL_TREE;
+ tree vec_then_clause = NULL_TREE, vec_else_clause = NULL_TREE;
+ tree vec_compare, vec_cond_expr;
+ tree new_temp;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ enum machine_mode vec_mode;
+ tree def;
+ enum vect_def_type dt, dts[4];
+ int nunits = TYPE_VECTOR_SUBPARTS (vectype);
+ int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
+ enum tree_code code;
+ stmt_vec_info prev_stmt_info = NULL;
+ int j;
+
+ /* FORNOW: unsupported in basic block SLP. */
+ gcc_assert (loop_vinfo);
+
+ gcc_assert (ncopies >= 1);
+ if (reduc_index && ncopies > 1)
+ return false; /* FORNOW */
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info))
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
+ && !(STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
+ && reduc_def))
+ return false;
+
+ /* FORNOW: SLP not supported. */
+ if (STMT_SLP_TYPE (stmt_info))
+ return false;
+
+ /* FORNOW: not yet supported. */
+ if (STMT_VINFO_LIVE_P (stmt_info))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "value used after loop.");
+ return false;
+ }
+
+ /* Is vectorizable conditional operation? */
+ if (!is_gimple_assign (stmt))
+ return false;
+
+ code = gimple_assign_rhs_code (stmt);
+
+ if (code != COND_EXPR)
+ return false;
+
+ gcc_assert (gimple_assign_single_p (stmt));
+ op = gimple_assign_rhs1 (stmt);
+ cond_expr = TREE_OPERAND (op, 0);
+ then_clause = TREE_OPERAND (op, 1);
+ else_clause = TREE_OPERAND (op, 2);
+
+ if (!vect_is_simple_cond (cond_expr, loop_vinfo))
+ return false;
+
+ /* We do not handle two different vector types for the condition
+ and the values. */
+ if (!types_compatible_p (TREE_TYPE (TREE_OPERAND (cond_expr, 0)),
+ TREE_TYPE (vectype)))
+ return false;
+
+ if (TREE_CODE (then_clause) == SSA_NAME)
+ {
+ gimple then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
+ if (!vect_is_simple_use (then_clause, loop_vinfo, NULL,
+ &then_def_stmt, &def, &dt))
+ return false;
+ }
+ else if (TREE_CODE (then_clause) != INTEGER_CST
+ && TREE_CODE (then_clause) != REAL_CST
+ && TREE_CODE (then_clause) != FIXED_CST)
+ return false;
+
+ if (TREE_CODE (else_clause) == SSA_NAME)
+ {
+ gimple else_def_stmt = SSA_NAME_DEF_STMT (else_clause);
+ if (!vect_is_simple_use (else_clause, loop_vinfo, NULL,
+ &else_def_stmt, &def, &dt))
+ return false;
+ }
+ else if (TREE_CODE (else_clause) != INTEGER_CST
+ && TREE_CODE (else_clause) != REAL_CST
+ && TREE_CODE (else_clause) != FIXED_CST)
+ return false;
+
+
+ vec_mode = TYPE_MODE (vectype);
+
+ if (!vec_stmt)
+ {
+ STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
+ return expand_vec_cond_expr_p (TREE_TYPE (op), vec_mode);
+ }
+
+ /* Transform */
+
+ /* Handle def. */
+ scalar_dest = gimple_assign_lhs (stmt);
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+ /* Handle cond expr. */
+ for (j = 0; j < ncopies; j++)
+ {
+ gimple new_stmt;
+ if (j == 0)
+ {
+ gimple gtemp;
+ vec_cond_lhs =
+ vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0),
+ stmt, NULL);
+ vect_is_simple_use (TREE_OPERAND (cond_expr, 0), loop_vinfo,
+ NULL, &gtemp, &def, &dts[0]);
+ vec_cond_rhs =
+ vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1),
+ stmt, NULL);
+ vect_is_simple_use (TREE_OPERAND (cond_expr, 1), loop_vinfo,
+ NULL, &gtemp, &def, &dts[1]);
+ if (reduc_index == 1)
+ vec_then_clause = reduc_def;
+ else
+ {
+ vec_then_clause = vect_get_vec_def_for_operand (then_clause,
+ stmt, NULL);
+ vect_is_simple_use (then_clause, loop_vinfo,
+ NULL, &gtemp, &def, &dts[2]);
+ }
+ if (reduc_index == 2)
+ vec_else_clause = reduc_def;
+ else
+ {
+ vec_else_clause = vect_get_vec_def_for_operand (else_clause,
+ stmt, NULL);
+ vect_is_simple_use (else_clause, loop_vinfo,
+ NULL, &gtemp, &def, &dts[3]);
+ }
+ }
+ else
+ {
+ vec_cond_lhs = vect_get_vec_def_for_stmt_copy (dts[0], vec_cond_lhs);
+ vec_cond_rhs = vect_get_vec_def_for_stmt_copy (dts[1], vec_cond_rhs);
+ vec_then_clause = vect_get_vec_def_for_stmt_copy (dts[2],
+ vec_then_clause);
+ vec_else_clause = vect_get_vec_def_for_stmt_copy (dts[3],
+ vec_else_clause);
+ }
+
+ /* Arguments are ready. Create the new vector stmt. */
+ vec_compare = build2 (TREE_CODE (cond_expr), vectype,
+ vec_cond_lhs, vec_cond_rhs);
+ vec_cond_expr = build3 (VEC_COND_EXPR, vectype,
+ vec_compare, vec_then_clause, vec_else_clause);
+
+ new_stmt = gimple_build_assign (vec_dest, vec_cond_expr);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+
+ return true;
+}
+
+
+/* Make sure the statement is vectorizable. */
+
+bool
+vect_analyze_stmt (gimple stmt, bool *need_to_vectorize, slp_tree node)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ enum vect_relevant relevance = STMT_VINFO_RELEVANT (stmt_info);
+ bool ok;
+ tree scalar_type, vectype;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "==> examining statement: ");
+ print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
+ }
+
+ if (gimple_has_volatile_ops (stmt))
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
+ fprintf (vect_dump, "not vectorized: stmt has volatile operands");
+
+ return false;
+ }
+
+ /* Skip stmts that do not need to be vectorized. In loops this is expected
+ to include:
+ - the COND_EXPR which is the loop exit condition
+ - any LABEL_EXPRs in the loop
+ - computations that are used only for array indexing or loop control.
+ In basic blocks we only analyze statements that are a part of some SLP
+ instance, therefore, all the statements are relevant. */
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info)
+ && !STMT_VINFO_LIVE_P (stmt_info))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "irrelevant.");
+
+ return true;
+ }
+
+ switch (STMT_VINFO_DEF_TYPE (stmt_info))
+ {
+ case vect_internal_def:
+ break;
+
+ case vect_reduction_def:
+ case vect_nested_cycle:
+ gcc_assert (!bb_vinfo && (relevance == vect_used_in_outer
+ || relevance == vect_used_in_outer_by_reduction
+ || relevance == vect_unused_in_scope));
+ break;
+
+ case vect_induction_def:
+ case vect_constant_def:
+ case vect_external_def:
+ case vect_unknown_def_type:
+ default:
+ gcc_unreachable ();
+ }
+
+ if (bb_vinfo)
+ {
+ gcc_assert (PURE_SLP_STMT (stmt_info));
+
+ scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "get vectype for scalar type: ");
+ print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
+ }
+
+ vectype = get_vectype_for_scalar_type (scalar_type);
+ if (!vectype)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "not SLPed: unsupported data-type ");
+ print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
+ }
+ return false;
+ }
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "vectype: ");
+ print_generic_expr (vect_dump, vectype, TDF_SLIM);
+ }
+
+ STMT_VINFO_VECTYPE (stmt_info) = vectype;
+ }
+
+ if (STMT_VINFO_RELEVANT_P (stmt_info))
+ {
+ gcc_assert (!VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))));
+ gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
+ *need_to_vectorize = true;
+ }
+
+ ok = true;
+ if (!bb_vinfo
+ && (STMT_VINFO_RELEVANT_P (stmt_info)
+ || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def))
+ ok = (vectorizable_type_promotion (stmt, NULL, NULL, NULL)
+ || vectorizable_type_demotion (stmt, NULL, NULL, NULL)
+ || vectorizable_conversion (stmt, NULL, NULL, NULL)
+ || vectorizable_shift (stmt, NULL, NULL, NULL)
+ || vectorizable_operation (stmt, NULL, NULL, NULL)
+ || vectorizable_assignment (stmt, NULL, NULL, NULL)
+ || vectorizable_load (stmt, NULL, NULL, NULL, NULL)
+ || vectorizable_call (stmt, NULL, NULL)
+ || vectorizable_store (stmt, NULL, NULL, NULL)
+ || vectorizable_reduction (stmt, NULL, NULL, NULL)
+ || vectorizable_condition (stmt, NULL, NULL, NULL, 0));
+ else
+ {
+ if (bb_vinfo)
+ ok = (vectorizable_shift (stmt, NULL, NULL, node)
+ || vectorizable_operation (stmt, NULL, NULL, node)
+ || vectorizable_assignment (stmt, NULL, NULL, node)
+ || vectorizable_load (stmt, NULL, NULL, node, NULL)
+ || vectorizable_store (stmt, NULL, NULL, node));
+ }
+
+ if (!ok)
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
+ {
+ fprintf (vect_dump, "not vectorized: relevant stmt not ");
+ fprintf (vect_dump, "supported: ");
+ print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
+ }
+
+ return false;
+ }
+
+ if (bb_vinfo)
+ return true;
+
+ /* Stmts that are (also) "live" (i.e. - that are used out of the loop)
+ need extra handling, except for vectorizable reductions. */
+ if (STMT_VINFO_LIVE_P (stmt_info)
+ && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
+ ok = vectorizable_live_operation (stmt, NULL, NULL);
+
+ if (!ok)
+ {
+ if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
+ {
+ fprintf (vect_dump, "not vectorized: live stmt not ");
+ fprintf (vect_dump, "supported: ");
+ print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
+ }
+
+ return false;
+ }
+
+ if (!PURE_SLP_STMT (stmt_info))
+ {
+ /* Groups of strided accesses whose size is not a power of 2 are not
+ vectorizable yet using loop-vectorization. Therefore, if this stmt
+ feeds non-SLP-able stmts (i.e., this stmt has to be both SLPed and
+ loop-based vectorized), the loop cannot be vectorized. */
+ if (STMT_VINFO_STRIDED_ACCESS (stmt_info)
+ && exact_log2 (DR_GROUP_SIZE (vinfo_for_stmt (
+ DR_GROUP_FIRST_DR (stmt_info)))) == -1)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "not vectorized: the size of group "
+ "of strided accesses is not a power of 2");
+ print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
+ }
+
+ return false;
+ }
+ }
+
+ return true;
+}
+
+
+/* Function vect_transform_stmt.
+
+ Create a vectorized stmt to replace STMT, and insert it at BSI. */
+
+bool
+vect_transform_stmt (gimple stmt, gimple_stmt_iterator *gsi,
+ bool *strided_store, slp_tree slp_node,
+ slp_instance slp_node_instance)
+{
+ bool is_store = false;
+ gimple vec_stmt = NULL;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ gimple orig_stmt_in_pattern;
+ bool done;
+
+ switch (STMT_VINFO_TYPE (stmt_info))
+ {
+ case type_demotion_vec_info_type:
+ done = vectorizable_type_demotion (stmt, gsi, &vec_stmt, slp_node);
+ gcc_assert (done);
+ break;
+
+ case type_promotion_vec_info_type:
+ done = vectorizable_type_promotion (stmt, gsi, &vec_stmt, slp_node);
+ gcc_assert (done);
+ break;
+
+ case type_conversion_vec_info_type:
+ done = vectorizable_conversion (stmt, gsi, &vec_stmt, slp_node);
+ gcc_assert (done);
+ break;
+
+ case induc_vec_info_type:
+ gcc_assert (!slp_node);
+ done = vectorizable_induction (stmt, gsi, &vec_stmt);
+ gcc_assert (done);
+ break;
+
+ case shift_vec_info_type:
+ done = vectorizable_shift (stmt, gsi, &vec_stmt, slp_node);
+ gcc_assert (done);
+ break;
+
+ case op_vec_info_type:
+ done = vectorizable_operation (stmt, gsi, &vec_stmt, slp_node);
+ gcc_assert (done);
+ break;
+
+ case assignment_vec_info_type:
+ done = vectorizable_assignment (stmt, gsi, &vec_stmt, slp_node);
+ gcc_assert (done);
+ break;
+
+ case load_vec_info_type:
+ done = vectorizable_load (stmt, gsi, &vec_stmt, slp_node,
+ slp_node_instance);
+ gcc_assert (done);
+ break;
+
+ case store_vec_info_type:
+ done = vectorizable_store (stmt, gsi, &vec_stmt, slp_node);
+ gcc_assert (done);
+ if (STMT_VINFO_STRIDED_ACCESS (stmt_info) && !slp_node)
+ {
+ /* In case of interleaving, the whole chain is vectorized when the
+ last store in the chain is reached. Store stmts before the last
+ one are skipped, and there vec_stmt_info shouldn't be freed
+ meanwhile. */
+ *strided_store = true;
+ if (STMT_VINFO_VEC_STMT (stmt_info))
+ is_store = true;
+ }
+ else
+ is_store = true;
+ break;
+
+ case condition_vec_info_type:
+ gcc_assert (!slp_node);
+ done = vectorizable_condition (stmt, gsi, &vec_stmt, NULL, 0);
+ gcc_assert (done);
+ break;
+
+ case call_vec_info_type:
+ gcc_assert (!slp_node);
+ done = vectorizable_call (stmt, gsi, &vec_stmt);
+ stmt = gsi_stmt (*gsi);
+ break;
+
+ case reduc_vec_info_type:
+ done = vectorizable_reduction (stmt, gsi, &vec_stmt, slp_node);
+ gcc_assert (done);
+ break;
+
+ default:
+ if (!STMT_VINFO_LIVE_P (stmt_info))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "stmt not supported.");
+ gcc_unreachable ();
+ }
+ }
+
+ /* Handle inner-loop stmts whose DEF is used in the loop-nest that
+ is being vectorized, but outside the immediately enclosing loop. */
+ if (vec_stmt
+ && STMT_VINFO_LOOP_VINFO (stmt_info)
+ && nested_in_vect_loop_p (LOOP_VINFO_LOOP (
+ STMT_VINFO_LOOP_VINFO (stmt_info)), stmt)
+ && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type
+ && (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_outer
+ || STMT_VINFO_RELEVANT (stmt_info) ==
+ vect_used_in_outer_by_reduction))
+ {
+ struct loop *innerloop = LOOP_VINFO_LOOP (
+ STMT_VINFO_LOOP_VINFO (stmt_info))->inner;
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ tree scalar_dest;
+ gimple exit_phi;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Record the vdef for outer-loop vectorization.");
+
+ /* Find the relevant loop-exit phi-node, and reord the vec_stmt there
+ (to be used when vectorizing outer-loop stmts that use the DEF of
+ STMT). */
+ if (gimple_code (stmt) == GIMPLE_PHI)
+ scalar_dest = PHI_RESULT (stmt);
+ else
+ scalar_dest = gimple_assign_lhs (stmt);
+
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
+ {
+ if (!flow_bb_inside_loop_p (innerloop, gimple_bb (USE_STMT (use_p))))
+ {
+ exit_phi = USE_STMT (use_p);
+ STMT_VINFO_VEC_STMT (vinfo_for_stmt (exit_phi)) = vec_stmt;
+ }
+ }
+ }
+
+ /* Handle stmts whose DEF is used outside the loop-nest that is
+ being vectorized. */
+ if (STMT_VINFO_LIVE_P (stmt_info)
+ && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
+ {
+ done = vectorizable_live_operation (stmt, gsi, &vec_stmt);
+ gcc_assert (done);
+ }
+
+ if (vec_stmt)
+ {
+ STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
+ orig_stmt_in_pattern = STMT_VINFO_RELATED_STMT (stmt_info);
+ if (orig_stmt_in_pattern)
+ {
+ stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt_in_pattern);
+ /* STMT was inserted by the vectorizer to replace a computation idiom.
+ ORIG_STMT_IN_PATTERN is a stmt in the original sequence that
+ computed this idiom. We need to record a pointer to VEC_STMT in
+ the stmt_info of ORIG_STMT_IN_PATTERN. See more details in the
+ documentation of vect_pattern_recog. */
+ if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
+ STMT_VINFO_VEC_STMT (stmt_vinfo) = vec_stmt;
+ }
+ }
+
+ return is_store;
+}
+
+
+/* Remove a group of stores (for SLP or interleaving), free their
+ stmt_vec_info. */
+
+void
+vect_remove_stores (gimple first_stmt)
+{
+ gimple next = first_stmt;
+ gimple tmp;
+ gimple_stmt_iterator next_si;
+
+ while (next)
+ {
+ /* Free the attached stmt_vec_info and remove the stmt. */
+ next_si = gsi_for_stmt (next);
+ gsi_remove (&next_si, true);
+ tmp = DR_GROUP_NEXT_DR (vinfo_for_stmt (next));
+ free_stmt_vec_info (next);
+ next = tmp;
+ }
+}
+
+
+/* Function new_stmt_vec_info.
+
+ Create and initialize a new stmt_vec_info struct for STMT. */
+
+stmt_vec_info
+new_stmt_vec_info (gimple stmt, loop_vec_info loop_vinfo,
+ bb_vec_info bb_vinfo)
+{
+ stmt_vec_info res;
+ res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
+
+ STMT_VINFO_TYPE (res) = undef_vec_info_type;
+ STMT_VINFO_STMT (res) = stmt;
+ STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
+ STMT_VINFO_BB_VINFO (res) = bb_vinfo;
+ STMT_VINFO_RELEVANT (res) = vect_unused_in_scope;
+ STMT_VINFO_LIVE_P (res) = false;
+ STMT_VINFO_VECTYPE (res) = NULL;
+ STMT_VINFO_VEC_STMT (res) = NULL;
+ STMT_VINFO_VECTORIZABLE (res) = true;
+ STMT_VINFO_IN_PATTERN_P (res) = false;
+ STMT_VINFO_RELATED_STMT (res) = NULL;
+ STMT_VINFO_DATA_REF (res) = NULL;
+
+ STMT_VINFO_DR_BASE_ADDRESS (res) = NULL;
+ STMT_VINFO_DR_OFFSET (res) = NULL;
+ STMT_VINFO_DR_INIT (res) = NULL;
+ STMT_VINFO_DR_STEP (res) = NULL;
+ STMT_VINFO_DR_ALIGNED_TO (res) = NULL;
+
+ if (gimple_code (stmt) == GIMPLE_PHI
+ && is_loop_header_bb_p (gimple_bb (stmt)))
+ STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
+ else
+ STMT_VINFO_DEF_TYPE (res) = vect_internal_def;
+
+ STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5);
+ STMT_VINFO_INSIDE_OF_LOOP_COST (res) = 0;
+ STMT_VINFO_OUTSIDE_OF_LOOP_COST (res) = 0;
+ STMT_SLP_TYPE (res) = loop_vect;
+ DR_GROUP_FIRST_DR (res) = NULL;
+ DR_GROUP_NEXT_DR (res) = NULL;
+ DR_GROUP_SIZE (res) = 0;
+ DR_GROUP_STORE_COUNT (res) = 0;
+ DR_GROUP_GAP (res) = 0;
+ DR_GROUP_SAME_DR_STMT (res) = NULL;
+ DR_GROUP_READ_WRITE_DEPENDENCE (res) = false;
+
+ return res;
+}
+
+
+/* Create a hash table for stmt_vec_info. */
+
+void
+init_stmt_vec_info_vec (void)
+{
+ gcc_assert (!stmt_vec_info_vec);
+ stmt_vec_info_vec = VEC_alloc (vec_void_p, heap, 50);
+}
+
+
+/* Free hash table for stmt_vec_info. */
+
+void
+free_stmt_vec_info_vec (void)
+{
+ gcc_assert (stmt_vec_info_vec);
+ VEC_free (vec_void_p, heap, stmt_vec_info_vec);
+}
+
+
+/* Free stmt vectorization related info. */
+
+void
+free_stmt_vec_info (gimple stmt)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+ if (!stmt_info)
+ return;
+
+ VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info));
+ set_vinfo_for_stmt (stmt, NULL);
+ free (stmt_info);
+}
+
+
+/* Function get_vectype_for_scalar_type_and_size.
+
+ Returns the vector type corresponding to SCALAR_TYPE and SIZE as supported
+ by the target. */
+
+static tree
+get_vectype_for_scalar_type_and_size (tree scalar_type, unsigned size)
+{
+ enum machine_mode inner_mode = TYPE_MODE (scalar_type);
+ enum machine_mode simd_mode;
+ unsigned int nbytes = GET_MODE_SIZE (inner_mode);
+ int nunits;
+ tree vectype;
+
+ if (nbytes == 0)
+ return NULL_TREE;
+
+ /* We can't build a vector type of elements with alignment bigger than
+ their size. */
+ if (nbytes < TYPE_ALIGN_UNIT (scalar_type))
+ return NULL_TREE;
+
+ /* If we'd build a vector type of elements whose mode precision doesn't
+ match their types precision we'll get mismatched types on vector
+ extracts via BIT_FIELD_REFs. This effectively means we disable
+ vectorization of bool and/or enum types in some languages. */
+ if (INTEGRAL_TYPE_P (scalar_type)
+ && GET_MODE_BITSIZE (inner_mode) != TYPE_PRECISION (scalar_type))
+ return NULL_TREE;
+
+ if (GET_MODE_CLASS (inner_mode) != MODE_INT
+ && GET_MODE_CLASS (inner_mode) != MODE_FLOAT)
+ return NULL_TREE;
+
+ /* We shouldn't end up building VECTOR_TYPEs of non-scalar components.
+ When the component mode passes the above test simply use a type
+ corresponding to that mode. The theory is that any use that
+ would cause problems with this will disable vectorization anyway. */
+ if (!SCALAR_FLOAT_TYPE_P (scalar_type)
+ && !INTEGRAL_TYPE_P (scalar_type)
+ && !POINTER_TYPE_P (scalar_type))
+ scalar_type = lang_hooks.types.type_for_mode (inner_mode, 1);
+
+ /* If no size was supplied use the mode the target prefers. Otherwise
+ lookup a vector mode of the specified size. */
+ if (size == 0)
+ simd_mode = targetm.vectorize.preferred_simd_mode (inner_mode);
+ else
+ simd_mode = mode_for_vector (inner_mode, size / nbytes);
+ nunits = GET_MODE_SIZE (simd_mode) / nbytes;
+ if (nunits <= 1)
+ return NULL_TREE;
+
+ vectype = build_vector_type (scalar_type, nunits);
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "get vectype with %d units of type ", nunits);
+ print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
+ }
+
+ if (!vectype)
+ return NULL_TREE;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "vectype: ");
+ print_generic_expr (vect_dump, vectype, TDF_SLIM);
+ }
+
+ if (!VECTOR_MODE_P (TYPE_MODE (vectype))
+ && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "mode not supported by target.");
+ return NULL_TREE;
+ }
+
+ return vectype;
+}
+
+unsigned int current_vector_size;
+
+/* Function get_vectype_for_scalar_type.
+
+ Returns the vector type corresponding to SCALAR_TYPE as supported
+ by the target. */
+
+tree
+get_vectype_for_scalar_type (tree scalar_type)
+{
+ tree vectype;
+ vectype = get_vectype_for_scalar_type_and_size (scalar_type,
+ current_vector_size);
+ if (vectype
+ && current_vector_size == 0)
+ current_vector_size = GET_MODE_SIZE (TYPE_MODE (vectype));
+ return vectype;
+}
+
+/* Function get_same_sized_vectype
+
+ Returns a vector type corresponding to SCALAR_TYPE of size
+ VECTOR_TYPE if supported by the target. */
+
+tree
+get_same_sized_vectype (tree scalar_type, tree vector_type)
+{
+ return get_vectype_for_scalar_type_and_size
+ (scalar_type, GET_MODE_SIZE (TYPE_MODE (vector_type)));
+}
+
+/* Function vect_is_simple_use.
+
+ Input:
+ LOOP_VINFO - the vect info of the loop that is being vectorized.
+ BB_VINFO - the vect info of the basic block that is being vectorized.
+ OPERAND - operand of a stmt in the loop or bb.
+ DEF - the defining stmt in case OPERAND is an SSA_NAME.
+
+ Returns whether a stmt with OPERAND can be vectorized.
+ For loops, supportable operands are constants, loop invariants, and operands
+ that are defined by the current iteration of the loop. Unsupportable
+ operands are those that are defined by a previous iteration of the loop (as
+ is the case in reduction/induction computations).
+ For basic blocks, supportable operands are constants and bb invariants.
+ For now, operands defined outside the basic block are not supported. */
+
+bool
+vect_is_simple_use (tree operand, loop_vec_info loop_vinfo,
+ bb_vec_info bb_vinfo, gimple *def_stmt,
+ tree *def, enum vect_def_type *dt)
+{
+ basic_block bb;
+ stmt_vec_info stmt_vinfo;
+ struct loop *loop = NULL;
+
+ if (loop_vinfo)
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ *def_stmt = NULL;
+ *def = NULL_TREE;
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "vect_is_simple_use: operand ");
+ print_generic_expr (vect_dump, operand, TDF_SLIM);
+ }
+
+ if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
+ {
+ *dt = vect_constant_def;
+ return true;
+ }
+
+ if (is_gimple_min_invariant (operand))
+ {
+ *def = operand;
+ *dt = vect_external_def;
+ return true;
+ }
+
+ if (TREE_CODE (operand) == PAREN_EXPR)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "non-associatable copy.");
+ operand = TREE_OPERAND (operand, 0);
+ }
+
+ if (TREE_CODE (operand) != SSA_NAME)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "not ssa-name.");
+ return false;
+ }
+
+ *def_stmt = SSA_NAME_DEF_STMT (operand);
+ if (*def_stmt == NULL)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "no def_stmt.");
+ return false;
+ }
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ {
+ fprintf (vect_dump, "def_stmt: ");
+ print_gimple_stmt (vect_dump, *def_stmt, 0, TDF_SLIM);
+ }
+
+ /* Empty stmt is expected only in case of a function argument.
+ (Otherwise - we expect a phi_node or a GIMPLE_ASSIGN). */
+ if (gimple_nop_p (*def_stmt))
+ {
+ *def = operand;
+ *dt = vect_external_def;
+ return true;
+ }
+
+ bb = gimple_bb (*def_stmt);
+
+ if ((loop && !flow_bb_inside_loop_p (loop, bb))
+ || (!loop && bb != BB_VINFO_BB (bb_vinfo))
+ || (!loop && gimple_code (*def_stmt) == GIMPLE_PHI))
+ *dt = vect_external_def;
+ else
+ {
+ stmt_vinfo = vinfo_for_stmt (*def_stmt);
+ *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
+ }
+
+ if (*dt == vect_unknown_def_type)
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Unsupported pattern.");
+ return false;
+ }
+
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "type of def: %d.",*dt);
+
+ switch (gimple_code (*def_stmt))
+ {
+ case GIMPLE_PHI:
+ *def = gimple_phi_result (*def_stmt);
+ break;
+
+ case GIMPLE_ASSIGN:
+ *def = gimple_assign_lhs (*def_stmt);
+ break;
+
+ case GIMPLE_CALL:
+ *def = gimple_call_lhs (*def_stmt);
+ if (*def != NULL)
+ break;
+ /* FALLTHRU */
+ default:
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "unsupported defining stmt: ");
+ return false;
+ }
+
+ return true;
+}
+
+/* Function vect_is_simple_use_1.
+
+ Same as vect_is_simple_use_1 but also determines the vector operand
+ type of OPERAND and stores it to *VECTYPE. If the definition of
+ OPERAND is vect_uninitialized_def, vect_constant_def or
+ vect_external_def *VECTYPE will be set to NULL_TREE and the caller
+ is responsible to compute the best suited vector type for the
+ scalar operand. */
+
+bool
+vect_is_simple_use_1 (tree operand, loop_vec_info loop_vinfo,
+ bb_vec_info bb_vinfo, gimple *def_stmt,
+ tree *def, enum vect_def_type *dt, tree *vectype)
+{
+ if (!vect_is_simple_use (operand, loop_vinfo, bb_vinfo, def_stmt, def, dt))
+ return false;
+
+ /* Now get a vector type if the def is internal, otherwise supply
+ NULL_TREE and leave it up to the caller to figure out a proper
+ type for the use stmt. */
+ if (*dt == vect_internal_def
+ || *dt == vect_induction_def
+ || *dt == vect_reduction_def
+ || *dt == vect_double_reduction_def
+ || *dt == vect_nested_cycle)
+ {
+ stmt_vec_info stmt_info = vinfo_for_stmt (*def_stmt);
+ if (STMT_VINFO_IN_PATTERN_P (stmt_info))
+ stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
+ *vectype = STMT_VINFO_VECTYPE (stmt_info);
+ gcc_assert (*vectype != NULL_TREE);
+ }
+ else if (*dt == vect_uninitialized_def
+ || *dt == vect_constant_def
+ || *dt == vect_external_def)
+ *vectype = NULL_TREE;
+ else
+ gcc_unreachable ();
+
+ return true;
+}
+
+
+/* Function supportable_widening_operation
+
+ Check whether an operation represented by the code CODE is a
+ widening operation that is supported by the target platform in
+ vector form (i.e., when operating on arguments of type VECTYPE_IN
+ producing a result of type VECTYPE_OUT).
+
+ Widening operations we currently support are NOP (CONVERT), FLOAT
+ and WIDEN_MULT. This function checks if these operations are supported
+ by the target platform either directly (via vector tree-codes), or via
+ target builtins.
+
+ Output:
+ - CODE1 and CODE2 are codes of vector operations to be used when
+ vectorizing the operation, if available.
+ - DECL1 and DECL2 are decls of target builtin functions to be used
+ when vectorizing the operation, if available. In this case,
+ CODE1 and CODE2 are CALL_EXPR.
+ - MULTI_STEP_CVT determines the number of required intermediate steps in
+ case of multi-step conversion (like char->short->int - in that case
+ MULTI_STEP_CVT will be 1).
+ - INTERM_TYPES contains the intermediate type required to perform the
+ widening operation (short in the above example). */
+
+bool
+supportable_widening_operation (enum tree_code code, gimple stmt,
+ tree vectype_out, tree vectype_in,
+ tree *decl1, tree *decl2,
+ enum tree_code *code1, enum tree_code *code2,
+ int *multi_step_cvt,
+ VEC (tree, heap) **interm_types)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
+ bool ordered_p;
+ enum machine_mode vec_mode;
+ enum insn_code icode1, icode2;
+ optab optab1, optab2;
+ tree vectype = vectype_in;
+ tree wide_vectype = vectype_out;
+ enum tree_code c1, c2;
+
+ /* The result of a vectorized widening operation usually requires two vectors
+ (because the widened results do not fit int one vector). The generated
+ vector results would normally be expected to be generated in the same
+ order as in the original scalar computation, i.e. if 8 results are
+ generated in each vector iteration, they are to be organized as follows:
+ vect1: [res1,res2,res3,res4], vect2: [res5,res6,res7,res8].
+
+ However, in the special case that the result of the widening operation is
+ used in a reduction computation only, the order doesn't matter (because
+ when vectorizing a reduction we change the order of the computation).
+ Some targets can take advantage of this and generate more efficient code.
+ For example, targets like Altivec, that support widen_mult using a sequence
+ of {mult_even,mult_odd} generate the following vectors:
+ vect1: [res1,res3,res5,res7], vect2: [res2,res4,res6,res8].
+
+ When vectorizing outer-loops, we execute the inner-loop sequentially
+ (each vectorized inner-loop iteration contributes to VF outer-loop
+ iterations in parallel). We therefore don't allow to change the order
+ of the computation in the inner-loop during outer-loop vectorization. */
+
+ if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
+ && !nested_in_vect_loop_p (vect_loop, stmt))
+ ordered_p = false;
+ else
+ ordered_p = true;
+
+ if (!ordered_p
+ && code == WIDEN_MULT_EXPR
+ && targetm.vectorize.builtin_mul_widen_even
+ && targetm.vectorize.builtin_mul_widen_even (vectype)
+ && targetm.vectorize.builtin_mul_widen_odd
+ && targetm.vectorize.builtin_mul_widen_odd (vectype))
+ {
+ if (vect_print_dump_info (REPORT_DETAILS))
+ fprintf (vect_dump, "Unordered widening operation detected.");
+
+ *code1 = *code2 = CALL_EXPR;
+ *decl1 = targetm.vectorize.builtin_mul_widen_even (vectype);
+ *decl2 = targetm.vectorize.builtin_mul_widen_odd (vectype);
+ return true;
+ }
+
+ switch (code)
+ {
+ case WIDEN_MULT_EXPR:
+ if (BYTES_BIG_ENDIAN)
+ {
+ c1 = VEC_WIDEN_MULT_HI_EXPR;
+ c2 = VEC_WIDEN_MULT_LO_EXPR;
+ }
+ else
+ {
+ c2 = VEC_WIDEN_MULT_HI_EXPR;
+ c1 = VEC_WIDEN_MULT_LO_EXPR;
+ }
+ break;
+
+ CASE_CONVERT:
+ if (BYTES_BIG_ENDIAN)
+ {
+ c1 = VEC_UNPACK_HI_EXPR;
+ c2 = VEC_UNPACK_LO_EXPR;
+ }
+ else
+ {
+ c2 = VEC_UNPACK_HI_EXPR;
+ c1 = VEC_UNPACK_LO_EXPR;
+ }
+ break;
+
+ case FLOAT_EXPR:
+ if (BYTES_BIG_ENDIAN)
+ {
+ c1 = VEC_UNPACK_FLOAT_HI_EXPR;
+ c2 = VEC_UNPACK_FLOAT_LO_EXPR;
+ }
+ else
+ {
+ c2 = VEC_UNPACK_FLOAT_HI_EXPR;
+ c1 = VEC_UNPACK_FLOAT_LO_EXPR;
+ }
+ break;
+
+ case FIX_TRUNC_EXPR:
+ /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
+ VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
+ computing the operation. */
+ return false;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (code == FIX_TRUNC_EXPR)
+ {
+ /* The signedness is determined from output operand. */
+ optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
+ optab2 = optab_for_tree_code (c2, vectype_out, optab_default);
+ }
+ else
+ {
+ optab1 = optab_for_tree_code (c1, vectype, optab_default);
+ optab2 = optab_for_tree_code (c2, vectype, optab_default);
+ }
+
+ if (!optab1 || !optab2)
+ return false;
+
+ vec_mode = TYPE_MODE (vectype);
+ if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing
+ || (icode2 = optab_handler (optab2, vec_mode)) == CODE_FOR_nothing)
+ return false;
+
+ /* Check if it's a multi-step conversion that can be done using intermediate
+ types. */
+ if (insn_data[icode1].operand[0].mode != TYPE_MODE (wide_vectype)
+ || insn_data[icode2].operand[0].mode != TYPE_MODE (wide_vectype))
+ {
+ int i;
+ tree prev_type = vectype, intermediate_type;
+ enum machine_mode intermediate_mode, prev_mode = vec_mode;
+ optab optab3, optab4;
+
+ if (!CONVERT_EXPR_CODE_P (code))
+ return false;
+
+ *code1 = c1;
+ *code2 = c2;
+
+ /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
+ intermediate steps in promotion sequence. We try
+ MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do
+ not. */
+ *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
+ for (i = 0; i < 3; i++)
+ {
+ intermediate_mode = insn_data[icode1].operand[0].mode;
+ intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
+ TYPE_UNSIGNED (prev_type));
+ optab3 = optab_for_tree_code (c1, intermediate_type, optab_default);
+ optab4 = optab_for_tree_code (c2, intermediate_type, optab_default);
+
+ if (!optab3 || !optab4
+ || ((icode1 = optab_handler (optab1, prev_mode))
+ == CODE_FOR_nothing)
+ || insn_data[icode1].operand[0].mode != intermediate_mode
+ || ((icode2 = optab_handler (optab2, prev_mode))
+ == CODE_FOR_nothing)
+ || insn_data[icode2].operand[0].mode != intermediate_mode
+ || ((icode1 = optab_handler (optab3, intermediate_mode))
+ == CODE_FOR_nothing)
+ || ((icode2 = optab_handler (optab4, intermediate_mode))
+ == CODE_FOR_nothing))
+ return false;
+
+ VEC_quick_push (tree, *interm_types, intermediate_type);
+ (*multi_step_cvt)++;
+
+ if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
+ && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
+ return true;
+
+ prev_type = intermediate_type;
+ prev_mode = intermediate_mode;
+ }
+
+ return false;
+ }
+
+ *code1 = c1;
+ *code2 = c2;
+ return true;
+}
+
+
+/* Function supportable_narrowing_operation
+
+ Check whether an operation represented by the code CODE is a
+ narrowing operation that is supported by the target platform in
+ vector form (i.e., when operating on arguments of type VECTYPE_IN
+ and producing a result of type VECTYPE_OUT).
+
+ Narrowing operations we currently support are NOP (CONVERT) and
+ FIX_TRUNC. This function checks if these operations are supported by
+ the target platform directly via vector tree-codes.
+
+ Output:
+ - CODE1 is the code of a vector operation to be used when
+ vectorizing the operation, if available.
+ - MULTI_STEP_CVT determines the number of required intermediate steps in
+ case of multi-step conversion (like int->short->char - in that case
+ MULTI_STEP_CVT will be 1).
+ - INTERM_TYPES contains the intermediate type required to perform the
+ narrowing operation (short in the above example). */
+
+bool
+supportable_narrowing_operation (enum tree_code code,
+ tree vectype_out, tree vectype_in,
+ enum tree_code *code1, int *multi_step_cvt,
+ VEC (tree, heap) **interm_types)
+{
+ enum machine_mode vec_mode;
+ enum insn_code icode1;
+ optab optab1, interm_optab;
+ tree vectype = vectype_in;
+ tree narrow_vectype = vectype_out;
+ enum tree_code c1;
+ tree intermediate_type, prev_type;
+ int i;
+
+ switch (code)
+ {
+ CASE_CONVERT:
+ c1 = VEC_PACK_TRUNC_EXPR;
+ break;
+
+ case FIX_TRUNC_EXPR:
+ c1 = VEC_PACK_FIX_TRUNC_EXPR;
+ break;
+
+ case FLOAT_EXPR:
+ /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
+ tree code and optabs used for computing the operation. */
+ return false;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (code == FIX_TRUNC_EXPR)
+ /* The signedness is determined from output operand. */
+ optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
+ else
+ optab1 = optab_for_tree_code (c1, vectype, optab_default);
+
+ if (!optab1)
+ return false;
+
+ vec_mode = TYPE_MODE (vectype);
+ if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing)
+ return false;
+
+ /* Check if it's a multi-step conversion that can be done using intermediate
+ types. */
+ if (insn_data[icode1].operand[0].mode != TYPE_MODE (narrow_vectype))
+ {
+ enum machine_mode intermediate_mode, prev_mode = vec_mode;
+
+ *code1 = c1;
+ prev_type = vectype;
+ /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
+ intermediate steps in promotion sequence. We try
+ MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do
+ not. */
+ *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
+ for (i = 0; i < 3; i++)
+ {
+ intermediate_mode = insn_data[icode1].operand[0].mode;
+ intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
+ TYPE_UNSIGNED (prev_type));
+ interm_optab = optab_for_tree_code (c1, intermediate_type,
+ optab_default);
+ if (!interm_optab
+ || ((icode1 = optab_handler (optab1, prev_mode))
+ == CODE_FOR_nothing)
+ || insn_data[icode1].operand[0].mode != intermediate_mode
+ || ((icode1 = optab_handler (interm_optab, intermediate_mode))
+ == CODE_FOR_nothing))
+ return false;
+
+ VEC_quick_push (tree, *interm_types, intermediate_type);
+ (*multi_step_cvt)++;
+
+ if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
+ return true;
+
+ prev_type = intermediate_type;
+ prev_mode = intermediate_mode;
+ }
+
+ return false;
+ }
+
+ *code1 = c1;
+ return true;
+}