summaryrefslogtreecommitdiff
path: root/libgo/go/math
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /libgo/go/math
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'libgo/go/math')
-rw-r--r--libgo/go/math/acosh.go62
-rw-r--r--libgo/go/math/all_test.go2737
-rw-r--r--libgo/go/math/asin.go50
-rw-r--r--libgo/go/math/asinh.go72
-rw-r--r--libgo/go/math/atan.go62
-rw-r--r--libgo/go/math/atan2.go71
-rw-r--r--libgo/go/math/atanh.go79
-rw-r--r--libgo/go/math/bits.go59
-rw-r--r--libgo/go/math/cbrt.go79
-rw-r--r--libgo/go/math/const.go53
-rw-r--r--libgo/go/math/copysign.go12
-rw-r--r--libgo/go/math/erf.go340
-rw-r--r--libgo/go/math/exp.go14
-rw-r--r--libgo/go/math/exp2.go10
-rw-r--r--libgo/go/math/exp_port.go192
-rw-r--r--libgo/go/math/exp_test.go10
-rw-r--r--libgo/go/math/expm1.go238
-rw-r--r--libgo/go/math/fabs.go21
-rw-r--r--libgo/go/math/fdim.go29
-rw-r--r--libgo/go/math/floor.go53
-rw-r--r--libgo/go/math/fmod.go48
-rw-r--r--libgo/go/math/frexp.go33
-rw-r--r--libgo/go/math/gamma.go188
-rw-r--r--libgo/go/math/hypot.go41
-rw-r--r--libgo/go/math/hypot_port.go63
-rw-r--r--libgo/go/math/hypot_test.go9
-rw-r--r--libgo/go/math/j0.go433
-rw-r--r--libgo/go/math/j1.go426
-rw-r--r--libgo/go/math/jn.go310
-rw-r--r--libgo/go/math/ldexp.go45
-rw-r--r--libgo/go/math/lgamma.go350
-rw-r--r--libgo/go/math/log.go123
-rw-r--r--libgo/go/math/log10.go13
-rw-r--r--libgo/go/math/log10_decl.go8
-rw-r--r--libgo/go/math/log1p.go200
-rw-r--r--libgo/go/math/logb.go54
-rw-r--r--libgo/go/math/modf.go33
-rw-r--r--libgo/go/math/nextafter.go29
-rw-r--r--libgo/go/math/pow.go139
-rw-r--r--libgo/go/math/pow10.go30
-rw-r--r--libgo/go/math/remainder.go85
-rw-r--r--libgo/go/math/signbit.go10
-rw-r--r--libgo/go/math/sin.go66
-rw-r--r--libgo/go/math/sincos.go13
-rw-r--r--libgo/go/math/sinh.go68
-rw-r--r--libgo/go/math/sqrt.go28
-rw-r--r--libgo/go/math/sqrt_decl.go7
-rw-r--r--libgo/go/math/sqrt_port.go143
-rw-r--r--libgo/go/math/sqrt_test.go9
-rw-r--r--libgo/go/math/tan.go65
-rw-r--r--libgo/go/math/tanh.go28
-rw-r--r--libgo/go/math/unsafe.go21
52 files changed, 7361 insertions, 0 deletions
diff --git a/libgo/go/math/acosh.go b/libgo/go/math/acosh.go
new file mode 100644
index 000000000..d8067c065
--- /dev/null
+++ b/libgo/go/math/acosh.go
@@ -0,0 +1,62 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+
+// The original C code, the long comment, and the constants
+// below are from FreeBSD's /usr/src/lib/msun/src/e_acosh.c
+// and came with this notice. The go code is a simplified
+// version of the original C.
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+//
+// __ieee754_acosh(x)
+// Method :
+// Based on
+// acosh(x) = log [ x + sqrt(x*x-1) ]
+// we have
+// acosh(x) := log(x)+ln2, if x is large; else
+// acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
+// acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
+//
+// Special cases:
+// acosh(x) is NaN with signal if x<1.
+// acosh(NaN) is NaN without signal.
+//
+
+// Acosh(x) calculates the inverse hyperbolic cosine of x.
+//
+// Special cases are:
+// Acosh(x) = NaN if x < 1
+// Acosh(NaN) = NaN
+func Acosh(x float64) float64 {
+ const (
+ Ln2 = 6.93147180559945286227e-01 // 0x3FE62E42FEFA39EF
+ Large = 1 << 28 // 2**28
+ )
+ // TODO(rsc): Remove manual inlining of IsNaN
+ // when compiler does it for us
+ // first case is special case
+ switch {
+ case x < 1 || x != x: // x < 1 || IsNaN(x):
+ return NaN()
+ case x == 1:
+ return 0
+ case x >= Large:
+ return Log(x) + Ln2 // x > 2**28
+ case x > 2:
+ return Log(2*x - 1/(x+Sqrt(x*x-1))) // 2**28 > x > 2
+ }
+ t := x - 1
+ return Log1p(t + Sqrt(2*t+t*t)) // 2 >= x > 1
+}
diff --git a/libgo/go/math/all_test.go b/libgo/go/math/all_test.go
new file mode 100644
index 000000000..d2a7d411e
--- /dev/null
+++ b/libgo/go/math/all_test.go
@@ -0,0 +1,2737 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math_test
+
+import (
+ "fmt"
+ . "math"
+ "runtime"
+ "testing"
+)
+
+var vf = []float64{
+ 4.9790119248836735e+00,
+ 7.7388724745781045e+00,
+ -2.7688005719200159e-01,
+ -5.0106036182710749e+00,
+ 9.6362937071984173e+00,
+ 2.9263772392439646e+00,
+ 5.2290834314593066e+00,
+ 2.7279399104360102e+00,
+ 1.8253080916808550e+00,
+ -8.6859247685756013e+00,
+}
+// The expected results below were computed by the high precision calculators
+// at http://keisan.casio.com/. More exact input values (array vf[], above)
+// were obtained by printing them with "%.26f". The answers were calculated
+// to 26 digits (by using the "Digit number" drop-down control of each
+// calculator).
+var acos = []float64{
+ 1.0496193546107222142571536e+00,
+ 6.8584012813664425171660692e-01,
+ 1.5984878714577160325521819e+00,
+ 2.0956199361475859327461799e+00,
+ 2.7053008467824138592616927e-01,
+ 1.2738121680361776018155625e+00,
+ 1.0205369421140629186287407e+00,
+ 1.2945003481781246062157835e+00,
+ 1.3872364345374451433846657e+00,
+ 2.6231510803970463967294145e+00,
+}
+var acosh = []float64{
+ 2.4743347004159012494457618e+00,
+ 2.8576385344292769649802701e+00,
+ 7.2796961502981066190593175e-01,
+ 2.4796794418831451156471977e+00,
+ 3.0552020742306061857212962e+00,
+ 2.044238592688586588942468e+00,
+ 2.5158701513104513595766636e+00,
+ 1.99050839282411638174299e+00,
+ 1.6988625798424034227205445e+00,
+ 2.9611454842470387925531875e+00,
+}
+var asin = []float64{
+ 5.2117697218417440497416805e-01,
+ 8.8495619865825236751471477e-01,
+ -02.769154466281941332086016e-02,
+ -5.2482360935268931351485822e-01,
+ 1.3002662421166552333051524e+00,
+ 2.9698415875871901741575922e-01,
+ 5.5025938468083370060258102e-01,
+ 2.7629597861677201301553823e-01,
+ 1.83559892257451475846656e-01,
+ -1.0523547536021497774980928e+00,
+}
+var asinh = []float64{
+ 2.3083139124923523427628243e+00,
+ 2.743551594301593620039021e+00,
+ -2.7345908534880091229413487e-01,
+ -2.3145157644718338650499085e+00,
+ 2.9613652154015058521951083e+00,
+ 1.7949041616585821933067568e+00,
+ 2.3564032905983506405561554e+00,
+ 1.7287118790768438878045346e+00,
+ 1.3626658083714826013073193e+00,
+ -2.8581483626513914445234004e+00,
+}
+var atan = []float64{
+ 1.372590262129621651920085e+00,
+ 1.442290609645298083020664e+00,
+ -2.7011324359471758245192595e-01,
+ -1.3738077684543379452781531e+00,
+ 1.4673921193587666049154681e+00,
+ 1.2415173565870168649117764e+00,
+ 1.3818396865615168979966498e+00,
+ 1.2194305844639670701091426e+00,
+ 1.0696031952318783760193244e+00,
+ -1.4561721938838084990898679e+00,
+}
+var atanh = []float64{
+ 5.4651163712251938116878204e-01,
+ 1.0299474112843111224914709e+00,
+ -2.7695084420740135145234906e-02,
+ -5.5072096119207195480202529e-01,
+ 1.9943940993171843235906642e+00,
+ 3.01448604578089708203017e-01,
+ 5.8033427206942188834370595e-01,
+ 2.7987997499441511013958297e-01,
+ 1.8459947964298794318714228e-01,
+ -1.3273186910532645867272502e+00,
+}
+var atan2 = []float64{
+ 1.1088291730037004444527075e+00,
+ 9.1218183188715804018797795e-01,
+ 1.5984772603216203736068915e+00,
+ 2.0352918654092086637227327e+00,
+ 8.0391819139044720267356014e-01,
+ 1.2861075249894661588866752e+00,
+ 1.0889904479131695712182587e+00,
+ 1.3044821793397925293797357e+00,
+ 1.3902530903455392306872261e+00,
+ 2.2859857424479142655411058e+00,
+}
+var cbrt = []float64{
+ 1.7075799841925094446722675e+00,
+ 1.9779982212970353936691498e+00,
+ -6.5177429017779910853339447e-01,
+ -1.7111838886544019873338113e+00,
+ 2.1279920909827937423960472e+00,
+ 1.4303536770460741452312367e+00,
+ 1.7357021059106154902341052e+00,
+ 1.3972633462554328350552916e+00,
+ 1.2221149580905388454977636e+00,
+ -2.0556003730500069110343596e+00,
+}
+var ceil = []float64{
+ 5.0000000000000000e+00,
+ 8.0000000000000000e+00,
+ 0.0000000000000000e+00,
+ -5.0000000000000000e+00,
+ 1.0000000000000000e+01,
+ 3.0000000000000000e+00,
+ 6.0000000000000000e+00,
+ 3.0000000000000000e+00,
+ 2.0000000000000000e+00,
+ -8.0000000000000000e+00,
+}
+var copysign = []float64{
+ -4.9790119248836735e+00,
+ -7.7388724745781045e+00,
+ -2.7688005719200159e-01,
+ -5.0106036182710749e+00,
+ -9.6362937071984173e+00,
+ -2.9263772392439646e+00,
+ -5.2290834314593066e+00,
+ -2.7279399104360102e+00,
+ -1.8253080916808550e+00,
+ -8.6859247685756013e+00,
+}
+var cos = []float64{
+ 2.634752140995199110787593e-01,
+ 1.148551260848219865642039e-01,
+ 9.6191297325640768154550453e-01,
+ 2.938141150061714816890637e-01,
+ -9.777138189897924126294461e-01,
+ -9.7693041344303219127199518e-01,
+ 4.940088096948647263961162e-01,
+ -9.1565869021018925545016502e-01,
+ -2.517729313893103197176091e-01,
+ -7.39241351595676573201918e-01,
+}
+var cosh = []float64{
+ 7.2668796942212842775517446e+01,
+ 1.1479413465659254502011135e+03,
+ 1.0385767908766418550935495e+00,
+ 7.5000957789658051428857788e+01,
+ 7.655246669605357888468613e+03,
+ 9.3567491758321272072888257e+00,
+ 9.331351599270605471131735e+01,
+ 7.6833430994624643209296404e+00,
+ 3.1829371625150718153881164e+00,
+ 2.9595059261916188501640911e+03,
+}
+var erf = []float64{
+ 5.1865354817738701906913566e-01,
+ 7.2623875834137295116929844e-01,
+ -3.123458688281309990629839e-02,
+ -5.2143121110253302920437013e-01,
+ 8.2704742671312902508629582e-01,
+ 3.2101767558376376743993945e-01,
+ 5.403990312223245516066252e-01,
+ 3.0034702916738588551174831e-01,
+ 2.0369924417882241241559589e-01,
+ -7.8069386968009226729944677e-01,
+}
+var erfc = []float64{
+ 4.8134645182261298093086434e-01,
+ 2.7376124165862704883070156e-01,
+ 1.0312345868828130999062984e+00,
+ 1.5214312111025330292043701e+00,
+ 1.7295257328687097491370418e-01,
+ 6.7898232441623623256006055e-01,
+ 4.596009687776754483933748e-01,
+ 6.9965297083261411448825169e-01,
+ 7.9630075582117758758440411e-01,
+ 1.7806938696800922672994468e+00,
+}
+var exp = []float64{
+ 1.4533071302642137507696589e+02,
+ 2.2958822575694449002537581e+03,
+ 7.5814542574851666582042306e-01,
+ 6.6668778421791005061482264e-03,
+ 1.5310493273896033740861206e+04,
+ 1.8659907517999328638667732e+01,
+ 1.8662167355098714543942057e+02,
+ 1.5301332413189378961665788e+01,
+ 6.2047063430646876349125085e+00,
+ 1.6894712385826521111610438e-04,
+}
+var expm1 = []float64{
+ 5.105047796122957327384770212e-02,
+ 8.046199708567344080562675439e-02,
+ -2.764970978891639815187418703e-03,
+ -4.8871434888875355394330300273e-02,
+ 1.0115864277221467777117227494e-01,
+ 2.969616407795910726014621657e-02,
+ 5.368214487944892300914037972e-02,
+ 2.765488851131274068067445335e-02,
+ 1.842068661871398836913874273e-02,
+ -8.3193870863553801814961137573e-02,
+}
+var exp2 = []float64{
+ 3.1537839463286288034313104e+01,
+ 2.1361549283756232296144849e+02,
+ 8.2537402562185562902577219e-01,
+ 3.1021158628740294833424229e-02,
+ 7.9581744110252191462569661e+02,
+ 7.6019905892596359262696423e+00,
+ 3.7506882048388096973183084e+01,
+ 6.6250893439173561733216375e+00,
+ 3.5438267900243941544605339e+00,
+ 2.4281533133513300984289196e-03,
+}
+var fabs = []float64{
+ 4.9790119248836735e+00,
+ 7.7388724745781045e+00,
+ 2.7688005719200159e-01,
+ 5.0106036182710749e+00,
+ 9.6362937071984173e+00,
+ 2.9263772392439646e+00,
+ 5.2290834314593066e+00,
+ 2.7279399104360102e+00,
+ 1.8253080916808550e+00,
+ 8.6859247685756013e+00,
+}
+var fdim = []float64{
+ 4.9790119248836735e+00,
+ 7.7388724745781045e+00,
+ 0.0000000000000000e+00,
+ 0.0000000000000000e+00,
+ 9.6362937071984173e+00,
+ 2.9263772392439646e+00,
+ 5.2290834314593066e+00,
+ 2.7279399104360102e+00,
+ 1.8253080916808550e+00,
+ 0.0000000000000000e+00,
+}
+var floor = []float64{
+ 4.0000000000000000e+00,
+ 7.0000000000000000e+00,
+ -1.0000000000000000e+00,
+ -6.0000000000000000e+00,
+ 9.0000000000000000e+00,
+ 2.0000000000000000e+00,
+ 5.0000000000000000e+00,
+ 2.0000000000000000e+00,
+ 1.0000000000000000e+00,
+ -9.0000000000000000e+00,
+}
+var fmod = []float64{
+ 4.197615023265299782906368e-02,
+ 2.261127525421895434476482e+00,
+ 3.231794108794261433104108e-02,
+ 4.989396381728925078391512e+00,
+ 3.637062928015826201999516e-01,
+ 1.220868282268106064236690e+00,
+ 4.770916568540693347699744e+00,
+ 1.816180268691969246219742e+00,
+ 8.734595415957246977711748e-01,
+ 1.314075231424398637614104e+00,
+}
+
+type fi struct {
+ f float64
+ i int
+}
+
+var frexp = []fi{
+ {6.2237649061045918750e-01, 3},
+ {9.6735905932226306250e-01, 3},
+ {-5.5376011438400318000e-01, -1},
+ {-6.2632545228388436250e-01, 3},
+ {6.02268356699901081250e-01, 4},
+ {7.3159430981099115000e-01, 2},
+ {6.5363542893241332500e-01, 3},
+ {6.8198497760900255000e-01, 2},
+ {9.1265404584042750000e-01, 1},
+ {-5.4287029803597508250e-01, 4},
+}
+var gamma = []float64{
+ 2.3254348370739963835386613898e+01,
+ 2.991153837155317076427529816e+03,
+ -4.561154336726758060575129109e+00,
+ 7.719403468842639065959210984e-01,
+ 1.6111876618855418534325755566e+05,
+ 1.8706575145216421164173224946e+00,
+ 3.4082787447257502836734201635e+01,
+ 1.579733951448952054898583387e+00,
+ 9.3834586598354592860187267089e-01,
+ -2.093995902923148389186189429e-05,
+}
+var j0 = []float64{
+ -1.8444682230601672018219338e-01,
+ 2.27353668906331975435892e-01,
+ 9.809259936157051116270273e-01,
+ -1.741170131426226587841181e-01,
+ -2.1389448451144143352039069e-01,
+ -2.340905848928038763337414e-01,
+ -1.0029099691890912094586326e-01,
+ -1.5466726714884328135358907e-01,
+ 3.252650187653420388714693e-01,
+ -8.72218484409407250005360235e-03,
+}
+var j1 = []float64{
+ -3.251526395295203422162967e-01,
+ 1.893581711430515718062564e-01,
+ -1.3711761352467242914491514e-01,
+ 3.287486536269617297529617e-01,
+ 1.3133899188830978473849215e-01,
+ 3.660243417832986825301766e-01,
+ -3.4436769271848174665420672e-01,
+ 4.329481396640773768835036e-01,
+ 5.8181350531954794639333955e-01,
+ -2.7030574577733036112996607e-01,
+}
+var j2 = []float64{
+ 5.3837518920137802565192769e-02,
+ -1.7841678003393207281244667e-01,
+ 9.521746934916464142495821e-03,
+ 4.28958355470987397983072e-02,
+ 2.4115371837854494725492872e-01,
+ 4.842458532394520316844449e-01,
+ -3.142145220618633390125946e-02,
+ 4.720849184745124761189957e-01,
+ 3.122312022520957042957497e-01,
+ 7.096213118930231185707277e-02,
+}
+var jM3 = []float64{
+ -3.684042080996403091021151e-01,
+ 2.8157665936340887268092661e-01,
+ 4.401005480841948348343589e-04,
+ 3.629926999056814081597135e-01,
+ 3.123672198825455192489266e-02,
+ -2.958805510589623607540455e-01,
+ -3.2033177696533233403289416e-01,
+ -2.592737332129663376736604e-01,
+ -1.0241334641061485092351251e-01,
+ -2.3762660886100206491674503e-01,
+}
+var lgamma = []fi{
+ {3.146492141244545774319734e+00, 1},
+ {8.003414490659126375852113e+00, 1},
+ {1.517575735509779707488106e+00, -1},
+ {-2.588480028182145853558748e-01, 1},
+ {1.1989897050205555002007985e+01, 1},
+ {6.262899811091257519386906e-01, 1},
+ {3.5287924899091566764846037e+00, 1},
+ {4.5725644770161182299423372e-01, 1},
+ {-6.363667087767961257654854e-02, 1},
+ {-1.077385130910300066425564e+01, -1},
+}
+var log = []float64{
+ 1.605231462693062999102599e+00,
+ 2.0462560018708770653153909e+00,
+ -1.2841708730962657801275038e+00,
+ 1.6115563905281545116286206e+00,
+ 2.2655365644872016636317461e+00,
+ 1.0737652208918379856272735e+00,
+ 1.6542360106073546632707956e+00,
+ 1.0035467127723465801264487e+00,
+ 6.0174879014578057187016475e-01,
+ 2.161703872847352815363655e+00,
+}
+var logb = []float64{
+ 2.0000000000000000e+00,
+ 2.0000000000000000e+00,
+ -2.0000000000000000e+00,
+ 2.0000000000000000e+00,
+ 3.0000000000000000e+00,
+ 1.0000000000000000e+00,
+ 2.0000000000000000e+00,
+ 1.0000000000000000e+00,
+ 0.0000000000000000e+00,
+ 3.0000000000000000e+00,
+}
+var log10 = []float64{
+ 6.9714316642508290997617083e-01,
+ 8.886776901739320576279124e-01,
+ -5.5770832400658929815908236e-01,
+ 6.998900476822994346229723e-01,
+ 9.8391002850684232013281033e-01,
+ 4.6633031029295153334285302e-01,
+ 7.1842557117242328821552533e-01,
+ 4.3583479968917773161304553e-01,
+ 2.6133617905227038228626834e-01,
+ 9.3881606348649405716214241e-01,
+}
+var log1p = []float64{
+ 4.8590257759797794104158205e-02,
+ 7.4540265965225865330849141e-02,
+ -2.7726407903942672823234024e-03,
+ -5.1404917651627649094953380e-02,
+ 9.1998280672258624681335010e-02,
+ 2.8843762576593352865894824e-02,
+ 5.0969534581863707268992645e-02,
+ 2.6913947602193238458458594e-02,
+ 1.8088493239630770262045333e-02,
+ -9.0865245631588989681559268e-02,
+}
+var log2 = []float64{
+ 2.3158594707062190618898251e+00,
+ 2.9521233862883917703341018e+00,
+ -1.8526669502700329984917062e+00,
+ 2.3249844127278861543568029e+00,
+ 3.268478366538305087466309e+00,
+ 1.5491157592596970278166492e+00,
+ 2.3865580889631732407886495e+00,
+ 1.447811865817085365540347e+00,
+ 8.6813999540425116282815557e-01,
+ 3.118679457227342224364709e+00,
+}
+var modf = [][2]float64{
+ {4.0000000000000000e+00, 9.7901192488367350108546816e-01},
+ {7.0000000000000000e+00, 7.3887247457810456552351752e-01},
+ {0.0000000000000000e+00, -2.7688005719200159404635997e-01},
+ {-5.0000000000000000e+00, -1.060361827107492160848778e-02},
+ {9.0000000000000000e+00, 6.3629370719841737980004837e-01},
+ {2.0000000000000000e+00, 9.2637723924396464525443662e-01},
+ {5.0000000000000000e+00, 2.2908343145930665230025625e-01},
+ {2.0000000000000000e+00, 7.2793991043601025126008608e-01},
+ {1.0000000000000000e+00, 8.2530809168085506044576505e-01},
+ {-8.0000000000000000e+00, -6.8592476857560136238589621e-01},
+}
+var nextafter = []float64{
+ 4.97901192488367438926388786e+00,
+ 7.73887247457810545370193722e+00,
+ -2.7688005719200153853520874e-01,
+ -5.01060361827107403343006808e+00,
+ 9.63629370719841915615688777e+00,
+ 2.92637723924396508934364647e+00,
+ 5.22908343145930754047867595e+00,
+ 2.72793991043601069534929593e+00,
+ 1.82530809168085528249036997e+00,
+ -8.68592476857559958602905681e+00,
+}
+var pow = []float64{
+ 9.5282232631648411840742957e+04,
+ 5.4811599352999901232411871e+07,
+ 5.2859121715894396531132279e-01,
+ 9.7587991957286474464259698e-06,
+ 4.328064329346044846740467e+09,
+ 8.4406761805034547437659092e+02,
+ 1.6946633276191194947742146e+05,
+ 5.3449040147551939075312879e+02,
+ 6.688182138451414936380374e+01,
+ 2.0609869004248742886827439e-09,
+}
+var remainder = []float64{
+ 4.197615023265299782906368e-02,
+ 2.261127525421895434476482e+00,
+ 3.231794108794261433104108e-02,
+ -2.120723654214984321697556e-02,
+ 3.637062928015826201999516e-01,
+ 1.220868282268106064236690e+00,
+ -4.581668629186133046005125e-01,
+ -9.117596417440410050403443e-01,
+ 8.734595415957246977711748e-01,
+ 1.314075231424398637614104e+00,
+}
+var signbit = []bool{
+ false,
+ false,
+ true,
+ true,
+ false,
+ false,
+ false,
+ false,
+ false,
+ true,
+}
+var sin = []float64{
+ -9.6466616586009283766724726e-01,
+ 9.9338225271646545763467022e-01,
+ -2.7335587039794393342449301e-01,
+ 9.5586257685042792878173752e-01,
+ -2.099421066779969164496634e-01,
+ 2.135578780799860532750616e-01,
+ -8.694568971167362743327708e-01,
+ 4.019566681155577786649878e-01,
+ 9.6778633541687993721617774e-01,
+ -6.734405869050344734943028e-01,
+}
+var sinh = []float64{
+ 7.2661916084208532301448439e+01,
+ 1.1479409110035194500526446e+03,
+ -2.8043136512812518927312641e-01,
+ -7.499429091181587232835164e+01,
+ 7.6552466042906758523925934e+03,
+ 9.3031583421672014313789064e+00,
+ 9.330815755828109072810322e+01,
+ 7.6179893137269146407361477e+00,
+ 3.021769180549615819524392e+00,
+ -2.95950575724449499189888e+03,
+}
+var sqrt = []float64{
+ 2.2313699659365484748756904e+00,
+ 2.7818829009464263511285458e+00,
+ 5.2619393496314796848143251e-01,
+ 2.2384377628763938724244104e+00,
+ 3.1042380236055381099288487e+00,
+ 1.7106657298385224403917771e+00,
+ 2.286718922705479046148059e+00,
+ 1.6516476350711159636222979e+00,
+ 1.3510396336454586262419247e+00,
+ 2.9471892997524949215723329e+00,
+}
+var tan = []float64{
+ -3.661316565040227801781974e+00,
+ 8.64900232648597589369854e+00,
+ -2.8417941955033612725238097e-01,
+ 3.253290185974728640827156e+00,
+ 2.147275640380293804770778e-01,
+ -2.18600910711067004921551e-01,
+ -1.760002817872367935518928e+00,
+ -4.389808914752818126249079e-01,
+ -3.843885560201130679995041e+00,
+ 9.10988793377685105753416e-01,
+}
+var tanh = []float64{
+ 9.9990531206936338549262119e-01,
+ 9.9999962057085294197613294e-01,
+ -2.7001505097318677233756845e-01,
+ -9.9991110943061718603541401e-01,
+ 9.9999999146798465745022007e-01,
+ 9.9427249436125236705001048e-01,
+ 9.9994257600983138572705076e-01,
+ 9.9149409509772875982054701e-01,
+ 9.4936501296239685514466577e-01,
+ -9.9999994291374030946055701e-01,
+}
+var trunc = []float64{
+ 4.0000000000000000e+00,
+ 7.0000000000000000e+00,
+ -0.0000000000000000e+00,
+ -5.0000000000000000e+00,
+ 9.0000000000000000e+00,
+ 2.0000000000000000e+00,
+ 5.0000000000000000e+00,
+ 2.0000000000000000e+00,
+ 1.0000000000000000e+00,
+ -8.0000000000000000e+00,
+}
+var y0 = []float64{
+ -3.053399153780788357534855e-01,
+ 1.7437227649515231515503649e-01,
+ -8.6221781263678836910392572e-01,
+ -3.100664880987498407872839e-01,
+ 1.422200649300982280645377e-01,
+ 4.000004067997901144239363e-01,
+ -3.3340749753099352392332536e-01,
+ 4.5399790746668954555205502e-01,
+ 4.8290004112497761007536522e-01,
+ 2.7036697826604756229601611e-01,
+}
+var y1 = []float64{
+ 0.15494213737457922210218611,
+ -0.2165955142081145245075746,
+ -2.4644949631241895201032829,
+ 0.1442740489541836405154505,
+ 0.2215379960518984777080163,
+ 0.3038800915160754150565448,
+ 0.0691107642452362383808547,
+ 0.2380116417809914424860165,
+ -0.20849492979459761009678934,
+ 0.0242503179793232308250804,
+}
+var y2 = []float64{
+ 0.3675780219390303613394936,
+ -0.23034826393250119879267257,
+ -16.939677983817727205631397,
+ 0.367653980523052152867791,
+ -0.0962401471767804440353136,
+ -0.1923169356184851105200523,
+ 0.35984072054267882391843766,
+ -0.2794987252299739821654982,
+ -0.7113490692587462579757954,
+ -0.2647831587821263302087457,
+}
+var yM3 = []float64{
+ -0.14035984421094849100895341,
+ -0.097535139617792072703973,
+ 242.25775994555580176377379,
+ -0.1492267014802818619511046,
+ 0.26148702629155918694500469,
+ 0.56675383593895176530394248,
+ -0.206150264009006981070575,
+ 0.64784284687568332737963658,
+ 1.3503631555901938037008443,
+ 0.1461869756579956803341844,
+}
+
+// arguments and expected results for special cases
+var vfacosSC = []float64{
+ -Pi,
+ 1,
+ Pi,
+ NaN(),
+}
+var acosSC = []float64{
+ NaN(),
+ 0,
+ NaN(),
+ NaN(),
+}
+
+var vfacoshSC = []float64{
+ Inf(-1),
+ 0.5,
+ 1,
+ Inf(1),
+ NaN(),
+}
+var acoshSC = []float64{
+ NaN(),
+ NaN(),
+ 0,
+ Inf(1),
+ NaN(),
+}
+
+var vfasinSC = []float64{
+ -Pi,
+ Copysign(0, -1),
+ 0,
+ Pi,
+ NaN(),
+}
+var asinSC = []float64{
+ NaN(),
+ Copysign(0, -1),
+ 0,
+ NaN(),
+ NaN(),
+}
+
+var vfasinhSC = []float64{
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var asinhSC = []float64{
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+
+var vfatanSC = []float64{
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var atanSC = []float64{
+ -Pi / 2,
+ Copysign(0, -1),
+ 0,
+ Pi / 2,
+ NaN(),
+}
+
+var vfatanhSC = []float64{
+ Inf(-1),
+ -Pi,
+ -1,
+ Copysign(0, -1),
+ 0,
+ 1,
+ Pi,
+ Inf(1),
+ NaN(),
+}
+var atanhSC = []float64{
+ NaN(),
+ NaN(),
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+ NaN(),
+ NaN(),
+}
+var vfatan2SC = [][2]float64{
+ {Inf(-1), Inf(-1)},
+ {Inf(-1), -Pi},
+ {Inf(-1), 0},
+ {Inf(-1), +Pi},
+ {Inf(-1), Inf(1)},
+ {Inf(-1), NaN()},
+ {-Pi, Inf(-1)},
+ {-Pi, 0},
+ {-Pi, Inf(1)},
+ {-Pi, NaN()},
+ {Copysign(0, -1), Inf(-1)},
+ {Copysign(0, -1), -Pi},
+ {Copysign(0, -1), Copysign(0, -1)},
+ {Copysign(0, -1), 0},
+ {Copysign(0, -1), +Pi},
+ {Copysign(0, -1), Inf(1)},
+ {Copysign(0, -1), NaN()},
+ {0, Inf(-1)},
+ {0, -Pi},
+ {0, Copysign(0, -1)},
+ {0, 0},
+ {0, +Pi},
+ {0, Inf(1)},
+ {0, NaN()},
+ {+Pi, Inf(-1)},
+ {+Pi, 0},
+ {+Pi, Inf(1)},
+ {+Pi, NaN()},
+ {Inf(1), Inf(-1)},
+ {Inf(1), -Pi},
+ {Inf(1), 0},
+ {Inf(1), +Pi},
+ {Inf(1), Inf(1)},
+ {Inf(1), NaN()},
+ {NaN(), NaN()},
+}
+var atan2SC = []float64{
+ -3 * Pi / 4, // atan2(-Inf, -Inf)
+ -Pi / 2, // atan2(-Inf, -Pi)
+ -Pi / 2, // atan2(-Inf, +0)
+ -Pi / 2, // atan2(-Inf, +Pi)
+ -Pi / 4, // atan2(-Inf, +Inf)
+ NaN(), // atan2(-Inf, NaN)
+ -Pi, // atan2(-Pi, -Inf)
+ -Pi / 2, // atan2(-Pi, +0)
+ Copysign(0, -1), // atan2(-Pi, Inf)
+ NaN(), // atan2(-Pi, NaN)
+ -Pi, // atan2(-0, -Inf)
+ -Pi, // atan2(-0, -Pi)
+ -Pi, // atan2(-0, -0)
+ Copysign(0, -1), // atan2(-0, +0)
+ Copysign(0, -1), // atan2(-0, +Pi)
+ Copysign(0, -1), // atan2(-0, +Inf)
+ NaN(), // atan2(-0, NaN)
+ Pi, // atan2(+0, -Inf)
+ Pi, // atan2(+0, -Pi)
+ Pi, // atan2(+0, -0)
+ 0, // atan2(+0, +0)
+ 0, // atan2(+0, +Pi)
+ 0, // atan2(+0, +Inf)
+ NaN(), // atan2(+0, NaN)
+ Pi, // atan2(+Pi, -Inf)
+ Pi / 2, // atan2(+Pi, +0)
+ 0, // atan2(+Pi, +Inf)
+ NaN(), // atan2(+Pi, NaN)
+ 3 * Pi / 4, // atan2(+Inf, -Inf)
+ Pi / 2, // atan2(+Inf, -Pi)
+ Pi / 2, // atan2(+Inf, +0)
+ Pi / 2, // atan2(+Inf, +Pi)
+ Pi / 4, // atan2(+Inf, +Inf)
+ NaN(), // atan2(+Inf, NaN)
+ NaN(), // atan2(NaN, NaN)
+}
+
+var vfcbrtSC = []float64{
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var cbrtSC = []float64{
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+
+var vfceilSC = []float64{
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var ceilSC = []float64{
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+
+var vfcopysignSC = []float64{
+ Inf(-1),
+ Inf(1),
+ NaN(),
+}
+var copysignSC = []float64{
+ Inf(-1),
+ Inf(-1),
+ NaN(),
+}
+
+var vfcosSC = []float64{
+ Inf(-1),
+ Inf(1),
+ NaN(),
+}
+var cosSC = []float64{
+ NaN(),
+ NaN(),
+ NaN(),
+}
+
+var vfcoshSC = []float64{
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var coshSC = []float64{
+ Inf(1),
+ 1,
+ 1,
+ Inf(1),
+ NaN(),
+}
+
+var vferfSC = []float64{
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var erfSC = []float64{
+ -1,
+ Copysign(0, -1),
+ 0,
+ 1,
+ NaN(),
+}
+
+var vferfcSC = []float64{
+ Inf(-1),
+ Inf(1),
+ NaN(),
+}
+var erfcSC = []float64{
+ 2,
+ 0,
+ NaN(),
+}
+
+var vfexpSC = []float64{
+ Inf(-1),
+ -2000,
+ 2000,
+ Inf(1),
+ NaN(),
+}
+var expSC = []float64{
+ 0,
+ 0,
+ Inf(1),
+ Inf(1),
+ NaN(),
+}
+
+var vfexpm1SC = []float64{
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var expm1SC = []float64{
+ -1,
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+
+var vffabsSC = []float64{
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var fabsSC = []float64{
+ Inf(1),
+ 0,
+ 0,
+ Inf(1),
+ NaN(),
+}
+
+var vffmodSC = [][2]float64{
+ {Inf(-1), Inf(-1)},
+ {Inf(-1), -Pi},
+ {Inf(-1), 0},
+ {Inf(-1), Pi},
+ {Inf(-1), Inf(1)},
+ {Inf(-1), NaN()},
+ {-Pi, Inf(-1)},
+ {-Pi, 0},
+ {-Pi, Inf(1)},
+ {-Pi, NaN()},
+ {Copysign(0, -1), Inf(-1)},
+ {Copysign(0, -1), 0},
+ {Copysign(0, -1), Inf(1)},
+ {Copysign(0, -1), NaN()},
+ {0, Inf(-1)},
+ {0, 0},
+ {0, Inf(1)},
+ {0, NaN()},
+ {Pi, Inf(-1)},
+ {Pi, 0},
+ {Pi, Inf(1)},
+ {Pi, NaN()},
+ {Inf(1), Inf(-1)},
+ {Inf(1), -Pi},
+ {Inf(1), 0},
+ {Inf(1), Pi},
+ {Inf(1), Inf(1)},
+ {Inf(1), NaN()},
+ {NaN(), Inf(-1)},
+ {NaN(), -Pi},
+ {NaN(), 0},
+ {NaN(), Pi},
+ {NaN(), Inf(1)},
+ {NaN(), NaN()},
+}
+var fmodSC = []float64{
+ NaN(), // fmod(-Inf, -Inf)
+ NaN(), // fmod(-Inf, -Pi)
+ NaN(), // fmod(-Inf, 0)
+ NaN(), // fmod(-Inf, Pi)
+ NaN(), // fmod(-Inf, +Inf)
+ NaN(), // fmod(-Inf, NaN)
+ -Pi, // fmod(-Pi, -Inf)
+ NaN(), // fmod(-Pi, 0)
+ -Pi, // fmod(-Pi, +Inf)
+ NaN(), // fmod(-Pi, NaN)
+ Copysign(0, -1), // fmod(-0, -Inf)
+ NaN(), // fmod(-0, 0)
+ Copysign(0, -1), // fmod(-0, Inf)
+ NaN(), // fmod(-0, NaN)
+ 0, // fmod(0, -Inf)
+ NaN(), // fmod(0, 0)
+ 0, // fmod(0, +Inf)
+ NaN(), // fmod(0, NaN)
+ Pi, // fmod(Pi, -Inf)
+ NaN(), // fmod(Pi, 0)
+ Pi, // fmod(Pi, +Inf)
+ NaN(), // fmod(Pi, NaN)
+ NaN(), // fmod(+Inf, -Inf)
+ NaN(), // fmod(+Inf, -Pi)
+ NaN(), // fmod(+Inf, 0)
+ NaN(), // fmod(+Inf, Pi)
+ NaN(), // fmod(+Inf, +Inf)
+ NaN(), // fmod(+Inf, NaN)
+ NaN(), // fmod(NaN, -Inf)
+ NaN(), // fmod(NaN, -Pi)
+ NaN(), // fmod(NaN, 0)
+ NaN(), // fmod(NaN, Pi)
+ NaN(), // fmod(NaN, +Inf)
+ NaN(), // fmod(NaN, NaN)
+}
+
+var vffrexpSC = []float64{
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var frexpSC = []fi{
+ {Inf(-1), 0},
+ {Copysign(0, -1), 0},
+ {0, 0},
+ {Inf(1), 0},
+ {NaN(), 0},
+}
+
+var vfgammaSC = []float64{
+ Inf(-1),
+ -3,
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var gammaSC = []float64{
+ Inf(-1),
+ Inf(1),
+ Inf(1),
+ Inf(1),
+ Inf(1),
+ NaN(),
+}
+
+var vfhypotSC = [][2]float64{
+ {Inf(-1), Inf(-1)},
+ {Inf(-1), 0},
+ {Inf(-1), Inf(1)},
+ {Inf(-1), NaN()},
+ {Copysign(0, -1), Copysign(0, -1)},
+ {Copysign(0, -1), 0},
+ {0, Copysign(0, -1)},
+ {0, 0}, // +0, +0
+ {0, Inf(-1)},
+ {0, Inf(1)},
+ {0, NaN()},
+ {Inf(1), Inf(-1)},
+ {Inf(1), 0},
+ {Inf(1), Inf(1)},
+ {Inf(1), NaN()},
+ {NaN(), Inf(-1)},
+ {NaN(), 0},
+ {NaN(), Inf(1)},
+ {NaN(), NaN()},
+}
+var hypotSC = []float64{
+ Inf(1),
+ Inf(1),
+ Inf(1),
+ Inf(1),
+ 0,
+ 0,
+ 0,
+ 0,
+ Inf(1),
+ Inf(1),
+ NaN(),
+ Inf(1),
+ Inf(1),
+ Inf(1),
+ Inf(1),
+ Inf(1),
+ NaN(),
+ Inf(1),
+ NaN(),
+}
+
+var vfilogbSC = []float64{
+ Inf(-1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var ilogbSC = []int{
+ MaxInt32,
+ MinInt32,
+ MaxInt32,
+ MaxInt32,
+}
+
+var vfj0SC = []float64{
+ Inf(-1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var j0SC = []float64{
+ 0,
+ 1,
+ 0,
+ NaN(),
+}
+var j1SC = []float64{
+ 0,
+ 0,
+ 0,
+ NaN(),
+}
+var j2SC = []float64{
+ 0,
+ 0,
+ 0,
+ NaN(),
+}
+var jM3SC = []float64{
+ 0,
+ 0,
+ 0,
+ NaN(),
+}
+
+var vfldexpSC = []fi{
+ {0, 0},
+ {0, -1075},
+ {0, 1024},
+ {Copysign(0, -1), 0},
+ {Copysign(0, -1), -1075},
+ {Copysign(0, -1), 1024},
+ {Inf(1), 0},
+ {Inf(1), -1024},
+ {Inf(-1), 0},
+ {Inf(-1), -1024},
+ {NaN(), -1024},
+}
+var ldexpSC = []float64{
+ 0,
+ 0,
+ 0,
+ Copysign(0, -1),
+ Copysign(0, -1),
+ Copysign(0, -1),
+ Inf(1),
+ Inf(1),
+ Inf(-1),
+ Inf(-1),
+ NaN(),
+}
+
+var vflgammaSC = []float64{
+ Inf(-1),
+ -3,
+ 0,
+ 1,
+ 2,
+ Inf(1),
+ NaN(),
+}
+var lgammaSC = []fi{
+ {Inf(-1), 1},
+ {Inf(1), 1},
+ {Inf(1), 1},
+ {0, 1},
+ {0, 1},
+ {Inf(1), 1},
+ {NaN(), 1},
+}
+
+var vflogSC = []float64{
+ Inf(-1),
+ -Pi,
+ Copysign(0, -1),
+ 0,
+ 1,
+ Inf(1),
+ NaN(),
+}
+var logSC = []float64{
+ NaN(),
+ NaN(),
+ Inf(-1),
+ Inf(-1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+
+var vflogbSC = []float64{
+ Inf(-1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var logbSC = []float64{
+ Inf(1),
+ Inf(-1),
+ Inf(1),
+ NaN(),
+}
+
+var vflog1pSC = []float64{
+ Inf(-1),
+ -Pi,
+ -1,
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var log1pSC = []float64{
+ NaN(),
+ NaN(),
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+
+var vfmodfSC = []float64{
+ Inf(-1),
+ Inf(1),
+ NaN(),
+}
+var modfSC = [][2]float64{
+ {Inf(-1), NaN()}, // [2]float64{Copysign(0, -1), Inf(-1)},
+ {Inf(1), NaN()}, // [2]float64{0, Inf(1)},
+ {NaN(), NaN()},
+}
+
+var vfnextafterSC = [][2]float64{
+ {0, NaN()},
+ {NaN(), 0},
+ {NaN(), NaN()},
+}
+var nextafterSC = []float64{
+ NaN(),
+ NaN(),
+ NaN(),
+}
+
+var vfpowSC = [][2]float64{
+ {Inf(-1), -Pi},
+ {Inf(-1), -3},
+ {Inf(-1), Copysign(0, -1)},
+ {Inf(-1), 0},
+ {Inf(-1), 1},
+ {Inf(-1), 3},
+ {Inf(-1), Pi},
+ {Inf(-1), NaN()},
+
+ {-Pi, Inf(-1)},
+ {-Pi, -Pi},
+ {-Pi, Copysign(0, -1)},
+ {-Pi, 0},
+ {-Pi, 1},
+ {-Pi, Pi},
+ {-Pi, Inf(1)},
+ {-Pi, NaN()},
+
+ {-1, Inf(-1)},
+ {-1, Inf(1)},
+ {-1, NaN()},
+ {-1 / 2, Inf(-1)},
+ {-1 / 2, Inf(1)},
+ {Copysign(0, -1), Inf(-1)},
+ {Copysign(0, -1), -Pi},
+ {Copysign(0, -1), -3},
+ {Copysign(0, -1), 3},
+ {Copysign(0, -1), Pi},
+ {Copysign(0, -1), Inf(1)},
+
+ {0, Inf(-1)},
+ {0, -Pi},
+ {0, -3},
+ {0, Copysign(0, -1)},
+ {0, 0},
+ {0, 3},
+ {0, Pi},
+ {0, Inf(1)},
+ {0, NaN()},
+
+ {1 / 2, Inf(-1)},
+ {1 / 2, Inf(1)},
+ {1, Inf(-1)},
+ {1, Inf(1)},
+ {1, NaN()},
+
+ {Pi, Inf(-1)},
+ {Pi, Copysign(0, -1)},
+ {Pi, 0},
+ {Pi, 1},
+ {Pi, Inf(1)},
+ {Pi, NaN()},
+ {Inf(1), -Pi},
+ {Inf(1), Copysign(0, -1)},
+ {Inf(1), 0},
+ {Inf(1), 1},
+ {Inf(1), Pi},
+ {Inf(1), NaN()},
+ {NaN(), -Pi},
+ {NaN(), Copysign(0, -1)},
+ {NaN(), 0},
+ {NaN(), 1},
+ {NaN(), Pi},
+ {NaN(), NaN()},
+}
+var powSC = []float64{
+ 0, // pow(-Inf, -Pi)
+ Copysign(0, -1), // pow(-Inf, -3)
+ 1, // pow(-Inf, -0)
+ 1, // pow(-Inf, +0)
+ Inf(-1), // pow(-Inf, 1)
+ Inf(-1), // pow(-Inf, 3)
+ Inf(1), // pow(-Inf, Pi)
+ NaN(), // pow(-Inf, NaN)
+ 0, // pow(-Pi, -Inf)
+ NaN(), // pow(-Pi, -Pi)
+ 1, // pow(-Pi, -0)
+ 1, // pow(-Pi, +0)
+ -Pi, // pow(-Pi, 1)
+ NaN(), // pow(-Pi, Pi)
+ Inf(1), // pow(-Pi, +Inf)
+ NaN(), // pow(-Pi, NaN)
+ 1, // pow(-1, -Inf) IEEE 754-2008
+ 1, // pow(-1, +Inf) IEEE 754-2008
+ NaN(), // pow(-1, NaN)
+ Inf(1), // pow(-1/2, -Inf)
+ 0, // pow(-1/2, +Inf)
+ Inf(1), // pow(-0, -Inf)
+ Inf(1), // pow(-0, -Pi)
+ Inf(-1), // pow(-0, -3) IEEE 754-2008
+ Copysign(0, -1), // pow(-0, 3) IEEE 754-2008
+ 0, // pow(-0, +Pi)
+ 0, // pow(-0, +Inf)
+ Inf(1), // pow(+0, -Inf)
+ Inf(1), // pow(+0, -Pi)
+ Inf(1), // pow(+0, -3)
+ 1, // pow(+0, -0)
+ 1, // pow(+0, +0)
+ 0, // pow(+0, 3)
+ 0, // pow(+0, +Pi)
+ 0, // pow(+0, +Inf)
+ NaN(), // pow(+0, NaN)
+ Inf(1), // pow(1/2, -Inf)
+ 0, // pow(1/2, +Inf)
+ 1, // pow(1, -Inf) IEEE 754-2008
+ 1, // pow(1, +Inf) IEEE 754-2008
+ 1, // pow(1, NaN) IEEE 754-2008
+ 0, // pow(+Pi, -Inf)
+ 1, // pow(+Pi, -0)
+ 1, // pow(+Pi, +0)
+ Pi, // pow(+Pi, 1)
+ Inf(1), // pow(+Pi, +Inf)
+ NaN(), // pow(+Pi, NaN)
+ 0, // pow(+Inf, -Pi)
+ 1, // pow(+Inf, -0)
+ 1, // pow(+Inf, +0)
+ Inf(1), // pow(+Inf, 1)
+ Inf(1), // pow(+Inf, Pi)
+ NaN(), // pow(+Inf, NaN)
+ NaN(), // pow(NaN, -Pi)
+ 1, // pow(NaN, -0)
+ 1, // pow(NaN, +0)
+ NaN(), // pow(NaN, 1)
+ NaN(), // pow(NaN, +Pi)
+ NaN(), // pow(NaN, NaN)
+}
+
+var vfsignbitSC = []float64{
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var signbitSC = []bool{
+ true,
+ true,
+ false,
+ false,
+ false,
+}
+
+var vfsinSC = []float64{
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var sinSC = []float64{
+ NaN(),
+ Copysign(0, -1),
+ 0,
+ NaN(),
+ NaN(),
+}
+
+var vfsinhSC = []float64{
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var sinhSC = []float64{
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+
+var vfsqrtSC = []float64{
+ Inf(-1),
+ -Pi,
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var sqrtSC = []float64{
+ NaN(),
+ NaN(),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+
+var vftanhSC = []float64{
+ Inf(-1),
+ Copysign(0, -1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var tanhSC = []float64{
+ -1,
+ Copysign(0, -1),
+ 0,
+ 1,
+ NaN(),
+}
+
+var vfy0SC = []float64{
+ Inf(-1),
+ 0,
+ Inf(1),
+ NaN(),
+}
+var y0SC = []float64{
+ NaN(),
+ Inf(-1),
+ 0,
+ NaN(),
+}
+var y1SC = []float64{
+ NaN(),
+ Inf(-1),
+ 0,
+ NaN(),
+}
+var y2SC = []float64{
+ NaN(),
+ Inf(-1),
+ 0,
+ NaN(),
+}
+var yM3SC = []float64{
+ NaN(),
+ Inf(1),
+ 0,
+ NaN(),
+}
+
+// arguments and expected results for boundary cases
+const (
+ SmallestNormalFloat64 = 2.2250738585072014e-308 // 2**-1022
+ LargestSubnormalFloat64 = SmallestNormalFloat64 - SmallestNonzeroFloat64
+)
+
+var vffrexpBC = []float64{
+ SmallestNormalFloat64,
+ LargestSubnormalFloat64,
+ SmallestNonzeroFloat64,
+ MaxFloat64,
+ -SmallestNormalFloat64,
+ -LargestSubnormalFloat64,
+ -SmallestNonzeroFloat64,
+ -MaxFloat64,
+}
+var frexpBC = []fi{
+ {0.5, -1021},
+ {0.99999999999999978, -1022},
+ {0.5, -1073},
+ {0.99999999999999989, 1024},
+ {-0.5, -1021},
+ {-0.99999999999999978, -1022},
+ {-0.5, -1073},
+ {-0.99999999999999989, 1024},
+}
+
+var vfldexpBC = []fi{
+ {SmallestNormalFloat64, -52},
+ {LargestSubnormalFloat64, -51},
+ {SmallestNonzeroFloat64, 1074},
+ {MaxFloat64, -(1023 + 1074)},
+ {1, -1075},
+ {-1, -1075},
+ {1, 1024},
+ {-1, 1024},
+}
+var ldexpBC = []float64{
+ SmallestNonzeroFloat64,
+ 1e-323, // 2**-1073
+ 1,
+ 1e-323, // 2**-1073
+ 0,
+ Copysign(0, -1),
+ Inf(1),
+ Inf(-1),
+}
+
+var logbBC = []float64{
+ -1022,
+ -1023,
+ -1074,
+ 1023,
+ -1022,
+ -1023,
+ -1074,
+ 1023,
+}
+
+func tolerance(a, b, e float64) bool {
+ d := a - b
+ if d < 0 {
+ d = -d
+ }
+
+ if a != 0 {
+ e = e * a
+ if e < 0 {
+ e = -e
+ }
+ }
+ return d < e
+}
+func kindaclose(a, b float64) bool { return tolerance(a, b, 1e-8) }
+func close(a, b float64) bool { return tolerance(a, b, 1e-14) }
+func veryclose(a, b float64) bool { return tolerance(a, b, 4e-16) }
+func soclose(a, b, e float64) bool { return tolerance(a, b, e) }
+func alike(a, b float64) bool {
+ switch {
+ case IsNaN(a) && IsNaN(b):
+ return true
+ case a == b:
+ return Signbit(a) == Signbit(b)
+ }
+ return false
+}
+
+func TestAcos(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ a := vf[i] / 10
+ if f := Acos(a); !close(acos[i], f) {
+ t.Errorf("Acos(%g) = %g, want %g", a, f, acos[i])
+ }
+ }
+ for i := 0; i < len(vfacosSC); i++ {
+ if f := Acos(vfacosSC[i]); !alike(acosSC[i], f) {
+ t.Errorf("Acos(%g) = %g, want %g", vfacosSC[i], f, acosSC[i])
+ }
+ }
+}
+
+func TestAcosh(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ a := 1 + Fabs(vf[i])
+ if f := Acosh(a); !veryclose(acosh[i], f) {
+ t.Errorf("Acosh(%g) = %g, want %g", a, f, acosh[i])
+ }
+ }
+ for i := 0; i < len(vfacoshSC); i++ {
+ if f := Acosh(vfacoshSC[i]); !alike(acoshSC[i], f) {
+ t.Errorf("Acosh(%g) = %g, want %g", vfacoshSC[i], f, acoshSC[i])
+ }
+ }
+}
+
+func TestAsin(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ a := vf[i] / 10
+ if f := Asin(a); !veryclose(asin[i], f) {
+ t.Errorf("Asin(%g) = %g, want %g", a, f, asin[i])
+ }
+ }
+ for i := 0; i < len(vfasinSC); i++ {
+ if f := Asin(vfasinSC[i]); !alike(asinSC[i], f) {
+ t.Errorf("Asin(%g) = %g, want %g", vfasinSC[i], f, asinSC[i])
+ }
+ }
+}
+
+func TestAsinh(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Asinh(vf[i]); !veryclose(asinh[i], f) {
+ t.Errorf("Asinh(%g) = %g, want %g", vf[i], f, asinh[i])
+ }
+ }
+ for i := 0; i < len(vfasinhSC); i++ {
+ if f := Asinh(vfasinhSC[i]); !alike(asinhSC[i], f) {
+ t.Errorf("Asinh(%g) = %g, want %g", vfasinhSC[i], f, asinhSC[i])
+ }
+ }
+}
+
+func TestAtan(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Atan(vf[i]); !veryclose(atan[i], f) {
+ t.Errorf("Atan(%g) = %g, want %g", vf[i], f, atan[i])
+ }
+ }
+ for i := 0; i < len(vfatanSC); i++ {
+ if f := Atan(vfatanSC[i]); !alike(atanSC[i], f) {
+ t.Errorf("Atan(%g) = %g, want %g", vfatanSC[i], f, atanSC[i])
+ }
+ }
+}
+
+func TestAtanh(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ a := vf[i] / 10
+ if f := Atanh(a); !veryclose(atanh[i], f) {
+ t.Errorf("Atanh(%g) = %g, want %g", a, f, atanh[i])
+ }
+ }
+ for i := 0; i < len(vfatanhSC); i++ {
+ if f := Atanh(vfatanhSC[i]); !alike(atanhSC[i], f) {
+ t.Errorf("Atanh(%g) = %g, want %g", vfatanhSC[i], f, atanhSC[i])
+ }
+ }
+}
+
+func TestAtan2(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Atan2(10, vf[i]); !veryclose(atan2[i], f) {
+ t.Errorf("Atan2(10, %g) = %g, want %g", vf[i], f, atan2[i])
+ }
+ }
+ for i := 0; i < len(vfatan2SC); i++ {
+ if f := Atan2(vfatan2SC[i][0], vfatan2SC[i][1]); !alike(atan2SC[i], f) {
+ t.Errorf("Atan2(%g, %g) = %g, want %g", vfatan2SC[i][0], vfatan2SC[i][1], f, atan2SC[i])
+ }
+ }
+}
+
+func TestCbrt(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Cbrt(vf[i]); !veryclose(cbrt[i], f) {
+ t.Errorf("Cbrt(%g) = %g, want %g", vf[i], f, cbrt[i])
+ }
+ }
+ for i := 0; i < len(vfcbrtSC); i++ {
+ if f := Cbrt(vfcbrtSC[i]); !alike(cbrtSC[i], f) {
+ t.Errorf("Cbrt(%g) = %g, want %g", vfcbrtSC[i], f, cbrtSC[i])
+ }
+ }
+}
+
+func TestCeil(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Ceil(vf[i]); ceil[i] != f {
+ t.Errorf("Ceil(%g) = %g, want %g", vf[i], f, ceil[i])
+ }
+ }
+ for i := 0; i < len(vfceilSC); i++ {
+ if f := Ceil(vfceilSC[i]); !alike(ceilSC[i], f) {
+ t.Errorf("Ceil(%g) = %g, want %g", vfceilSC[i], f, ceilSC[i])
+ }
+ }
+}
+
+func TestCopysign(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Copysign(vf[i], -1); copysign[i] != f {
+ t.Errorf("Copysign(%g, -1) = %g, want %g", vf[i], f, copysign[i])
+ }
+ }
+ for i := 0; i < len(vf); i++ {
+ if f := Copysign(vf[i], 1); -copysign[i] != f {
+ t.Errorf("Copysign(%g, 1) = %g, want %g", vf[i], f, -copysign[i])
+ }
+ }
+ for i := 0; i < len(vfcopysignSC); i++ {
+ if f := Copysign(vfcopysignSC[i], -1); !alike(copysignSC[i], f) {
+ t.Errorf("Copysign(%g, -1) = %g, want %g", vfcopysignSC[i], f, copysignSC[i])
+ }
+ }
+}
+
+func TestCos(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Cos(vf[i]); !close(cos[i], f) {
+ t.Errorf("Cos(%g) = %g, want %g", vf[i], f, cos[i])
+ }
+ }
+ for i := 0; i < len(vfcosSC); i++ {
+ if f := Cos(vfcosSC[i]); !alike(cosSC[i], f) {
+ t.Errorf("Cos(%g) = %g, want %g", vfcosSC[i], f, cosSC[i])
+ }
+ }
+}
+
+func TestCosh(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Cosh(vf[i]); !close(cosh[i], f) {
+ t.Errorf("Cosh(%g) = %g, want %g", vf[i], f, cosh[i])
+ }
+ }
+ for i := 0; i < len(vfcoshSC); i++ {
+ if f := Cosh(vfcoshSC[i]); !alike(coshSC[i], f) {
+ t.Errorf("Cosh(%g) = %g, want %g", vfcoshSC[i], f, coshSC[i])
+ }
+ }
+}
+
+func TestErf(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ a := vf[i] / 10
+ if f := Erf(a); !veryclose(erf[i], f) {
+ t.Errorf("Erf(%g) = %g, want %g", a, f, erf[i])
+ }
+ }
+ for i := 0; i < len(vferfSC); i++ {
+ if f := Erf(vferfSC[i]); !alike(erfSC[i], f) {
+ t.Errorf("Erf(%g) = %g, want %g", vferfSC[i], f, erfSC[i])
+ }
+ }
+}
+
+func TestErfc(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ a := vf[i] / 10
+ if f := Erfc(a); !veryclose(erfc[i], f) {
+ t.Errorf("Erfc(%g) = %g, want %g", a, f, erfc[i])
+ }
+ }
+ for i := 0; i < len(vferfcSC); i++ {
+ if f := Erfc(vferfcSC[i]); !alike(erfcSC[i], f) {
+ t.Errorf("Erfc(%g) = %g, want %g", vferfcSC[i], f, erfcSC[i])
+ }
+ }
+}
+
+func TestExp(t *testing.T) {
+ testExp(t, Exp, "Exp")
+ testExp(t, ExpGo, "ExpGo")
+}
+
+func testExp(t *testing.T, Exp func(float64) float64, name string) {
+ for i := 0; i < len(vf); i++ {
+ if f := Exp(vf[i]); !close(exp[i], f) {
+ t.Errorf("%s(%g) = %g, want %g", name, vf[i], f, exp[i])
+ }
+ }
+ for i := 0; i < len(vfexpSC); i++ {
+ if f := Exp(vfexpSC[i]); !alike(expSC[i], f) {
+ t.Errorf("%s(%g) = %g, want %g", name, vfexpSC[i], f, expSC[i])
+ }
+ }
+}
+
+func TestExpm1(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ a := vf[i] / 100
+ if f := Expm1(a); !veryclose(expm1[i], f) {
+ t.Errorf("Expm1(%g) = %g, want %g", a, f, expm1[i])
+ }
+ }
+ for i := 0; i < len(vfexpm1SC); i++ {
+ if f := Expm1(vfexpm1SC[i]); !alike(expm1SC[i], f) {
+ t.Errorf("Expm1(%g) = %g, want %g", vfexpm1SC[i], f, expm1SC[i])
+ }
+ }
+}
+
+func TestExp2(t *testing.T) {
+ testExp2(t, Exp2, "Exp2")
+ testExp2(t, Exp2Go, "Exp2Go")
+}
+
+func testExp2(t *testing.T, Exp2 func(float64) float64, name string) {
+ for i := 0; i < len(vf); i++ {
+ if f := Exp2(vf[i]); !close(exp2[i], f) {
+ t.Errorf("%s(%g) = %g, want %g", name, vf[i], f, exp2[i])
+ }
+ }
+ for i := 0; i < len(vfexpSC); i++ {
+ if f := Exp2(vfexpSC[i]); !alike(expSC[i], f) {
+ t.Errorf("%s(%g) = %g, want %g", name, vfexpSC[i], f, expSC[i])
+ }
+ }
+ for n := -1074; n < 1024; n++ {
+ f := Exp2(float64(n))
+ vf := Ldexp(1, n)
+ if f != vf {
+ t.Errorf("%s(%d) = %g, want %g", name, n, f, vf)
+ }
+ }
+}
+
+func TestFabs(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Fabs(vf[i]); fabs[i] != f {
+ t.Errorf("Fabs(%g) = %g, want %g", vf[i], f, fabs[i])
+ }
+ }
+ for i := 0; i < len(vffabsSC); i++ {
+ if f := Fabs(vffabsSC[i]); !alike(fabsSC[i], f) {
+ t.Errorf("Fabs(%g) = %g, want %g", vffabsSC[i], f, fabsSC[i])
+ }
+ }
+}
+
+func TestFdim(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Fdim(vf[i], 0); fdim[i] != f {
+ t.Errorf("Fdim(%g, %g) = %g, want %g", vf[i], 0.0, f, fdim[i])
+ }
+ }
+}
+
+func TestFloor(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Floor(vf[i]); floor[i] != f {
+ t.Errorf("Floor(%g) = %g, want %g", vf[i], f, floor[i])
+ }
+ }
+ for i := 0; i < len(vfceilSC); i++ {
+ if f := Floor(vfceilSC[i]); !alike(ceilSC[i], f) {
+ t.Errorf("Floor(%g) = %g, want %g", vfceilSC[i], f, ceilSC[i])
+ }
+ }
+}
+
+func TestFmax(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Fmax(vf[i], ceil[i]); ceil[i] != f {
+ t.Errorf("Fmax(%g, %g) = %g, want %g", vf[i], ceil[i], f, ceil[i])
+ }
+ }
+}
+
+func TestFmin(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Fmin(vf[i], floor[i]); floor[i] != f {
+ t.Errorf("Fmin(%g, %g) = %g, want %g", vf[i], floor[i], f, floor[i])
+ }
+ }
+}
+
+func TestFmod(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Fmod(10, vf[i]); fmod[i] != f {
+ t.Errorf("Fmod(10, %g) = %g, want %g", vf[i], f, fmod[i])
+ }
+ }
+ for i := 0; i < len(vffmodSC); i++ {
+ if f := Fmod(vffmodSC[i][0], vffmodSC[i][1]); !alike(fmodSC[i], f) {
+ t.Errorf("Fmod(%g, %g) = %g, want %g", vffmodSC[i][0], vffmodSC[i][1], f, fmodSC[i])
+ }
+ }
+}
+
+func TestFrexp(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f, j := Frexp(vf[i]); !veryclose(frexp[i].f, f) || frexp[i].i != j {
+ t.Errorf("Frexp(%g) = %g, %d, want %g, %d", vf[i], f, j, frexp[i].f, frexp[i].i)
+ }
+ }
+ for i := 0; i < len(vffrexpSC); i++ {
+ if f, j := Frexp(vffrexpSC[i]); !alike(frexpSC[i].f, f) || frexpSC[i].i != j {
+ t.Errorf("Frexp(%g) = %g, %d, want %g, %d", vffrexpSC[i], f, j, frexpSC[i].f, frexpSC[i].i)
+ }
+ }
+ for i := 0; i < len(vffrexpBC); i++ {
+ if f, j := Frexp(vffrexpBC[i]); !alike(frexpBC[i].f, f) || frexpBC[i].i != j {
+ t.Errorf("Frexp(%g) = %g, %d, want %g, %d", vffrexpBC[i], f, j, frexpBC[i].f, frexpBC[i].i)
+ }
+ }
+}
+
+func TestGamma(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Gamma(vf[i]); !close(gamma[i], f) {
+ t.Errorf("Gamma(%g) = %g, want %g", vf[i], f, gamma[i])
+ }
+ }
+ for i := 0; i < len(vfgammaSC); i++ {
+ if f := Gamma(vfgammaSC[i]); !alike(gammaSC[i], f) {
+ t.Errorf("Gamma(%g) = %g, want %g", vfgammaSC[i], f, gammaSC[i])
+ }
+ }
+}
+
+func TestHypot(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ a := Fabs(1e200 * tanh[i] * Sqrt(2))
+ if f := Hypot(1e200*tanh[i], 1e200*tanh[i]); !veryclose(a, f) {
+ t.Errorf("Hypot(%g, %g) = %g, want %g", 1e200*tanh[i], 1e200*tanh[i], f, a)
+ }
+ }
+ for i := 0; i < len(vfhypotSC); i++ {
+ if f := Hypot(vfhypotSC[i][0], vfhypotSC[i][1]); !alike(hypotSC[i], f) {
+ t.Errorf("Hypot(%g, %g) = %g, want %g", vfhypotSC[i][0], vfhypotSC[i][1], f, hypotSC[i])
+ }
+ }
+}
+
+func TestIlogb(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ a := frexp[i].i - 1 // adjust because fr in the interval [½, 1)
+ if e := Ilogb(vf[i]); a != e {
+ t.Errorf("Ilogb(%g) = %d, want %d", vf[i], e, a)
+ }
+ }
+ for i := 0; i < len(vflogbSC); i++ {
+ if e := Ilogb(vflogbSC[i]); ilogbSC[i] != e {
+ t.Errorf("Ilogb(%g) = %d, want %d", vflogbSC[i], e, ilogbSC[i])
+ }
+ }
+ for i := 0; i < len(vffrexpBC); i++ {
+ if e := Ilogb(vffrexpBC[i]); int(logbBC[i]) != e {
+ t.Errorf("Ilogb(%g) = %d, want %d", vffrexpBC[i], e, int(logbBC[i]))
+ }
+ }
+}
+
+func TestJ0(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := J0(vf[i]); !soclose(j0[i], f, 4e-14) {
+ t.Errorf("J0(%g) = %g, want %g", vf[i], f, j0[i])
+ }
+ }
+ for i := 0; i < len(vfj0SC); i++ {
+ if f := J0(vfj0SC[i]); !alike(j0SC[i], f) {
+ t.Errorf("J0(%g) = %g, want %g", vfj0SC[i], f, j0SC[i])
+ }
+ }
+}
+
+func TestJ1(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := J1(vf[i]); !close(j1[i], f) {
+ t.Errorf("J1(%g) = %g, want %g", vf[i], f, j1[i])
+ }
+ }
+ for i := 0; i < len(vfj0SC); i++ {
+ if f := J1(vfj0SC[i]); !alike(j1SC[i], f) {
+ t.Errorf("J1(%g) = %g, want %g", vfj0SC[i], f, j1SC[i])
+ }
+ }
+}
+
+func TestJn(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Jn(2, vf[i]); !close(j2[i], f) {
+ t.Errorf("Jn(2, %g) = %g, want %g", vf[i], f, j2[i])
+ }
+ if f := Jn(-3, vf[i]); !close(jM3[i], f) {
+ t.Errorf("Jn(-3, %g) = %g, want %g", vf[i], f, jM3[i])
+ }
+ }
+ for i := 0; i < len(vfj0SC); i++ {
+ if f := Jn(2, vfj0SC[i]); !alike(j2SC[i], f) {
+ t.Errorf("Jn(2, %g) = %g, want %g", vfj0SC[i], f, j2SC[i])
+ }
+ if f := Jn(-3, vfj0SC[i]); !alike(jM3SC[i], f) {
+ t.Errorf("Jn(-3, %g) = %g, want %g", vfj0SC[i], f, jM3SC[i])
+ }
+ }
+}
+
+func TestLdexp(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Ldexp(frexp[i].f, frexp[i].i); !veryclose(vf[i], f) {
+ t.Errorf("Ldexp(%g, %d) = %g, want %g", frexp[i].f, frexp[i].i, f, vf[i])
+ }
+ }
+ for i := 0; i < len(vffrexpSC); i++ {
+ if f := Ldexp(frexpSC[i].f, frexpSC[i].i); !alike(vffrexpSC[i], f) {
+ t.Errorf("Ldexp(%g, %d) = %g, want %g", frexpSC[i].f, frexpSC[i].i, f, vffrexpSC[i])
+ }
+ }
+ for i := 0; i < len(vfldexpSC); i++ {
+ if f := Ldexp(vfldexpSC[i].f, vfldexpSC[i].i); !alike(ldexpSC[i], f) {
+ t.Errorf("Ldexp(%g, %d) = %g, want %g", vfldexpSC[i].f, vfldexpSC[i].i, f, ldexpSC[i])
+ }
+ }
+ for i := 0; i < len(vffrexpBC); i++ {
+ if f := Ldexp(frexpBC[i].f, frexpBC[i].i); !alike(vffrexpBC[i], f) {
+ t.Errorf("Ldexp(%g, %d) = %g, want %g", frexpBC[i].f, frexpBC[i].i, f, vffrexpBC[i])
+ }
+ }
+ for i := 0; i < len(vfldexpBC); i++ {
+ if f := Ldexp(vfldexpBC[i].f, vfldexpBC[i].i); !alike(ldexpBC[i], f) {
+ t.Errorf("Ldexp(%g, %d) = %g, want %g", vfldexpBC[i].f, vfldexpBC[i].i, f, ldexpBC[i])
+ }
+ }
+}
+
+func TestLgamma(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f, s := Lgamma(vf[i]); !close(lgamma[i].f, f) || lgamma[i].i != s {
+ t.Errorf("Lgamma(%g) = %g, %d, want %g, %d", vf[i], f, s, lgamma[i].f, lgamma[i].i)
+ }
+ }
+ for i := 0; i < len(vflgammaSC); i++ {
+ if f, s := Lgamma(vflgammaSC[i]); !alike(lgammaSC[i].f, f) || lgammaSC[i].i != s {
+ t.Errorf("Lgamma(%g) = %g, %d, want %g, %d", vflgammaSC[i], f, s, lgammaSC[i].f, lgammaSC[i].i)
+ }
+ }
+}
+
+func TestLog(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ a := Fabs(vf[i])
+ if f := Log(a); log[i] != f {
+ t.Errorf("Log(%g) = %g, want %g", a, f, log[i])
+ }
+ }
+ if f := Log(10); f != Ln10 {
+ t.Errorf("Log(%g) = %g, want %g", 10.0, f, Ln10)
+ }
+ for i := 0; i < len(vflogSC); i++ {
+ if f := Log(vflogSC[i]); !alike(logSC[i], f) {
+ t.Errorf("Log(%g) = %g, want %g", vflogSC[i], f, logSC[i])
+ }
+ }
+}
+
+func TestLogb(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Logb(vf[i]); logb[i] != f {
+ t.Errorf("Logb(%g) = %g, want %g", vf[i], f, logb[i])
+ }
+ }
+ for i := 0; i < len(vflogbSC); i++ {
+ if f := Logb(vflogbSC[i]); !alike(logbSC[i], f) {
+ t.Errorf("Logb(%g) = %g, want %g", vflogbSC[i], f, logbSC[i])
+ }
+ }
+ for i := 0; i < len(vffrexpBC); i++ {
+ if e := Logb(vffrexpBC[i]); !alike(logbBC[i], e) {
+ t.Errorf("Ilogb(%g) = %g, want %g", vffrexpBC[i], e, logbBC[i])
+ }
+ }
+}
+
+func TestLog10(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ a := Fabs(vf[i])
+ if f := Log10(a); !veryclose(log10[i], f) {
+ t.Errorf("Log10(%g) = %g, want %g", a, f, log10[i])
+ }
+ }
+ if f := Log10(E); f != Log10E {
+ t.Errorf("Log10(%g) = %g, want %g", E, f, Log10E)
+ }
+ for i := 0; i < len(vflogSC); i++ {
+ if f := Log10(vflogSC[i]); !alike(logSC[i], f) {
+ t.Errorf("Log10(%g) = %g, want %g", vflogSC[i], f, logSC[i])
+ }
+ }
+}
+
+func TestLog1p(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ a := vf[i] / 100
+ if f := Log1p(a); !veryclose(log1p[i], f) {
+ t.Errorf("Log1p(%g) = %g, want %g", a, f, log1p[i])
+ }
+ }
+ a := 9.0
+ if f := Log1p(a); f != Ln10 {
+ t.Errorf("Log1p(%g) = %g, want %g", a, f, Ln10)
+ }
+ for i := 0; i < len(vflogSC); i++ {
+ if f := Log1p(vflog1pSC[i]); !alike(log1pSC[i], f) {
+ t.Errorf("Log1p(%g) = %g, want %g", vflog1pSC[i], f, log1pSC[i])
+ }
+ }
+}
+
+func TestLog2(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ a := Fabs(vf[i])
+ if f := Log2(a); !veryclose(log2[i], f) {
+ t.Errorf("Log2(%g) = %g, want %g", a, f, log2[i])
+ }
+ }
+ if f := Log2(E); f != Log2E {
+ t.Errorf("Log2(%g) = %g, want %g", E, f, Log2E)
+ }
+ for i := 0; i < len(vflogSC); i++ {
+ if f := Log2(vflogSC[i]); !alike(logSC[i], f) {
+ t.Errorf("Log2(%g) = %g, want %g", vflogSC[i], f, logSC[i])
+ }
+ }
+}
+
+func TestModf(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f, g := Modf(vf[i]); !veryclose(modf[i][0], f) || !veryclose(modf[i][1], g) {
+ t.Errorf("Modf(%g) = %g, %g, want %g, %g", vf[i], f, g, modf[i][0], modf[i][1])
+ }
+ }
+ for i := 0; i < len(vfmodfSC); i++ {
+ if f, g := Modf(vfmodfSC[i]); !alike(modfSC[i][0], f) || !alike(modfSC[i][1], g) {
+ t.Errorf("Modf(%g) = %g, %g, want %g, %g", vfmodfSC[i], f, g, modfSC[i][0], modfSC[i][1])
+ }
+ }
+}
+
+func TestNextafter(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Nextafter(vf[i], 10); nextafter[i] != f {
+ t.Errorf("Nextafter(%g, %g) = %g want %g", vf[i], 10.0, f, nextafter[i])
+ }
+ }
+ for i := 0; i < len(vfmodfSC); i++ {
+ if f := Nextafter(vfnextafterSC[i][0], vfnextafterSC[i][1]); !alike(nextafterSC[i], f) {
+ t.Errorf("Nextafter(%g, %g) = %g want %g", vfnextafterSC[i][0], vfnextafterSC[i][1], f, nextafterSC[i])
+ }
+ }
+}
+
+func TestPow(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Pow(10, vf[i]); !close(pow[i], f) {
+ t.Errorf("Pow(10, %g) = %g, want %g", vf[i], f, pow[i])
+ }
+ }
+ for i := 0; i < len(vfpowSC); i++ {
+ if f := Pow(vfpowSC[i][0], vfpowSC[i][1]); !alike(powSC[i], f) {
+ t.Errorf("Pow(%g, %g) = %g, want %g", vfpowSC[i][0], vfpowSC[i][1], f, powSC[i])
+ }
+ }
+}
+
+func TestRemainder(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Remainder(10, vf[i]); remainder[i] != f {
+ t.Errorf("Remainder(10, %g) = %g, want %g", vf[i], f, remainder[i])
+ }
+ }
+ for i := 0; i < len(vffmodSC); i++ {
+ if f := Remainder(vffmodSC[i][0], vffmodSC[i][1]); !alike(fmodSC[i], f) {
+ t.Errorf("Remainder(%g, %g) = %g, want %g", vffmodSC[i][0], vffmodSC[i][1], f, fmodSC[i])
+ }
+ }
+}
+
+func TestSignbit(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Signbit(vf[i]); signbit[i] != f {
+ t.Errorf("Signbit(%g) = %t, want %t", vf[i], f, signbit[i])
+ }
+ }
+ for i := 0; i < len(vfsignbitSC); i++ {
+ if f := Signbit(vfsignbitSC[i]); signbitSC[i] != f {
+ t.Errorf("Signbit(%g) = %t, want %t", vfsignbitSC[i], f, signbitSC[i])
+ }
+ }
+}
+func TestSin(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Sin(vf[i]); !close(sin[i], f) {
+ t.Errorf("Sin(%g) = %g, want %g", vf[i], f, sin[i])
+ }
+ }
+ for i := 0; i < len(vfsinSC); i++ {
+ if f := Sin(vfsinSC[i]); !alike(sinSC[i], f) {
+ t.Errorf("Sin(%g) = %g, want %g", vfsinSC[i], f, sinSC[i])
+ }
+ }
+}
+
+func TestSincos(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if s, c := Sincos(vf[i]); !close(sin[i], s) || !close(cos[i], c) {
+ t.Errorf("Sincos(%g) = %g, %g want %g, %g", vf[i], s, c, sin[i], cos[i])
+ }
+ }
+}
+
+func TestSinh(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Sinh(vf[i]); !close(sinh[i], f) {
+ t.Errorf("Sinh(%g) = %g, want %g", vf[i], f, sinh[i])
+ }
+ }
+ for i := 0; i < len(vfsinhSC); i++ {
+ if f := Sinh(vfsinhSC[i]); !alike(sinhSC[i], f) {
+ t.Errorf("Sinh(%g) = %g, want %g", vfsinhSC[i], f, sinhSC[i])
+ }
+ }
+}
+
+func TestSqrt(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ a := Fabs(vf[i])
+ if f := SqrtGo(a); sqrt[i] != f {
+ t.Errorf("SqrtGo(%g) = %g, want %g", a, f, sqrt[i])
+ }
+ a = Fabs(vf[i])
+ if f := Sqrt(a); sqrt[i] != f {
+ t.Errorf("Sqrt(%g) = %g, want %g", a, f, sqrt[i])
+ }
+ }
+ for i := 0; i < len(vfsqrtSC); i++ {
+ if f := SqrtGo(vfsqrtSC[i]); !alike(sqrtSC[i], f) {
+ t.Errorf("SqrtGo(%g) = %g, want %g", vfsqrtSC[i], f, sqrtSC[i])
+ }
+ if f := Sqrt(vfsqrtSC[i]); !alike(sqrtSC[i], f) {
+ t.Errorf("Sqrt(%g) = %g, want %g", vfsqrtSC[i], f, sqrtSC[i])
+ }
+ }
+}
+
+func TestTan(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Tan(vf[i]); !close(tan[i], f) {
+ t.Errorf("Tan(%g) = %g, want %g", vf[i], f, tan[i])
+ }
+ }
+ // same special cases as Sin
+ for i := 0; i < len(vfsinSC); i++ {
+ if f := Tan(vfsinSC[i]); !alike(sinSC[i], f) {
+ t.Errorf("Tan(%g) = %g, want %g", vfsinSC[i], f, sinSC[i])
+ }
+ }
+
+ // Make sure portable Tan(Pi/2) doesn't panic (it used to).
+ // The portable implementation returns NaN.
+ // Assembly implementations might not,
+ // because Pi/2 is not exactly representable.
+ if runtime.GOARCH != "386" {
+ if f := Tan(Pi / 2); !alike(f, NaN()) {
+ t.Errorf("Tan(%g) = %g, want %g", Pi/2, f, NaN())
+ }
+ }
+}
+
+func TestTanh(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Tanh(vf[i]); !veryclose(tanh[i], f) {
+ t.Errorf("Tanh(%g) = %g, want %g", vf[i], f, tanh[i])
+ }
+ }
+ for i := 0; i < len(vftanhSC); i++ {
+ if f := Tanh(vftanhSC[i]); !alike(tanhSC[i], f) {
+ t.Errorf("Tanh(%g) = %g, want %g", vftanhSC[i], f, tanhSC[i])
+ }
+ }
+}
+
+func TestTrunc(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ if f := Trunc(vf[i]); trunc[i] != f {
+ t.Errorf("Trunc(%g) = %g, want %g", vf[i], f, trunc[i])
+ }
+ }
+ for i := 0; i < len(vfceilSC); i++ {
+ if f := Trunc(vfceilSC[i]); !alike(ceilSC[i], f) {
+ t.Errorf("Trunc(%g) = %g, want %g", vfceilSC[i], f, ceilSC[i])
+ }
+ }
+}
+
+func TestY0(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ a := Fabs(vf[i])
+ if f := Y0(a); !close(y0[i], f) {
+ t.Errorf("Y0(%g) = %g, want %g", a, f, y0[i])
+ }
+ }
+ for i := 0; i < len(vfy0SC); i++ {
+ if f := Y0(vfy0SC[i]); !alike(y0SC[i], f) {
+ t.Errorf("Y0(%g) = %g, want %g", vfy0SC[i], f, y0SC[i])
+ }
+ }
+}
+
+func TestY1(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ a := Fabs(vf[i])
+ if f := Y1(a); !soclose(y1[i], f, 2e-14) {
+ t.Errorf("Y1(%g) = %g, want %g", a, f, y1[i])
+ }
+ }
+ for i := 0; i < len(vfy0SC); i++ {
+ if f := Y1(vfy0SC[i]); !alike(y1SC[i], f) {
+ t.Errorf("Y1(%g) = %g, want %g", vfy0SC[i], f, y1SC[i])
+ }
+ }
+}
+
+func TestYn(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ a := Fabs(vf[i])
+ if f := Yn(2, a); !close(y2[i], f) {
+ t.Errorf("Yn(2, %g) = %g, want %g", a, f, y2[i])
+ }
+ if f := Yn(-3, a); !close(yM3[i], f) {
+ t.Errorf("Yn(-3, %g) = %g, want %g", a, f, yM3[i])
+ }
+ }
+ for i := 0; i < len(vfy0SC); i++ {
+ if f := Yn(2, vfy0SC[i]); !alike(y2SC[i], f) {
+ t.Errorf("Yn(2, %g) = %g, want %g", vfy0SC[i], f, y2SC[i])
+ }
+ if f := Yn(-3, vfy0SC[i]); !alike(yM3SC[i], f) {
+ t.Errorf("Yn(-3, %g) = %g, want %g", vfy0SC[i], f, yM3SC[i])
+ }
+ }
+}
+
+// Check that math functions of high angle values
+// return similar results to low angle values
+func TestLargeCos(t *testing.T) {
+ large := float64(100000 * Pi)
+ for i := 0; i < len(vf); i++ {
+ f1 := Cos(vf[i])
+ f2 := Cos(vf[i] + large)
+ if !kindaclose(f1, f2) {
+ t.Errorf("Cos(%g) = %g, want %g", vf[i]+large, f2, f1)
+ }
+ }
+}
+
+func TestLargeSin(t *testing.T) {
+ large := float64(100000 * Pi)
+ for i := 0; i < len(vf); i++ {
+ f1 := Sin(vf[i])
+ f2 := Sin(vf[i] + large)
+ if !kindaclose(f1, f2) {
+ t.Errorf("Sin(%g) = %g, want %g", vf[i]+large, f2, f1)
+ }
+ }
+}
+
+func TestLargeSincos(t *testing.T) {
+ large := float64(100000 * Pi)
+ for i := 0; i < len(vf); i++ {
+ f1, g1 := Sincos(vf[i])
+ f2, g2 := Sincos(vf[i] + large)
+ if !kindaclose(f1, f2) || !kindaclose(g1, g2) {
+ t.Errorf("Sincos(%g) = %g, %g, want %g, %g", vf[i]+large, f2, g2, f1, g1)
+ }
+ }
+}
+
+func TestLargeTan(t *testing.T) {
+ large := float64(100000 * Pi)
+ for i := 0; i < len(vf); i++ {
+ f1 := Tan(vf[i])
+ f2 := Tan(vf[i] + large)
+ if !kindaclose(f1, f2) {
+ t.Errorf("Tan(%g) = %g, want %g", vf[i]+large, f2, f1)
+ }
+ }
+}
+
+// Check that math constants are accepted by compiler
+// and have right value (assumes strconv.Atof works).
+// http://code.google.com/p/go/issues/detail?id=201
+
+type floatTest struct {
+ val interface{}
+ name string
+ str string
+}
+
+var floatTests = []floatTest{
+ {float64(MaxFloat64), "MaxFloat64", "1.7976931348623157e+308"},
+ {float64(SmallestNonzeroFloat64), "SmallestNonzeroFloat64", "5e-324"},
+ {float32(MaxFloat32), "MaxFloat32", "3.4028235e+38"},
+ {float32(SmallestNonzeroFloat32), "SmallestNonzeroFloat32", "1e-45"},
+}
+
+func TestFloatMinMax(t *testing.T) {
+ for _, tt := range floatTests {
+ s := fmt.Sprint(tt.val)
+ if s != tt.str {
+ t.Errorf("Sprint(%v) = %s, want %s", tt.name, s, tt.str)
+ }
+ }
+}
+
+// Benchmarks
+
+func BenchmarkAcos(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Acos(.5)
+ }
+}
+
+func BenchmarkAcosh(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Acosh(1.5)
+ }
+}
+
+func BenchmarkAsin(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Asin(.5)
+ }
+}
+
+func BenchmarkAsinh(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Asinh(.5)
+ }
+}
+
+func BenchmarkAtan(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Atan(.5)
+ }
+}
+
+func BenchmarkAtanh(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Atanh(.5)
+ }
+}
+
+func BenchmarkAtan2(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Atan2(.5, 1)
+ }
+}
+
+func BenchmarkCbrt(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Cbrt(10)
+ }
+}
+
+func BenchmarkCeil(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Ceil(.5)
+ }
+}
+
+func BenchmarkCopysign(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Copysign(.5, -1)
+ }
+}
+
+func BenchmarkCos(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Cos(.5)
+ }
+}
+
+func BenchmarkCosh(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Cosh(2.5)
+ }
+}
+
+func BenchmarkErf(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Erf(.5)
+ }
+}
+
+func BenchmarkErfc(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Erfc(.5)
+ }
+}
+
+func BenchmarkExp(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Exp(.5)
+ }
+}
+
+func BenchmarkExpGo(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ ExpGo(.5)
+ }
+}
+
+func BenchmarkExpm1(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Expm1(.5)
+ }
+}
+
+func BenchmarkExp2(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Exp2(.5)
+ }
+}
+
+func BenchmarkExp2Go(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Exp2Go(.5)
+ }
+}
+
+func BenchmarkFabs(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Fabs(.5)
+ }
+}
+
+func BenchmarkFdim(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Fdim(10, 3)
+ }
+}
+
+func BenchmarkFloor(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Floor(.5)
+ }
+}
+
+func BenchmarkFmax(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Fmax(10, 3)
+ }
+}
+
+func BenchmarkFmin(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Fmin(10, 3)
+ }
+}
+
+func BenchmarkFmod(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Fmod(10, 3)
+ }
+}
+
+func BenchmarkFrexp(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Frexp(8)
+ }
+}
+
+func BenchmarkGamma(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Gamma(2.5)
+ }
+}
+
+func BenchmarkHypot(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Hypot(3, 4)
+ }
+}
+
+func BenchmarkHypotGo(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ HypotGo(3, 4)
+ }
+}
+
+func BenchmarkIlogb(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Ilogb(.5)
+ }
+}
+
+func BenchmarkJ0(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ J0(2.5)
+ }
+}
+
+func BenchmarkJ1(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ J1(2.5)
+ }
+}
+
+func BenchmarkJn(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Jn(2, 2.5)
+ }
+}
+
+func BenchmarkLdexp(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Ldexp(.5, 2)
+ }
+}
+
+func BenchmarkLgamma(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Lgamma(2.5)
+ }
+}
+
+func BenchmarkLog(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Log(.5)
+ }
+}
+
+func BenchmarkLogb(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Logb(.5)
+ }
+}
+
+func BenchmarkLog1p(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Log1p(.5)
+ }
+}
+
+func BenchmarkLog10(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Log10(.5)
+ }
+}
+
+func BenchmarkLog2(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Log2(.5)
+ }
+}
+
+func BenchmarkModf(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Modf(1.5)
+ }
+}
+
+func BenchmarkNextafter(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Nextafter(.5, 1)
+ }
+}
+
+func BenchmarkPowInt(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Pow(2, 2)
+ }
+}
+
+func BenchmarkPowFrac(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Pow(2.5, 1.5)
+ }
+}
+
+func BenchmarkRemainder(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Remainder(10, 3)
+ }
+}
+
+func BenchmarkSignbit(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Signbit(2.5)
+ }
+}
+
+func BenchmarkSin(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Sin(.5)
+ }
+}
+
+func BenchmarkSincos(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Sincos(.5)
+ }
+}
+
+func BenchmarkSinh(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Sinh(2.5)
+ }
+}
+
+func BenchmarkSqrt(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Sqrt(10)
+ }
+}
+
+func BenchmarkSqrtGo(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ SqrtGo(10)
+ }
+}
+
+func BenchmarkTan(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Tan(.5)
+ }
+}
+
+func BenchmarkTanh(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Tanh(2.5)
+ }
+}
+func BenchmarkTrunc(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Trunc(.5)
+ }
+}
+
+func BenchmarkY0(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Y0(2.5)
+ }
+}
+
+func BenchmarkY1(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Y1(2.5)
+ }
+}
+
+func BenchmarkYn(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Yn(2, 2.5)
+ }
+}
diff --git a/libgo/go/math/asin.go b/libgo/go/math/asin.go
new file mode 100644
index 000000000..3bace8ff1
--- /dev/null
+++ b/libgo/go/math/asin.go
@@ -0,0 +1,50 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+
+/*
+ Floating-point arcsine and arccosine.
+
+ They are implemented by computing the arctangent
+ after appropriate range reduction.
+*/
+
+// Asin returns the arcsine of x.
+//
+// Special cases are:
+// Asin(±0) = ±0
+// Asin(x) = NaN if x < -1 or x > 1
+func Asin(x float64) float64 {
+ if x == 0 {
+ return x // special case
+ }
+ sign := false
+ if x < 0 {
+ x = -x
+ sign = true
+ }
+ if x > 1 {
+ return NaN() // special case
+ }
+
+ temp := Sqrt(1 - x*x)
+ if x > 0.7 {
+ temp = Pi/2 - satan(temp/x)
+ } else {
+ temp = satan(x / temp)
+ }
+
+ if sign {
+ temp = -temp
+ }
+ return temp
+}
+
+// Acos returns the arccosine of x.
+//
+// Special case is:
+// Acos(x) = NaN if x < -1 or x > 1
+func Acos(x float64) float64 { return Pi/2 - Asin(x) }
diff --git a/libgo/go/math/asinh.go b/libgo/go/math/asinh.go
new file mode 100644
index 000000000..90dcd27ab
--- /dev/null
+++ b/libgo/go/math/asinh.go
@@ -0,0 +1,72 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+
+// The original C code, the long comment, and the constants
+// below are from FreeBSD's /usr/src/lib/msun/src/s_asinh.c
+// and came with this notice. The go code is a simplified
+// version of the original C.
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+//
+// asinh(x)
+// Method :
+// Based on
+// asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
+// we have
+// asinh(x) := x if 1+x*x=1,
+// := sign(x)*(log(x)+ln2)) for large |x|, else
+// := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
+// := sign(x)*log1p(|x| + x**2/(1 + sqrt(1+x**2)))
+//
+
+// Asinh(x) calculates the inverse hyperbolic sine of x.
+//
+// Special cases are:
+// Asinh(+Inf) = +Inf
+// Asinh(-Inf) = -Inf
+// Asinh(NaN) = NaN
+func Asinh(x float64) float64 {
+ const (
+ Ln2 = 6.93147180559945286227e-01 // 0x3FE62E42FEFA39EF
+ NearZero = 1.0 / (1 << 28) // 2**-28
+ Large = 1 << 28 // 2**28
+ )
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ if x != x || x > MaxFloat64 || x < -MaxFloat64 { // IsNaN(x) || IsInf(x, 0)
+ return x
+ }
+ sign := false
+ if x < 0 {
+ x = -x
+ sign = true
+ }
+ var temp float64
+ switch {
+ case x > Large:
+ temp = Log(x) + Ln2 // |x| > 2**28
+ case x > 2:
+ temp = Log(2*x + 1/(Sqrt(x*x+1)+x)) // 2**28 > |x| > 2.0
+ case x < NearZero:
+ temp = x // |x| < 2**-28
+ default:
+ temp = Log1p(x + x*x/(1+Sqrt(1+x*x))) // 2.0 > |x| > 2**-28
+ }
+ if sign {
+ temp = -temp
+ }
+ return temp
+}
diff --git a/libgo/go/math/atan.go b/libgo/go/math/atan.go
new file mode 100644
index 000000000..9d4ec2f72
--- /dev/null
+++ b/libgo/go/math/atan.go
@@ -0,0 +1,62 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+/*
+ Floating-point arctangent.
+
+ Atan returns the value of the arctangent of its
+ argument in the range [-pi/2,pi/2].
+ There are no error returns.
+ Coefficients are #5077 from Hart & Cheney. (19.56D)
+*/
+
+// xatan evaluates a series valid in the
+// range [-0.414...,+0.414...]. (tan(pi/8))
+func xatan(arg float64) float64 {
+ const (
+ P4 = .161536412982230228262e2
+ P3 = .26842548195503973794141e3
+ P2 = .11530293515404850115428136e4
+ P1 = .178040631643319697105464587e4
+ P0 = .89678597403663861959987488e3
+ Q4 = .5895697050844462222791e2
+ Q3 = .536265374031215315104235e3
+ Q2 = .16667838148816337184521798e4
+ Q1 = .207933497444540981287275926e4
+ Q0 = .89678597403663861962481162e3
+ )
+ sq := arg * arg
+ value := ((((P4*sq+P3)*sq+P2)*sq+P1)*sq + P0)
+ value = value / (((((sq+Q4)*sq+Q3)*sq+Q2)*sq+Q1)*sq + Q0)
+ return value * arg
+}
+
+// satan reduces its argument (known to be positive)
+// to the range [0,0.414...] and calls xatan.
+func satan(arg float64) float64 {
+ if arg < Sqrt2-1 {
+ return xatan(arg)
+ }
+ if arg > Sqrt2+1 {
+ return Pi/2 - xatan(1/arg)
+ }
+ return Pi/4 + xatan((arg-1)/(arg+1))
+}
+
+// Atan returns the arctangent of x.
+//
+// Special cases are:
+// Atan(±0) = ±0
+// Atan(±Inf) = ±Pi/2
+func Atan(x float64) float64 {
+ if x == 0 {
+ return x
+ }
+ if x > 0 {
+ return satan(x)
+ }
+ return -satan(-x)
+}
diff --git a/libgo/go/math/atan2.go b/libgo/go/math/atan2.go
new file mode 100644
index 000000000..49d4bdd71
--- /dev/null
+++ b/libgo/go/math/atan2.go
@@ -0,0 +1,71 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Atan2 returns the arc tangent of y/x, using
+// the signs of the two to determine the quadrant
+// of the return value.
+//
+// Special cases are (in order):
+// Atan2(y, NaN) = NaN
+// Atan2(NaN, x) = NaN
+// Atan2(+0, x>=0) = +0
+// Atan2(-0, x>=0) = -0
+// Atan2(+0, x<=-0) = +Pi
+// Atan2(-0, x<=-0) = -Pi
+// Atan2(y>0, 0) = +Pi/2
+// Atan2(y<0, 0) = -Pi/2
+// Atan2(+Inf, +Inf) = +Pi/4
+// Atan2(-Inf, +Inf) = -Pi/4
+// Atan2(+Inf, -Inf) = 3Pi/4
+// Atan2(-Inf, -Inf) = -3Pi/4
+// Atan2(y, +Inf) = 0
+// Atan2(y>0, -Inf) = +Pi
+// Atan2(y<0, -Inf) = -Pi
+// Atan2(+Inf, x) = +Pi/2
+// Atan2(-Inf, x) = -Pi/2
+func Atan2(y, x float64) float64 {
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case y != y || x != x: // IsNaN(y) || IsNaN(x):
+ return NaN()
+ case y == 0:
+ if x >= 0 && !Signbit(x) {
+ return Copysign(0, y)
+ }
+ return Copysign(Pi, y)
+ case x == 0:
+ return Copysign(Pi/2, y)
+ case x < -MaxFloat64 || x > MaxFloat64: // IsInf(x, 0):
+ if x > MaxFloat64 { // IsInf(x, 1) {
+ switch {
+ case y < -MaxFloat64 || y > MaxFloat64: // IsInf(y, -1) || IsInf(y, 1):
+ return Copysign(Pi/4, y)
+ default:
+ return Copysign(0, y)
+ }
+ }
+ switch {
+ case y < -MaxFloat64 || y > MaxFloat64: // IsInf(y, -1) || IsInf(y, 1):
+ return Copysign(3*Pi/4, y)
+ default:
+ return Copysign(Pi, y)
+ }
+ case y < -MaxFloat64 || y > MaxFloat64: //IsInf(y, 0):
+ return Copysign(Pi/2, y)
+ }
+
+ // Call atan and determine the quadrant.
+ q := Atan(y / x)
+ if x < 0 {
+ if q <= 0 {
+ return q + Pi
+ }
+ return q - Pi
+ }
+ return q
+}
diff --git a/libgo/go/math/atanh.go b/libgo/go/math/atanh.go
new file mode 100644
index 000000000..6aecb7b3b
--- /dev/null
+++ b/libgo/go/math/atanh.go
@@ -0,0 +1,79 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+
+// The original C code, the long comment, and the constants
+// below are from FreeBSD's /usr/src/lib/msun/src/e_atanh.c
+// and came with this notice. The go code is a simplified
+// version of the original C.
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+//
+// __ieee754_atanh(x)
+// Method :
+// 1. Reduce x to positive by atanh(-x) = -atanh(x)
+// 2. For x>=0.5
+// 1 2x x
+// atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
+// 2 1 - x 1 - x
+//
+// For x<0.5
+// atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
+//
+// Special cases:
+// atanh(x) is NaN if |x| > 1 with signal;
+// atanh(NaN) is that NaN with no signal;
+// atanh(+-1) is +-INF with signal.
+//
+
+// Atanh(x) calculates the inverse hyperbolic tangent of x.
+//
+// Special cases are:
+// Atanh(x) = NaN if x < -1 or x > 1
+// Atanh(1) = +Inf
+// Atanh(-1) = -Inf
+// Atanh(NaN) = NaN
+func Atanh(x float64) float64 {
+ const NearZero = 1.0 / (1 << 28) // 2**-28
+ // TODO(rsc): Remove manual inlining of IsNaN
+ // when compiler does it for us
+ // special cases
+ switch {
+ case x < -1 || x > 1 || x != x: // x < -1 || x > 1 || IsNaN(x):
+ return NaN()
+ case x == 1:
+ return Inf(1)
+ case x == -1:
+ return Inf(-1)
+ }
+ sign := false
+ if x < 0 {
+ x = -x
+ sign = true
+ }
+ var temp float64
+ switch {
+ case x < NearZero:
+ temp = x
+ case x < 0.5:
+ temp = x + x
+ temp = 0.5 * Log1p(temp+temp*x/(1-x))
+ default:
+ temp = 0.5 * Log1p((x+x)/(1-x))
+ }
+ if sign {
+ temp = -temp
+ }
+ return temp
+}
diff --git a/libgo/go/math/bits.go b/libgo/go/math/bits.go
new file mode 100644
index 000000000..a1dca3ed6
--- /dev/null
+++ b/libgo/go/math/bits.go
@@ -0,0 +1,59 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+const (
+ uvnan = 0x7FF0000000000001
+ uvinf = 0x7FF0000000000000
+ uvneginf = 0xFFF0000000000000
+ mask = 0x7FF
+ shift = 64 - 11 - 1
+ bias = 1023
+)
+
+// Inf returns positive infinity if sign >= 0, negative infinity if sign < 0.
+func Inf(sign int) float64 {
+ var v uint64
+ if sign >= 0 {
+ v = uvinf
+ } else {
+ v = uvneginf
+ }
+ return Float64frombits(v)
+}
+
+// NaN returns an IEEE 754 ``not-a-number'' value.
+func NaN() float64 { return Float64frombits(uvnan) }
+
+// IsNaN returns whether f is an IEEE 754 ``not-a-number'' value.
+func IsNaN(f float64) (is bool) {
+ // IEEE 754 says that only NaNs satisfy f != f.
+ // To avoid the floating-point hardware, could use:
+ // x := Float64bits(f);
+ // return uint32(x>>shift)&mask == mask && x != uvinf && x != uvneginf
+ return f != f
+}
+
+// IsInf returns whether f is an infinity, according to sign.
+// If sign > 0, IsInf returns whether f is positive infinity.
+// If sign < 0, IsInf returns whether f is negative infinity.
+// If sign == 0, IsInf returns whether f is either infinity.
+func IsInf(f float64, sign int) bool {
+ // Test for infinity by comparing against maximum float.
+ // To avoid the floating-point hardware, could use:
+ // x := Float64bits(f);
+ // return sign >= 0 && x == uvinf || sign <= 0 && x == uvneginf;
+ return sign >= 0 && f > MaxFloat64 || sign <= 0 && f < -MaxFloat64
+}
+
+// normalize returns a normal number y and exponent exp
+// satisfying x == y × 2**exp. It assumes x is finite and non-zero.
+func normalize(x float64) (y float64, exp int) {
+ const SmallestNormal = 2.2250738585072014e-308 // 2**-1022
+ if Fabs(x) < SmallestNormal {
+ return x * (1 << 52), -52
+ }
+ return x, 0
+}
diff --git a/libgo/go/math/cbrt.go b/libgo/go/math/cbrt.go
new file mode 100644
index 000000000..d2b7e910b
--- /dev/null
+++ b/libgo/go/math/cbrt.go
@@ -0,0 +1,79 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+/*
+ The algorithm is based in part on "Optimal Partitioning of
+ Newton's Method for Calculating Roots", by Gunter Meinardus
+ and G. D. Taylor, Mathematics of Computation © 1980 American
+ Mathematical Society.
+ (http://www.jstor.org/stable/2006387?seq=9, accessed 11-Feb-2010)
+*/
+
+// Cbrt returns the cube root of its argument.
+//
+// Special cases are:
+// Cbrt(±0) = ±0
+// Cbrt(±Inf) = ±Inf
+// Cbrt(NaN) = NaN
+func Cbrt(x float64) float64 {
+ const (
+ A1 = 1.662848358e-01
+ A2 = 1.096040958e+00
+ A3 = 4.105032829e-01
+ A4 = 5.649335816e-01
+ B1 = 2.639607233e-01
+ B2 = 8.699282849e-01
+ B3 = 1.629083358e-01
+ B4 = 2.824667908e-01
+ C1 = 4.190115298e-01
+ C2 = 6.904625373e-01
+ C3 = 6.46502159e-02
+ C4 = 1.412333954e-01
+ )
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case x == 0 || x != x || x < -MaxFloat64 || x > MaxFloat64: // x == 0 || IsNaN(x) || IsInf(x, 0):
+ return x
+ }
+ sign := false
+ if x < 0 {
+ x = -x
+ sign = true
+ }
+ // Reduce argument
+ f, e := Frexp(x)
+ m := e % 3
+ if m > 0 {
+ m -= 3
+ e -= m // e is multiple of 3
+ }
+ f = Ldexp(f, m) // 0.125 <= f < 1.0
+
+ // Estimate cube root
+ switch m {
+ case 0: // 0.5 <= f < 1.0
+ f = A1*f + A2 - A3/(A4+f)
+ case -1: // 0.25 <= f < 0.5
+ f = B1*f + B2 - B3/(B4+f)
+ default: // 0.125 <= f < 0.25
+ f = C1*f + C2 - C3/(C4+f)
+ }
+ y := Ldexp(f, e/3) // e/3 = exponent of cube root
+
+ // Iterate
+ s := y * y * y
+ t := s + x
+ y *= (t + x) / (s + t)
+ // Reiterate
+ s = (y*y*y - x) / x
+ y -= y * (((14.0/81.0)*s-(2.0/9.0))*s + (1.0 / 3.0)) * s
+ if sign {
+ y = -y
+ }
+ return y
+}
diff --git a/libgo/go/math/const.go b/libgo/go/math/const.go
new file mode 100644
index 000000000..b53527a4f
--- /dev/null
+++ b/libgo/go/math/const.go
@@ -0,0 +1,53 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// The math package provides basic constants and mathematical functions.
+package math
+
+// Mathematical constants.
+// Reference: http://www.research.att.com/~njas/sequences/Axxxxxx
+const (
+ E = 2.71828182845904523536028747135266249775724709369995957496696763 // A001113
+ Pi = 3.14159265358979323846264338327950288419716939937510582097494459 // A000796
+ Phi = 1.61803398874989484820458683436563811772030917980576286213544862 // A001622
+
+ Sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974 // A002193
+ SqrtE = 1.64872127070012814684865078781416357165377610071014801157507931 // A019774
+ SqrtPi = 1.77245385090551602729816748334114518279754945612238712821380779 // A002161
+ SqrtPhi = 1.27201964951406896425242246173749149171560804184009624861664038 // A139339
+
+ Ln2 = 0.693147180559945309417232121458176568075500134360255254120680009 // A002162
+ Log2E = 1 / Ln2
+ Ln10 = 2.30258509299404568401799145468436420760110148862877297603332790 // A002392
+ Log10E = 1 / Ln10
+)
+
+// Floating-point limit values.
+// Max is the largest finite value representable by the type.
+// SmallestNonzero is the smallest positive, non-zero value representable by the type.
+const (
+ MaxFloat32 = 3.40282346638528859811704183484516925440e+38 /* 2**127 * (2**24 - 1) / 2**23 */
+ SmallestNonzeroFloat32 = 1.401298464324817070923729583289916131280e-45 /* 1 / 2**(127 - 1 + 23) */
+
+ MaxFloat64 = 1.797693134862315708145274237317043567981e+308 /* 2**1023 * (2**53 - 1) / 2**52 */
+ SmallestNonzeroFloat64 = 4.940656458412465441765687928682213723651e-324 /* 1 / 2**(1023 - 1 + 52) */
+)
+
+// Integer limit values.
+const (
+ MaxInt8 = 1<<7 - 1
+ MinInt8 = -1 << 7
+ MaxInt16 = 1<<15 - 1
+ MinInt16 = -1 << 15
+ MaxInt32 = 1<<31 - 1
+ MinInt32 = -1 << 31
+ MaxInt64 = 1<<63 - 1
+ MinInt64 = -1 << 63
+ MaxUint8 = 1<<8 - 1
+ MaxUint16 = 1<<16 - 1
+ MaxUint32 = 1<<32 - 1
+ MaxUint64 = 1<<64 - 1
+)
+
+// BUG(rsc): The manual should define the special cases for all of these functions.
diff --git a/libgo/go/math/copysign.go b/libgo/go/math/copysign.go
new file mode 100644
index 000000000..ee65456a1
--- /dev/null
+++ b/libgo/go/math/copysign.go
@@ -0,0 +1,12 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Copysign(x, y) returns a value with the magnitude
+// of x and the sign of y.
+func Copysign(x, y float64) float64 {
+ const sign = 1 << 63
+ return Float64frombits(Float64bits(x)&^sign | Float64bits(y)&sign)
+}
diff --git a/libgo/go/math/erf.go b/libgo/go/math/erf.go
new file mode 100644
index 000000000..b60899933
--- /dev/null
+++ b/libgo/go/math/erf.go
@@ -0,0 +1,340 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+
+/*
+ Floating-point error function and complementary error function.
+*/
+
+// The original C code and the long comment below are
+// from FreeBSD's /usr/src/lib/msun/src/s_erf.c and
+// came with this notice. The go code is a simplified
+// version of the original C.
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+//
+// double erf(double x)
+// double erfc(double x)
+// x
+// 2 |\
+// erf(x) = --------- | exp(-t*t)dt
+// sqrt(pi) \|
+// 0
+//
+// erfc(x) = 1-erf(x)
+// Note that
+// erf(-x) = -erf(x)
+// erfc(-x) = 2 - erfc(x)
+//
+// Method:
+// 1. For |x| in [0, 0.84375]
+// erf(x) = x + x*R(x**2)
+// erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
+// = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
+// where R = P/Q where P is an odd poly of degree 8 and
+// Q is an odd poly of degree 10.
+// -57.90
+// | R - (erf(x)-x)/x | <= 2
+//
+//
+// Remark. The formula is derived by noting
+// erf(x) = (2/sqrt(pi))*(x - x**3/3 + x**5/10 - x**7/42 + ....)
+// and that
+// 2/sqrt(pi) = 1.128379167095512573896158903121545171688
+// is close to one. The interval is chosen because the fix
+// point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
+// near 0.6174), and by some experiment, 0.84375 is chosen to
+// guarantee the error is less than one ulp for erf.
+//
+// 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
+// c = 0.84506291151 rounded to single (24 bits)
+// erf(x) = sign(x) * (c + P1(s)/Q1(s))
+// erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
+// 1+(c+P1(s)/Q1(s)) if x < 0
+// |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
+// Remark: here we use the taylor series expansion at x=1.
+// erf(1+s) = erf(1) + s*Poly(s)
+// = 0.845.. + P1(s)/Q1(s)
+// That is, we use rational approximation to approximate
+// erf(1+s) - (c = (single)0.84506291151)
+// Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
+// where
+// P1(s) = degree 6 poly in s
+// Q1(s) = degree 6 poly in s
+//
+// 3. For x in [1.25,1/0.35(~2.857143)],
+// erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
+// erf(x) = 1 - erfc(x)
+// where
+// R1(z) = degree 7 poly in z, (z=1/x**2)
+// S1(z) = degree 8 poly in z
+//
+// 4. For x in [1/0.35,28]
+// erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
+// = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
+// = 2.0 - tiny (if x <= -6)
+// erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
+// erf(x) = sign(x)*(1.0 - tiny)
+// where
+// R2(z) = degree 6 poly in z, (z=1/x**2)
+// S2(z) = degree 7 poly in z
+//
+// Note1:
+// To compute exp(-x*x-0.5625+R/S), let s be a single
+// precision number and s := x; then
+// -x*x = -s*s + (s-x)*(s+x)
+// exp(-x*x-0.5626+R/S) =
+// exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
+// Note2:
+// Here 4 and 5 make use of the asymptotic series
+// exp(-x*x)
+// erfc(x) ~ ---------- * ( 1 + Poly(1/x**2) )
+// x*sqrt(pi)
+// We use rational approximation to approximate
+// g(s)=f(1/x**2) = log(erfc(x)*x) - x*x + 0.5625
+// Here is the error bound for R1/S1 and R2/S2
+// |R1/S1 - f(x)| < 2**(-62.57)
+// |R2/S2 - f(x)| < 2**(-61.52)
+//
+// 5. For inf > x >= 28
+// erf(x) = sign(x) *(1 - tiny) (raise inexact)
+// erfc(x) = tiny*tiny (raise underflow) if x > 0
+// = 2 - tiny if x<0
+//
+// 7. Special case:
+// erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
+// erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
+// erfc/erf(NaN) is NaN
+
+const (
+ erx = 8.45062911510467529297e-01 // 0x3FEB0AC160000000
+ // Coefficients for approximation to erf in [0, 0.84375]
+ efx = 1.28379167095512586316e-01 // 0x3FC06EBA8214DB69
+ efx8 = 1.02703333676410069053e+00 // 0x3FF06EBA8214DB69
+ pp0 = 1.28379167095512558561e-01 // 0x3FC06EBA8214DB68
+ pp1 = -3.25042107247001499370e-01 // 0xBFD4CD7D691CB913
+ pp2 = -2.84817495755985104766e-02 // 0xBF9D2A51DBD7194F
+ pp3 = -5.77027029648944159157e-03 // 0xBF77A291236668E4
+ pp4 = -2.37630166566501626084e-05 // 0xBEF8EAD6120016AC
+ qq1 = 3.97917223959155352819e-01 // 0x3FD97779CDDADC09
+ qq2 = 6.50222499887672944485e-02 // 0x3FB0A54C5536CEBA
+ qq3 = 5.08130628187576562776e-03 // 0x3F74D022C4D36B0F
+ qq4 = 1.32494738004321644526e-04 // 0x3F215DC9221C1A10
+ qq5 = -3.96022827877536812320e-06 // 0xBED09C4342A26120
+ // Coefficients for approximation to erf in [0.84375, 1.25]
+ pa0 = -2.36211856075265944077e-03 // 0xBF6359B8BEF77538
+ pa1 = 4.14856118683748331666e-01 // 0x3FDA8D00AD92B34D
+ pa2 = -3.72207876035701323847e-01 // 0xBFD7D240FBB8C3F1
+ pa3 = 3.18346619901161753674e-01 // 0x3FD45FCA805120E4
+ pa4 = -1.10894694282396677476e-01 // 0xBFBC63983D3E28EC
+ pa5 = 3.54783043256182359371e-02 // 0x3FA22A36599795EB
+ pa6 = -2.16637559486879084300e-03 // 0xBF61BF380A96073F
+ qa1 = 1.06420880400844228286e-01 // 0x3FBB3E6618EEE323
+ qa2 = 5.40397917702171048937e-01 // 0x3FE14AF092EB6F33
+ qa3 = 7.18286544141962662868e-02 // 0x3FB2635CD99FE9A7
+ qa4 = 1.26171219808761642112e-01 // 0x3FC02660E763351F
+ qa5 = 1.36370839120290507362e-02 // 0x3F8BEDC26B51DD1C
+ qa6 = 1.19844998467991074170e-02 // 0x3F888B545735151D
+ // Coefficients for approximation to erfc in [1.25, 1/0.35]
+ ra0 = -9.86494403484714822705e-03 // 0xBF843412600D6435
+ ra1 = -6.93858572707181764372e-01 // 0xBFE63416E4BA7360
+ ra2 = -1.05586262253232909814e+01 // 0xC0251E0441B0E726
+ ra3 = -6.23753324503260060396e+01 // 0xC04F300AE4CBA38D
+ ra4 = -1.62396669462573470355e+02 // 0xC0644CB184282266
+ ra5 = -1.84605092906711035994e+02 // 0xC067135CEBCCABB2
+ ra6 = -8.12874355063065934246e+01 // 0xC054526557E4D2F2
+ ra7 = -9.81432934416914548592e+00 // 0xC023A0EFC69AC25C
+ sa1 = 1.96512716674392571292e+01 // 0x4033A6B9BD707687
+ sa2 = 1.37657754143519042600e+02 // 0x4061350C526AE721
+ sa3 = 4.34565877475229228821e+02 // 0x407B290DD58A1A71
+ sa4 = 6.45387271733267880336e+02 // 0x40842B1921EC2868
+ sa5 = 4.29008140027567833386e+02 // 0x407AD02157700314
+ sa6 = 1.08635005541779435134e+02 // 0x405B28A3EE48AE2C
+ sa7 = 6.57024977031928170135e+00 // 0x401A47EF8E484A93
+ sa8 = -6.04244152148580987438e-02 // 0xBFAEEFF2EE749A62
+ // Coefficients for approximation to erfc in [1/.35, 28]
+ rb0 = -9.86494292470009928597e-03 // 0xBF84341239E86F4A
+ rb1 = -7.99283237680523006574e-01 // 0xBFE993BA70C285DE
+ rb2 = -1.77579549177547519889e+01 // 0xC031C209555F995A
+ rb3 = -1.60636384855821916062e+02 // 0xC064145D43C5ED98
+ rb4 = -6.37566443368389627722e+02 // 0xC083EC881375F228
+ rb5 = -1.02509513161107724954e+03 // 0xC09004616A2E5992
+ rb6 = -4.83519191608651397019e+02 // 0xC07E384E9BDC383F
+ sb1 = 3.03380607434824582924e+01 // 0x403E568B261D5190
+ sb2 = 3.25792512996573918826e+02 // 0x40745CAE221B9F0A
+ sb3 = 1.53672958608443695994e+03 // 0x409802EB189D5118
+ sb4 = 3.19985821950859553908e+03 // 0x40A8FFB7688C246A
+ sb5 = 2.55305040643316442583e+03 // 0x40A3F219CEDF3BE6
+ sb6 = 4.74528541206955367215e+02 // 0x407DA874E79FE763
+ sb7 = -2.24409524465858183362e+01 // 0xC03670E242712D62
+)
+
+// Erf(x) returns the error function of x.
+//
+// Special cases are:
+// Erf(+Inf) = 1
+// Erf(-Inf) = -1
+// Erf(NaN) = NaN
+func Erf(x float64) float64 {
+ const (
+ VeryTiny = 2.848094538889218e-306 // 0x0080000000000000
+ Small = 1.0 / (1 << 28) // 2**-28
+ )
+ // special cases
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ switch {
+ case x != x: // IsNaN(x):
+ return NaN()
+ case x > MaxFloat64: // IsInf(x, 1):
+ return 1
+ case x < -MaxFloat64: // IsInf(x, -1):
+ return -1
+ }
+ sign := false
+ if x < 0 {
+ x = -x
+ sign = true
+ }
+ if x < 0.84375 { // |x| < 0.84375
+ var temp float64
+ if x < Small { // |x| < 2**-28
+ if x < VeryTiny {
+ temp = 0.125 * (8.0*x + efx8*x) // avoid underflow
+ } else {
+ temp = x + efx*x
+ }
+ } else {
+ z := x * x
+ r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
+ s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
+ y := r / s
+ temp = x + x*y
+ }
+ if sign {
+ return -temp
+ }
+ return temp
+ }
+ if x < 1.25 { // 0.84375 <= |x| < 1.25
+ s := x - 1
+ P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
+ Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
+ if sign {
+ return -erx - P/Q
+ }
+ return erx + P/Q
+ }
+ if x >= 6 { // inf > |x| >= 6
+ if sign {
+ return -1
+ }
+ return 1
+ }
+ s := 1 / (x * x)
+ var R, S float64
+ if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143
+ R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
+ S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
+ } else { // |x| >= 1 / 0.35 ~ 2.857143
+ R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
+ S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
+ }
+ z := Float64frombits(Float64bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precison x
+ r := Exp(-z*z-0.5625) * Exp((z-x)*(z+x)+R/S)
+ if sign {
+ return r/x - 1
+ }
+ return 1 - r/x
+}
+
+// Erfc(x) returns the complementary error function of x.
+//
+// Special cases are:
+// Erfc(+Inf) = 0
+// Erfc(-Inf) = 2
+// Erfc(NaN) = NaN
+func Erfc(x float64) float64 {
+ const Tiny = 1.0 / (1 << 56) // 2**-56
+ // special cases
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ switch {
+ case x != x: // IsNaN(x):
+ return NaN()
+ case x > MaxFloat64: // IsInf(x, 1):
+ return 0
+ case x < -MaxFloat64: // IsInf(x, -1):
+ return 2
+ }
+ sign := false
+ if x < 0 {
+ x = -x
+ sign = true
+ }
+ if x < 0.84375 { // |x| < 0.84375
+ var temp float64
+ if x < Tiny { // |x| < 2**-56
+ temp = x
+ } else {
+ z := x * x
+ r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
+ s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
+ y := r / s
+ if x < 0.25 { // |x| < 1/4
+ temp = x + x*y
+ } else {
+ temp = 0.5 + (x*y + (x - 0.5))
+ }
+ }
+ if sign {
+ return 1 + temp
+ }
+ return 1 - temp
+ }
+ if x < 1.25 { // 0.84375 <= |x| < 1.25
+ s := x - 1
+ P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
+ Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
+ if sign {
+ return 1 + erx + P/Q
+ }
+ return 1 - erx - P/Q
+
+ }
+ if x < 28 { // |x| < 28
+ s := 1 / (x * x)
+ var R, S float64
+ if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143
+ R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
+ S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
+ } else { // |x| >= 1 / 0.35 ~ 2.857143
+ if sign && x > 6 {
+ return 2 // x < -6
+ }
+ R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
+ S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
+ }
+ z := Float64frombits(Float64bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precison x
+ r := Exp(-z*z-0.5625) * Exp((z-x)*(z+x)+R/S)
+ if sign {
+ return 2 - r/x
+ }
+ return r / x
+ }
+ if sign {
+ return 2
+ }
+ return 0
+}
diff --git a/libgo/go/math/exp.go b/libgo/go/math/exp.go
new file mode 100644
index 000000000..c519c2cb6
--- /dev/null
+++ b/libgo/go/math/exp.go
@@ -0,0 +1,14 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Exp returns e**x, the base-e exponential of x.
+//
+// Special cases are:
+// Exp(+Inf) = +Inf
+// Exp(NaN) = NaN
+// Very large values overflow to 0 or +Inf.
+// Very small values underflow to 1.
+func Exp(x float64) float64 { return expGo(x) }
diff --git a/libgo/go/math/exp2.go b/libgo/go/math/exp2.go
new file mode 100644
index 000000000..1cface9d3
--- /dev/null
+++ b/libgo/go/math/exp2.go
@@ -0,0 +1,10 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Exp2 returns 2**x, the base-2 exponential of x.
+//
+// Special cases are the same as Exp.
+func Exp2(x float64) float64 { return exp2Go(x) }
diff --git a/libgo/go/math/exp_port.go b/libgo/go/math/exp_port.go
new file mode 100644
index 000000000..071420c24
--- /dev/null
+++ b/libgo/go/math/exp_port.go
@@ -0,0 +1,192 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+
+// The original C code, the long comment, and the constants
+// below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c
+// and came with this notice. The go code is a simplified
+// version of the original C.
+//
+// ====================================================
+// Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
+//
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+//
+// exp(x)
+// Returns the exponential of x.
+//
+// Method
+// 1. Argument reduction:
+// Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
+// Given x, find r and integer k such that
+//
+// x = k*ln2 + r, |r| <= 0.5*ln2.
+//
+// Here r will be represented as r = hi-lo for better
+// accuracy.
+//
+// 2. Approximation of exp(r) by a special rational function on
+// the interval [0,0.34658]:
+// Write
+// R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
+// We use a special Remes algorithm on [0,0.34658] to generate
+// a polynomial of degree 5 to approximate R. The maximum error
+// of this polynomial approximation is bounded by 2**-59. In
+// other words,
+// R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
+// (where z=r*r, and the values of P1 to P5 are listed below)
+// and
+// | 5 | -59
+// | 2.0+P1*z+...+P5*z - R(z) | <= 2
+// | |
+// The computation of exp(r) thus becomes
+// 2*r
+// exp(r) = 1 + -------
+// R - r
+// r*R1(r)
+// = 1 + r + ----------- (for better accuracy)
+// 2 - R1(r)
+// where
+// 2 4 10
+// R1(r) = r - (P1*r + P2*r + ... + P5*r ).
+//
+// 3. Scale back to obtain exp(x):
+// From step 1, we have
+// exp(x) = 2**k * exp(r)
+//
+// Special cases:
+// exp(INF) is INF, exp(NaN) is NaN;
+// exp(-INF) is 0, and
+// for finite argument, only exp(0)=1 is exact.
+//
+// Accuracy:
+// according to an error analysis, the error is always less than
+// 1 ulp (unit in the last place).
+//
+// Misc. info.
+// For IEEE double
+// if x > 7.09782712893383973096e+02 then exp(x) overflow
+// if x < -7.45133219101941108420e+02 then exp(x) underflow
+//
+// Constants:
+// The hexadecimal values are the intended ones for the following
+// constants. The decimal values may be used, provided that the
+// compiler will convert from decimal to binary accurately enough
+// to produce the hexadecimal values shown.
+
+// Exp returns e**x, the base-e exponential of x.
+//
+// Special cases are:
+// Exp(+Inf) = +Inf
+// Exp(NaN) = NaN
+// Very large values overflow to 0 or +Inf.
+// Very small values underflow to 1.
+func expGo(x float64) float64 {
+ const (
+ Ln2Hi = 6.93147180369123816490e-01
+ Ln2Lo = 1.90821492927058770002e-10
+ Log2e = 1.44269504088896338700e+00
+
+ Overflow = 7.09782712893383973096e+02
+ Underflow = -7.45133219101941108420e+02
+ NearZero = 1.0 / (1 << 28) // 2**-28
+ )
+
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case x != x || x > MaxFloat64: // IsNaN(x) || IsInf(x, 1):
+ return x
+ case x < -MaxFloat64: // IsInf(x, -1):
+ return 0
+ case x > Overflow:
+ return Inf(1)
+ case x < Underflow:
+ return 0
+ case -NearZero < x && x < NearZero:
+ return 1 + x
+ }
+
+ // reduce; computed as r = hi - lo for extra precision.
+ var k int
+ switch {
+ case x < 0:
+ k = int(Log2e*x - 0.5)
+ case x > 0:
+ k = int(Log2e*x + 0.5)
+ }
+ hi := x - float64(k)*Ln2Hi
+ lo := float64(k) * Ln2Lo
+
+ // compute
+ return exp(hi, lo, k)
+}
+
+// Exp2 returns 2**x, the base-2 exponential of x.
+//
+// Special cases are the same as Exp.
+func exp2Go(x float64) float64 {
+ const (
+ Ln2Hi = 6.93147180369123816490e-01
+ Ln2Lo = 1.90821492927058770002e-10
+
+ Overflow = 1.0239999999999999e+03
+ Underflow = -1.0740e+03
+ )
+
+ // TODO: remove manual inlining of IsNaN and IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case x != x || x > MaxFloat64: // IsNaN(x) || IsInf(x, 1):
+ return x
+ case x < -MaxFloat64: // IsInf(x, -1):
+ return 0
+ case x > Overflow:
+ return Inf(1)
+ case x < Underflow:
+ return 0
+ }
+
+ // argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2.
+ // computed as r = hi - lo for extra precision.
+ var k int
+ switch {
+ case x > 0:
+ k = int(x + 0.5)
+ case x < 0:
+ k = int(x - 0.5)
+ }
+ t := x - float64(k)
+ hi := t * Ln2Hi
+ lo := -t * Ln2Lo
+
+ // compute
+ return exp(hi, lo, k)
+}
+
+// exp returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2.
+func exp(hi, lo float64, k int) float64 {
+ const (
+ P1 = 1.66666666666666019037e-01 /* 0x3FC55555; 0x5555553E */
+ P2 = -2.77777777770155933842e-03 /* 0xBF66C16C; 0x16BEBD93 */
+ P3 = 6.61375632143793436117e-05 /* 0x3F11566A; 0xAF25DE2C */
+ P4 = -1.65339022054652515390e-06 /* 0xBEBBBD41; 0xC5D26BF1 */
+ P5 = 4.13813679705723846039e-08 /* 0x3E663769; 0x72BEA4D0 */
+ )
+
+ r := hi - lo
+ t := r * r
+ c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))))
+ y := 1 - ((lo - (r*c)/(2-c)) - hi)
+ // TODO(rsc): make sure Ldexp can handle boundary k
+ return Ldexp(y, k)
+}
diff --git a/libgo/go/math/exp_test.go b/libgo/go/math/exp_test.go
new file mode 100644
index 000000000..7381fd5ad
--- /dev/null
+++ b/libgo/go/math/exp_test.go
@@ -0,0 +1,10 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Make expGo and exp2Go available for testing.
+
+func ExpGo(x float64) float64 { return expGo(x) }
+func Exp2Go(x float64) float64 { return exp2Go(x) }
diff --git a/libgo/go/math/expm1.go b/libgo/go/math/expm1.go
new file mode 100644
index 000000000..35100caa4
--- /dev/null
+++ b/libgo/go/math/expm1.go
@@ -0,0 +1,238 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+
+// The original C code, the long comment, and the constants
+// below are from FreeBSD's /usr/src/lib/msun/src/s_expm1.c
+// and came with this notice. The go code is a simplified
+// version of the original C.
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+// expm1(x)
+// Returns exp(x)-1, the exponential of x minus 1.
+//
+// Method
+// 1. Argument reduction:
+// Given x, find r and integer k such that
+//
+// x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
+//
+// Here a correction term c will be computed to compensate
+// the error in r when rounded to a floating-point number.
+//
+// 2. Approximating expm1(r) by a special rational function on
+// the interval [0,0.34658]:
+// Since
+// r*(exp(r)+1)/(exp(r)-1) = 2+ r**2/6 - r**4/360 + ...
+// we define R1(r*r) by
+// r*(exp(r)+1)/(exp(r)-1) = 2+ r**2/6 * R1(r*r)
+// That is,
+// R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
+// = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
+// = 1 - r**2/60 + r**4/2520 - r**6/100800 + ...
+// We use a special Reme algorithm on [0,0.347] to generate
+// a polynomial of degree 5 in r*r to approximate R1. The
+// maximum error of this polynomial approximation is bounded
+// by 2**-61. In other words,
+// R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
+// where Q1 = -1.6666666666666567384E-2,
+// Q2 = 3.9682539681370365873E-4,
+// Q3 = -9.9206344733435987357E-6,
+// Q4 = 2.5051361420808517002E-7,
+// Q5 = -6.2843505682382617102E-9;
+// (where z=r*r, and the values of Q1 to Q5 are listed below)
+// with error bounded by
+// | 5 | -61
+// | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
+// | |
+//
+// expm1(r) = exp(r)-1 is then computed by the following
+// specific way which minimize the accumulation rounding error:
+// 2 3
+// r r [ 3 - (R1 + R1*r/2) ]
+// expm1(r) = r + --- + --- * [--------------------]
+// 2 2 [ 6 - r*(3 - R1*r/2) ]
+//
+// To compensate the error in the argument reduction, we use
+// expm1(r+c) = expm1(r) + c + expm1(r)*c
+// ~ expm1(r) + c + r*c
+// Thus c+r*c will be added in as the correction terms for
+// expm1(r+c). Now rearrange the term to avoid optimization
+// screw up:
+// ( 2 2 )
+// ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
+// expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
+// ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
+// ( )
+//
+// = r - E
+// 3. Scale back to obtain expm1(x):
+// From step 1, we have
+// expm1(x) = either 2**k*[expm1(r)+1] - 1
+// = or 2**k*[expm1(r) + (1-2**-k)]
+// 4. Implementation notes:
+// (A). To save one multiplication, we scale the coefficient Qi
+// to Qi*2**i, and replace z by (x**2)/2.
+// (B). To achieve maximum accuracy, we compute expm1(x) by
+// (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
+// (ii) if k=0, return r-E
+// (iii) if k=-1, return 0.5*(r-E)-0.5
+// (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
+// else return 1.0+2.0*(r-E);
+// (v) if (k<-2||k>56) return 2**k(1-(E-r)) - 1 (or exp(x)-1)
+// (vi) if k <= 20, return 2**k((1-2**-k)-(E-r)), else
+// (vii) return 2**k(1-((E+2**-k)-r))
+//
+// Special cases:
+// expm1(INF) is INF, expm1(NaN) is NaN;
+// expm1(-INF) is -1, and
+// for finite argument, only expm1(0)=0 is exact.
+//
+// Accuracy:
+// according to an error analysis, the error is always less than
+// 1 ulp (unit in the last place).
+//
+// Misc. info.
+// For IEEE double
+// if x > 7.09782712893383973096e+02 then expm1(x) overflow
+//
+// Constants:
+// The hexadecimal values are the intended ones for the following
+// constants. The decimal values may be used, provided that the
+// compiler will convert from decimal to binary accurately enough
+// to produce the hexadecimal values shown.
+//
+
+// Expm1 returns e**x - 1, the base-e exponential of x minus 1.
+// It is more accurate than Exp(x) - 1 when x is near zero.
+//
+// Special cases are:
+// Expm1(+Inf) = +Inf
+// Expm1(-Inf) = -1
+// Expm1(NaN) = NaN
+// Very large values overflow to -1 or +Inf.
+func Expm1(x float64) float64 {
+ const (
+ Othreshold = 7.09782712893383973096e+02 // 0x40862E42FEFA39EF
+ Ln2X56 = 3.88162421113569373274e+01 // 0x4043687a9f1af2b1
+ Ln2HalfX3 = 1.03972077083991796413e+00 // 0x3ff0a2b23f3bab73
+ Ln2Half = 3.46573590279972654709e-01 // 0x3fd62e42fefa39ef
+ Ln2Hi = 6.93147180369123816490e-01 // 0x3fe62e42fee00000
+ Ln2Lo = 1.90821492927058770002e-10 // 0x3dea39ef35793c76
+ InvLn2 = 1.44269504088896338700e+00 // 0x3ff71547652b82fe
+ Tiny = 1.0 / (1 << 54) // 2**-54 = 0x3c90000000000000
+ // scaled coefficients related to expm1
+ Q1 = -3.33333333333331316428e-02 // 0xBFA11111111110F4
+ Q2 = 1.58730158725481460165e-03 // 0x3F5A01A019FE5585
+ Q3 = -7.93650757867487942473e-05 // 0xBF14CE199EAADBB7
+ Q4 = 4.00821782732936239552e-06 // 0x3ED0CFCA86E65239
+ Q5 = -2.01099218183624371326e-07 // 0xBE8AFDB76E09C32D
+ )
+
+ // special cases
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ switch {
+ case x > MaxFloat64 || x != x: // IsInf(x, 1) || IsNaN(x):
+ return x
+ case x < -MaxFloat64: // IsInf(x, -1):
+ return -1
+ }
+
+ absx := x
+ sign := false
+ if x < 0 {
+ absx = -absx
+ sign = true
+ }
+
+ // filter out huge argument
+ if absx >= Ln2X56 { // if |x| >= 56 * ln2
+ if absx >= Othreshold { // if |x| >= 709.78...
+ return Inf(1) // overflow
+ }
+ if sign {
+ return -1 // x < -56*ln2, return -1.0
+ }
+ }
+
+ // argument reduction
+ var c float64
+ var k int
+ if absx > Ln2Half { // if |x| > 0.5 * ln2
+ var hi, lo float64
+ if absx < Ln2HalfX3 { // and |x| < 1.5 * ln2
+ if !sign {
+ hi = x - Ln2Hi
+ lo = Ln2Lo
+ k = 1
+ } else {
+ hi = x + Ln2Hi
+ lo = -Ln2Lo
+ k = -1
+ }
+ } else {
+ if !sign {
+ k = int(InvLn2*x + 0.5)
+ } else {
+ k = int(InvLn2*x - 0.5)
+ }
+ t := float64(k)
+ hi = x - t*Ln2Hi // t * Ln2Hi is exact here
+ lo = t * Ln2Lo
+ }
+ x = hi - lo
+ c = (hi - x) - lo
+ } else if absx < Tiny { // when |x| < 2**-54, return x
+ return x
+ } else {
+ k = 0
+ }
+
+ // x is now in primary range
+ hfx := 0.5 * x
+ hxs := x * hfx
+ r1 := 1 + hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))))
+ t := 3 - r1*hfx
+ e := hxs * ((r1 - t) / (6.0 - x*t))
+ if k != 0 {
+ e = (x*(e-c) - c)
+ e -= hxs
+ switch {
+ case k == -1:
+ return 0.5*(x-e) - 0.5
+ case k == 1:
+ if x < -0.25 {
+ return -2 * (e - (x + 0.5))
+ }
+ return 1 + 2*(x-e)
+ case k <= -2 || k > 56: // suffice to return exp(x)-1
+ y := 1 - (e - x)
+ y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
+ return y - 1
+ }
+ if k < 20 {
+ t := Float64frombits(0x3ff0000000000000 - (0x20000000000000 >> uint(k))) // t=1-2**-k
+ y := t - (e - x)
+ y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
+ return y
+ }
+ t := Float64frombits(uint64((0x3ff - k) << 52)) // 2**-k
+ y := x - (e + t)
+ y += 1
+ y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
+ return y
+ }
+ return x - (x*e - hxs) // c is 0
+}
diff --git a/libgo/go/math/fabs.go b/libgo/go/math/fabs.go
new file mode 100644
index 000000000..343123126
--- /dev/null
+++ b/libgo/go/math/fabs.go
@@ -0,0 +1,21 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Fabs returns the absolute value of x.
+//
+// Special cases are:
+// Fabs(+Inf) = +Inf
+// Fabs(-Inf) = +Inf
+// Fabs(NaN) = NaN
+func Fabs(x float64) float64 {
+ switch {
+ case x < 0:
+ return -x
+ case x == 0:
+ return 0 // return correctly fabs(-0)
+ }
+ return x
+}
diff --git a/libgo/go/math/fdim.go b/libgo/go/math/fdim.go
new file mode 100644
index 000000000..18993137a
--- /dev/null
+++ b/libgo/go/math/fdim.go
@@ -0,0 +1,29 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Fdim returns the maximum of x-y or 0.
+func Fdim(x, y float64) float64 {
+ if x > y {
+ return x - y
+ }
+ return 0
+}
+
+// Fmax returns the larger of x or y.
+func Fmax(x, y float64) float64 {
+ if x > y {
+ return x
+ }
+ return y
+}
+
+// Fmin returns the smaller of x or y.
+func Fmin(x, y float64) float64 {
+ if x < y {
+ return x
+ }
+ return y
+}
diff --git a/libgo/go/math/floor.go b/libgo/go/math/floor.go
new file mode 100644
index 000000000..b22b94ad6
--- /dev/null
+++ b/libgo/go/math/floor.go
@@ -0,0 +1,53 @@
+// Copyright 2009-2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+
+// Floor returns the greatest integer value less than or equal to x.
+//
+// Special cases are:
+// Floor(+Inf) = +Inf
+// Floor(-Inf) = -Inf
+// Floor(NaN) = NaN
+func Floor(x float64) float64 {
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ if x == 0 || x != x || x > MaxFloat64 || x < -MaxFloat64 { // x == 0 || IsNaN(x) || IsInf(x, 0)
+ return x
+ }
+ if x < 0 {
+ d, fract := Modf(-x)
+ if fract != 0.0 {
+ d = d + 1
+ }
+ return -d
+ }
+ d, _ := Modf(x)
+ return d
+}
+
+// Ceil returns the least integer value greater than or equal to x.
+//
+// Special cases are:
+// Ceil(+Inf) = +Inf
+// Ceil(-Inf) = -Inf
+// Ceil(NaN) = NaN
+func Ceil(x float64) float64 { return -Floor(-x) }
+
+// Trunc returns the integer value of x.
+//
+// Special cases are:
+// Trunc(+Inf) = +Inf
+// Trunc(-Inf) = -Inf
+// Trunc(NaN) = NaN
+func Trunc(x float64) float64 {
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ if x == 0 || x != x || x > MaxFloat64 || x < -MaxFloat64 { // x == 0 || IsNaN(x) || IsInf(x, 0)
+ return x
+ }
+ d, _ := Modf(x)
+ return d
+}
diff --git a/libgo/go/math/fmod.go b/libgo/go/math/fmod.go
new file mode 100644
index 000000000..fc57f7483
--- /dev/null
+++ b/libgo/go/math/fmod.go
@@ -0,0 +1,48 @@
+// Copyright 2009-2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+
+/*
+ Floating-point mod function.
+*/
+
+// Fmod returns the floating-point remainder of x/y.
+// The magnitude of the result is less than y and its
+// sign agrees with that of x.
+//
+// Special cases are:
+// if x is not finite, Fmod returns NaN
+// if y is 0 or NaN, Fmod returns NaN
+func Fmod(x, y float64) float64 {
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us.
+ if y == 0 || x > MaxFloat64 || x < -MaxFloat64 || x != x || y != y { // y == 0 || IsInf(x, 0) || IsNaN(x) || IsNan(y)
+ return NaN()
+ }
+ if y < 0 {
+ y = -y
+ }
+
+ yfr, yexp := Frexp(y)
+ sign := false
+ r := x
+ if x < 0 {
+ r = -x
+ sign = true
+ }
+
+ for r >= y {
+ rfr, rexp := Frexp(r)
+ if rfr < yfr {
+ rexp = rexp - 1
+ }
+ r = r - Ldexp(y, rexp-yexp)
+ }
+ if sign {
+ r = -r
+ }
+ return r
+}
diff --git a/libgo/go/math/frexp.go b/libgo/go/math/frexp.go
new file mode 100644
index 000000000..867b78f36
--- /dev/null
+++ b/libgo/go/math/frexp.go
@@ -0,0 +1,33 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Frexp breaks f into a normalized fraction
+// and an integral power of two.
+// It returns frac and exp satisfying f == frac × 2**exp,
+// with the absolute value of frac in the interval [½, 1).
+//
+// Special cases are:
+// Frexp(±0) = ±0, 0
+// Frexp(±Inf) = ±Inf, 0
+// Frexp(NaN) = NaN, 0
+func Frexp(f float64) (frac float64, exp int) {
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case f == 0:
+ return f, 0 // correctly return -0
+ case f < -MaxFloat64 || f > MaxFloat64 || f != f: // IsInf(f, 0) || IsNaN(f):
+ return f, 0
+ }
+ f, exp = normalize(f)
+ x := Float64bits(f)
+ exp += int((x>>shift)&mask) - bias + 1
+ x &^= mask << shift
+ x |= (-1 + bias) << shift
+ frac = Float64frombits(x)
+ return
+}
diff --git a/libgo/go/math/gamma.go b/libgo/go/math/gamma.go
new file mode 100644
index 000000000..73ca0e53a
--- /dev/null
+++ b/libgo/go/math/gamma.go
@@ -0,0 +1,188 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// The original C code, the long comment, and the constants
+// below are from http://netlib.sandia.gov/cephes/cprob/gamma.c.
+// The go code is a simplified version of the original C.
+//
+// tgamma.c
+//
+// Gamma function
+//
+// SYNOPSIS:
+//
+// double x, y, tgamma();
+// extern int signgam;
+//
+// y = tgamma( x );
+//
+// DESCRIPTION:
+//
+// Returns gamma function of the argument. The result is
+// correctly signed, and the sign (+1 or -1) is also
+// returned in a global (extern) variable named signgam.
+// This variable is also filled in by the logarithmic gamma
+// function lgamma().
+//
+// Arguments |x| <= 34 are reduced by recurrence and the function
+// approximated by a rational function of degree 6/7 in the
+// interval (2,3). Large arguments are handled by Stirling's
+// formula. Large negative arguments are made positive using
+// a reflection formula.
+//
+// ACCURACY:
+//
+// Relative error:
+// arithmetic domain # trials peak rms
+// DEC -34, 34 10000 1.3e-16 2.5e-17
+// IEEE -170,-33 20000 2.3e-15 3.3e-16
+// IEEE -33, 33 20000 9.4e-16 2.2e-16
+// IEEE 33, 171.6 20000 2.3e-15 3.2e-16
+//
+// Error for arguments outside the test range will be larger
+// owing to error amplification by the exponential function.
+//
+// Cephes Math Library Release 2.8: June, 2000
+// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
+//
+// The readme file at http://netlib.sandia.gov/cephes/ says:
+// Some software in this archive may be from the book _Methods and
+// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
+// International, 1989) or from the Cephes Mathematical Library, a
+// commercial product. In either event, it is copyrighted by the author.
+// What you see here may be used freely but it comes with no support or
+// guarantee.
+//
+// The two known misprints in the book are repaired here in the
+// source listings for the gamma function and the incomplete beta
+// integral.
+//
+// Stephen L. Moshier
+// moshier@na-net.ornl.gov
+
+var _P = []float64{
+ 1.60119522476751861407e-04,
+ 1.19135147006586384913e-03,
+ 1.04213797561761569935e-02,
+ 4.76367800457137231464e-02,
+ 2.07448227648435975150e-01,
+ 4.94214826801497100753e-01,
+ 9.99999999999999996796e-01,
+}
+var _Q = []float64{
+ -2.31581873324120129819e-05,
+ 5.39605580493303397842e-04,
+ -4.45641913851797240494e-03,
+ 1.18139785222060435552e-02,
+ 3.58236398605498653373e-02,
+ -2.34591795718243348568e-01,
+ 7.14304917030273074085e-02,
+ 1.00000000000000000320e+00,
+}
+var _S = []float64{
+ 7.87311395793093628397e-04,
+ -2.29549961613378126380e-04,
+ -2.68132617805781232825e-03,
+ 3.47222221605458667310e-03,
+ 8.33333333333482257126e-02,
+}
+
+// Gamma function computed by Stirling's formula.
+// The polynomial is valid for 33 <= x <= 172.
+func stirling(x float64) float64 {
+ const (
+ SqrtTwoPi = 2.506628274631000502417
+ MaxStirling = 143.01608
+ )
+ w := 1 / x
+ w = 1 + w*((((_S[0]*w+_S[1])*w+_S[2])*w+_S[3])*w+_S[4])
+ y := Exp(x)
+ if x > MaxStirling { // avoid Pow() overflow
+ v := Pow(x, 0.5*x-0.25)
+ y = v * (v / y)
+ } else {
+ y = Pow(x, x-0.5) / y
+ }
+ y = SqrtTwoPi * y * w
+ return y
+}
+
+// Gamma(x) returns the Gamma function of x.
+//
+// Special cases are:
+// Gamma(Inf) = Inf
+// Gamma(-Inf) = -Inf
+// Gamma(NaN) = NaN
+// Large values overflow to +Inf.
+// Negative integer values equal ±Inf.
+func Gamma(x float64) float64 {
+ const Euler = 0.57721566490153286060651209008240243104215933593992 // A001620
+ // special cases
+ switch {
+ case x < -MaxFloat64 || x != x: // IsInf(x, -1) || IsNaN(x):
+ return x
+ case x < -170.5674972726612 || x > 171.61447887182298:
+ return Inf(1)
+ }
+ q := Fabs(x)
+ p := Floor(q)
+ if q > 33 {
+ if x >= 0 {
+ return stirling(x)
+ }
+ signgam := 1
+ if ip := int(p); ip&1 == 0 {
+ signgam = -1
+ }
+ z := q - p
+ if z > 0.5 {
+ p = p + 1
+ z = q - p
+ }
+ z = q * Sin(Pi*z)
+ if z == 0 {
+ return Inf(signgam)
+ }
+ z = Pi / (Fabs(z) * stirling(q))
+ return float64(signgam) * z
+ }
+
+ // Reduce argument
+ z := 1.0
+ for x >= 3 {
+ x = x - 1
+ z = z * x
+ }
+ for x < 0 {
+ if x > -1e-09 {
+ goto small
+ }
+ z = z / x
+ x = x + 1
+ }
+ for x < 2 {
+ if x < 1e-09 {
+ goto small
+ }
+ z = z / x
+ x = x + 1
+ }
+
+ if x == 2 {
+ return z
+ }
+
+ x = x - 2
+ p = (((((x*_P[0]+_P[1])*x+_P[2])*x+_P[3])*x+_P[4])*x+_P[5])*x + _P[6]
+ q = ((((((x*_Q[0]+_Q[1])*x+_Q[2])*x+_Q[3])*x+_Q[4])*x+_Q[5])*x+_Q[6])*x + _Q[7]
+ return z * p / q
+
+small:
+ if x == 0 {
+ return Inf(1)
+ }
+ return z / ((1 + Euler*x) * x)
+}
diff --git a/libgo/go/math/hypot.go b/libgo/go/math/hypot.go
new file mode 100644
index 000000000..ecd115d9e
--- /dev/null
+++ b/libgo/go/math/hypot.go
@@ -0,0 +1,41 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+/*
+ Hypot -- sqrt(p*p + q*q), but overflows only if the result does.
+*/
+
+// Hypot computes Sqrt(p*p + q*q), taking care to avoid
+// unnecessary overflow and underflow.
+//
+// Special cases are:
+// Hypot(p, q) = +Inf if p or q is infinite
+// Hypot(p, q) = NaN if p or q is NaN
+func Hypot(p, q float64) float64 {
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case p < -MaxFloat64 || p > MaxFloat64 || q < -MaxFloat64 || q > MaxFloat64: // IsInf(p, 0) || IsInf(q, 0):
+ return Inf(1)
+ case p != p || q != q: // IsNaN(p) || IsNaN(q):
+ return NaN()
+ }
+ if p < 0 {
+ p = -p
+ }
+ if q < 0 {
+ q = -q
+ }
+ if p < q {
+ p, q = q, p
+ }
+ if p == 0 {
+ return 0
+ }
+ q = q / p
+ return p * Sqrt(1+q*q)
+}
diff --git a/libgo/go/math/hypot_port.go b/libgo/go/math/hypot_port.go
new file mode 100644
index 000000000..27f335ba2
--- /dev/null
+++ b/libgo/go/math/hypot_port.go
@@ -0,0 +1,63 @@
+// Copyright 2009-2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+/*
+ Hypot -- sqrt(p*p + q*q), but overflows only if the result does.
+ See:
+ Cleve Moler and Donald Morrison,
+ Replacing Square Roots by Pythagorean Sums
+ IBM Journal of Research and Development,
+ Vol. 27, Number 6, pp. 577-581, Nov. 1983
+*/
+
+// Hypot computes Sqrt(p*p + q*q), taking care to avoid
+// unnecessary overflow and underflow.
+//
+// Special cases are:
+// Hypot(p, q) = +Inf if p or q is infinite
+// Hypot(p, q) = NaN if p or q is NaN
+func hypotGo(p, q float64) float64 {
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case p < -MaxFloat64 || p > MaxFloat64 || q < -MaxFloat64 || q > MaxFloat64: // IsInf(p, 0) || IsInf(q, 0):
+ return Inf(1)
+ case p != p || q != q: // IsNaN(p) || IsNaN(q):
+ return NaN()
+ }
+ if p < 0 {
+ p = -p
+ }
+ if q < 0 {
+ q = -q
+ }
+
+ if p < q {
+ p, q = q, p
+ }
+
+ if p == 0 {
+ return 0
+ }
+
+ pfac := p
+ q = q / p
+ r := q
+ p = 1
+ for {
+ r = r * r
+ s := r + 4
+ if s == 4 {
+ return p * pfac
+ }
+ r = r / s
+ p = p + 2*r*p
+ q = q * r
+ r = q / p
+ }
+ panic("unreachable")
+}
diff --git a/libgo/go/math/hypot_test.go b/libgo/go/math/hypot_test.go
new file mode 100644
index 000000000..85ce1d404
--- /dev/null
+++ b/libgo/go/math/hypot_test.go
@@ -0,0 +1,9 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Make hypotGo available for testing.
+
+func HypotGo(x, y float64) float64 { return hypotGo(x, y) }
diff --git a/libgo/go/math/j0.go b/libgo/go/math/j0.go
new file mode 100644
index 000000000..5aaf4ab9c
--- /dev/null
+++ b/libgo/go/math/j0.go
@@ -0,0 +1,433 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+/*
+ Bessel function of the first and second kinds of order zero.
+*/
+
+// The original C code and the long comment below are
+// from FreeBSD's /usr/src/lib/msun/src/e_j0.c and
+// came with this notice. The go code is a simplified
+// version of the original C.
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+// __ieee754_j0(x), __ieee754_y0(x)
+// Bessel function of the first and second kinds of order zero.
+// Method -- j0(x):
+// 1. For tiny x, we use j0(x) = 1 - x**2/4 + x**4/64 - ...
+// 2. Reduce x to |x| since j0(x)=j0(-x), and
+// for x in (0,2)
+// j0(x) = 1-z/4+ z**2*R0/S0, where z = x*x;
+// (precision: |j0-1+z/4-z**2R0/S0 |<2**-63.67 )
+// for x in (2,inf)
+// j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
+// where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+// as follow:
+// cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
+// = 1/sqrt(2) * (cos(x) + sin(x))
+// sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
+// = 1/sqrt(2) * (sin(x) - cos(x))
+// (To avoid cancellation, use
+// sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+// to compute the worse one.)
+//
+// 3 Special cases
+// j0(nan)= nan
+// j0(0) = 1
+// j0(inf) = 0
+//
+// Method -- y0(x):
+// 1. For x<2.
+// Since
+// y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x**2/4 - ...)
+// therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
+// We use the following function to approximate y0,
+// y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x**2
+// where
+// U(z) = u00 + u01*z + ... + u06*z**6
+// V(z) = 1 + v01*z + ... + v04*z**4
+// with absolute approximation error bounded by 2**-72.
+// Note: For tiny x, U/V = u0 and j0(x)~1, hence
+// y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
+// 2. For x>=2.
+// y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
+// where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+// by the method mentioned above.
+// 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
+//
+
+// J0 returns the order-zero Bessel function of the first kind.
+//
+// Special cases are:
+// J0(±Inf) = 0
+// J0(0) = 1
+// J0(NaN) = NaN
+func J0(x float64) float64 {
+ const (
+ Huge = 1e300
+ TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000
+ TwoM13 = 1.0 / (1 << 13) // 2**-13 0x3f20000000000000
+ Two129 = 1 << 129 // 2**129 0x4800000000000000
+ // R0/S0 on [0, 2]
+ R02 = 1.56249999999999947958e-02 // 0x3F8FFFFFFFFFFFFD
+ R03 = -1.89979294238854721751e-04 // 0xBF28E6A5B61AC6E9
+ R04 = 1.82954049532700665670e-06 // 0x3EBEB1D10C503919
+ R05 = -4.61832688532103189199e-09 // 0xBE33D5E773D63FCE
+ S01 = 1.56191029464890010492e-02 // 0x3F8FFCE882C8C2A4
+ S02 = 1.16926784663337450260e-04 // 0x3F1EA6D2DD57DBF4
+ S03 = 5.13546550207318111446e-07 // 0x3EA13B54CE84D5A9
+ S04 = 1.16614003333790000205e-09 // 0x3E1408BCF4745D8F
+ )
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case x != x: // IsNaN(x)
+ return x
+ case x < -MaxFloat64 || x > MaxFloat64: // IsInf(x, 0):
+ return 0
+ case x == 0:
+ return 1
+ }
+
+ if x < 0 {
+ x = -x
+ }
+ if x >= 2 {
+ s, c := Sincos(x)
+ ss := s - c
+ cc := s + c
+
+ // make sure x+x does not overflow
+ if x < MaxFloat64/2 {
+ z := -Cos(x + x)
+ if s*c < 0 {
+ cc = z / ss
+ } else {
+ ss = z / cc
+ }
+ }
+
+ // j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+ // y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+
+ var z float64
+ if x > Two129 { // |x| > ~6.8056e+38
+ z = (1 / SqrtPi) * cc / Sqrt(x)
+ } else {
+ u := pzero(x)
+ v := qzero(x)
+ z = (1 / SqrtPi) * (u*cc - v*ss) / Sqrt(x)
+ }
+ return z // |x| >= 2.0
+ }
+ if x < TwoM13 { // |x| < ~1.2207e-4
+ if x < TwoM27 {
+ return 1 // |x| < ~7.4506e-9
+ }
+ return 1 - 0.25*x*x // ~7.4506e-9 < |x| < ~1.2207e-4
+ }
+ z := x * x
+ r := z * (R02 + z*(R03+z*(R04+z*R05)))
+ s := 1 + z*(S01+z*(S02+z*(S03+z*S04)))
+ if x < 1 {
+ return 1 + z*(-0.25+(r/s)) // |x| < 1.00
+ }
+ u := 0.5 * x
+ return (1+u)*(1-u) + z*(r/s) // 1.0 < |x| < 2.0
+}
+
+// Y0 returns the order-zero Bessel function of the second kind.
+//
+// Special cases are:
+// Y0(+Inf) = 0
+// Y0(0) = -Inf
+// Y0(x < 0) = NaN
+// Y0(NaN) = NaN
+func Y0(x float64) float64 {
+ const (
+ TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000
+ Two129 = 1 << 129 // 2**129 0x4800000000000000
+ U00 = -7.38042951086872317523e-02 // 0xBFB2E4D699CBD01F
+ U01 = 1.76666452509181115538e-01 // 0x3FC69D019DE9E3FC
+ U02 = -1.38185671945596898896e-02 // 0xBF8C4CE8B16CFA97
+ U03 = 3.47453432093683650238e-04 // 0x3F36C54D20B29B6B
+ U04 = -3.81407053724364161125e-06 // 0xBECFFEA773D25CAD
+ U05 = 1.95590137035022920206e-08 // 0x3E5500573B4EABD4
+ U06 = -3.98205194132103398453e-11 // 0xBDC5E43D693FB3C8
+ V01 = 1.27304834834123699328e-02 // 0x3F8A127091C9C71A
+ V02 = 7.60068627350353253702e-05 // 0x3F13ECBBF578C6C1
+ V03 = 2.59150851840457805467e-07 // 0x3E91642D7FF202FD
+ V04 = 4.41110311332675467403e-10 // 0x3DFE50183BD6D9EF
+ )
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case x < 0 || x != x: // x < 0 || IsNaN(x):
+ return NaN()
+ case x > MaxFloat64: // IsInf(x, 1):
+ return 0
+ case x == 0:
+ return Inf(-1)
+ }
+
+ if x >= 2 { // |x| >= 2.0
+
+ // y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
+ // where x0 = x-pi/4
+ // Better formula:
+ // cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
+ // = 1/sqrt(2) * (sin(x) + cos(x))
+ // sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+ // = 1/sqrt(2) * (sin(x) - cos(x))
+ // To avoid cancellation, use
+ // sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ // to compute the worse one.
+
+ s, c := Sincos(x)
+ ss := s - c
+ cc := s + c
+
+ // j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+ // y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+
+ // make sure x+x does not overflow
+ if x < MaxFloat64/2 {
+ z := -Cos(x + x)
+ if s*c < 0 {
+ cc = z / ss
+ } else {
+ ss = z / cc
+ }
+ }
+ var z float64
+ if x > Two129 { // |x| > ~6.8056e+38
+ z = (1 / SqrtPi) * ss / Sqrt(x)
+ } else {
+ u := pzero(x)
+ v := qzero(x)
+ z = (1 / SqrtPi) * (u*ss + v*cc) / Sqrt(x)
+ }
+ return z // |x| >= 2.0
+ }
+ if x <= TwoM27 {
+ return U00 + (2/Pi)*Log(x) // |x| < ~7.4506e-9
+ }
+ z := x * x
+ u := U00 + z*(U01+z*(U02+z*(U03+z*(U04+z*(U05+z*U06)))))
+ v := 1 + z*(V01+z*(V02+z*(V03+z*V04)))
+ return u/v + (2/Pi)*J0(x)*Log(x) // ~7.4506e-9 < |x| < 2.0
+}
+
+// The asymptotic expansions of pzero is
+// 1 - 9/128 s**2 + 11025/98304 s**4 - ..., where s = 1/x.
+// For x >= 2, We approximate pzero by
+// pzero(x) = 1 + (R/S)
+// where R = pR0 + pR1*s**2 + pR2*s**4 + ... + pR5*s**10
+// S = 1 + pS0*s**2 + ... + pS4*s**10
+// and
+// | pzero(x)-1-R/S | <= 2 ** ( -60.26)
+
+// for x in [inf, 8]=1/[0,0.125]
+var p0R8 = [6]float64{
+ 0.00000000000000000000e+00, // 0x0000000000000000
+ -7.03124999999900357484e-02, // 0xBFB1FFFFFFFFFD32
+ -8.08167041275349795626e+00, // 0xC02029D0B44FA779
+ -2.57063105679704847262e+02, // 0xC07011027B19E863
+ -2.48521641009428822144e+03, // 0xC0A36A6ECD4DCAFC
+ -5.25304380490729545272e+03, // 0xC0B4850B36CC643D
+}
+var p0S8 = [5]float64{
+ 1.16534364619668181717e+02, // 0x405D223307A96751
+ 3.83374475364121826715e+03, // 0x40ADF37D50596938
+ 4.05978572648472545552e+04, // 0x40E3D2BB6EB6B05F
+ 1.16752972564375915681e+05, // 0x40FC810F8F9FA9BD
+ 4.76277284146730962675e+04, // 0x40E741774F2C49DC
+}
+
+// for x in [8,4.5454]=1/[0.125,0.22001]
+var p0R5 = [6]float64{
+ -1.14125464691894502584e-11, // 0xBDA918B147E495CC
+ -7.03124940873599280078e-02, // 0xBFB1FFFFE69AFBC6
+ -4.15961064470587782438e+00, // 0xC010A370F90C6BBF
+ -6.76747652265167261021e+01, // 0xC050EB2F5A7D1783
+ -3.31231299649172967747e+02, // 0xC074B3B36742CC63
+ -3.46433388365604912451e+02, // 0xC075A6EF28A38BD7
+}
+var p0S5 = [5]float64{
+ 6.07539382692300335975e+01, // 0x404E60810C98C5DE
+ 1.05125230595704579173e+03, // 0x40906D025C7E2864
+ 5.97897094333855784498e+03, // 0x40B75AF88FBE1D60
+ 9.62544514357774460223e+03, // 0x40C2CCB8FA76FA38
+ 2.40605815922939109441e+03, // 0x40A2CC1DC70BE864
+}
+
+// for x in [4.547,2.8571]=1/[0.2199,0.35001]
+var p0R3 = [6]float64{
+ -2.54704601771951915620e-09, // 0xBE25E1036FE1AA86
+ -7.03119616381481654654e-02, // 0xBFB1FFF6F7C0E24B
+ -2.40903221549529611423e+00, // 0xC00345B2AEA48074
+ -2.19659774734883086467e+01, // 0xC035F74A4CB94E14
+ -5.80791704701737572236e+01, // 0xC04D0A22420A1A45
+ -3.14479470594888503854e+01, // 0xC03F72ACA892D80F
+}
+var p0S3 = [5]float64{
+ 3.58560338055209726349e+01, // 0x4041ED9284077DD3
+ 3.61513983050303863820e+02, // 0x40769839464A7C0E
+ 1.19360783792111533330e+03, // 0x4092A66E6D1061D6
+ 1.12799679856907414432e+03, // 0x40919FFCB8C39B7E
+ 1.73580930813335754692e+02, // 0x4065B296FC379081
+}
+
+// for x in [2.8570,2]=1/[0.3499,0.5]
+var p0R2 = [6]float64{
+ -8.87534333032526411254e-08, // 0xBE77D316E927026D
+ -7.03030995483624743247e-02, // 0xBFB1FF62495E1E42
+ -1.45073846780952986357e+00, // 0xBFF736398A24A843
+ -7.63569613823527770791e+00, // 0xC01E8AF3EDAFA7F3
+ -1.11931668860356747786e+01, // 0xC02662E6C5246303
+ -3.23364579351335335033e+00, // 0xC009DE81AF8FE70F
+}
+var p0S2 = [5]float64{
+ 2.22202997532088808441e+01, // 0x40363865908B5959
+ 1.36206794218215208048e+02, // 0x4061069E0EE8878F
+ 2.70470278658083486789e+02, // 0x4070E78642EA079B
+ 1.53875394208320329881e+02, // 0x40633C033AB6FAFF
+ 1.46576176948256193810e+01, // 0x402D50B344391809
+}
+
+func pzero(x float64) float64 {
+ var p [6]float64
+ var q [5]float64
+ if x >= 8 {
+ p = p0R8
+ q = p0S8
+ } else if x >= 4.5454 {
+ p = p0R5
+ q = p0S5
+ } else if x >= 2.8571 {
+ p = p0R3
+ q = p0S3
+ } else if x >= 2 {
+ p = p0R2
+ q = p0S2
+ }
+ z := 1 / (x * x)
+ r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
+ s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))))
+ return 1 + r/s
+}
+
+// For x >= 8, the asymptotic expansions of qzero is
+// -1/8 s + 75/1024 s**3 - ..., where s = 1/x.
+// We approximate pzero by
+// qzero(x) = s*(-1.25 + (R/S))
+// where R = qR0 + qR1*s**2 + qR2*s**4 + ... + qR5*s**10
+// S = 1 + qS0*s**2 + ... + qS5*s**12
+// and
+// | qzero(x)/s +1.25-R/S | <= 2**(-61.22)
+
+// for x in [inf, 8]=1/[0,0.125]
+var q0R8 = [6]float64{
+ 0.00000000000000000000e+00, // 0x0000000000000000
+ 7.32421874999935051953e-02, // 0x3FB2BFFFFFFFFE2C
+ 1.17682064682252693899e+01, // 0x402789525BB334D6
+ 5.57673380256401856059e+02, // 0x40816D6315301825
+ 8.85919720756468632317e+03, // 0x40C14D993E18F46D
+ 3.70146267776887834771e+04, // 0x40E212D40E901566
+}
+var q0S8 = [6]float64{
+ 1.63776026895689824414e+02, // 0x406478D5365B39BC
+ 8.09834494656449805916e+03, // 0x40BFA2584E6B0563
+ 1.42538291419120476348e+05, // 0x4101665254D38C3F
+ 8.03309257119514397345e+05, // 0x412883DA83A52B43
+ 8.40501579819060512818e+05, // 0x4129A66B28DE0B3D
+ -3.43899293537866615225e+05, // 0xC114FD6D2C9530C5
+}
+
+// for x in [8,4.5454]=1/[0.125,0.22001]
+var q0R5 = [6]float64{
+ 1.84085963594515531381e-11, // 0x3DB43D8F29CC8CD9
+ 7.32421766612684765896e-02, // 0x3FB2BFFFD172B04C
+ 5.83563508962056953777e+00, // 0x401757B0B9953DD3
+ 1.35111577286449829671e+02, // 0x4060E3920A8788E9
+ 1.02724376596164097464e+03, // 0x40900CF99DC8C481
+ 1.98997785864605384631e+03, // 0x409F17E953C6E3A6
+}
+var q0S5 = [6]float64{
+ 8.27766102236537761883e+01, // 0x4054B1B3FB5E1543
+ 2.07781416421392987104e+03, // 0x40A03BA0DA21C0CE
+ 1.88472887785718085070e+04, // 0x40D267D27B591E6D
+ 5.67511122894947329769e+04, // 0x40EBB5E397E02372
+ 3.59767538425114471465e+04, // 0x40E191181F7A54A0
+ -5.35434275601944773371e+03, // 0xC0B4EA57BEDBC609
+}
+
+// for x in [4.547,2.8571]=1/[0.2199,0.35001]
+var q0R3 = [6]float64{
+ 4.37741014089738620906e-09, // 0x3E32CD036ADECB82
+ 7.32411180042911447163e-02, // 0x3FB2BFEE0E8D0842
+ 3.34423137516170720929e+00, // 0x400AC0FC61149CF5
+ 4.26218440745412650017e+01, // 0x40454F98962DAEDD
+ 1.70808091340565596283e+02, // 0x406559DBE25EFD1F
+ 1.66733948696651168575e+02, // 0x4064D77C81FA21E0
+}
+var q0S3 = [6]float64{
+ 4.87588729724587182091e+01, // 0x40486122BFE343A6
+ 7.09689221056606015736e+02, // 0x40862D8386544EB3
+ 3.70414822620111362994e+03, // 0x40ACF04BE44DFC63
+ 6.46042516752568917582e+03, // 0x40B93C6CD7C76A28
+ 2.51633368920368957333e+03, // 0x40A3A8AAD94FB1C0
+ -1.49247451836156386662e+02, // 0xC062A7EB201CF40F
+}
+
+// for x in [2.8570,2]=1/[0.3499,0.5]
+var q0R2 = [6]float64{
+ 1.50444444886983272379e-07, // 0x3E84313B54F76BDB
+ 7.32234265963079278272e-02, // 0x3FB2BEC53E883E34
+ 1.99819174093815998816e+00, // 0x3FFFF897E727779C
+ 1.44956029347885735348e+01, // 0x402CFDBFAAF96FE5
+ 3.16662317504781540833e+01, // 0x403FAA8E29FBDC4A
+ 1.62527075710929267416e+01, // 0x403040B171814BB4
+}
+var q0S2 = [6]float64{
+ 3.03655848355219184498e+01, // 0x403E5D96F7C07AED
+ 2.69348118608049844624e+02, // 0x4070D591E4D14B40
+ 8.44783757595320139444e+02, // 0x408A664522B3BF22
+ 8.82935845112488550512e+02, // 0x408B977C9C5CC214
+ 2.12666388511798828631e+02, // 0x406A95530E001365
+ -5.31095493882666946917e+00, // 0xC0153E6AF8B32931
+}
+
+func qzero(x float64) float64 {
+ var p, q [6]float64
+ if x >= 8 {
+ p = q0R8
+ q = q0S8
+ } else if x >= 4.5454 {
+ p = q0R5
+ q = q0S5
+ } else if x >= 2.8571 {
+ p = q0R3
+ q = q0S3
+ } else if x >= 2 {
+ p = q0R2
+ q = q0S2
+ }
+ z := 1 / (x * x)
+ r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
+ s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))))
+ return (-0.125 + r/s) / x
+}
diff --git a/libgo/go/math/j1.go b/libgo/go/math/j1.go
new file mode 100644
index 000000000..278162e9d
--- /dev/null
+++ b/libgo/go/math/j1.go
@@ -0,0 +1,426 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+/*
+ Bessel function of the first and second kinds of order one.
+*/
+
+// The original C code and the long comment below are
+// from FreeBSD's /usr/src/lib/msun/src/e_j1.c and
+// came with this notice. The go code is a simplified
+// version of the original C.
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+// __ieee754_j1(x), __ieee754_y1(x)
+// Bessel function of the first and second kinds of order one.
+// Method -- j1(x):
+// 1. For tiny x, we use j1(x) = x/2 - x**3/16 + x**5/384 - ...
+// 2. Reduce x to |x| since j1(x)=-j1(-x), and
+// for x in (0,2)
+// j1(x) = x/2 + x*z*R0/S0, where z = x*x;
+// (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
+// for x in (2,inf)
+// j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
+// y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
+// where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
+// as follow:
+// cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
+// = 1/sqrt(2) * (sin(x) - cos(x))
+// sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+// = -1/sqrt(2) * (sin(x) + cos(x))
+// (To avoid cancellation, use
+// sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+// to compute the worse one.)
+//
+// 3 Special cases
+// j1(nan)= nan
+// j1(0) = 0
+// j1(inf) = 0
+//
+// Method -- y1(x):
+// 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
+// 2. For x<2.
+// Since
+// y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x**3-...)
+// therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
+// We use the following function to approximate y1,
+// y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x**2
+// where for x in [0,2] (abs err less than 2**-65.89)
+// U(z) = U0[0] + U0[1]*z + ... + U0[4]*z**4
+// V(z) = 1 + v0[0]*z + ... + v0[4]*z**5
+// Note: For tiny x, 1/x dominate y1 and hence
+// y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
+// 3. For x>=2.
+// y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
+// where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
+// by method mentioned above.
+
+// J1 returns the order-one Bessel function of the first kind.
+//
+// Special cases are:
+// J1(±Inf) = 0
+// J1(NaN) = NaN
+func J1(x float64) float64 {
+ const (
+ TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000
+ Two129 = 1 << 129 // 2**129 0x4800000000000000
+ // R0/S0 on [0, 2]
+ R00 = -6.25000000000000000000e-02 // 0xBFB0000000000000
+ R01 = 1.40705666955189706048e-03 // 0x3F570D9F98472C61
+ R02 = -1.59955631084035597520e-05 // 0xBEF0C5C6BA169668
+ R03 = 4.96727999609584448412e-08 // 0x3E6AAAFA46CA0BD9
+ S01 = 1.91537599538363460805e-02 // 0x3F939D0B12637E53
+ S02 = 1.85946785588630915560e-04 // 0x3F285F56B9CDF664
+ S03 = 1.17718464042623683263e-06 // 0x3EB3BFF8333F8498
+ S04 = 5.04636257076217042715e-09 // 0x3E35AC88C97DFF2C
+ S05 = 1.23542274426137913908e-11 // 0x3DAB2ACFCFB97ED8
+ )
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case x != x: // IsNaN(x)
+ return x
+ case x < -MaxFloat64 || x > MaxFloat64 || x == 0: // IsInf(x, 0) || x == 0:
+ return 0
+ }
+
+ sign := false
+ if x < 0 {
+ x = -x
+ sign = true
+ }
+ if x >= 2 {
+ s, c := Sincos(x)
+ ss := -s - c
+ cc := s - c
+
+ // make sure x+x does not overflow
+ if x < MaxFloat64/2 {
+ z := Cos(x + x)
+ if s*c > 0 {
+ cc = z / ss
+ } else {
+ ss = z / cc
+ }
+ }
+
+ // j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
+ // y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
+
+ var z float64
+ if x > Two129 {
+ z = (1 / SqrtPi) * cc / Sqrt(x)
+ } else {
+ u := pone(x)
+ v := qone(x)
+ z = (1 / SqrtPi) * (u*cc - v*ss) / Sqrt(x)
+ }
+ if sign {
+ return -z
+ }
+ return z
+ }
+ if x < TwoM27 { // |x|<2**-27
+ return 0.5 * x // inexact if x!=0 necessary
+ }
+ z := x * x
+ r := z * (R00 + z*(R01+z*(R02+z*R03)))
+ s := 1.0 + z*(S01+z*(S02+z*(S03+z*(S04+z*S05))))
+ r *= x
+ z = 0.5*x + r/s
+ if sign {
+ return -z
+ }
+ return z
+}
+
+// Y1 returns the order-one Bessel function of the second kind.
+//
+// Special cases are:
+// Y1(+Inf) = 0
+// Y1(0) = -Inf
+// Y1(x < 0) = NaN
+// Y1(NaN) = NaN
+func Y1(x float64) float64 {
+ const (
+ TwoM54 = 1.0 / (1 << 54) // 2**-54 0x3c90000000000000
+ Two129 = 1 << 129 // 2**129 0x4800000000000000
+ U00 = -1.96057090646238940668e-01 // 0xBFC91866143CBC8A
+ U01 = 5.04438716639811282616e-02 // 0x3FA9D3C776292CD1
+ U02 = -1.91256895875763547298e-03 // 0xBF5F55E54844F50F
+ U03 = 2.35252600561610495928e-05 // 0x3EF8AB038FA6B88E
+ U04 = -9.19099158039878874504e-08 // 0xBE78AC00569105B8
+ V00 = 1.99167318236649903973e-02 // 0x3F94650D3F4DA9F0
+ V01 = 2.02552581025135171496e-04 // 0x3F2A8C896C257764
+ V02 = 1.35608801097516229404e-06 // 0x3EB6C05A894E8CA6
+ V03 = 6.22741452364621501295e-09 // 0x3E3ABF1D5BA69A86
+ V04 = 1.66559246207992079114e-11 // 0x3DB25039DACA772A
+ )
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case x < 0 || x != x: // x < 0 || IsNaN(x):
+ return NaN()
+ case x > MaxFloat64: // IsInf(x, 1):
+ return 0
+ case x == 0:
+ return Inf(-1)
+ }
+
+ if x >= 2 {
+ s, c := Sincos(x)
+ ss := -s - c
+ cc := s - c
+
+ // make sure x+x does not overflow
+ if x < MaxFloat64/2 {
+ z := Cos(x + x)
+ if s*c > 0 {
+ cc = z / ss
+ } else {
+ ss = z / cc
+ }
+ }
+ // y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
+ // where x0 = x-3pi/4
+ // Better formula:
+ // cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
+ // = 1/sqrt(2) * (sin(x) - cos(x))
+ // sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+ // = -1/sqrt(2) * (cos(x) + sin(x))
+ // To avoid cancellation, use
+ // sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ // to compute the worse one.
+
+ var z float64
+ if x > Two129 {
+ z = (1 / SqrtPi) * ss / Sqrt(x)
+ } else {
+ u := pone(x)
+ v := qone(x)
+ z = (1 / SqrtPi) * (u*ss + v*cc) / Sqrt(x)
+ }
+ return z
+ }
+ if x <= TwoM54 { // x < 2**-54
+ return -(2 / Pi) / x
+ }
+ z := x * x
+ u := U00 + z*(U01+z*(U02+z*(U03+z*U04)))
+ v := 1 + z*(V00+z*(V01+z*(V02+z*(V03+z*V04))))
+ return x*(u/v) + (2/Pi)*(J1(x)*Log(x)-1/x)
+}
+
+// For x >= 8, the asymptotic expansions of pone is
+// 1 + 15/128 s**2 - 4725/2**15 s**4 - ..., where s = 1/x.
+// We approximate pone by
+// pone(x) = 1 + (R/S)
+// where R = pr0 + pr1*s**2 + pr2*s**4 + ... + pr5*s**10
+// S = 1 + ps0*s**2 + ... + ps4*s**10
+// and
+// | pone(x)-1-R/S | <= 2**(-60.06)
+
+// for x in [inf, 8]=1/[0,0.125]
+var p1R8 = [6]float64{
+ 0.00000000000000000000e+00, // 0x0000000000000000
+ 1.17187499999988647970e-01, // 0x3FBDFFFFFFFFFCCE
+ 1.32394806593073575129e+01, // 0x402A7A9D357F7FCE
+ 4.12051854307378562225e+02, // 0x4079C0D4652EA590
+ 3.87474538913960532227e+03, // 0x40AE457DA3A532CC
+ 7.91447954031891731574e+03, // 0x40BEEA7AC32782DD
+}
+var p1S8 = [5]float64{
+ 1.14207370375678408436e+02, // 0x405C8D458E656CAC
+ 3.65093083420853463394e+03, // 0x40AC85DC964D274F
+ 3.69562060269033463555e+04, // 0x40E20B8697C5BB7F
+ 9.76027935934950801311e+04, // 0x40F7D42CB28F17BB
+ 3.08042720627888811578e+04, // 0x40DE1511697A0B2D
+}
+
+// for x in [8,4.5454] = 1/[0.125,0.22001]
+var p1R5 = [6]float64{
+ 1.31990519556243522749e-11, // 0x3DAD0667DAE1CA7D
+ 1.17187493190614097638e-01, // 0x3FBDFFFFE2C10043
+ 6.80275127868432871736e+00, // 0x401B36046E6315E3
+ 1.08308182990189109773e+02, // 0x405B13B9452602ED
+ 5.17636139533199752805e+02, // 0x40802D16D052D649
+ 5.28715201363337541807e+02, // 0x408085B8BB7E0CB7
+}
+var p1S5 = [5]float64{
+ 5.92805987221131331921e+01, // 0x404DA3EAA8AF633D
+ 9.91401418733614377743e+02, // 0x408EFB361B066701
+ 5.35326695291487976647e+03, // 0x40B4E9445706B6FB
+ 7.84469031749551231769e+03, // 0x40BEA4B0B8A5BB15
+ 1.50404688810361062679e+03, // 0x40978030036F5E51
+}
+
+// for x in[4.5453,2.8571] = 1/[0.2199,0.35001]
+var p1R3 = [6]float64{
+ 3.02503916137373618024e-09, // 0x3E29FC21A7AD9EDD
+ 1.17186865567253592491e-01, // 0x3FBDFFF55B21D17B
+ 3.93297750033315640650e+00, // 0x400F76BCE85EAD8A
+ 3.51194035591636932736e+01, // 0x40418F489DA6D129
+ 9.10550110750781271918e+01, // 0x4056C3854D2C1837
+ 4.85590685197364919645e+01, // 0x4048478F8EA83EE5
+}
+var p1S3 = [5]float64{
+ 3.47913095001251519989e+01, // 0x40416549A134069C
+ 3.36762458747825746741e+02, // 0x40750C3307F1A75F
+ 1.04687139975775130551e+03, // 0x40905B7C5037D523
+ 8.90811346398256432622e+02, // 0x408BD67DA32E31E9
+ 1.03787932439639277504e+02, // 0x4059F26D7C2EED53
+}
+
+// for x in [2.8570,2] = 1/[0.3499,0.5]
+var p1R2 = [6]float64{
+ 1.07710830106873743082e-07, // 0x3E7CE9D4F65544F4
+ 1.17176219462683348094e-01, // 0x3FBDFF42BE760D83
+ 2.36851496667608785174e+00, // 0x4002F2B7F98FAEC0
+ 1.22426109148261232917e+01, // 0x40287C377F71A964
+ 1.76939711271687727390e+01, // 0x4031B1A8177F8EE2
+ 5.07352312588818499250e+00, // 0x40144B49A574C1FE
+}
+var p1S2 = [5]float64{
+ 2.14364859363821409488e+01, // 0x40356FBD8AD5ECDC
+ 1.25290227168402751090e+02, // 0x405F529314F92CD5
+ 2.32276469057162813669e+02, // 0x406D08D8D5A2DBD9
+ 1.17679373287147100768e+02, // 0x405D6B7ADA1884A9
+ 8.36463893371618283368e+00, // 0x4020BAB1F44E5192
+}
+
+func pone(x float64) float64 {
+ var p [6]float64
+ var q [5]float64
+ if x >= 8 {
+ p = p1R8
+ q = p1S8
+ } else if x >= 4.5454 {
+ p = p1R5
+ q = p1S5
+ } else if x >= 2.8571 {
+ p = p1R3
+ q = p1S3
+ } else if x >= 2 {
+ p = p1R2
+ q = p1S2
+ }
+ z := 1 / (x * x)
+ r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
+ s := 1.0 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))))
+ return 1 + r/s
+}
+
+// For x >= 8, the asymptotic expansions of qone is
+// 3/8 s - 105/1024 s**3 - ..., where s = 1/x.
+// We approximate qone by
+// qone(x) = s*(0.375 + (R/S))
+// where R = qr1*s**2 + qr2*s**4 + ... + qr5*s**10
+// S = 1 + qs1*s**2 + ... + qs6*s**12
+// and
+// | qone(x)/s -0.375-R/S | <= 2**(-61.13)
+
+// for x in [inf, 8] = 1/[0,0.125]
+var q1R8 = [6]float64{
+ 0.00000000000000000000e+00, // 0x0000000000000000
+ -1.02539062499992714161e-01, // 0xBFBA3FFFFFFFFDF3
+ -1.62717534544589987888e+01, // 0xC0304591A26779F7
+ -7.59601722513950107896e+02, // 0xC087BCD053E4B576
+ -1.18498066702429587167e+04, // 0xC0C724E740F87415
+ -4.84385124285750353010e+04, // 0xC0E7A6D065D09C6A
+}
+var q1S8 = [6]float64{
+ 1.61395369700722909556e+02, // 0x40642CA6DE5BCDE5
+ 7.82538599923348465381e+03, // 0x40BE9162D0D88419
+ 1.33875336287249578163e+05, // 0x4100579AB0B75E98
+ 7.19657723683240939863e+05, // 0x4125F65372869C19
+ 6.66601232617776375264e+05, // 0x412457D27719AD5C
+ -2.94490264303834643215e+05, // 0xC111F9690EA5AA18
+}
+
+// for x in [8,4.5454] = 1/[0.125,0.22001]
+var q1R5 = [6]float64{
+ -2.08979931141764104297e-11, // 0xBDB6FA431AA1A098
+ -1.02539050241375426231e-01, // 0xBFBA3FFFCB597FEF
+ -8.05644828123936029840e+00, // 0xC0201CE6CA03AD4B
+ -1.83669607474888380239e+02, // 0xC066F56D6CA7B9B0
+ -1.37319376065508163265e+03, // 0xC09574C66931734F
+ -2.61244440453215656817e+03, // 0xC0A468E388FDA79D
+}
+var q1S5 = [6]float64{
+ 8.12765501384335777857e+01, // 0x405451B2FF5A11B2
+ 1.99179873460485964642e+03, // 0x409F1F31E77BF839
+ 1.74684851924908907677e+04, // 0x40D10F1F0D64CE29
+ 4.98514270910352279316e+04, // 0x40E8576DAABAD197
+ 2.79480751638918118260e+04, // 0x40DB4B04CF7C364B
+ -4.71918354795128470869e+03, // 0xC0B26F2EFCFFA004
+}
+
+// for x in [4.5454,2.8571] = 1/[0.2199,0.35001] ???
+var q1R3 = [6]float64{
+ -5.07831226461766561369e-09, // 0xBE35CFA9D38FC84F
+ -1.02537829820837089745e-01, // 0xBFBA3FEB51AEED54
+ -4.61011581139473403113e+00, // 0xC01270C23302D9FF
+ -5.78472216562783643212e+01, // 0xC04CEC71C25D16DA
+ -2.28244540737631695038e+02, // 0xC06C87D34718D55F
+ -2.19210128478909325622e+02, // 0xC06B66B95F5C1BF6
+}
+var q1S3 = [6]float64{
+ 4.76651550323729509273e+01, // 0x4047D523CCD367E4
+ 6.73865112676699709482e+02, // 0x40850EEBC031EE3E
+ 3.38015286679526343505e+03, // 0x40AA684E448E7C9A
+ 5.54772909720722782367e+03, // 0x40B5ABBAA61D54A6
+ 1.90311919338810798763e+03, // 0x409DBC7A0DD4DF4B
+ -1.35201191444307340817e+02, // 0xC060E670290A311F
+}
+
+// for x in [2.8570,2] = 1/[0.3499,0.5]
+var q1R2 = [6]float64{
+ -1.78381727510958865572e-07, // 0xBE87F12644C626D2
+ -1.02517042607985553460e-01, // 0xBFBA3E8E9148B010
+ -2.75220568278187460720e+00, // 0xC006048469BB4EDA
+ -1.96636162643703720221e+01, // 0xC033A9E2C168907F
+ -4.23253133372830490089e+01, // 0xC04529A3DE104AAA
+ -2.13719211703704061733e+01, // 0xC0355F3639CF6E52
+}
+var q1S2 = [6]float64{
+ 2.95333629060523854548e+01, // 0x403D888A78AE64FF
+ 2.52981549982190529136e+02, // 0x406F9F68DB821CBA
+ 7.57502834868645436472e+02, // 0x4087AC05CE49A0F7
+ 7.39393205320467245656e+02, // 0x40871B2548D4C029
+ 1.55949003336666123687e+02, // 0x40637E5E3C3ED8D4
+ -4.95949898822628210127e+00, // 0xC013D686E71BE86B
+}
+
+func qone(x float64) float64 {
+ var p, q [6]float64
+ if x >= 8 {
+ p = q1R8
+ q = q1S8
+ } else if x >= 4.5454 {
+ p = q1R5
+ q = q1S5
+ } else if x >= 2.8571 {
+ p = q1R3
+ q = q1S3
+ } else if x >= 2 {
+ p = q1R2
+ q = q1S2
+ }
+ z := 1 / (x * x)
+ r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
+ s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))))
+ return (0.375 + r/s) / x
+}
diff --git a/libgo/go/math/jn.go b/libgo/go/math/jn.go
new file mode 100644
index 000000000..9024af3c2
--- /dev/null
+++ b/libgo/go/math/jn.go
@@ -0,0 +1,310 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+/*
+ Bessel function of the first and second kinds of order n.
+*/
+
+// The original C code and the long comment below are
+// from FreeBSD's /usr/src/lib/msun/src/e_jn.c and
+// came with this notice. The go code is a simplified
+// version of the original C.
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+// __ieee754_jn(n, x), __ieee754_yn(n, x)
+// floating point Bessel's function of the 1st and 2nd kind
+// of order n
+//
+// Special cases:
+// y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
+// y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
+// Note 2. About jn(n,x), yn(n,x)
+// For n=0, j0(x) is called,
+// for n=1, j1(x) is called,
+// for n<x, forward recursion is used starting
+// from values of j0(x) and j1(x).
+// for n>x, a continued fraction approximation to
+// j(n,x)/j(n-1,x) is evaluated and then backward
+// recursion is used starting from a supposed value
+// for j(n,x). The resulting value of j(0,x) is
+// compared with the actual value to correct the
+// supposed value of j(n,x).
+//
+// yn(n,x) is similar in all respects, except
+// that forward recursion is used for all
+// values of n>1.
+
+// Jn returns the order-n Bessel function of the first kind.
+//
+// Special cases are:
+// Jn(n, ±Inf) = 0
+// Jn(n, NaN) = NaN
+func Jn(n int, x float64) float64 {
+ const (
+ TwoM29 = 1.0 / (1 << 29) // 2**-29 0x3e10000000000000
+ Two302 = 1 << 302 // 2**302 0x52D0000000000000
+ )
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case x != x: // IsNaN(x)
+ return x
+ case x < -MaxFloat64 || x > MaxFloat64: // IsInf(x, 0):
+ return 0
+ }
+ // J(-n, x) = (-1)**n * J(n, x), J(n, -x) = (-1)**n * J(n, x)
+ // Thus, J(-n, x) = J(n, -x)
+
+ if n == 0 {
+ return J0(x)
+ }
+ if x == 0 {
+ return 0
+ }
+ if n < 0 {
+ n, x = -n, -x
+ }
+ if n == 1 {
+ return J1(x)
+ }
+ sign := false
+ if x < 0 {
+ x = -x
+ if n&1 == 1 {
+ sign = true // odd n and negative x
+ }
+ }
+ var b float64
+ if float64(n) <= x {
+ // Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
+ if x >= Two302 { // x > 2**302
+
+ // (x >> n**2)
+ // Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ // Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ // Let s=sin(x), c=cos(x),
+ // xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+ //
+ // n sin(xn)*sqt2 cos(xn)*sqt2
+ // ----------------------------------
+ // 0 s-c c+s
+ // 1 -s-c -c+s
+ // 2 -s+c -c-s
+ // 3 s+c c-s
+
+ var temp float64
+ switch n & 3 {
+ case 0:
+ temp = Cos(x) + Sin(x)
+ case 1:
+ temp = -Cos(x) + Sin(x)
+ case 2:
+ temp = -Cos(x) - Sin(x)
+ case 3:
+ temp = Cos(x) - Sin(x)
+ }
+ b = (1 / SqrtPi) * temp / Sqrt(x)
+ } else {
+ b = J1(x)
+ for i, a := 1, J0(x); i < n; i++ {
+ a, b = b, b*(float64(i+i)/x)-a // avoid underflow
+ }
+ }
+ } else {
+ if x < TwoM29 { // x < 2**-29
+ // x is tiny, return the first Taylor expansion of J(n,x)
+ // J(n,x) = 1/n!*(x/2)**n - ...
+
+ if n > 33 { // underflow
+ b = 0
+ } else {
+ temp := x * 0.5
+ b = temp
+ a := 1.0
+ for i := 2; i <= n; i++ {
+ a *= float64(i) // a = n!
+ b *= temp // b = (x/2)**n
+ }
+ b /= a
+ }
+ } else {
+ // use backward recurrence
+ // x x**2 x**2
+ // J(n,x)/J(n-1,x) = ---- ------ ------ .....
+ // 2n - 2(n+1) - 2(n+2)
+ //
+ // 1 1 1
+ // (for large x) = ---- ------ ------ .....
+ // 2n 2(n+1) 2(n+2)
+ // -- - ------ - ------ -
+ // x x x
+ //
+ // Let w = 2n/x and h=2/x, then the above quotient
+ // is equal to the continued fraction:
+ // 1
+ // = -----------------------
+ // 1
+ // w - -----------------
+ // 1
+ // w+h - ---------
+ // w+2h - ...
+ //
+ // To determine how many terms needed, let
+ // Q(0) = w, Q(1) = w(w+h) - 1,
+ // Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+ // When Q(k) > 1e4 good for single
+ // When Q(k) > 1e9 good for double
+ // When Q(k) > 1e17 good for quadruple
+
+ // determine k
+ w := float64(n+n) / x
+ h := 2 / x
+ q0 := w
+ z := w + h
+ q1 := w*z - 1
+ k := 1
+ for q1 < 1e9 {
+ k += 1
+ z += h
+ q0, q1 = q1, z*q1-q0
+ }
+ m := n + n
+ t := 0.0
+ for i := 2 * (n + k); i >= m; i -= 2 {
+ t = 1 / (float64(i)/x - t)
+ }
+ a := t
+ b = 1
+ // estimate log((2/x)**n*n!) = n*log(2/x)+n*ln(n)
+ // Hence, if n*(log(2n/x)) > ...
+ // single 8.8722839355e+01
+ // double 7.09782712893383973096e+02
+ // long double 1.1356523406294143949491931077970765006170e+04
+ // then recurrent value may overflow and the result is
+ // likely underflow to zero
+
+ tmp := float64(n)
+ v := 2 / x
+ tmp = tmp * Log(Fabs(v*tmp))
+ if tmp < 7.09782712893383973096e+02 {
+ for i := n - 1; i > 0; i-- {
+ di := float64(i + i)
+ a, b = b, b*di/x-a
+ di -= 2
+ }
+ } else {
+ for i := n - 1; i > 0; i-- {
+ di := float64(i + i)
+ a, b = b, b*di/x-a
+ di -= 2
+ // scale b to avoid spurious overflow
+ if b > 1e100 {
+ a /= b
+ t /= b
+ b = 1
+ }
+ }
+ }
+ b = t * J0(x) / b
+ }
+ }
+ if sign {
+ return -b
+ }
+ return b
+}
+
+// Yn returns the order-n Bessel function of the second kind.
+//
+// Special cases are:
+// Yn(n, +Inf) = 0
+// Yn(n > 0, 0) = -Inf
+// Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
+// Y1(n, x < 0) = NaN
+// Y1(n, NaN) = NaN
+func Yn(n int, x float64) float64 {
+ const Two302 = 1 << 302 // 2**302 0x52D0000000000000
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case x < 0 || x != x: // x < 0 || IsNaN(x):
+ return NaN()
+ case x > MaxFloat64: // IsInf(x, 1)
+ return 0
+ }
+
+ if n == 0 {
+ return Y0(x)
+ }
+ if x == 0 {
+ if n < 0 && n&1 == 1 {
+ return Inf(1)
+ }
+ return Inf(-1)
+ }
+ sign := false
+ if n < 0 {
+ n = -n
+ if n&1 == 1 {
+ sign = true // sign true if n < 0 && |n| odd
+ }
+ }
+ if n == 1 {
+ if sign {
+ return -Y1(x)
+ }
+ return Y1(x)
+ }
+ var b float64
+ if x >= Two302 { // x > 2**302
+ // (x >> n**2)
+ // Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ // Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ // Let s=sin(x), c=cos(x),
+ // xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+ //
+ // n sin(xn)*sqt2 cos(xn)*sqt2
+ // ----------------------------------
+ // 0 s-c c+s
+ // 1 -s-c -c+s
+ // 2 -s+c -c-s
+ // 3 s+c c-s
+
+ var temp float64
+ switch n & 3 {
+ case 0:
+ temp = Sin(x) - Cos(x)
+ case 1:
+ temp = -Sin(x) - Cos(x)
+ case 2:
+ temp = -Sin(x) + Cos(x)
+ case 3:
+ temp = Sin(x) + Cos(x)
+ }
+ b = (1 / SqrtPi) * temp / Sqrt(x)
+ } else {
+ a := Y0(x)
+ b = Y1(x)
+ // quit if b is -inf
+ for i := 1; i < n && b >= -MaxFloat64; i++ { // for i := 1; i < n && !IsInf(b, -1); i++ {
+ a, b = b, (float64(i+i)/x)*b-a
+ }
+ }
+ if sign {
+ return -b
+ }
+ return b
+}
diff --git a/libgo/go/math/ldexp.go b/libgo/go/math/ldexp.go
new file mode 100644
index 000000000..96c95cad4
--- /dev/null
+++ b/libgo/go/math/ldexp.go
@@ -0,0 +1,45 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Ldexp is the inverse of Frexp.
+// It returns frac × 2**exp.
+//
+// Special cases are:
+// Ldexp(±0, exp) = ±0
+// Ldexp(±Inf, exp) = ±Inf
+// Ldexp(NaN, exp) = NaN
+func Ldexp(frac float64, exp int) float64 {
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case frac == 0:
+ return frac // correctly return -0
+ case frac < -MaxFloat64 || frac > MaxFloat64 || frac != frac: // IsInf(frac, 0) || IsNaN(frac):
+ return frac
+ }
+ frac, e := normalize(frac)
+ exp += e
+ x := Float64bits(frac)
+ exp += int(x>>shift)&mask - bias
+ if exp < -1074 {
+ return Copysign(0, frac) // underflow
+ }
+ if exp > 1023 { // overflow
+ if frac < 0 {
+ return Inf(-1)
+ }
+ return Inf(1)
+ }
+ var m float64 = 1
+ if exp < -1022 { // denormal
+ exp += 52
+ m = 1.0 / (1 << 52) // 2**-52
+ }
+ x &^= mask << shift
+ x |= uint64(exp+bias) << shift
+ return m * Float64frombits(x)
+}
diff --git a/libgo/go/math/lgamma.go b/libgo/go/math/lgamma.go
new file mode 100644
index 000000000..dc30f468f
--- /dev/null
+++ b/libgo/go/math/lgamma.go
@@ -0,0 +1,350 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+/*
+ Floating-point logarithm of the Gamma function.
+*/
+
+// The original C code and the long comment below are
+// from FreeBSD's /usr/src/lib/msun/src/e_lgamma_r.c and
+// came with this notice. The go code is a simplified
+// version of the original C.
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+// __ieee754_lgamma_r(x, signgamp)
+// Reentrant version of the logarithm of the Gamma function
+// with user provided pointer for the sign of Gamma(x).
+//
+// Method:
+// 1. Argument Reduction for 0 < x <= 8
+// Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
+// reduce x to a number in [1.5,2.5] by
+// lgamma(1+s) = log(s) + lgamma(s)
+// for example,
+// lgamma(7.3) = log(6.3) + lgamma(6.3)
+// = log(6.3*5.3) + lgamma(5.3)
+// = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
+// 2. Polynomial approximation of lgamma around its
+// minimum (ymin=1.461632144968362245) to maintain monotonicity.
+// On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
+// Let z = x-ymin;
+// lgamma(x) = -1.214862905358496078218 + z**2*poly(z)
+// poly(z) is a 14 degree polynomial.
+// 2. Rational approximation in the primary interval [2,3]
+// We use the following approximation:
+// s = x-2.0;
+// lgamma(x) = 0.5*s + s*P(s)/Q(s)
+// with accuracy
+// |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
+// Our algorithms are based on the following observation
+//
+// zeta(2)-1 2 zeta(3)-1 3
+// lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
+// 2 3
+//
+// where Euler = 0.5772156649... is the Euler constant, which
+// is very close to 0.5.
+//
+// 3. For x>=8, we have
+// lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
+// (better formula:
+// lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
+// Let z = 1/x, then we approximation
+// f(z) = lgamma(x) - (x-0.5)(log(x)-1)
+// by
+// 3 5 11
+// w = w0 + w1*z + w2*z + w3*z + ... + w6*z
+// where
+// |w - f(z)| < 2**-58.74
+//
+// 4. For negative x, since (G is gamma function)
+// -x*G(-x)*G(x) = pi/sin(pi*x),
+// we have
+// G(x) = pi/(sin(pi*x)*(-x)*G(-x))
+// since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
+// Hence, for x<0, signgam = sign(sin(pi*x)) and
+// lgamma(x) = log(|Gamma(x)|)
+// = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
+// Note: one should avoid computing pi*(-x) directly in the
+// computation of sin(pi*(-x)).
+//
+// 5. Special Cases
+// lgamma(2+s) ~ s*(1-Euler) for tiny s
+// lgamma(1)=lgamma(2)=0
+// lgamma(x) ~ -log(x) for tiny x
+// lgamma(0) = lgamma(inf) = inf
+// lgamma(-integer) = +-inf
+//
+//
+
+// Lgamma returns the natural logarithm and sign (-1 or +1) of Gamma(x).
+//
+// Special cases are:
+// Lgamma(+Inf) = +Inf
+// Lgamma(0) = +Inf
+// Lgamma(-integer) = +Inf
+// Lgamma(-Inf) = -Inf
+// Lgamma(NaN) = NaN
+func Lgamma(x float64) (lgamma float64, sign int) {
+ const (
+ Ymin = 1.461632144968362245
+ Two52 = 1 << 52 // 0x4330000000000000 ~4.5036e+15
+ Two53 = 1 << 53 // 0x4340000000000000 ~9.0072e+15
+ Two58 = 1 << 58 // 0x4390000000000000 ~2.8823e+17
+ Tiny = 1.0 / (1 << 70) // 0x3b90000000000000 ~8.47033e-22
+ A0 = 7.72156649015328655494e-02 // 0x3FB3C467E37DB0C8
+ A1 = 3.22467033424113591611e-01 // 0x3FD4A34CC4A60FAD
+ A2 = 6.73523010531292681824e-02 // 0x3FB13E001A5562A7
+ A3 = 2.05808084325167332806e-02 // 0x3F951322AC92547B
+ A4 = 7.38555086081402883957e-03 // 0x3F7E404FB68FEFE8
+ A5 = 2.89051383673415629091e-03 // 0x3F67ADD8CCB7926B
+ A6 = 1.19270763183362067845e-03 // 0x3F538A94116F3F5D
+ A7 = 5.10069792153511336608e-04 // 0x3F40B6C689B99C00
+ A8 = 2.20862790713908385557e-04 // 0x3F2CF2ECED10E54D
+ A9 = 1.08011567247583939954e-04 // 0x3F1C5088987DFB07
+ A10 = 2.52144565451257326939e-05 // 0x3EFA7074428CFA52
+ A11 = 4.48640949618915160150e-05 // 0x3F07858E90A45837
+ Tc = 1.46163214496836224576e+00 // 0x3FF762D86356BE3F
+ Tf = -1.21486290535849611461e-01 // 0xBFBF19B9BCC38A42
+ // Tt = -(tail of Tf)
+ Tt = -3.63867699703950536541e-18 // 0xBC50C7CAA48A971F
+ T0 = 4.83836122723810047042e-01 // 0x3FDEF72BC8EE38A2
+ T1 = -1.47587722994593911752e-01 // 0xBFC2E4278DC6C509
+ T2 = 6.46249402391333854778e-02 // 0x3FB08B4294D5419B
+ T3 = -3.27885410759859649565e-02 // 0xBFA0C9A8DF35B713
+ T4 = 1.79706750811820387126e-02 // 0x3F9266E7970AF9EC
+ T5 = -1.03142241298341437450e-02 // 0xBF851F9FBA91EC6A
+ T6 = 6.10053870246291332635e-03 // 0x3F78FCE0E370E344
+ T7 = -3.68452016781138256760e-03 // 0xBF6E2EFFB3E914D7
+ T8 = 2.25964780900612472250e-03 // 0x3F6282D32E15C915
+ T9 = -1.40346469989232843813e-03 // 0xBF56FE8EBF2D1AF1
+ T10 = 8.81081882437654011382e-04 // 0x3F4CDF0CEF61A8E9
+ T11 = -5.38595305356740546715e-04 // 0xBF41A6109C73E0EC
+ T12 = 3.15632070903625950361e-04 // 0x3F34AF6D6C0EBBF7
+ T13 = -3.12754168375120860518e-04 // 0xBF347F24ECC38C38
+ T14 = 3.35529192635519073543e-04 // 0x3F35FD3EE8C2D3F4
+ U0 = -7.72156649015328655494e-02 // 0xBFB3C467E37DB0C8
+ U1 = 6.32827064025093366517e-01 // 0x3FE4401E8B005DFF
+ U2 = 1.45492250137234768737e+00 // 0x3FF7475CD119BD6F
+ U3 = 9.77717527963372745603e-01 // 0x3FEF497644EA8450
+ U4 = 2.28963728064692451092e-01 // 0x3FCD4EAEF6010924
+ U5 = 1.33810918536787660377e-02 // 0x3F8B678BBF2BAB09
+ V1 = 2.45597793713041134822e+00 // 0x4003A5D7C2BD619C
+ V2 = 2.12848976379893395361e+00 // 0x40010725A42B18F5
+ V3 = 7.69285150456672783825e-01 // 0x3FE89DFBE45050AF
+ V4 = 1.04222645593369134254e-01 // 0x3FBAAE55D6537C88
+ V5 = 3.21709242282423911810e-03 // 0x3F6A5ABB57D0CF61
+ S0 = -7.72156649015328655494e-02 // 0xBFB3C467E37DB0C8
+ S1 = 2.14982415960608852501e-01 // 0x3FCB848B36E20878
+ S2 = 3.25778796408930981787e-01 // 0x3FD4D98F4F139F59
+ S3 = 1.46350472652464452805e-01 // 0x3FC2BB9CBEE5F2F7
+ S4 = 2.66422703033638609560e-02 // 0x3F9B481C7E939961
+ S5 = 1.84028451407337715652e-03 // 0x3F5E26B67368F239
+ S6 = 3.19475326584100867617e-05 // 0x3F00BFECDD17E945
+ R1 = 1.39200533467621045958e+00 // 0x3FF645A762C4AB74
+ R2 = 7.21935547567138069525e-01 // 0x3FE71A1893D3DCDC
+ R3 = 1.71933865632803078993e-01 // 0x3FC601EDCCFBDF27
+ R4 = 1.86459191715652901344e-02 // 0x3F9317EA742ED475
+ R5 = 7.77942496381893596434e-04 // 0x3F497DDACA41A95B
+ R6 = 7.32668430744625636189e-06 // 0x3EDEBAF7A5B38140
+ W0 = 4.18938533204672725052e-01 // 0x3FDACFE390C97D69
+ W1 = 8.33333333333329678849e-02 // 0x3FB555555555553B
+ W2 = -2.77777777728775536470e-03 // 0xBF66C16C16B02E5C
+ W3 = 7.93650558643019558500e-04 // 0x3F4A019F98CF38B6
+ W4 = -5.95187557450339963135e-04 // 0xBF4380CB8C0FE741
+ W5 = 8.36339918996282139126e-04 // 0x3F4B67BA4CDAD5D1
+ W6 = -1.63092934096575273989e-03 // 0xBF5AB89D0B9E43E4
+ )
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ sign = 1
+ switch {
+ case x != x: // IsNaN(x):
+ lgamma = x
+ return
+ case x < -MaxFloat64 || x > MaxFloat64: // IsInf(x, 0):
+ lgamma = x
+ return
+ case x == 0:
+ lgamma = Inf(1)
+ return
+ }
+
+ neg := false
+ if x < 0 {
+ x = -x
+ neg = true
+ }
+
+ if x < Tiny { // if |x| < 2**-70, return -log(|x|)
+ if neg {
+ sign = -1
+ }
+ lgamma = -Log(x)
+ return
+ }
+ var nadj float64
+ if neg {
+ if x >= Two52 { // |x| >= 2**52, must be -integer
+ lgamma = Inf(1)
+ return
+ }
+ t := sinPi(x)
+ if t == 0 {
+ lgamma = Inf(1) // -integer
+ return
+ }
+ nadj = Log(Pi / Fabs(t*x))
+ if t < 0 {
+ sign = -1
+ }
+ }
+
+ switch {
+ case x == 1 || x == 2: // purge off 1 and 2
+ lgamma = 0
+ return
+ case x < 2: // use lgamma(x) = lgamma(x+1) - log(x)
+ var y float64
+ var i int
+ if x <= 0.9 {
+ lgamma = -Log(x)
+ switch {
+ case x >= (Ymin - 1 + 0.27): // 0.7316 <= x <= 0.9
+ y = 1 - x
+ i = 0
+ case x >= (Ymin - 1 - 0.27): // 0.2316 <= x < 0.7316
+ y = x - (Tc - 1)
+ i = 1
+ default: // 0 < x < 0.2316
+ y = x
+ i = 2
+ }
+ } else {
+ lgamma = 0
+ switch {
+ case x >= (Ymin + 0.27): // 1.7316 <= x < 2
+ y = 2 - x
+ i = 0
+ case x >= (Ymin - 0.27): // 1.2316 <= x < 1.7316
+ y = x - Tc
+ i = 1
+ default: // 0.9 < x < 1.2316
+ y = x - 1
+ i = 2
+ }
+ }
+ switch i {
+ case 0:
+ z := y * y
+ p1 := A0 + z*(A2+z*(A4+z*(A6+z*(A8+z*A10))))
+ p2 := z * (A1 + z*(A3+z*(A5+z*(A7+z*(A9+z*A11)))))
+ p := y*p1 + p2
+ lgamma += (p - 0.5*y)
+ case 1:
+ z := y * y
+ w := z * y
+ p1 := T0 + w*(T3+w*(T6+w*(T9+w*T12))) // parallel comp
+ p2 := T1 + w*(T4+w*(T7+w*(T10+w*T13)))
+ p3 := T2 + w*(T5+w*(T8+w*(T11+w*T14)))
+ p := z*p1 - (Tt - w*(p2+y*p3))
+ lgamma += (Tf + p)
+ case 2:
+ p1 := y * (U0 + y*(U1+y*(U2+y*(U3+y*(U4+y*U5)))))
+ p2 := 1 + y*(V1+y*(V2+y*(V3+y*(V4+y*V5))))
+ lgamma += (-0.5*y + p1/p2)
+ }
+ case x < 8: // 2 <= x < 8
+ i := int(x)
+ y := x - float64(i)
+ p := y * (S0 + y*(S1+y*(S2+y*(S3+y*(S4+y*(S5+y*S6))))))
+ q := 1 + y*(R1+y*(R2+y*(R3+y*(R4+y*(R5+y*R6)))))
+ lgamma = 0.5*y + p/q
+ z := 1.0 // Lgamma(1+s) = Log(s) + Lgamma(s)
+ switch i {
+ case 7:
+ z *= (y + 6)
+ fallthrough
+ case 6:
+ z *= (y + 5)
+ fallthrough
+ case 5:
+ z *= (y + 4)
+ fallthrough
+ case 4:
+ z *= (y + 3)
+ fallthrough
+ case 3:
+ z *= (y + 2)
+ lgamma += Log(z)
+ }
+ case x < Two58: // 8 <= x < 2**58
+ t := Log(x)
+ z := 1 / x
+ y := z * z
+ w := W0 + z*(W1+y*(W2+y*(W3+y*(W4+y*(W5+y*W6)))))
+ lgamma = (x-0.5)*(t-1) + w
+ default: // 2**58 <= x <= Inf
+ lgamma = x * (Log(x) - 1)
+ }
+ if neg {
+ lgamma = nadj - lgamma
+ }
+ return
+}
+
+// sinPi(x) is a helper function for negative x
+func sinPi(x float64) float64 {
+ const (
+ Two52 = 1 << 52 // 0x4330000000000000 ~4.5036e+15
+ Two53 = 1 << 53 // 0x4340000000000000 ~9.0072e+15
+ )
+ if x < 0.25 {
+ return -Sin(Pi * x)
+ }
+
+ // argument reduction
+ z := Floor(x)
+ var n int
+ if z != x { // inexact
+ x = Fmod(x, 2)
+ n = int(x * 4)
+ } else {
+ if x >= Two53 { // x must be even
+ x = 0
+ n = 0
+ } else {
+ if x < Two52 {
+ z = x + Two52 // exact
+ }
+ n = int(1 & Float64bits(z))
+ x = float64(n)
+ n <<= 2
+ }
+ }
+ switch n {
+ case 0:
+ x = Sin(Pi * x)
+ case 1, 2:
+ x = Cos(Pi * (0.5 - x))
+ case 3, 4:
+ x = Sin(Pi * (1 - x))
+ case 5, 6:
+ x = -Cos(Pi * (x - 1.5))
+ default:
+ x = Sin(Pi * (x - 2))
+ }
+ return -x
+}
diff --git a/libgo/go/math/log.go b/libgo/go/math/log.go
new file mode 100644
index 000000000..39d94512d
--- /dev/null
+++ b/libgo/go/math/log.go
@@ -0,0 +1,123 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+/*
+ Floating-point logarithm.
+*/
+
+// The original C code, the long comment, and the constants
+// below are from FreeBSD's /usr/src/lib/msun/src/e_log.c
+// and came with this notice. The go code is a simpler
+// version of the original C.
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+// __ieee754_log(x)
+// Return the logrithm of x
+//
+// Method :
+// 1. Argument Reduction: find k and f such that
+// x = 2**k * (1+f),
+// where sqrt(2)/2 < 1+f < sqrt(2) .
+//
+// 2. Approximation of log(1+f).
+// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+// = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+// = 2s + s*R
+// We use a special Reme algorithm on [0,0.1716] to generate
+// a polynomial of degree 14 to approximate R. The maximum error
+// of this polynomial approximation is bounded by 2**-58.45. In
+// other words,
+// 2 4 6 8 10 12 14
+// R(z) ~ L1*s +L2*s +L3*s +L4*s +L5*s +L6*s +L7*s
+// (the values of L1 to L7 are listed in the program) and
+// | 2 14 | -58.45
+// | L1*s +...+L7*s - R(z) | <= 2
+// | |
+// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+// In order to guarantee error in log below 1ulp, we compute log by
+// log(1+f) = f - s*(f - R) (if f is not too large)
+// log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
+//
+// 3. Finally, log(x) = k*Ln2 + log(1+f).
+// = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo)))
+// Here Ln2 is split into two floating point number:
+// Ln2_hi + Ln2_lo,
+// where n*Ln2_hi is always exact for |n| < 2000.
+//
+// Special cases:
+// log(x) is NaN with signal if x < 0 (including -INF) ;
+// log(+INF) is +INF; log(0) is -INF with signal;
+// log(NaN) is that NaN with no signal.
+//
+// Accuracy:
+// according to an error analysis, the error is always less than
+// 1 ulp (unit in the last place).
+//
+// Constants:
+// The hexadecimal values are the intended ones for the following
+// constants. The decimal values may be used, provided that the
+// compiler will convert from decimal to binary accurately enough
+// to produce the hexadecimal values shown.
+
+// Log returns the natural logarithm of x.
+//
+// Special cases are:
+// Log(+Inf) = +Inf
+// Log(0) = -Inf
+// Log(x < 0) = NaN
+// Log(NaN) = NaN
+func Log(x float64) float64 {
+ const (
+ Ln2Hi = 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */
+ Ln2Lo = 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */
+ L1 = 6.666666666666735130e-01 /* 3FE55555 55555593 */
+ L2 = 3.999999999940941908e-01 /* 3FD99999 9997FA04 */
+ L3 = 2.857142874366239149e-01 /* 3FD24924 94229359 */
+ L4 = 2.222219843214978396e-01 /* 3FCC71C5 1D8E78AF */
+ L5 = 1.818357216161805012e-01 /* 3FC74664 96CB03DE */
+ L6 = 1.531383769920937332e-01 /* 3FC39A09 D078C69F */
+ L7 = 1.479819860511658591e-01 /* 3FC2F112 DF3E5244 */
+ )
+
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case x != x || x > MaxFloat64: // IsNaN(x) || IsInf(x, 1):
+ return x
+ case x < 0:
+ return NaN()
+ case x == 0:
+ return Inf(-1)
+ }
+
+ // reduce
+ f1, ki := Frexp(x)
+ if f1 < Sqrt2/2 {
+ f1 *= 2
+ ki--
+ }
+ f := f1 - 1
+ k := float64(ki)
+
+ // compute
+ s := f / (2 + f)
+ s2 := s * s
+ s4 := s2 * s2
+ t1 := s2 * (L1 + s4*(L3+s4*(L5+s4*L7)))
+ t2 := s4 * (L2 + s4*(L4+s4*L6))
+ R := t1 + t2
+ hfsq := 0.5 * f * f
+ return k*Ln2Hi - ((hfsq - (s*(hfsq+R) + k*Ln2Lo)) - f)
+}
diff --git a/libgo/go/math/log10.go b/libgo/go/math/log10.go
new file mode 100644
index 000000000..6d18baae2
--- /dev/null
+++ b/libgo/go/math/log10.go
@@ -0,0 +1,13 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Log10 returns the decimal logarithm of x.
+// The special cases are the same as for Log.
+func Log10(x float64) float64 { return Log(x) * (1 / Ln10) }
+
+// Log2 returns the binary logarithm of x.
+// The special cases are the same as for Log.
+func Log2(x float64) float64 { return Log(x) * (1 / Ln2) }
diff --git a/libgo/go/math/log10_decl.go b/libgo/go/math/log10_decl.go
new file mode 100644
index 000000000..5aec94e1c
--- /dev/null
+++ b/libgo/go/math/log10_decl.go
@@ -0,0 +1,8 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+func Log10(x float64) float64
+func Log2(x float64) float64
diff --git a/libgo/go/math/log1p.go b/libgo/go/math/log1p.go
new file mode 100644
index 000000000..e1fc275d0
--- /dev/null
+++ b/libgo/go/math/log1p.go
@@ -0,0 +1,200 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+
+// The original C code, the long comment, and the constants
+// below are from FreeBSD's /usr/src/lib/msun/src/s_log1p.c
+// and came with this notice. The go code is a simplified
+// version of the original C.
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+//
+// double log1p(double x)
+//
+// Method :
+// 1. Argument Reduction: find k and f such that
+// 1+x = 2**k * (1+f),
+// where sqrt(2)/2 < 1+f < sqrt(2) .
+//
+// Note. If k=0, then f=x is exact. However, if k!=0, then f
+// may not be representable exactly. In that case, a correction
+// term is need. Let u=1+x rounded. Let c = (1+x)-u, then
+// log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
+// and add back the correction term c/u.
+// (Note: when x > 2**53, one can simply return log(x))
+//
+// 2. Approximation of log1p(f).
+// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+// = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+// = 2s + s*R
+// We use a special Reme algorithm on [0,0.1716] to generate
+// a polynomial of degree 14 to approximate R The maximum error
+// of this polynomial approximation is bounded by 2**-58.45. In
+// other words,
+// 2 4 6 8 10 12 14
+// R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
+// (the values of Lp1 to Lp7 are listed in the program)
+// a-0.2929nd
+// | 2 14 | -58.45
+// | Lp1*s +...+Lp7*s - R(z) | <= 2
+// | |
+// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+// In order to guarantee error in log below 1ulp, we compute log
+// by
+// log1p(f) = f - (hfsq - s*(hfsq+R)).
+//
+// 3. Finally, log1p(x) = k*ln2 + log1p(f).
+// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+// Here ln2 is split into two floating point number:
+// ln2_hi + ln2_lo,
+// where n*ln2_hi is always exact for |n| < 2000.
+//
+// Special cases:
+// log1p(x) is NaN with signal if x < -1 (including -INF) ;
+// log1p(+INF) is +INF; log1p(-1) is -INF with signal;
+// log1p(NaN) is that NaN with no signal.
+//
+// Accuracy:
+// according to an error analysis, the error is always less than
+// 1 ulp (unit in the last place).
+//
+// Constants:
+// The hexadecimal values are the intended ones for the following
+// constants. The decimal values may be used, provided that the
+// compiler will convert from decimal to binary accurately enough
+// to produce the hexadecimal values shown.
+//
+// Note: Assuming log() return accurate answer, the following
+// algorithm can be used to compute log1p(x) to within a few ULP:
+//
+// u = 1+x;
+// if(u==1.0) return x ; else
+// return log(u)*(x/(u-1.0));
+//
+// See HP-15C Advanced Functions Handbook, p.193.
+
+// Log1p returns the natural logarithm of 1 plus its argument x.
+// It is more accurate than Log(1 + x) when x is near zero.
+//
+// Special cases are:
+// Log1p(+Inf) = +Inf
+// Log1p(-1) = -Inf
+// Log1p(x < -1) = NaN
+// Log1p(NaN) = NaN
+func Log1p(x float64) float64 {
+ const (
+ Sqrt2M1 = 4.142135623730950488017e-01 // Sqrt(2)-1 = 0x3fda827999fcef34
+ Sqrt2HalfM1 = -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866
+ Small = 1.0 / (1 << 29) // 2**-29 = 0x3e20000000000000
+ Tiny = 1.0 / (1 << 54) // 2**-54
+ Two53 = 1 << 53 // 2**53
+ Ln2Hi = 6.93147180369123816490e-01 // 3fe62e42fee00000
+ Ln2Lo = 1.90821492927058770002e-10 // 3dea39ef35793c76
+ Lp1 = 6.666666666666735130e-01 // 3FE5555555555593
+ Lp2 = 3.999999999940941908e-01 // 3FD999999997FA04
+ Lp3 = 2.857142874366239149e-01 // 3FD2492494229359
+ Lp4 = 2.222219843214978396e-01 // 3FCC71C51D8E78AF
+ Lp5 = 1.818357216161805012e-01 // 3FC7466496CB03DE
+ Lp6 = 1.531383769920937332e-01 // 3FC39A09D078C69F
+ Lp7 = 1.479819860511658591e-01 // 3FC2F112DF3E5244
+ )
+
+ // special cases
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ switch {
+ case x < -1 || x != x: // x < -1 || IsNaN(x): // includes -Inf
+ return NaN()
+ case x == -1:
+ return Inf(-1)
+ case x > MaxFloat64: // IsInf(x, 1):
+ return Inf(1)
+ }
+
+ absx := x
+ if absx < 0 {
+ absx = -absx
+ }
+
+ var f float64
+ var iu uint64
+ k := 1
+ if absx < Sqrt2M1 { // |x| < Sqrt(2)-1
+ if absx < Small { // |x| < 2**-29
+ if absx < Tiny { // |x| < 2**-54
+ return x
+ }
+ return x - x*x*0.5
+ }
+ if x > Sqrt2HalfM1 { // Sqrt(2)/2-1 < x
+ // (Sqrt(2)/2-1) < x < (Sqrt(2)-1)
+ k = 0
+ f = x
+ iu = 1
+ }
+ }
+ var c float64
+ if k != 0 {
+ var u float64
+ if absx < Two53 { // 1<<53
+ u = 1.0 + x
+ iu = Float64bits(u)
+ k = int((iu >> 52) - 1023)
+ if k > 0 {
+ c = 1.0 - (u - x)
+ } else {
+ c = x - (u - 1.0) // correction term
+ c /= u
+ }
+ } else {
+ u = x
+ iu = Float64bits(u)
+ k = int((iu >> 52) - 1023)
+ c = 0
+ }
+ iu &= 0x000fffffffffffff
+ if iu < 0x0006a09e667f3bcd { // mantissa of Sqrt(2)
+ u = Float64frombits(iu | 0x3ff0000000000000) // normalize u
+ } else {
+ k += 1
+ u = Float64frombits(iu | 0x3fe0000000000000) // normalize u/2
+ iu = (0x0010000000000000 - iu) >> 2
+ }
+ f = u - 1.0 // Sqrt(2)/2 < u < Sqrt(2)
+ }
+ hfsq := 0.5 * f * f
+ var s, R, z float64
+ if iu == 0 { // |f| < 2**-20
+ if f == 0 {
+ if k == 0 {
+ return 0
+ } else {
+ c += float64(k) * Ln2Lo
+ return float64(k)*Ln2Hi + c
+ }
+ }
+ R = hfsq * (1.0 - 0.66666666666666666*f) // avoid division
+ if k == 0 {
+ return f - R
+ }
+ return float64(k)*Ln2Hi - ((R - (float64(k)*Ln2Lo + c)) - f)
+ }
+ s = f / (2.0 + f)
+ z = s * s
+ R = z * (Lp1 + z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))))
+ if k == 0 {
+ return f - (hfsq - s*(hfsq+R))
+ }
+ return float64(k)*Ln2Hi - ((hfsq - (s*(hfsq+R) + (float64(k)*Ln2Lo + c))) - f)
+}
diff --git a/libgo/go/math/logb.go b/libgo/go/math/logb.go
new file mode 100644
index 000000000..072281ddf
--- /dev/null
+++ b/libgo/go/math/logb.go
@@ -0,0 +1,54 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Logb(x) returns the binary exponent of x.
+//
+// Special cases are:
+// Logb(±Inf) = +Inf
+// Logb(0) = -Inf
+// Logb(NaN) = NaN
+func Logb(x float64) float64 {
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case x == 0:
+ return Inf(-1)
+ case x < -MaxFloat64 || x > MaxFloat64: // IsInf(x, 0):
+ return Inf(1)
+ case x != x: // IsNaN(x):
+ return x
+ }
+ return float64(ilogb(x))
+}
+
+// Ilogb(x) returns the binary exponent of x as an integer.
+//
+// Special cases are:
+// Ilogb(±Inf) = MaxInt32
+// Ilogb(0) = MinInt32
+// Ilogb(NaN) = MaxInt32
+func Ilogb(x float64) int {
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case x == 0:
+ return MinInt32
+ case x != x: // IsNaN(x):
+ return MaxInt32
+ case x < -MaxFloat64 || x > MaxFloat64: // IsInf(x, 0):
+ return MaxInt32
+ }
+ return ilogb(x)
+}
+
+// logb returns the binary exponent of x. It assumes x is finite and
+// non-zero.
+func ilogb(x float64) int {
+ x, exp := normalize(x)
+ return int((Float64bits(x)>>shift)&mask) - bias + exp
+}
diff --git a/libgo/go/math/modf.go b/libgo/go/math/modf.go
new file mode 100644
index 000000000..315174b70
--- /dev/null
+++ b/libgo/go/math/modf.go
@@ -0,0 +1,33 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Modf returns integer and fractional floating-point numbers
+// that sum to f. Both values have the same sign as f.
+//
+// Special cases are:
+// Modf(+Inf) = +Inf, NaN
+// Modf(-Inf) = -Inf, NaN
+// Modf(NaN) = NaN, NaN
+func Modf(f float64) (int float64, frac float64) {
+ if f < 1 {
+ if f < 0 {
+ int, frac = Modf(-f)
+ return -int, -frac
+ }
+ return 0, f
+ }
+
+ x := Float64bits(f)
+ e := uint(x>>shift)&mask - bias
+
+ // Keep the top 12+e bits, the integer part; clear the rest.
+ if e < 64-12 {
+ x &^= 1<<(64-12-e) - 1
+ }
+ int = Float64frombits(x)
+ frac = f - int
+ return
+}
diff --git a/libgo/go/math/nextafter.go b/libgo/go/math/nextafter.go
new file mode 100644
index 000000000..86114340c
--- /dev/null
+++ b/libgo/go/math/nextafter.go
@@ -0,0 +1,29 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Nextafter returns the next representable value after x towards y.
+// If x == y, then x is returned.
+//
+// Special cases are:
+// Nextafter(NaN, y) = NaN
+// Nextafter(x, NaN) = NaN
+func Nextafter(x, y float64) (r float64) {
+ // TODO(rsc): Remove manual inlining of IsNaN
+ // when compiler does it for us
+ switch {
+ case x != x || y != y: // IsNaN(x) || IsNaN(y): // special case
+ r = NaN()
+ case x == y:
+ r = x
+ case x == 0:
+ r = Copysign(Float64frombits(1), y)
+ case (y > x) == (x > 0):
+ r = Float64frombits(Float64bits(x) + 1)
+ default:
+ r = Float64frombits(Float64bits(x) - 1)
+ }
+ return r
+}
diff --git a/libgo/go/math/pow.go b/libgo/go/math/pow.go
new file mode 100644
index 000000000..06b107401
--- /dev/null
+++ b/libgo/go/math/pow.go
@@ -0,0 +1,139 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+func isOddInt(x float64) bool {
+ xi, xf := Modf(x)
+ return xf == 0 && int64(xi)&1 == 1
+}
+
+// Special cases taken from FreeBSD's /usr/src/lib/msun/src/e_pow.c
+// updated by IEEE Std. 754-2008 "Section 9.2.1 Special values".
+
+// Pow returns x**y, the base-x exponential of y.
+//
+// Special cases are (in order):
+// Pow(x, ±0) = 1 for any x
+// Pow(1, y) = 1 for any y
+// Pow(x, 1) = x for any x
+// Pow(NaN, y) = NaN
+// Pow(x, NaN) = NaN
+// Pow(±0, y) = ±Inf for y an odd integer < 0
+// Pow(±0, -Inf) = +Inf
+// Pow(±0, +Inf) = +0
+// Pow(±0, y) = +Inf for finite y < 0 and not an odd integer
+// Pow(±0, y) = ±0 for y an odd integer > 0
+// Pow(±0, y) = +0 for finite y > 0 and not an odd integer
+// Pow(-1, ±Inf) = 1
+// Pow(x, +Inf) = +Inf for |x| > 1
+// Pow(x, -Inf) = +0 for |x| > 1
+// Pow(x, +Inf) = +0 for |x| < 1
+// Pow(x, -Inf) = +Inf for |x| < 1
+// Pow(+Inf, y) = +Inf for y > 0
+// Pow(+Inf, y) = +0 for y < 0
+// Pow(-Inf, y) = Pow(-0, -y)
+// Pow(x, y) = NaN for finite x < 0 and finite non-integer y
+func Pow(x, y float64) float64 {
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ switch {
+ case y == 0 || x == 1:
+ return 1
+ case y == 1:
+ return x
+ case y == 0.5:
+ return Sqrt(x)
+ case y == -0.5:
+ return 1 / Sqrt(x)
+ case x != x || y != y: // IsNaN(x) || IsNaN(y):
+ return NaN()
+ case x == 0:
+ switch {
+ case y < 0:
+ if isOddInt(y) {
+ return Copysign(Inf(1), x)
+ }
+ return Inf(1)
+ case y > 0:
+ if isOddInt(y) {
+ return x
+ }
+ return 0
+ }
+ case y > MaxFloat64 || y < -MaxFloat64: // IsInf(y, 0):
+ switch {
+ case x == -1:
+ return 1
+ case (Fabs(x) < 1) == IsInf(y, 1):
+ return 0
+ default:
+ return Inf(1)
+ }
+ case x > MaxFloat64 || x < -MaxFloat64: // IsInf(x, 0):
+ if IsInf(x, -1) {
+ return Pow(1/x, -y) // Pow(-0, -y)
+ }
+ switch {
+ case y < 0:
+ return 0
+ case y > 0:
+ return Inf(1)
+ }
+ }
+
+ absy := y
+ flip := false
+ if absy < 0 {
+ absy = -absy
+ flip = true
+ }
+ yi, yf := Modf(absy)
+ if yf != 0 && x < 0 {
+ return NaN()
+ }
+ if yi >= 1<<63 {
+ return Exp(y * Log(x))
+ }
+
+ // ans = a1 * 2**ae (= 1 for now).
+ a1 := 1.0
+ ae := 0
+
+ // ans *= x**yf
+ if yf != 0 {
+ if yf > 0.5 {
+ yf--
+ yi++
+ }
+ a1 = Exp(yf * Log(x))
+ }
+
+ // ans *= x**yi
+ // by multiplying in successive squarings
+ // of x according to bits of yi.
+ // accumulate powers of two into exp.
+ x1, xe := Frexp(x)
+ for i := int64(yi); i != 0; i >>= 1 {
+ if i&1 == 1 {
+ a1 *= x1
+ ae += xe
+ }
+ x1 *= x1
+ xe <<= 1
+ if x1 < .5 {
+ x1 += x1
+ xe--
+ }
+ }
+
+ // ans = a1*2**ae
+ // if flip { ans = 1 / ans }
+ // but in the opposite order
+ if flip {
+ a1 = 1 / a1
+ ae = -ae
+ }
+ return Ldexp(a1, ae)
+}
diff --git a/libgo/go/math/pow10.go b/libgo/go/math/pow10.go
new file mode 100644
index 000000000..bda2e824e
--- /dev/null
+++ b/libgo/go/math/pow10.go
@@ -0,0 +1,30 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// This table might overflow 127-bit exponent representations.
+// In that case, truncate it after 1.0e38.
+var pow10tab [70]float64
+
+// Pow10 returns 10**e, the base-10 exponential of e.
+func Pow10(e int) float64 {
+ if e < 0 {
+ return 1 / Pow10(-e)
+ }
+ if e < len(pow10tab) {
+ return pow10tab[e]
+ }
+ m := e / 2
+ return Pow10(m) * Pow10(e-m)
+}
+
+func init() {
+ pow10tab[0] = 1.0e0
+ pow10tab[1] = 1.0e1
+ for i := 2; i < len(pow10tab); i++ {
+ m := i / 2
+ pow10tab[i] = pow10tab[m] * pow10tab[i-m]
+ }
+}
diff --git a/libgo/go/math/remainder.go b/libgo/go/math/remainder.go
new file mode 100644
index 000000000..be8724c7f
--- /dev/null
+++ b/libgo/go/math/remainder.go
@@ -0,0 +1,85 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// The original C code and the the comment below are from
+// FreeBSD's /usr/src/lib/msun/src/e_remainder.c and came
+// with this notice. The go code is a simplified version of
+// the original C.
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+// __ieee754_remainder(x,y)
+// Return :
+// returns x REM y = x - [x/y]*y as if in infinite
+// precision arithmetic, where [x/y] is the (infinite bit)
+// integer nearest x/y (in half way cases, choose the even one).
+// Method :
+// Based on fmod() returning x - [x/y]chopped * y exactly.
+
+// Remainder returns the IEEE 754 floating-point remainder of x/y.
+//
+// Special cases are:
+// Remainder(x, NaN) = NaN
+// Remainder(NaN, y) = NaN
+// Remainder(Inf, y) = NaN
+// Remainder(x, 0) = NaN
+// Remainder(x, Inf) = x
+func Remainder(x, y float64) float64 {
+ const (
+ Tiny = 4.45014771701440276618e-308 // 0x0020000000000000
+ HalfMax = MaxFloat64 / 2
+ )
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ // special cases
+ switch {
+ case x != x || y != y || x < -MaxFloat64 || x > MaxFloat64 || y == 0: // IsNaN(x) || IsNaN(y) || IsInf(x, 0) || y == 0:
+ return NaN()
+ case y < -MaxFloat64 || y > MaxFloat64: // IsInf(y):
+ return x
+ }
+ sign := false
+ if x < 0 {
+ x = -x
+ sign = true
+ }
+ if y < 0 {
+ y = -y
+ }
+ if x == y {
+ return 0
+ }
+ if y <= HalfMax {
+ x = Fmod(x, y+y) // now x < 2y
+ }
+ if y < Tiny {
+ if x+x > y {
+ x -= y
+ if x+x >= y {
+ x -= y
+ }
+ }
+ } else {
+ yHalf := 0.5 * y
+ if x > yHalf {
+ x -= y
+ if x >= yHalf {
+ x -= y
+ }
+ }
+ }
+ if sign {
+ x = -x
+ }
+ return x
+}
diff --git a/libgo/go/math/signbit.go b/libgo/go/math/signbit.go
new file mode 100644
index 000000000..670cc1a66
--- /dev/null
+++ b/libgo/go/math/signbit.go
@@ -0,0 +1,10 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Signbit returns true if x is negative or negative zero.
+func Signbit(x float64) bool {
+ return Float64bits(x)&(1<<63) != 0
+}
diff --git a/libgo/go/math/sin.go b/libgo/go/math/sin.go
new file mode 100644
index 000000000..35220cb3e
--- /dev/null
+++ b/libgo/go/math/sin.go
@@ -0,0 +1,66 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+
+/*
+ Floating-point sine and cosine.
+
+ Coefficients are #5077 from Hart & Cheney. (18.80D)
+*/
+
+func sinus(x float64, quad int) float64 {
+ const (
+ P0 = .1357884097877375669092680e8
+ P1 = -.4942908100902844161158627e7
+ P2 = .4401030535375266501944918e6
+ P3 = -.1384727249982452873054457e5
+ P4 = .1459688406665768722226959e3
+ Q0 = .8644558652922534429915149e7
+ Q1 = .4081792252343299749395779e6
+ Q2 = .9463096101538208180571257e4
+ Q3 = .1326534908786136358911494e3
+ )
+ if x < 0 {
+ x = -x
+ quad = quad + 2
+ }
+ x = x * (2 / Pi) /* underflow? */
+ var y float64
+ if x > 32764 {
+ var e float64
+ e, y = Modf(x)
+ e = e + float64(quad)
+ f, _ := Modf(0.25 * e)
+ quad = int(e - 4*f)
+ } else {
+ k := int32(x)
+ y = x - float64(k)
+ quad = (quad + int(k)) & 3
+ }
+
+ if quad&1 != 0 {
+ y = 1 - y
+ }
+ if quad > 1 {
+ y = -y
+ }
+
+ yy := y * y
+ temp1 := ((((P4*yy+P3)*yy+P2)*yy+P1)*yy + P0) * y
+ temp2 := ((((yy+Q3)*yy+Q2)*yy+Q1)*yy + Q0)
+ return temp1 / temp2
+}
+
+// Cos returns the cosine of x.
+func Cos(x float64) float64 {
+ if x < 0 {
+ x = -x
+ }
+ return sinus(x, 1)
+}
+
+// Sin returns the sine of x.
+func Sin(x float64) float64 { return sinus(x, 0) }
diff --git a/libgo/go/math/sincos.go b/libgo/go/math/sincos.go
new file mode 100644
index 000000000..4c1576bea
--- /dev/null
+++ b/libgo/go/math/sincos.go
@@ -0,0 +1,13 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Sincos(x) returns Sin(x), Cos(x).
+//
+// Special conditions are:
+// Sincos(+Inf) = NaN, NaN
+// Sincos(-Inf) = NaN, NaN
+// Sincos(NaN) = NaN, NaN
+func Sincos(x float64) (sin, cos float64) { return Sin(x), Cos(x) }
diff --git a/libgo/go/math/sinh.go b/libgo/go/math/sinh.go
new file mode 100644
index 000000000..23a8719f2
--- /dev/null
+++ b/libgo/go/math/sinh.go
@@ -0,0 +1,68 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+
+/*
+ Floating-point hyperbolic sine and cosine.
+
+ The exponential func is called for arguments
+ greater in magnitude than 0.5.
+
+ A series is used for arguments smaller in magnitude than 0.5.
+
+ Cosh(x) is computed from the exponential func for
+ all arguments.
+*/
+
+// Sinh returns the hyperbolic sine of x.
+func Sinh(x float64) float64 {
+ // The coefficients are #2029 from Hart & Cheney. (20.36D)
+ const (
+ P0 = -0.6307673640497716991184787251e+6
+ P1 = -0.8991272022039509355398013511e+5
+ P2 = -0.2894211355989563807284660366e+4
+ P3 = -0.2630563213397497062819489e+2
+ Q0 = -0.6307673640497716991212077277e+6
+ Q1 = 0.1521517378790019070696485176e+5
+ Q2 = -0.173678953558233699533450911e+3
+ )
+
+ sign := false
+ if x < 0 {
+ x = -x
+ sign = true
+ }
+
+ var temp float64
+ switch true {
+ case x > 21:
+ temp = Exp(x) / 2
+
+ case x > 0.5:
+ temp = (Exp(x) - Exp(-x)) / 2
+
+ default:
+ sq := x * x
+ temp = (((P3*sq+P2)*sq+P1)*sq + P0) * x
+ temp = temp / (((sq+Q2)*sq+Q1)*sq + Q0)
+ }
+
+ if sign {
+ temp = -temp
+ }
+ return temp
+}
+
+// Cosh returns the hyperbolic cosine of x.
+func Cosh(x float64) float64 {
+ if x < 0 {
+ x = -x
+ }
+ if x > 21 {
+ return Exp(x) / 2
+ }
+ return (Exp(x) + Exp(-x)) / 2
+}
diff --git a/libgo/go/math/sqrt.go b/libgo/go/math/sqrt.go
new file mode 100644
index 000000000..bf6ef64a0
--- /dev/null
+++ b/libgo/go/math/sqrt.go
@@ -0,0 +1,28 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+func libc_sqrt(float64) float64 __asm__("sqrt")
+
+// Sqrt returns the square root of x.
+//
+// Special cases are:
+// Sqrt(+Inf) = +Inf
+// Sqrt(±0) = ±0
+// Sqrt(x < 0) = NaN
+// Sqrt(NaN) = NaN
+func Sqrt(x float64) float64 {
+ // special cases
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ switch {
+ case x == 0 || x != x || x > MaxFloat64: // x == 0 || IsNaN(x) || IsInf(x, 1):
+ return x
+ case x < 0:
+ return NaN()
+ }
+
+ return libc_sqrt(x)
+}
diff --git a/libgo/go/math/sqrt_decl.go b/libgo/go/math/sqrt_decl.go
new file mode 100644
index 000000000..e50774645
--- /dev/null
+++ b/libgo/go/math/sqrt_decl.go
@@ -0,0 +1,7 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+func Sqrt(x float64) float64
diff --git a/libgo/go/math/sqrt_port.go b/libgo/go/math/sqrt_port.go
new file mode 100644
index 000000000..6f35a383d
--- /dev/null
+++ b/libgo/go/math/sqrt_port.go
@@ -0,0 +1,143 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+/*
+ Floating-point square root.
+*/
+
+// The original C code and the long comment below are
+// from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and
+// came with this notice. The go code is a simplified
+// version of the original C.
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+// __ieee754_sqrt(x)
+// Return correctly rounded sqrt.
+// -----------------------------------------
+// | Use the hardware sqrt if you have one |
+// -----------------------------------------
+// Method:
+// Bit by bit method using integer arithmetic. (Slow, but portable)
+// 1. Normalization
+// Scale x to y in [1,4) with even powers of 2:
+// find an integer k such that 1 <= (y=x*2**(2k)) < 4, then
+// sqrt(x) = 2**k * sqrt(y)
+// 2. Bit by bit computation
+// Let q = sqrt(y) truncated to i bit after binary point (q = 1),
+// i 0
+// i+1 2
+// s = 2*q , and y = 2 * ( y - q ). (1)
+// i i i i
+//
+// To compute q from q , one checks whether
+// i+1 i
+//
+// -(i+1) 2
+// (q + 2 ) <= y. (2)
+// i
+// -(i+1)
+// If (2) is false, then q = q ; otherwise q = q + 2 .
+// i+1 i i+1 i
+//
+// With some algebric manipulation, it is not difficult to see
+// that (2) is equivalent to
+// -(i+1)
+// s + 2 <= y (3)
+// i i
+//
+// The advantage of (3) is that s and y can be computed by
+// i i
+// the following recurrence formula:
+// if (3) is false
+//
+// s = s , y = y ; (4)
+// i+1 i i+1 i
+//
+// otherwise,
+// -i -(i+1)
+// s = s + 2 , y = y - s - 2 (5)
+// i+1 i i+1 i i
+//
+// One may easily use induction to prove (4) and (5).
+// Note. Since the left hand side of (3) contain only i+2 bits,
+// it does not necessary to do a full (53-bit) comparison
+// in (3).
+// 3. Final rounding
+// After generating the 53 bits result, we compute one more bit.
+// Together with the remainder, we can decide whether the
+// result is exact, bigger than 1/2ulp, or less than 1/2ulp
+// (it will never equal to 1/2ulp).
+// The rounding mode can be detected by checking whether
+// huge + tiny is equal to huge, and whether huge - tiny is
+// equal to huge for some floating point number "huge" and "tiny".
+//
+//
+// Notes: Rounding mode detection omitted. The constants "mask", "shift",
+// and "bias" are found in src/pkg/math/bits.go
+
+// Sqrt returns the square root of x.
+//
+// Special cases are:
+// Sqrt(+Inf) = +Inf
+// Sqrt(±0) = ±0
+// Sqrt(x < 0) = NaN
+// Sqrt(NaN) = NaN
+func sqrtGo(x float64) float64 {
+ // special cases
+ // TODO(rsc): Remove manual inlining of IsNaN, IsInf
+ // when compiler does it for us
+ switch {
+ case x == 0 || x != x || x > MaxFloat64: // x == 0 || IsNaN(x) || IsInf(x, 1):
+ return x
+ case x < 0:
+ return NaN()
+ }
+ ix := Float64bits(x)
+ // normalize x
+ exp := int((ix >> shift) & mask)
+ if exp == 0 { // subnormal x
+ for ix&1<<shift == 0 {
+ ix <<= 1
+ exp--
+ }
+ exp++
+ }
+ exp -= bias // unbias exponent
+ ix &^= mask << shift
+ ix |= 1 << shift
+ if exp&1 == 1 { // odd exp, double x to make it even
+ ix <<= 1
+ }
+ exp >>= 1 // exp = exp/2, exponent of square root
+ // generate sqrt(x) bit by bit
+ ix <<= 1
+ var q, s uint64 // q = sqrt(x)
+ r := uint64(1 << (shift + 1)) // r = moving bit from MSB to LSB
+ for r != 0 {
+ t := s + r
+ if t <= ix {
+ s = t + r
+ ix -= t
+ q += r
+ }
+ ix <<= 1
+ r >>= 1
+ }
+ // final rounding
+ if ix != 0 { // remainder, result not exact
+ q += q & 1 // round according to extra bit
+ }
+ ix = q>>1 + uint64(exp-1+bias)<<shift // significand + biased exponent
+ return Float64frombits(ix)
+}
diff --git a/libgo/go/math/sqrt_test.go b/libgo/go/math/sqrt_test.go
new file mode 100644
index 000000000..84cbc169e
--- /dev/null
+++ b/libgo/go/math/sqrt_test.go
@@ -0,0 +1,9 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Make sqrtGo available for testing.
+
+func SqrtGo(x float64) float64 { return sqrtGo(x) }
diff --git a/libgo/go/math/tan.go b/libgo/go/math/tan.go
new file mode 100644
index 000000000..a36ebbf44
--- /dev/null
+++ b/libgo/go/math/tan.go
@@ -0,0 +1,65 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+
+/*
+ Floating point tangent.
+*/
+
+// Tan returns the tangent of x.
+func Tan(x float64) float64 {
+ // Coefficients are #4285 from Hart & Cheney. (19.74D)
+ const (
+ P0 = -.1306820264754825668269611177e+5
+ P1 = .1055970901714953193602353981e+4
+ P2 = -.1550685653483266376941705728e+2
+ P3 = .3422554387241003435328470489e-1
+ P4 = .3386638642677172096076369e-4
+ Q0 = -.1663895238947119001851464661e+5
+ Q1 = .4765751362916483698926655581e+4
+ Q2 = -.1555033164031709966900124574e+3
+ )
+
+ flag := false
+ sign := false
+ if x < 0 {
+ x = -x
+ sign = true
+ }
+ x = x * (4 / Pi) /* overflow? */
+ var e float64
+ e, x = Modf(x)
+ i := int32(e)
+
+ switch i & 3 {
+ case 1:
+ x = 1 - x
+ flag = true
+
+ case 2:
+ sign = !sign
+ flag = true
+
+ case 3:
+ x = 1 - x
+ sign = !sign
+ }
+
+ xsq := x * x
+ temp := ((((P4*xsq+P3)*xsq+P2)*xsq+P1)*xsq + P0) * x
+ temp = temp / (((xsq+Q2)*xsq+Q1)*xsq + Q0)
+
+ if flag {
+ if temp == 0 {
+ return NaN()
+ }
+ temp = 1 / temp
+ }
+ if sign {
+ temp = -temp
+ }
+ return temp
+}
diff --git a/libgo/go/math/tanh.go b/libgo/go/math/tanh.go
new file mode 100644
index 000000000..8bcf2ddac
--- /dev/null
+++ b/libgo/go/math/tanh.go
@@ -0,0 +1,28 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+
+/*
+ Floating-point hyperbolic tangent.
+
+ Sinh and Cosh are called except for large arguments, which
+ would cause overflow improperly.
+*/
+
+// Tanh computes the hyperbolic tangent of x.
+func Tanh(x float64) float64 {
+ if x < 0 {
+ x = -x
+ if x > 21 {
+ return -1
+ }
+ return -Sinh(x) / Cosh(x)
+ }
+ if x > 21 {
+ return 1
+ }
+ return Sinh(x) / Cosh(x)
+}
diff --git a/libgo/go/math/unsafe.go b/libgo/go/math/unsafe.go
new file mode 100644
index 000000000..5ae67420f
--- /dev/null
+++ b/libgo/go/math/unsafe.go
@@ -0,0 +1,21 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+import "unsafe"
+
+// Float32bits returns the IEEE 754 binary representation of f.
+func Float32bits(f float32) uint32 { return *(*uint32)(unsafe.Pointer(&f)) }
+
+// Float32frombits returns the floating point number corresponding
+// to the IEEE 754 binary representation b.
+func Float32frombits(b uint32) float32 { return *(*float32)(unsafe.Pointer(&b)) }
+
+// Float64bits returns the IEEE 754 binary representation of f.
+func Float64bits(f float64) uint64 { return *(*uint64)(unsafe.Pointer(&f)) }
+
+// Float64frombits returns the floating point number corresponding
+// the IEEE 754 binary representation b.
+func Float64frombits(b uint64) float64 { return *(*float64)(unsafe.Pointer(&b)) }