diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /libgcc/config/libbid/bid64_noncomp.c | |
download | cbb-gcc-4.6.4-upstream.tar.bz2 cbb-gcc-4.6.4-upstream.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'libgcc/config/libbid/bid64_noncomp.c')
-rw-r--r-- | libgcc/config/libbid/bid64_noncomp.c | 954 |
1 files changed, 954 insertions, 0 deletions
diff --git a/libgcc/config/libbid/bid64_noncomp.c b/libgcc/config/libbid/bid64_noncomp.c new file mode 100644 index 000000000..5e10a52b1 --- /dev/null +++ b/libgcc/config/libbid/bid64_noncomp.c @@ -0,0 +1,954 @@ +/* Copyright (C) 2007, 2009 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +Under Section 7 of GPL version 3, you are granted additional +permissions described in the GCC Runtime Library Exception, version +3.1, as published by the Free Software Foundation. + +You should have received a copy of the GNU General Public License and +a copy of the GCC Runtime Library Exception along with this program; +see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +<http://www.gnu.org/licenses/>. */ + +#include "bid_internal.h" + +static const UINT64 mult_factor[16] = { + 1ull, 10ull, 100ull, 1000ull, + 10000ull, 100000ull, 1000000ull, 10000000ull, + 100000000ull, 1000000000ull, 10000000000ull, 100000000000ull, + 1000000000000ull, 10000000000000ull, + 100000000000000ull, 1000000000000000ull +}; + +/***************************************************************************** + * BID64 non-computational functions: + * - bid64_isSigned + * - bid64_isNormal + * - bid64_isSubnormal + * - bid64_isFinite + * - bid64_isZero + * - bid64_isInf + * - bid64_isSignaling + * - bid64_isCanonical + * - bid64_isNaN + * - bid64_copy + * - bid64_negate + * - bid64_abs + * - bid64_copySign + * - bid64_class + * - bid64_sameQuantum + * - bid64_totalOrder + * - bid64_totalOrderMag + * - bid64_radix + ****************************************************************************/ + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_isSigned (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +int +bid64_isSigned (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); +} + +// return 1 iff x is not zero, nor NaN nor subnormal nor infinity +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_isNormal (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +int +bid64_isNormal (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + UINT128 sig_x_prime; + UINT64 sig_x; + unsigned int exp_x; + + if ((x & MASK_INF) == MASK_INF) { // x is either INF or NaN + res = 0; + } else { + // decode number into exponent and significand + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + // check for zero or non-canonical + if (sig_x > 9999999999999999ull || sig_x == 0) { + res = 0; // zero or non-canonical + BID_RETURN (res); + } + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + } else { + sig_x = (x & MASK_BINARY_SIG1); + if (sig_x == 0) { + res = 0; // zero + BID_RETURN (res); + } + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + } + // if exponent is less than -383, the number may be subnormal + // if (exp_x - 398 = -383) the number may be subnormal + if (exp_x < 15) { + __mul_64x64_to_128MACH (sig_x_prime, sig_x, mult_factor[exp_x]); + if (sig_x_prime.w[1] == 0 + && sig_x_prime.w[0] < 1000000000000000ull) { + res = 0; // subnormal + } else { + res = 1; // normal + } + } else { + res = 1; // normal + } + } + BID_RETURN (res); +} + +// return 1 iff x is not zero, nor NaN nor normal nor infinity +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_isSubnormal (int *pres, + UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +int +bid64_isSubnormal (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + UINT128 sig_x_prime; + UINT64 sig_x; + unsigned int exp_x; + + if ((x & MASK_INF) == MASK_INF) { // x is either INF or NaN + res = 0; + } else { + // decode number into exponent and significand + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + // check for zero or non-canonical + if (sig_x > 9999999999999999ull || sig_x == 0) { + res = 0; // zero or non-canonical + BID_RETURN (res); + } + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + } else { + sig_x = (x & MASK_BINARY_SIG1); + if (sig_x == 0) { + res = 0; // zero + BID_RETURN (res); + } + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + } + // if exponent is less than -383, the number may be subnormal + // if (exp_x - 398 = -383) the number may be subnormal + if (exp_x < 15) { + __mul_64x64_to_128MACH (sig_x_prime, sig_x, mult_factor[exp_x]); + if (sig_x_prime.w[1] == 0 + && sig_x_prime.w[0] < 1000000000000000ull) { + res = 1; // subnormal + } else { + res = 0; // normal + } + } else { + res = 0; // normal + } + } + BID_RETURN (res); +} + +//iff x is zero, subnormal or normal (not infinity or NaN) +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_isFinite (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +int +bid64_isFinite (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + + res = ((x & MASK_INF) != MASK_INF); + BID_RETURN (res); +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_isZero (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +int +bid64_isZero (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + + // if infinity or nan, return 0 + if ((x & MASK_INF) == MASK_INF) { + res = 0; + } else if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] + // => sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + // if(sig_x > 9999999999999999ull) {return 1;} + res = + (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) > + 9999999999999999ull); + } else { + res = ((x & MASK_BINARY_SIG1) == 0); + } + BID_RETURN (res); +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_isInf (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +int +bid64_isInf (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + + res = ((x & MASK_INF) == MASK_INF) && ((x & MASK_NAN) != MASK_NAN); + BID_RETURN (res); +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_isSignaling (int *pres, + UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +int +bid64_isSignaling (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + + res = ((x & MASK_SNAN) == MASK_SNAN); + BID_RETURN (res); +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_isCanonical (int *pres, + UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +int +bid64_isCanonical (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + + if ((x & MASK_NAN) == MASK_NAN) { // NaN + if (x & 0x01fc000000000000ull) { + res = 0; + } else if ((x & 0x0003ffffffffffffull) > 999999999999999ull) { // payload + res = 0; + } else { + res = 1; + } + } else if ((x & MASK_INF) == MASK_INF) { + if (x & 0x03ffffffffffffffull) { + res = 0; + } else { + res = 1; + } + } else if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { // 54-bit coeff. + res = + (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) <= + 9999999999999999ull); + } else { // 53-bit coeff. + res = 1; + } + BID_RETURN (res); +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_isNaN (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +int +bid64_isNaN (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + + res = ((x & MASK_NAN) == MASK_NAN); + BID_RETURN (res); +} + +// copies a floating-point operand x to destination y, with no change +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_copy (UINT64 * pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +UINT64 +bid64_copy (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + UINT64 res; + + res = x; + BID_RETURN (res); +} + +// copies a floating-point operand x to destination y, reversing the sign +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_negate (UINT64 * pres, + UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +UINT64 +bid64_negate (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + UINT64 res; + + res = x ^ MASK_SIGN; + BID_RETURN (res); +} + +// copies a floating-point operand x to destination y, changing the sign to positive +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_abs (UINT64 * pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +UINT64 +bid64_abs (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + UINT64 res; + + res = x & ~MASK_SIGN; + BID_RETURN (res); +} + +// copies operand x to destination in the same format as x, but +// with the sign of y +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_copySign (UINT64 * pres, UINT64 * px, + UINT64 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +UINT64 +bid64_copySign (UINT64 x, UINT64 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + UINT64 res; + + res = (x & ~MASK_SIGN) | (y & MASK_SIGN); + BID_RETURN (res); +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_class (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +int +bid64_class (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + UINT128 sig_x_prime; + UINT64 sig_x; + int exp_x; + + if ((x & MASK_NAN) == MASK_NAN) { + // is the NaN signaling? + if ((x & MASK_SNAN) == MASK_SNAN) { + res = signalingNaN; + BID_RETURN (res); + } + // if NaN and not signaling, must be quietNaN + res = quietNaN; + BID_RETURN (res); + } else if ((x & MASK_INF) == MASK_INF) { + // is the Infinity negative? + if ((x & MASK_SIGN) == MASK_SIGN) { + res = negativeInfinity; + } else { + // otherwise, must be positive infinity + res = positiveInfinity; + } + BID_RETURN (res); + } else if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + // decode number into exponent and significand + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + // check for zero or non-canonical + if (sig_x > 9999999999999999ull || sig_x == 0) { + if ((x & MASK_SIGN) == MASK_SIGN) { + res = negativeZero; + } else { + res = positiveZero; + } + BID_RETURN (res); + } + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + } else { + sig_x = (x & MASK_BINARY_SIG1); + if (sig_x == 0) { + res = + ((x & MASK_SIGN) == MASK_SIGN) ? negativeZero : positiveZero; + BID_RETURN (res); + } + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + } + // if exponent is less than -383, number may be subnormal + // if (exp_x - 398 < -383) + if (exp_x < 15) { // sig_x *10^exp_x + __mul_64x64_to_128MACH (sig_x_prime, sig_x, mult_factor[exp_x]); + if (sig_x_prime.w[1] == 0 + && (sig_x_prime.w[0] < 1000000000000000ull)) { + res = + ((x & MASK_SIGN) == + MASK_SIGN) ? negativeSubnormal : positiveSubnormal; + BID_RETURN (res); + } + } + // otherwise, normal number, determine the sign + res = + ((x & MASK_SIGN) == MASK_SIGN) ? negativeNormal : positiveNormal; + BID_RETURN (res); +} + +// true if the exponents of x and y are the same, false otherwise. +// The special cases of sameQuantum (NaN, NaN) and sameQuantum (Inf, Inf) are +// true. +// If exactly one operand is infinite or exactly one operand is NaN, then false +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_sameQuantum (int *pres, UINT64 * px, + UINT64 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_sameQuantum (UINT64 x, UINT64 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + unsigned int exp_x, exp_y; + + // if both operands are NaN, return true; if just one is NaN, return false + if ((x & MASK_NAN) == MASK_NAN || ((y & MASK_NAN) == MASK_NAN)) { + res = ((x & MASK_NAN) == MASK_NAN && (y & MASK_NAN) == MASK_NAN); + BID_RETURN (res); + } + // if both operands are INF, return true; if just one is INF, return false + if ((x & MASK_INF) == MASK_INF || (y & MASK_INF) == MASK_INF) { + res = ((x & MASK_INF) == MASK_INF && (y & MASK_INF) == MASK_INF); + BID_RETURN (res); + } + // decode exponents for both numbers, and return true if they match + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + } + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + } + res = (exp_x == exp_y); + BID_RETURN (res); +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_totalOrder (int *pres, UINT64 * px, + UINT64 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_totalOrder (UINT64 x, UINT64 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y, pyld_y, pyld_x; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0; + + // NaN (CASE1) + // if x and y are unordered numerically because either operand is NaN + // (1) totalOrder(-NaN, number) is true + // (2) totalOrder(number, +NaN) is true + // (3) if x and y are both NaN: + // i) negative sign bit < positive sign bit + // ii) signaling < quiet for +NaN, reverse for -NaN + // iii) lesser payload < greater payload for +NaN (reverse for -NaN) + // iv) else if bitwise identical (in canonical form), return 1 + if ((x & MASK_NAN) == MASK_NAN) { + // if x is -NaN + if ((x & MASK_SIGN) == MASK_SIGN) { + // return true, unless y is -NaN also + if ((y & MASK_NAN) != MASK_NAN || (y & MASK_SIGN) != MASK_SIGN) { + res = 1; // y is a number, return 1 + BID_RETURN (res); + } else { // if y and x are both -NaN + // if x and y are both -sNaN or both -qNaN, we have to compare payloads + // this xnor statement evaluates to true if both are sNaN or qNaN + if (! + (((y & MASK_SNAN) == MASK_SNAN) ^ ((x & MASK_SNAN) == + MASK_SNAN))) { + // it comes down to the payload. we want to return true if x has a + // larger payload, or if the payloads are equal (canonical forms + // are bitwise identical) + pyld_y = y & 0x0003ffffffffffffull; + pyld_x = x & 0x0003ffffffffffffull; + if (pyld_y > 999999999999999ull || pyld_y == 0) { + // if y is zero, x must be less than or numerically equal + // y's payload is 0 + res = 1; + BID_RETURN (res); + } + // if x is zero and y isn't, x has the smaller payload + // definitely (since we know y isn't 0 at this point) + if (pyld_x > 999999999999999ull || pyld_x == 0) { + // x's payload is 0 + res = 0; + BID_RETURN (res); + } + res = (pyld_x >= pyld_y); + BID_RETURN (res); + } else { + // either x = -sNaN and y = -qNaN or x = -qNaN and y = -sNaN + res = (y & MASK_SNAN) == MASK_SNAN; // totalOrder(-qNaN, -sNaN) == 1 + BID_RETURN (res); + } + } + } else { // x is +NaN + // return false, unless y is +NaN also + if ((y & MASK_NAN) != MASK_NAN || (y & MASK_SIGN) == MASK_SIGN) { + res = 0; // y is a number, return 1 + BID_RETURN (res); + } else { + // x and y are both +NaN; + // must investigate payload if both quiet or both signaling + // this xnor statement will be true if both x and y are +qNaN or +sNaN + if (! + (((y & MASK_SNAN) == MASK_SNAN) ^ ((x & MASK_SNAN) == + MASK_SNAN))) { + // it comes down to the payload. we want to return true if x has a + // smaller payload, or if the payloads are equal (canonical forms + // are bitwise identical) + pyld_y = y & 0x0003ffffffffffffull; + pyld_x = x & 0x0003ffffffffffffull; + // if x is zero and y isn't, x has the smaller + // payload definitely (since we know y isn't 0 at this point) + if (pyld_x > 999999999999999ull || pyld_x == 0) { + res = 1; + BID_RETURN (res); + } + if (pyld_y > 999999999999999ull || pyld_y == 0) { + // if y is zero, x must be less than or numerically equal + res = 0; + BID_RETURN (res); + } + res = (pyld_x <= pyld_y); + BID_RETURN (res); + } else { + // return true if y is +qNaN and x is +sNaN + // (we know they're different bc of xor if_stmt above) + res = ((x & MASK_SNAN) == MASK_SNAN); + BID_RETURN (res); + } + } + } + } else if ((y & MASK_NAN) == MASK_NAN) { + // x is certainly not NAN in this case. + // return true if y is positive + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits are the same, these numbers are equal. + if (x == y) { + res = 1; + BID_RETURN (res); + } + // OPPOSITE SIGNS (CASE 3) + // if signs are opposite, return 1 if x is negative + // (if x<y, totalOrder is true) + if (((x & MASK_SIGN) == MASK_SIGN) ^ ((y & MASK_SIGN) == MASK_SIGN)) { + res = (x & MASK_SIGN) == MASK_SIGN; + BID_RETURN (res); + } + // INFINITY (CASE4) + if ((x & MASK_INF) == MASK_INF) { + // if x==neg_inf, return (y == neg_inf)?1:0; + if ((x & MASK_SIGN) == MASK_SIGN) { + res = 1; + BID_RETURN (res); + } else { + // x is positive infinity, only return1 if y + // is positive infinity as well + // (we know y has same sign as x) + res = ((y & MASK_INF) == MASK_INF); + BID_RETURN (res); + } + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so: + // if y is +inf, x<y + // if y is -inf, x>y + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull || sig_x == 0) { + x_is_zero = 1; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + if (sig_x == 0) { + x_is_zero = 1; + } + } + + // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull || sig_y == 0) { + y_is_zero = 1; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + if (sig_y == 0) { + y_is_zero = 1; + } + } + + // ZERO (CASE 5) + // if x and y represent the same entities, and + // both are negative , return true iff exp_x <= exp_y + if (x_is_zero && y_is_zero) { + if (!((x & MASK_SIGN) == MASK_SIGN) ^ + ((y & MASK_SIGN) == MASK_SIGN)) { + // if signs are the same: + // totalOrder(x,y) iff exp_x >= exp_y for negative numbers + // totalOrder(x,y) iff exp_x <= exp_y for positive numbers + if (exp_x == exp_y) { + res = 1; + BID_RETURN (res); + } + res = (exp_x <= exp_y) ^ ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } else { + // signs are different. + // totalOrder(-0, +0) is true + // totalOrder(+0, -0) is false + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + } + // if x is zero and y isn't, clearly x has the smaller payload. + if (x_is_zero) { + res = ((y & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if y is zero, and x isn't, clearly y has the smaller payload. + if (y_is_zero) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + // if both components are either bigger or smaller, + // it is clear what needs to be done + if (sig_x > sig_y && exp_x >= exp_y) { + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x <= exp_y) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, it is + // definitely larger, so no need for compensation + if (exp_x - exp_y > 15) { + // difference cannot be greater than 10^15 + res = ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if exp_x is 15 less than exp_y, it is + // definitely smaller, no need for compensation + if (exp_y - exp_x > 15) { + res = ((x & MASK_SIGN) != MASK_SIGN); + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down + // to the compensated significand + if (exp_x > exp_y) { + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + // if x and y represent the same entities, + // and both are negative, return true iff exp_x <= exp_y + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + // case cannot occure, because all bits must + // be the same - would have been caught if (x==y) + res = (exp_x <= exp_y) ^ ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // if positive, return 1 if adjusted x is smaller than y + res = ((sig_n_prime.w[1] == 0) + && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) == + MASK_SIGN); + BID_RETURN (res); + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + + // if x and y represent the same entities, + // and both are negative, return true iff exp_x <= exp_y + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + // Cannot occur, because all bits must be the same. + // Case would have been caught if (x==y) + res = (exp_x <= exp_y) ^ ((x & MASK_SIGN) == MASK_SIGN); + BID_RETURN (res); + } + // values are not equal, for positive numbers return 1 + // if x is less than y. 0 otherwise + res = ((sig_n_prime.w[1] > 0) + || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) == + MASK_SIGN); + BID_RETURN (res); +} + +// totalOrderMag is TotalOrder(abs(x), abs(y)) +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_totalOrderMag (int *pres, UINT64 * px, + UINT64 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; + UINT64 y = *py; +#else +int +bid64_totalOrderMag (UINT64 x, + UINT64 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + int exp_x, exp_y; + UINT64 sig_x, sig_y, pyld_y, pyld_x; + UINT128 sig_n_prime; + char x_is_zero = 0, y_is_zero = 0; + + // NaN (CASE 1) + // if x and y are unordered numerically because either operand is NaN + // (1) totalOrder(number, +NaN) is true + // (2) if x and y are both NaN: + // i) signaling < quiet for +NaN + // ii) lesser payload < greater payload for +NaN + // iii) else if bitwise identical (in canonical form), return 1 + if ((x & MASK_NAN) == MASK_NAN) { + // x is +NaN + + // return false, unless y is +NaN also + if ((y & MASK_NAN) != MASK_NAN) { + res = 0; // y is a number, return 1 + BID_RETURN (res); + + } else { + + // x and y are both +NaN; + // must investigate payload if both quiet or both signaling + // this xnor statement will be true if both x and y are +qNaN or +sNaN + if (! + (((y & MASK_SNAN) == MASK_SNAN) ^ ((x & MASK_SNAN) == + MASK_SNAN))) { + // it comes down to the payload. we want to return true if x has a + // smaller payload, or if the payloads are equal (canonical forms + // are bitwise identical) + pyld_y = y & 0x0003ffffffffffffull; + pyld_x = x & 0x0003ffffffffffffull; + // if x is zero and y isn't, x has the smaller + // payload definitely (since we know y isn't 0 at this point) + if (pyld_x > 999999999999999ull || pyld_x == 0) { + res = 1; + BID_RETURN (res); + } + + if (pyld_y > 999999999999999ull || pyld_y == 0) { + // if y is zero, x must be less than or numerically equal + res = 0; + BID_RETURN (res); + } + res = (pyld_x <= pyld_y); + BID_RETURN (res); + + } else { + // return true if y is +qNaN and x is +sNaN + // (we know they're different bc of xor if_stmt above) + res = ((x & MASK_SNAN) == MASK_SNAN); + BID_RETURN (res); + } + } + + } else if ((y & MASK_NAN) == MASK_NAN) { + // x is certainly not NAN in this case. + // return true if y is positive + res = 1; + BID_RETURN (res); + } + // SIMPLE (CASE2) + // if all the bits (except sign bit) are the same, + // these numbers are equal. + if ((x & ~MASK_SIGN) == (y & ~MASK_SIGN)) { + res = 1; + BID_RETURN (res); + } + // INFINITY (CASE3) + if ((x & MASK_INF) == MASK_INF) { + // x is positive infinity, only return1 + // if y is positive infinity as well + res = ((y & MASK_INF) == MASK_INF); + BID_RETURN (res); + } else if ((y & MASK_INF) == MASK_INF) { + // x is finite, so: + // if y is +inf, x<y + res = 1; + BID_RETURN (res); + } + // if steering bits are 11 (condition will be 0), + // then exponent is G[0:w+1] => + if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_x = (x & MASK_BINARY_EXPONENT2) >> 51; + sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_x > 9999999999999999ull || sig_x == 0) { + x_is_zero = 1; + } + } else { + exp_x = (x & MASK_BINARY_EXPONENT1) >> 53; + sig_x = (x & MASK_BINARY_SIG1); + if (sig_x == 0) { + x_is_zero = 1; + } + } + + // if steering bits are 11 (condition will be 0), + // then exponent is G[0:w+1] => + if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) { + exp_y = (y & MASK_BINARY_EXPONENT2) >> 51; + sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2; + if (sig_y > 9999999999999999ull || sig_y == 0) { + y_is_zero = 1; + } + } else { + exp_y = (y & MASK_BINARY_EXPONENT1) >> 53; + sig_y = (y & MASK_BINARY_SIG1); + if (sig_y == 0) { + y_is_zero = 1; + } + } + + // ZERO (CASE 5) + // if x and y represent the same entities, + // and both are negative , return true iff exp_x <= exp_y + if (x_is_zero && y_is_zero) { + // totalOrder(x,y) iff exp_x <= exp_y for positive numbers + res = (exp_x <= exp_y); + BID_RETURN (res); + } + // if x is zero and y isn't, clearly x has the smaller payload. + if (x_is_zero) { + res = 1; + BID_RETURN (res); + } + // if y is zero, and x isn't, clearly y has the smaller payload. + if (y_is_zero) { + res = 0; + BID_RETURN (res); + } + // REDUNDANT REPRESENTATIONS (CASE6) + // if both components are either bigger or smaller + if (sig_x > sig_y && exp_x >= exp_y) { + res = 0; + BID_RETURN (res); + } + if (sig_x < sig_y && exp_x <= exp_y) { + res = 1; + BID_RETURN (res); + } + // if exp_x is 15 greater than exp_y, it is definitely + // larger, so no need for compensation + if (exp_x - exp_y > 15) { + res = 0; // difference cannot be greater than 10^15 + BID_RETURN (res); + } + // if exp_x is 15 less than exp_y, it is definitely + // smaller, no need for compensation + if (exp_y - exp_x > 15) { + res = 1; + BID_RETURN (res); + } + // if |exp_x - exp_y| < 15, it comes down + // to the compensated significand + if (exp_x > exp_y) { + + // otherwise adjust the x significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_x, + mult_factor[exp_x - exp_y]); + + // if x and y represent the same entities, + // and both are negative, return true iff exp_x <= exp_y + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) { + // case cannot occur, because all bits + // must be the same - would have been caught if (x==y) + res = (exp_x <= exp_y); + BID_RETURN (res); + } + // if positive, return 1 if adjusted x is smaller than y + res = ((sig_n_prime.w[1] == 0) && sig_n_prime.w[0] < sig_y); + BID_RETURN (res); + } + // adjust the y significand upwards + __mul_64x64_to_128MACH (sig_n_prime, sig_y, + mult_factor[exp_y - exp_x]); + + // if x and y represent the same entities, + // and both are negative, return true iff exp_x <= exp_y + if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) { + res = (exp_x <= exp_y); + BID_RETURN (res); + } + // values are not equal, for positive numbers + // return 1 if x is less than y. 0 otherwise + res = ((sig_n_prime.w[1] > 0) || (sig_x < sig_n_prime.w[0])); + BID_RETURN (res); + +} + +#if DECIMAL_CALL_BY_REFERENCE +void +bid64_radix (int *pres, UINT64 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) { + UINT64 x = *px; +#else +int +bid64_radix (UINT64 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) { +#endif + int res; + if (x) // dummy test + res = 10; + else + res = 10; + BID_RETURN (res); +} |