diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /libgo/go/debug/proc/ptrace-nptl.txt | |
download | cbb-gcc-4.6.4-upstream.tar.bz2 cbb-gcc-4.6.4-upstream.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'libgo/go/debug/proc/ptrace-nptl.txt')
-rw-r--r-- | libgo/go/debug/proc/ptrace-nptl.txt | 132 |
1 files changed, 132 insertions, 0 deletions
diff --git a/libgo/go/debug/proc/ptrace-nptl.txt b/libgo/go/debug/proc/ptrace-nptl.txt new file mode 100644 index 000000000..62cbf7700 --- /dev/null +++ b/libgo/go/debug/proc/ptrace-nptl.txt @@ -0,0 +1,132 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +ptrace and NTPL, the missing manpage + +== Signals == + +A signal sent to a ptrace'd process or thread causes only the thread +that receives it to stop and report to the attached process. + +Use tgkill to target a signal (for example, SIGSTOP) at a particular +thread. If you use kill, the signal could be delivered to another +thread in the same process. + +Note that SIGSTOP differs from its usual behavior when a process is +being traced. Usually, a SIGSTOP sent to any thread in a thread group +will stop all threads in the thread group. When a thread is traced, +however, a SIGSTOP affects only the receiving thread (and any other +threads in the thread group that are not traced). + +SIGKILL behaves like it does for non-traced processes. It affects all +threads in the process and terminates them without the WSTOPSIG event +generated by other signals. However, if PTRACE_O_TRACEEXIT is set, +the attached process will still receive PTRACE_EVENT_EXIT events +before receiving WIFSIGNALED events. + +See "Following thread death" for a caveat regarding signal delivery to +zombie threads. + +== Waiting on threads == + +Cloned threads in ptrace'd processes are treated similarly to cloned +threads in your own process. Thus, you must use the __WALL option in +order to receive notifications from threads created by the child +process. Similarly, the __WCLONE option will wait only on +notifications from threads created by the child process and *not* on +notifications from the initial child thread. + +Even when waiting on a specific thread's PID using waitpid or similar, +__WALL or __WCLONE is necessary or waitpid will return ECHILD. + +== Attaching to existing threads == + +libthread_db (which gdb uses), attaches to existing threads by pulling +the pthread data structures out of the traced process. The much +easier way is to traverse the /proc/PID/task directory, though it's +unclear how the semantics of these two approaches differ. + +Unfortunately, if the main thread has exited (but the overall process +has not), it sticks around as a zombie process. This zombie will +appear in the /proc/PID/task directory, but trying to attach to it +will yield EPERM. In this case, the third field of the +/proc/PID/task/PID/stat file will be "Z". Attempting to open the stat +file is also a convenient way to detect races between listing the task +directory and the thread exiting. Coincidentally, gdb will simply +fail to attach to a process whose main thread is a zombie. + +Because new threads may be created while the debugger is in the +process of attaching to existing threads, the debugger must repeatedly +re-list the task directory until it has attached to (and thus stopped) +every thread listed. + +In order to follow new threads created by existing threads, +PTRACE_O_TRACECLONE must be set on each thread attached to. + +== Following new threads == + +With the child process stopped, use PTRACE_SETOPTIONS to set the +PTRACE_O_TRACECLONE option. This option is per-thread, and thus must +be set on each existing thread individually. When an existing thread +with PTRACE_O_TRACECLONE set spawns a new thread, the existing thread +will stop with (SIGTRAP | PTRACE_EVENT_CLONE << 8) and the PID of the +new thread can be retrieved with PTRACE_GETEVENTMSG on the creating +thread. At this time, the new thread will exist, but will initially +be stopped with a SIGSTOP. The new thread will automatically be +traced and will inherit the PTRACE_O_TRACECLONE option from its +parent. The attached process should wait on the new thread to receive +the SIGSTOP notification. + +When using waitpid(-1, ...), don't rely on the parent thread reporting +a SIGTRAP before receiving the SIGSTOP from the new child thread. + +Without PTRACE_O_TRACECLONE, newly cloned threads will not be +ptrace'd. As a result, signals received by new threads will be +handled in the usual way, which may affect the parent and in turn +appear to the attached process, but attributed to the parent (possibly +in unexpected ways). + +== Following thread death == + +If any thread with the PTRACE_O_TRACEEXIT option set exits (either by +returning or pthread_exit'ing), the tracing process will receive an +immediate PTRACE_EVENT_EXIT. At this point, the thread will still +exist. The exit status, encoded as for wait, can be queried using +PTRACE_GETEVENTMSG on the exiting thread's PID. The thread should be +continued so it can actually exit, after which its wait behavior is +the same as for a thread without the PTRACE_O_TRACEEXIT option. + +If a non-main thread exits (either by returning or pthread_exit'ing), +its corresponding process will also exit, producing a WIFEXITED event +(after the process is continued from a possible PTRACE_EVENT_EXIT +event). It is *not* necessary for another thread to ptrace_join for +this to happen. + +If the main thread exits by returning, then all threads will exit, +first generating a PTRACE_EVENT_EXIT event for each thread if +appropriate, then producing a WIFEXITED event for each thread. + +If the main thread exits using pthread_exit, then it enters a +non-waitable zombie state. It will still produce an immediate +PTRACE_O_TRACEEXIT event, but the WIFEXITED event will be delayed +until the entire process exits. This state exists so that shells +don't think the process is done until all of the threads have exited. +Unfortunately, signals cannot be delivered to non-waitable zombies. +Most notably, SIGSTOP cannot be delivered; as a result, when you +broadcast SIGSTOP to all of the threads, you must not wait for +non-waitable zombies to stop. Furthermore, any ptrace command on a +non-waitable zombie, including PTRACE_DETACH, will return ESRCH. + +== Multi-threaded debuggers == + +If the debugger itself is multi-threaded, ptrace calls must come from +the same thread that originally attached to the remote thread. The +kernel simply compares the PID of the caller of ptrace against the +tracer PID of the process passed to ptrace. Because each debugger +thread has a different PID, calling ptrace from a different thread +might as well be calling it from a different process and the kernel +will return ESRCH. + +wait, on the other hand, does not have this restriction. Any debugger +thread can wait on any thread in the attached process. |