diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /libgo/go/crypto/elliptic | |
download | cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2 cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'libgo/go/crypto/elliptic')
-rw-r--r-- | libgo/go/crypto/elliptic/elliptic.go | 376 | ||||
-rw-r--r-- | libgo/go/crypto/elliptic/elliptic_test.go | 331 |
2 files changed, 707 insertions, 0 deletions
diff --git a/libgo/go/crypto/elliptic/elliptic.go b/libgo/go/crypto/elliptic/elliptic.go new file mode 100644 index 000000000..beac45ca0 --- /dev/null +++ b/libgo/go/crypto/elliptic/elliptic.go @@ -0,0 +1,376 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// The elliptic package implements several standard elliptic curves over prime +// fields +package elliptic + +// This package operates, internally, on Jacobian coordinates. For a given +// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) +// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole +// calculation can be performed within the transform (as in ScalarMult and +// ScalarBaseMult). But even for Add and Double, it's faster to apply and +// reverse the transform than to operate in affine coordinates. + +import ( + "big" + "io" + "os" + "sync" +) + +// A Curve represents a short-form Weierstrass curve with a=-3. +// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html +type Curve struct { + P *big.Int // the order of the underlying field + B *big.Int // the constant of the curve equation + Gx, Gy *big.Int // (x,y) of the base point + BitSize int // the size of the underlying field +} + +// IsOnCurve returns true if the given (x,y) lies on the curve. +func (curve *Curve) IsOnCurve(x, y *big.Int) bool { + // y² = x³ - 3x + b + y2 := new(big.Int).Mul(y, y) + y2.Mod(y2, curve.P) + + x3 := new(big.Int).Mul(x, x) + x3.Mul(x3, x) + + threeX := new(big.Int).Lsh(x, 1) + threeX.Add(threeX, x) + + x3.Sub(x3, threeX) + x3.Add(x3, curve.B) + x3.Mod(x3, curve.P) + + return x3.Cmp(y2) == 0 +} + +// affineFromJacobian reverses the Jacobian transform. See the comment at the +// top of the file. +func (curve *Curve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { + zinv := new(big.Int).ModInverse(z, curve.P) + zinvsq := new(big.Int).Mul(zinv, zinv) + + xOut = new(big.Int).Mul(x, zinvsq) + xOut.Mod(xOut, curve.P) + zinvsq.Mul(zinvsq, zinv) + yOut = new(big.Int).Mul(y, zinvsq) + yOut.Mod(yOut, curve.P) + return +} + +// Add returns the sum of (x1,y1) and (x2,y2) +func (curve *Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { + z := new(big.Int).SetInt64(1) + return curve.affineFromJacobian(curve.addJacobian(x1, y1, z, x2, y2, z)) +} + +// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and +// (x2, y2, z2) and returns their sum, also in Jacobian form. +func (curve *Curve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { + // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl + z1z1 := new(big.Int).Mul(z1, z1) + z1z1.Mod(z1z1, curve.P) + z2z2 := new(big.Int).Mul(z2, z2) + z2z2.Mod(z2z2, curve.P) + + u1 := new(big.Int).Mul(x1, z2z2) + u1.Mod(u1, curve.P) + u2 := new(big.Int).Mul(x2, z1z1) + u2.Mod(u2, curve.P) + h := new(big.Int).Sub(u2, u1) + if h.Sign() == -1 { + h.Add(h, curve.P) + } + i := new(big.Int).Lsh(h, 1) + i.Mul(i, i) + j := new(big.Int).Mul(h, i) + + s1 := new(big.Int).Mul(y1, z2) + s1.Mul(s1, z2z2) + s1.Mod(s1, curve.P) + s2 := new(big.Int).Mul(y2, z1) + s2.Mul(s2, z1z1) + s2.Mod(s2, curve.P) + r := new(big.Int).Sub(s2, s1) + if r.Sign() == -1 { + r.Add(r, curve.P) + } + r.Lsh(r, 1) + v := new(big.Int).Mul(u1, i) + + x3 := new(big.Int).Set(r) + x3.Mul(x3, x3) + x3.Sub(x3, j) + x3.Sub(x3, v) + x3.Sub(x3, v) + x3.Mod(x3, curve.P) + + y3 := new(big.Int).Set(r) + v.Sub(v, x3) + y3.Mul(y3, v) + s1.Mul(s1, j) + s1.Lsh(s1, 1) + y3.Sub(y3, s1) + y3.Mod(y3, curve.P) + + z3 := new(big.Int).Add(z1, z2) + z3.Mul(z3, z3) + z3.Sub(z3, z1z1) + if z3.Sign() == -1 { + z3.Add(z3, curve.P) + } + z3.Sub(z3, z2z2) + if z3.Sign() == -1 { + z3.Add(z3, curve.P) + } + z3.Mul(z3, h) + z3.Mod(z3, curve.P) + + return x3, y3, z3 +} + +// Double returns 2*(x,y) +func (curve *Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { + z1 := new(big.Int).SetInt64(1) + return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1)) +} + +// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and +// returns its double, also in Jacobian form. +func (curve *Curve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { + // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b + delta := new(big.Int).Mul(z, z) + delta.Mod(delta, curve.P) + gamma := new(big.Int).Mul(y, y) + gamma.Mod(gamma, curve.P) + alpha := new(big.Int).Sub(x, delta) + if alpha.Sign() == -1 { + alpha.Add(alpha, curve.P) + } + alpha2 := new(big.Int).Add(x, delta) + alpha.Mul(alpha, alpha2) + alpha2.Set(alpha) + alpha.Lsh(alpha, 1) + alpha.Add(alpha, alpha2) + + beta := alpha2.Mul(x, gamma) + + x3 := new(big.Int).Mul(alpha, alpha) + beta8 := new(big.Int).Lsh(beta, 3) + x3.Sub(x3, beta8) + for x3.Sign() == -1 { + x3.Add(x3, curve.P) + } + x3.Mod(x3, curve.P) + + z3 := new(big.Int).Add(y, z) + z3.Mul(z3, z3) + z3.Sub(z3, gamma) + if z3.Sign() == -1 { + z3.Add(z3, curve.P) + } + z3.Sub(z3, delta) + if z3.Sign() == -1 { + z3.Add(z3, curve.P) + } + z3.Mod(z3, curve.P) + + beta.Lsh(beta, 2) + beta.Sub(beta, x3) + if beta.Sign() == -1 { + beta.Add(beta, curve.P) + } + y3 := alpha.Mul(alpha, beta) + + gamma.Mul(gamma, gamma) + gamma.Lsh(gamma, 3) + gamma.Mod(gamma, curve.P) + + y3.Sub(y3, gamma) + if y3.Sign() == -1 { + y3.Add(y3, curve.P) + } + y3.Mod(y3, curve.P) + + return x3, y3, z3 +} + +// ScalarMult returns k*(Bx,By) where k is a number in big-endian form. +func (curve *Curve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { + // We have a slight problem in that the identity of the group (the + // point at infinity) cannot be represented in (x, y) form on a finite + // machine. Thus the standard add/double algorithm has to be tweaked + // slightly: our initial state is not the identity, but x, and we + // ignore the first true bit in |k|. If we don't find any true bits in + // |k|, then we return nil, nil, because we cannot return the identity + // element. + + Bz := new(big.Int).SetInt64(1) + x := Bx + y := By + z := Bz + + seenFirstTrue := false + for _, byte := range k { + for bitNum := 0; bitNum < 8; bitNum++ { + if seenFirstTrue { + x, y, z = curve.doubleJacobian(x, y, z) + } + if byte&0x80 == 0x80 { + if !seenFirstTrue { + seenFirstTrue = true + } else { + x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z) + } + } + byte <<= 1 + } + } + + if !seenFirstTrue { + return nil, nil + } + + return curve.affineFromJacobian(x, y, z) +} + +// ScalarBaseMult returns k*G, where G is the base point of the group and k is +// an integer in big-endian form. +func (curve *Curve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { + return curve.ScalarMult(curve.Gx, curve.Gy, k) +} + +var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f} + +// GenerateKey returns a public/private key pair. The private key is generated +// using the given reader, which must return random data. +func (curve *Curve) GenerateKey(rand io.Reader) (priv []byte, x, y *big.Int, err os.Error) { + byteLen := (curve.BitSize + 7) >> 3 + priv = make([]byte, byteLen) + + for x == nil { + _, err = io.ReadFull(rand, priv) + if err != nil { + return + } + // We have to mask off any excess bits in the case that the size of the + // underlying field is not a whole number of bytes. + priv[0] &= mask[curve.BitSize%8] + // This is because, in tests, rand will return all zeros and we don't + // want to get the point at infinity and loop forever. + priv[1] ^= 0x42 + x, y = curve.ScalarBaseMult(priv) + } + return +} + +// Marshal converts a point into the form specified in section 4.3.6 of ANSI +// X9.62. +func (curve *Curve) Marshal(x, y *big.Int) []byte { + byteLen := (curve.BitSize + 7) >> 3 + + ret := make([]byte, 1+2*byteLen) + ret[0] = 4 // uncompressed point + + xBytes := x.Bytes() + copy(ret[1+byteLen-len(xBytes):], xBytes) + yBytes := y.Bytes() + copy(ret[1+2*byteLen-len(yBytes):], yBytes) + return ret +} + +// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On +// error, x = nil. +func (curve *Curve) Unmarshal(data []byte) (x, y *big.Int) { + byteLen := (curve.BitSize + 7) >> 3 + if len(data) != 1+2*byteLen { + return + } + if data[0] != 4 { // uncompressed form + return + } + x = new(big.Int).SetBytes(data[1 : 1+byteLen]) + y = new(big.Int).SetBytes(data[1+byteLen:]) + return +} + +var initonce sync.Once +var p224 *Curve +var p256 *Curve +var p384 *Curve +var p521 *Curve + +func initAll() { + initP224() + initP256() + initP384() + initP521() +} + +func initP224() { + // See FIPS 186-3, section D.2.2 + p224 = new(Curve) + p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10) + p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16) + p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16) + p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16) + p224.BitSize = 224 +} + +func initP256() { + // See FIPS 186-3, section D.2.3 + p256 = new(Curve) + p256.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10) + p256.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16) + p256.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16) + p256.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16) + p256.BitSize = 256 +} + +func initP384() { + // See FIPS 186-3, section D.2.4 + p384 = new(Curve) + p384.P, _ = new(big.Int).SetString("39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319", 10) + p384.B, _ = new(big.Int).SetString("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef", 16) + p384.Gx, _ = new(big.Int).SetString("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7", 16) + p384.Gy, _ = new(big.Int).SetString("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f", 16) + p384.BitSize = 384 +} + +func initP521() { + // See FIPS 186-3, section D.2.5 + p521 = new(Curve) + p521.P, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", 10) + p521.B, _ = new(big.Int).SetString("051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00", 16) + p521.Gx, _ = new(big.Int).SetString("c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66", 16) + p521.Gy, _ = new(big.Int).SetString("11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650", 16) + p521.BitSize = 521 +} + +// P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2) +func P224() *Curve { + initonce.Do(initAll) + return p224 +} + +// P256 returns a Curve which implements P-256 (see FIPS 186-3, section D.2.3) +func P256() *Curve { + initonce.Do(initAll) + return p256 +} + +// P384 returns a Curve which implements P-384 (see FIPS 186-3, section D.2.4) +func P384() *Curve { + initonce.Do(initAll) + return p384 +} + +// P256 returns a Curve which implements P-521 (see FIPS 186-3, section D.2.5) +func P521() *Curve { + initonce.Do(initAll) + return p521 +} diff --git a/libgo/go/crypto/elliptic/elliptic_test.go b/libgo/go/crypto/elliptic/elliptic_test.go new file mode 100644 index 000000000..6ae6fb96d --- /dev/null +++ b/libgo/go/crypto/elliptic/elliptic_test.go @@ -0,0 +1,331 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package elliptic + +import ( + "big" + "crypto/rand" + "fmt" + "testing" +) + +func TestOnCurve(t *testing.T) { + p224 := P224() + if !p224.IsOnCurve(p224.Gx, p224.Gy) { + t.Errorf("FAIL") + } +} + +type baseMultTest struct { + k string + x, y string +} + +var p224BaseMultTests = []baseMultTest{ + { + "1", + "b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", + "bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", + }, + { + "2", + "706a46dc76dcb76798e60e6d89474788d16dc18032d268fd1a704fa6", + "1c2b76a7bc25e7702a704fa986892849fca629487acf3709d2e4e8bb", + }, + { + "3", + "df1b1d66a551d0d31eff822558b9d2cc75c2180279fe0d08fd896d04", + "a3f7f03cadd0be444c0aa56830130ddf77d317344e1af3591981a925", + }, + { + "4", + "ae99feebb5d26945b54892092a8aee02912930fa41cd114e40447301", + "482580a0ec5bc47e88bc8c378632cd196cb3fa058a7114eb03054c9", + }, + { + "5", + "31c49ae75bce7807cdff22055d94ee9021fedbb5ab51c57526f011aa", + "27e8bff1745635ec5ba0c9f1c2ede15414c6507d29ffe37e790a079b", + }, + { + "6", + "1f2483f82572251fca975fea40db821df8ad82a3c002ee6c57112408", + "89faf0ccb750d99b553c574fad7ecfb0438586eb3952af5b4b153c7e", + }, + { + "7", + "db2f6be630e246a5cf7d99b85194b123d487e2d466b94b24a03c3e28", + "f3a30085497f2f611ee2517b163ef8c53b715d18bb4e4808d02b963", + }, + { + "8", + "858e6f9cc6c12c31f5df124aa77767b05c8bc021bd683d2b55571550", + "46dcd3ea5c43898c5c5fc4fdac7db39c2f02ebee4e3541d1e78047a", + }, + { + "9", + "2fdcccfee720a77ef6cb3bfbb447f9383117e3daa4a07e36ed15f78d", + "371732e4f41bf4f7883035e6a79fcedc0e196eb07b48171697517463", + }, + { + "10", + "aea9e17a306517eb89152aa7096d2c381ec813c51aa880e7bee2c0fd", + "39bb30eab337e0a521b6cba1abe4b2b3a3e524c14a3fe3eb116b655f", + }, + { + "11", + "ef53b6294aca431f0f3c22dc82eb9050324f1d88d377e716448e507c", + "20b510004092e96636cfb7e32efded8265c266dfb754fa6d6491a6da", + }, + { + "12", + "6e31ee1dc137f81b056752e4deab1443a481033e9b4c93a3044f4f7a", + "207dddf0385bfdeab6e9acda8da06b3bbef224a93ab1e9e036109d13", + }, + { + "13", + "34e8e17a430e43289793c383fac9774247b40e9ebd3366981fcfaeca", + "252819f71c7fb7fbcb159be337d37d3336d7feb963724fdfb0ecb767", + }, + { + "14", + "a53640c83dc208603ded83e4ecf758f24c357d7cf48088b2ce01e9fa", + "d5814cd724199c4a5b974a43685fbf5b8bac69459c9469bc8f23ccaf", + }, + { + "15", + "baa4d8635511a7d288aebeedd12ce529ff102c91f97f867e21916bf9", + "979a5f4759f80f4fb4ec2e34f5566d595680a11735e7b61046127989", + }, + { + "16", + "b6ec4fe1777382404ef679997ba8d1cc5cd8e85349259f590c4c66d", + "3399d464345906b11b00e363ef429221f2ec720d2f665d7dead5b482", + }, + { + "17", + "b8357c3a6ceef288310e17b8bfeff9200846ca8c1942497c484403bc", + "ff149efa6606a6bd20ef7d1b06bd92f6904639dce5174db6cc554a26", + }, + { + "18", + "c9ff61b040874c0568479216824a15eab1a838a797d189746226e4cc", + "ea98d60e5ffc9b8fcf999fab1df7e7ef7084f20ddb61bb045a6ce002", + }, + { + "19", + "a1e81c04f30ce201c7c9ace785ed44cc33b455a022f2acdbc6cae83c", + "dcf1f6c3db09c70acc25391d492fe25b4a180babd6cea356c04719cd", + }, + { + "20", + "fcc7f2b45df1cd5a3c0c0731ca47a8af75cfb0347e8354eefe782455", + "d5d7110274cba7cdee90e1a8b0d394c376a5573db6be0bf2747f530", + }, + { + "112233445566778899", + "61f077c6f62ed802dad7c2f38f5c67f2cc453601e61bd076bb46179e", + "2272f9e9f5933e70388ee652513443b5e289dd135dcc0d0299b225e4", + }, + { + "112233445566778899112233445566778899", + "29895f0af496bfc62b6ef8d8a65c88c613949b03668aab4f0429e35", + "3ea6e53f9a841f2019ec24bde1a75677aa9b5902e61081c01064de93", + }, + { + "6950511619965839450988900688150712778015737983940691968051900319680", + "ab689930bcae4a4aa5f5cb085e823e8ae30fd365eb1da4aba9cf0379", + "3345a121bbd233548af0d210654eb40bab788a03666419be6fbd34e7", + }, + { + "13479972933410060327035789020509431695094902435494295338570602119423", + "bdb6a8817c1f89da1c2f3dd8e97feb4494f2ed302a4ce2bc7f5f4025", + "4c7020d57c00411889462d77a5438bb4e97d177700bf7243a07f1680", + }, + { + "13479971751745682581351455311314208093898607229429740618390390702079", + "d58b61aa41c32dd5eba462647dba75c5d67c83606c0af2bd928446a9", + "d24ba6a837be0460dd107ae77725696d211446c5609b4595976b16bd", + }, + { + "13479972931865328106486971546324465392952975980343228160962702868479", + "dc9fa77978a005510980e929a1485f63716df695d7a0c18bb518df03", + "ede2b016f2ddffc2a8c015b134928275ce09e5661b7ab14ce0d1d403", + }, + { + "11795773708834916026404142434151065506931607341523388140225443265536", + "499d8b2829cfb879c901f7d85d357045edab55028824d0f05ba279ba", + "bf929537b06e4015919639d94f57838fa33fc3d952598dcdbb44d638", + }, + { + "784254593043826236572847595991346435467177662189391577090", + "8246c999137186632c5f9eddf3b1b0e1764c5e8bd0e0d8a554b9cb77", + "e80ed8660bc1cb17ac7d845be40a7a022d3306f116ae9f81fea65947", + }, + { + "13479767645505654746623887797783387853576174193480695826442858012671", + "6670c20afcceaea672c97f75e2e9dd5c8460e54bb38538ebb4bd30eb", + "f280d8008d07a4caf54271f993527d46ff3ff46fd1190a3f1faa4f74", + }, + { + "205688069665150753842126177372015544874550518966168735589597183", + "eca934247425cfd949b795cb5ce1eff401550386e28d1a4c5a8eb", + "d4c01040dba19628931bc8855370317c722cbd9ca6156985f1c2e9ce", + }, + { + "13479966930919337728895168462090683249159702977113823384618282123295", + "ef353bf5c73cd551b96d596fbc9a67f16d61dd9fe56af19de1fba9cd", + "21771b9cdce3e8430c09b3838be70b48c21e15bc09ee1f2d7945b91f", + }, + { + "50210731791415612487756441341851895584393717453129007497216", + "4036052a3091eb481046ad3289c95d3ac905ca0023de2c03ecd451cf", + "d768165a38a2b96f812586a9d59d4136035d9c853a5bf2e1c86a4993", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368041", + "fcc7f2b45df1cd5a3c0c0731ca47a8af75cfb0347e8354eefe782455", + "f2a28eefd8b345832116f1e574f2c6b2c895aa8c24941f40d8b80ad1", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368042", + "a1e81c04f30ce201c7c9ace785ed44cc33b455a022f2acdbc6cae83c", + "230e093c24f638f533dac6e2b6d01da3b5e7f45429315ca93fb8e634", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368043", + "c9ff61b040874c0568479216824a15eab1a838a797d189746226e4cc", + "156729f1a003647030666054e208180f8f7b0df2249e44fba5931fff", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368044", + "b8357c3a6ceef288310e17b8bfeff9200846ca8c1942497c484403bc", + "eb610599f95942df1082e4f9426d086fb9c6231ae8b24933aab5db", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368045", + "b6ec4fe1777382404ef679997ba8d1cc5cd8e85349259f590c4c66d", + "cc662b9bcba6f94ee4ff1c9c10bd6ddd0d138df2d099a282152a4b7f", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368046", + "baa4d8635511a7d288aebeedd12ce529ff102c91f97f867e21916bf9", + "6865a0b8a607f0b04b13d1cb0aa992a5a97f5ee8ca1849efb9ed8678", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368047", + "a53640c83dc208603ded83e4ecf758f24c357d7cf48088b2ce01e9fa", + "2a7eb328dbe663b5a468b5bc97a040a3745396ba636b964370dc3352", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368048", + "34e8e17a430e43289793c383fac9774247b40e9ebd3366981fcfaeca", + "dad7e608e380480434ea641cc82c82cbc92801469c8db0204f13489a", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368049", + "6e31ee1dc137f81b056752e4deab1443a481033e9b4c93a3044f4f7a", + "df82220fc7a4021549165325725f94c3410ddb56c54e161fc9ef62ee", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368050", + "ef53b6294aca431f0f3c22dc82eb9050324f1d88d377e716448e507c", + "df4aefffbf6d1699c930481cd102127c9a3d992048ab05929b6e5927", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368051", + "aea9e17a306517eb89152aa7096d2c381ec813c51aa880e7bee2c0fd", + "c644cf154cc81f5ade49345e541b4d4b5c1adb3eb5c01c14ee949aa2", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368052", + "2fdcccfee720a77ef6cb3bfbb447f9383117e3daa4a07e36ed15f78d", + "c8e8cd1b0be40b0877cfca1958603122f1e6914f84b7e8e968ae8b9e", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368053", + "858e6f9cc6c12c31f5df124aa77767b05c8bc021bd683d2b55571550", + "fb9232c15a3bc7673a3a03b0253824c53d0fd1411b1cabe2e187fb87", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368054", + "db2f6be630e246a5cf7d99b85194b123d487e2d466b94b24a03c3e28", + "f0c5cff7ab680d09ee11dae84e9c1072ac48ea2e744b1b7f72fd469e", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368055", + "1f2483f82572251fca975fea40db821df8ad82a3c002ee6c57112408", + "76050f3348af2664aac3a8b05281304ebc7a7914c6ad50a4b4eac383", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368056", + "31c49ae75bce7807cdff22055d94ee9021fedbb5ab51c57526f011aa", + "d817400e8ba9ca13a45f360e3d121eaaeb39af82d6001c8186f5f866", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368057", + "ae99feebb5d26945b54892092a8aee02912930fa41cd114e40447301", + "fb7da7f5f13a43b81774373c879cd32d6934c05fa758eeb14fcfab38", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368058", + "df1b1d66a551d0d31eff822558b9d2cc75c2180279fe0d08fd896d04", + "5c080fc3522f41bbb3f55a97cfecf21f882ce8cbb1e50ca6e67e56dc", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368059", + "706a46dc76dcb76798e60e6d89474788d16dc18032d268fd1a704fa6", + "e3d4895843da188fd58fb0567976d7b50359d6b78530c8f62d1b1746", + }, + { + "26959946667150639794667015087019625940457807714424391721682722368060", + "b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", + "42c89c774a08dc04b3dd201932bc8a5ea5f8b89bbb2a7e667aff81cd", + }, +} + +func TestBaseMult(t *testing.T) { + p224 := P224() + for i, e := range p224BaseMultTests { + k, ok := new(big.Int).SetString(e.k, 10) + if !ok { + t.Errorf("%d: bad value for k: %s", i, e.k) + } + x, y := p224.ScalarBaseMult(k.Bytes()) + if fmt.Sprintf("%x", x) != e.x || fmt.Sprintf("%x", y) != e.y { + t.Errorf("%d: bad output for k=%s: got (%x, %s), want (%s, %s)", i, e.k, x, y, e.x, e.y) + } + } +} + +func BenchmarkBaseMult(b *testing.B) { + b.ResetTimer() + p224 := P224() + e := p224BaseMultTests[25] + k, _ := new(big.Int).SetString(e.k, 10) + b.StartTimer() + for i := 0; i < b.N; i++ { + p224.ScalarBaseMult(k.Bytes()) + } +} + +func TestMarshal(t *testing.T) { + p224 := P224() + _, x, y, err := p224.GenerateKey(rand.Reader) + if err != nil { + t.Error(err) + return + } + serialised := p224.Marshal(x, y) + xx, yy := p224.Unmarshal(serialised) + if xx == nil { + t.Error("failed to unmarshal") + return + } + if xx.Cmp(x) != 0 || yy.Cmp(y) != 0 { + t.Error("unmarshal returned different values") + return + } +} |