summaryrefslogtreecommitdiff
path: root/libgo/go/compress/flate/huffman_code.go
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /libgo/go/compress/flate/huffman_code.go
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'libgo/go/compress/flate/huffman_code.go')
-rw-r--r--libgo/go/compress/flate/huffman_code.go373
1 files changed, 373 insertions, 0 deletions
diff --git a/libgo/go/compress/flate/huffman_code.go b/libgo/go/compress/flate/huffman_code.go
new file mode 100644
index 000000000..6be605f0a
--- /dev/null
+++ b/libgo/go/compress/flate/huffman_code.go
@@ -0,0 +1,373 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+import (
+ "math"
+ "sort"
+)
+
+type huffmanEncoder struct {
+ codeBits []uint8
+ code []uint16
+}
+
+type literalNode struct {
+ literal uint16
+ freq int32
+}
+
+type chain struct {
+ // The sum of the leaves in this tree
+ freq int32
+
+ // The number of literals to the left of this item at this level
+ leafCount int32
+
+ // The right child of this chain in the previous level.
+ up *chain
+}
+
+type levelInfo struct {
+ // Our level. for better printing
+ level int32
+
+ // The most recent chain generated for this level
+ lastChain *chain
+
+ // The frequency of the next character to add to this level
+ nextCharFreq int32
+
+ // The frequency of the next pair (from level below) to add to this level.
+ // Only valid if the "needed" value of the next lower level is 0.
+ nextPairFreq int32
+
+ // The number of chains remaining to generate for this level before moving
+ // up to the next level
+ needed int32
+
+ // The levelInfo for level+1
+ up *levelInfo
+
+ // The levelInfo for level-1
+ down *levelInfo
+}
+
+func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
+
+func newHuffmanEncoder(size int) *huffmanEncoder {
+ return &huffmanEncoder{make([]uint8, size), make([]uint16, size)}
+}
+
+// Generates a HuffmanCode corresponding to the fixed literal table
+func generateFixedLiteralEncoding() *huffmanEncoder {
+ h := newHuffmanEncoder(maxLit)
+ codeBits := h.codeBits
+ code := h.code
+ var ch uint16
+ for ch = 0; ch < maxLit; ch++ {
+ var bits uint16
+ var size uint8
+ switch {
+ case ch < 144:
+ // size 8, 000110000 .. 10111111
+ bits = ch + 48
+ size = 8
+ break
+ case ch < 256:
+ // size 9, 110010000 .. 111111111
+ bits = ch + 400 - 144
+ size = 9
+ break
+ case ch < 280:
+ // size 7, 0000000 .. 0010111
+ bits = ch - 256
+ size = 7
+ break
+ default:
+ // size 8, 11000000 .. 11000111
+ bits = ch + 192 - 280
+ size = 8
+ }
+ codeBits[ch] = size
+ code[ch] = reverseBits(bits, size)
+ }
+ return h
+}
+
+func generateFixedOffsetEncoding() *huffmanEncoder {
+ h := newHuffmanEncoder(30)
+ codeBits := h.codeBits
+ code := h.code
+ for ch := uint16(0); ch < 30; ch++ {
+ codeBits[ch] = 5
+ code[ch] = reverseBits(ch, 5)
+ }
+ return h
+}
+
+var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
+var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
+
+func (h *huffmanEncoder) bitLength(freq []int32) int64 {
+ var total int64
+ for i, f := range freq {
+ if f != 0 {
+ total += int64(f) * int64(h.codeBits[i])
+ }
+ }
+ return total
+}
+
+// Generate elements in the chain using an iterative algorithm.
+func (h *huffmanEncoder) generateChains(top *levelInfo, list []literalNode) {
+ n := len(list)
+ list = list[0 : n+1]
+ list[n] = maxNode()
+
+ l := top
+ for {
+ if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
+ // We've run out of both leafs and pairs.
+ // End all calculations for this level.
+ // To m sure we never come back to this level or any lower level,
+ // set nextPairFreq impossibly large.
+ l.lastChain = nil
+ l.needed = 0
+ l = l.up
+ l.nextPairFreq = math.MaxInt32
+ continue
+ }
+
+ prevFreq := l.lastChain.freq
+ if l.nextCharFreq < l.nextPairFreq {
+ // The next item on this row is a leaf node.
+ n := l.lastChain.leafCount + 1
+ l.lastChain = &chain{l.nextCharFreq, n, l.lastChain.up}
+ l.nextCharFreq = list[n].freq
+ } else {
+ // The next item on this row is a pair from the previous row.
+ // nextPairFreq isn't valid until we generate two
+ // more values in the level below
+ l.lastChain = &chain{l.nextPairFreq, l.lastChain.leafCount, l.down.lastChain}
+ l.down.needed = 2
+ }
+
+ if l.needed--; l.needed == 0 {
+ // We've done everything we need to do for this level.
+ // Continue calculating one level up. Fill in nextPairFreq
+ // of that level with the sum of the two nodes we've just calculated on
+ // this level.
+ up := l.up
+ if up == nil {
+ // All done!
+ return
+ }
+ up.nextPairFreq = prevFreq + l.lastChain.freq
+ l = up
+ } else {
+ // If we stole from below, move down temporarily to replenish it.
+ for l.down.needed > 0 {
+ l = l.down
+ }
+ }
+ }
+}
+
+// Return the number of literals assigned to each bit size in the Huffman encoding
+//
+// This method is only called when list.length >= 3
+// The cases of 0, 1, and 2 literals are handled by special case code.
+//
+// list An array of the literals with non-zero frequencies
+// and their associated frequencies. The array is in order of increasing
+// frequency, and has as its last element a special element with frequency
+// MaxInt32
+// maxBits The maximum number of bits that should be used to encode any literal.
+// return An integer array in which array[i] indicates the number of literals
+// that should be encoded in i bits.
+func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
+ n := int32(len(list))
+ list = list[0 : n+1]
+ list[n] = maxNode()
+
+ // The tree can't have greater depth than n - 1, no matter what. This
+ // saves a little bit of work in some small cases
+ maxBits = minInt32(maxBits, n-1)
+
+ // Create information about each of the levels.
+ // A bogus "Level 0" whose sole purpose is so that
+ // level1.prev.needed==0. This makes level1.nextPairFreq
+ // be a legitimate value that never gets chosen.
+ top := &levelInfo{needed: 0}
+ chain2 := &chain{list[1].freq, 2, new(chain)}
+ for level := int32(1); level <= maxBits; level++ {
+ // For every level, the first two items are the first two characters.
+ // We initialize the levels as if we had already figured this out.
+ top = &levelInfo{
+ level: level,
+ lastChain: chain2,
+ nextCharFreq: list[2].freq,
+ nextPairFreq: list[0].freq + list[1].freq,
+ down: top,
+ }
+ top.down.up = top
+ if level == 1 {
+ top.nextPairFreq = math.MaxInt32
+ }
+ }
+
+ // We need a total of 2*n - 2 items at top level and have already generated 2.
+ top.needed = 2*n - 4
+
+ l := top
+ for {
+ if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
+ // We've run out of both leafs and pairs.
+ // End all calculations for this level.
+ // To m sure we never come back to this level or any lower level,
+ // set nextPairFreq impossibly large.
+ l.lastChain = nil
+ l.needed = 0
+ l = l.up
+ l.nextPairFreq = math.MaxInt32
+ continue
+ }
+
+ prevFreq := l.lastChain.freq
+ if l.nextCharFreq < l.nextPairFreq {
+ // The next item on this row is a leaf node.
+ n := l.lastChain.leafCount + 1
+ l.lastChain = &chain{l.nextCharFreq, n, l.lastChain.up}
+ l.nextCharFreq = list[n].freq
+ } else {
+ // The next item on this row is a pair from the previous row.
+ // nextPairFreq isn't valid until we generate two
+ // more values in the level below
+ l.lastChain = &chain{l.nextPairFreq, l.lastChain.leafCount, l.down.lastChain}
+ l.down.needed = 2
+ }
+
+ if l.needed--; l.needed == 0 {
+ // We've done everything we need to do for this level.
+ // Continue calculating one level up. Fill in nextPairFreq
+ // of that level with the sum of the two nodes we've just calculated on
+ // this level.
+ up := l.up
+ if up == nil {
+ // All done!
+ break
+ }
+ up.nextPairFreq = prevFreq + l.lastChain.freq
+ l = up
+ } else {
+ // If we stole from below, move down temporarily to replenish it.
+ for l.down.needed > 0 {
+ l = l.down
+ }
+ }
+ }
+
+ // Somethings is wrong if at the end, the top level is null or hasn't used
+ // all of the leaves.
+ if top.lastChain.leafCount != n {
+ panic("top.lastChain.leafCount != n")
+ }
+
+ bitCount := make([]int32, maxBits+1)
+ bits := 1
+ for chain := top.lastChain; chain.up != nil; chain = chain.up {
+ // chain.leafCount gives the number of literals requiring at least "bits"
+ // bits to encode.
+ bitCount[bits] = chain.leafCount - chain.up.leafCount
+ bits++
+ }
+ return bitCount
+}
+
+// Look at the leaves and assign them a bit count and an encoding as specified
+// in RFC 1951 3.2.2
+func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
+ code := uint16(0)
+ for n, bits := range bitCount {
+ code <<= 1
+ if n == 0 || bits == 0 {
+ continue
+ }
+ // The literals list[len(list)-bits] .. list[len(list)-bits]
+ // are encoded using "bits" bits, and get the values
+ // code, code + 1, .... The code values are
+ // assigned in literal order (not frequency order).
+ chunk := list[len(list)-int(bits):]
+ sortByLiteral(chunk)
+ for _, node := range chunk {
+ h.codeBits[node.literal] = uint8(n)
+ h.code[node.literal] = reverseBits(code, uint8(n))
+ code++
+ }
+ list = list[0 : len(list)-int(bits)]
+ }
+}
+
+// Update this Huffman Code object to be the minimum code for the specified frequency count.
+//
+// freq An array of frequencies, in which frequency[i] gives the frequency of literal i.
+// maxBits The maximum number of bits to use for any literal.
+func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
+ list := make([]literalNode, len(freq)+1)
+ // Number of non-zero literals
+ count := 0
+ // Set list to be the set of all non-zero literals and their frequencies
+ for i, f := range freq {
+ if f != 0 {
+ list[count] = literalNode{uint16(i), f}
+ count++
+ } else {
+ h.codeBits[i] = 0
+ }
+ }
+ // If freq[] is shorter than codeBits[], fill rest of codeBits[] with zeros
+ h.codeBits = h.codeBits[0:len(freq)]
+ list = list[0:count]
+ if count <= 2 {
+ // Handle the small cases here, because they are awkward for the general case code. With
+ // two or fewer literals, everything has bit length 1.
+ for i, node := range list {
+ // "list" is in order of increasing literal value.
+ h.codeBits[node.literal] = 1
+ h.code[node.literal] = uint16(i)
+ }
+ return
+ }
+ sortByFreq(list)
+
+ // Get the number of literals for each bit count
+ bitCount := h.bitCounts(list, maxBits)
+ // And do the assignment
+ h.assignEncodingAndSize(bitCount, list)
+}
+
+type literalNodeSorter struct {
+ a []literalNode
+ less func(i, j int) bool
+}
+
+func (s literalNodeSorter) Len() int { return len(s.a) }
+
+func (s literalNodeSorter) Less(i, j int) bool {
+ return s.less(i, j)
+}
+
+func (s literalNodeSorter) Swap(i, j int) { s.a[i], s.a[j] = s.a[j], s.a[i] }
+
+func sortByFreq(a []literalNode) {
+ s := &literalNodeSorter{a, func(i, j int) bool { return a[i].freq < a[j].freq }}
+ sort.Sort(s)
+}
+
+func sortByLiteral(a []literalNode) {
+ s := &literalNodeSorter{a, func(i, j int) bool { return a[i].literal < a[j].literal }}
+ sort.Sort(s)
+}