diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /libjava/classpath/gnu/javax/crypto/cipher/DES.java | |
download | cbb-gcc-4.6.4-upstream.tar.bz2 cbb-gcc-4.6.4-upstream.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'libjava/classpath/gnu/javax/crypto/cipher/DES.java')
-rw-r--r-- | libjava/classpath/gnu/javax/crypto/cipher/DES.java | 652 |
1 files changed, 652 insertions, 0 deletions
diff --git a/libjava/classpath/gnu/javax/crypto/cipher/DES.java b/libjava/classpath/gnu/javax/crypto/cipher/DES.java new file mode 100644 index 000000000..ce538b75a --- /dev/null +++ b/libjava/classpath/gnu/javax/crypto/cipher/DES.java @@ -0,0 +1,652 @@ +/* DES.java -- + Copyright (C) 2002, 2003, 2006 Free Software Foundation, Inc. + +This file is a part of GNU Classpath. + +GNU Classpath is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or (at +your option) any later version. + +GNU Classpath is distributed in the hope that it will be useful, but +WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU Classpath; if not, write to the Free Software +Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 +USA + +Linking this library statically or dynamically with other modules is +making a combined work based on this library. Thus, the terms and +conditions of the GNU General Public License cover the whole +combination. + +As a special exception, the copyright holders of this library give you +permission to link this library with independent modules to produce an +executable, regardless of the license terms of these independent +modules, and to copy and distribute the resulting executable under +terms of your choice, provided that you also meet, for each linked +independent module, the terms and conditions of the license of that +module. An independent module is a module which is not derived from +or based on this library. If you modify this library, you may extend +this exception to your version of the library, but you are not +obligated to do so. If you do not wish to do so, delete this +exception statement from your version. */ + + +package gnu.javax.crypto.cipher; + +import gnu.java.security.Registry; +import gnu.java.security.Properties; +import gnu.java.security.util.Util; + +import java.security.InvalidKeyException; +import java.util.Arrays; +import java.util.Collections; +import java.util.Iterator; + +/** + * The Data Encryption Standard. DES is a 64-bit block cipher with a 56-bit + * key, developed by IBM in the 1970's for the standardization process begun by + * the National Bureau of Standards (now NIST). + * <p> + * New applications should not use DES except for compatibility. + * <p> + * This version is based upon the description and sample implementation in + * [1]. + * <p> + * References: + * <ol> + * <li>Bruce Schneier, <i>Applied Cryptography: Protocols, Algorithms, and + * Source Code in C, Second Edition</i>. (1996 John Wiley and Sons) ISBN + * 0-471-11709-9. Pages 265--301, 623--632.</li> + * </ol> + */ +public class DES + extends BaseCipher +{ + /** DES operates on 64 bit blocks. */ + public static final int BLOCK_SIZE = 8; + /** DES uses 56 bits of a 64 bit parity-adjusted key. */ + public static final int KEY_SIZE = 8; + // S-Boxes 1 through 8. + private static final int[] SP1 = new int[] { + 0x01010400, 0x00000000, 0x00010000, 0x01010404, 0x01010004, 0x00010404, + 0x00000004, 0x00010000, 0x00000400, 0x01010400, 0x01010404, 0x00000400, + 0x01000404, 0x01010004, 0x01000000, 0x00000004, 0x00000404, 0x01000400, + 0x01000400, 0x00010400, 0x00010400, 0x01010000, 0x01010000, 0x01000404, + 0x00010004, 0x01000004, 0x01000004, 0x00010004, 0x00000000, 0x00000404, + 0x00010404, 0x01000000, 0x00010000, 0x01010404, 0x00000004, 0x01010000, + 0x01010400, 0x01000000, 0x01000000, 0x00000400, 0x01010004, 0x00010000, + 0x00010400, 0x01000004, 0x00000400, 0x00000004, 0x01000404, 0x00010404, + 0x01010404, 0x00010004, 0x01010000, 0x01000404, 0x01000004, 0x00000404, + 0x00010404, 0x01010400, 0x00000404, 0x01000400, 0x01000400, 0x00000000, + 0x00010004, 0x00010400, 0x00000000, 0x01010004 }; + private static final int[] SP2 = new int[] { + 0x80108020, 0x80008000, 0x00008000, 0x00108020, 0x00100000, 0x00000020, + 0x80100020, 0x80008020, 0x80000020, 0x80108020, 0x80108000, 0x80000000, + 0x80008000, 0x00100000, 0x00000020, 0x80100020, 0x00108000, 0x00100020, + 0x80008020, 0x00000000, 0x80000000, 0x00008000, 0x00108020, 0x80100000, + 0x00100020, 0x80000020, 0x00000000, 0x00108000, 0x00008020, 0x80108000, + 0x80100000, 0x00008020, 0x00000000, 0x00108020, 0x80100020, 0x00100000, + 0x80008020, 0x80100000, 0x80108000, 0x00008000, 0x80100000, 0x80008000, + 0x00000020, 0x80108020, 0x00108020, 0x00000020, 0x00008000, 0x80000000, + 0x00008020, 0x80108000, 0x00100000, 0x80000020, 0x00100020, 0x80008020, + 0x80000020, 0x00100020, 0x00108000, 0x00000000, 0x80008000, 0x00008020, + 0x80000000, 0x80100020, 0x80108020, 0x00108000 }; + private static final int[] SP3 = new int[] { + 0x00000208, 0x08020200, 0x00000000, 0x08020008, 0x08000200, 0x00000000, + 0x00020208, 0x08000200, 0x00020008, 0x08000008, 0x08000008, 0x00020000, + 0x08020208, 0x00020008, 0x08020000, 0x00000208, 0x08000000, 0x00000008, + 0x08020200, 0x00000200, 0x00020200, 0x08020000, 0x08020008, 0x00020208, + 0x08000208, 0x00020200, 0x00020000, 0x08000208, 0x00000008, 0x08020208, + 0x00000200, 0x08000000, 0x08020200, 0x08000000, 0x00020008, 0x00000208, + 0x00020000, 0x08020200, 0x08000200, 0x00000000, 0x00000200, 0x00020008, + 0x08020208, 0x08000200, 0x08000008, 0x00000200, 0x00000000, 0x08020008, + 0x08000208, 0x00020000, 0x08000000, 0x08020208, 0x00000008, 0x00020208, + 0x00020200, 0x08000008, 0x08020000, 0x08000208, 0x00000208, 0x08020000, + 0x00020208, 0x00000008, 0x08020008, 0x00020200 }; + private static final int[] SP4 = new int[] { + 0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802080, 0x00800081, + 0x00800001, 0x00002001, 0x00000000, 0x00802000, 0x00802000, 0x00802081, + 0x00000081, 0x00000000, 0x00800080, 0x00800001, 0x00000001, 0x00002000, + 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002001, 0x00002080, + 0x00800081, 0x00000001, 0x00002080, 0x00800080, 0x00002000, 0x00802080, + 0x00802081, 0x00000081, 0x00800080, 0x00800001, 0x00802000, 0x00802081, + 0x00000081, 0x00000000, 0x00000000, 0x00802000, 0x00002080, 0x00800080, + 0x00800081, 0x00000001, 0x00802001, 0x00002081, 0x00002081, 0x00000080, + 0x00802081, 0x00000081, 0x00000001, 0x00002000, 0x00800001, 0x00002001, + 0x00802080, 0x00800081, 0x00002001, 0x00002080, 0x00800000, 0x00802001, + 0x00000080, 0x00800000, 0x00002000, 0x00802080 }; + private static final int[] SP5 = new int[] { + 0x00000100, 0x02080100, 0x02080000, 0x42000100, 0x00080000, 0x00000100, + 0x40000000, 0x02080000, 0x40080100, 0x00080000, 0x02000100, 0x40080100, + 0x42000100, 0x42080000, 0x00080100, 0x40000000, 0x02000000, 0x40080000, + 0x40080000, 0x00000000, 0x40000100, 0x42080100, 0x42080100, 0x02000100, + 0x42080000, 0x40000100, 0x00000000, 0x42000000, 0x02080100, 0x02000000, + 0x42000000, 0x00080100, 0x00080000, 0x42000100, 0x00000100, 0x02000000, + 0x40000000, 0x02080000, 0x42000100, 0x40080100, 0x02000100, 0x40000000, + 0x42080000, 0x02080100, 0x40080100, 0x00000100, 0x02000000, 0x42080000, + 0x42080100, 0x00080100, 0x42000000, 0x42080100, 0x02080000, 0x00000000, + 0x40080000, 0x42000000, 0x00080100, 0x02000100, 0x40000100, 0x00080000, + 0x00000000, 0x40080000, 0x02080100, 0x40000100 }; + private static final int[] SP6 = new int[] { + 0x20000010, 0x20400000, 0x00004000, 0x20404010, 0x20400000, 0x00000010, + 0x20404010, 0x00400000, 0x20004000, 0x00404010, 0x00400000, 0x20000010, + 0x00400010, 0x20004000, 0x20000000, 0x00004010, 0x00000000, 0x00400010, + 0x20004010, 0x00004000, 0x00404000, 0x20004010, 0x00000010, 0x20400010, + 0x20400010, 0x00000000, 0x00404010, 0x20404000, 0x00004010, 0x00404000, + 0x20404000, 0x20000000, 0x20004000, 0x00000010, 0x20400010, 0x00404000, + 0x20404010, 0x00400000, 0x00004010, 0x20000010, 0x00400000, 0x20004000, + 0x20000000, 0x00004010, 0x20000010, 0x20404010, 0x00404000, 0x20400000, + 0x00404010, 0x20404000, 0x00000000, 0x20400010, 0x00000010, 0x00004000, + 0x20400000, 0x00404010, 0x00004000, 0x00400010, 0x20004010, 0x00000000, + 0x20404000, 0x20000000, 0x00400010, 0x20004010 }; + private static final int[] SP7 = new int[] { + 0x00200000, 0x04200002, 0x04000802, 0x00000000, 0x00000800, 0x04000802, + 0x00200802, 0x04200800, 0x04200802, 0x00200000, 0x00000000, 0x04000002, + 0x00000002, 0x04000000, 0x04200002, 0x00000802, 0x04000800, 0x00200802, + 0x00200002, 0x04000800, 0x04000002, 0x04200000, 0x04200800, 0x00200002, + 0x04200000, 0x00000800, 0x00000802, 0x04200802, 0x00200800, 0x00000002, + 0x04000000, 0x00200800, 0x04000000, 0x00200800, 0x00200000, 0x04000802, + 0x04000802, 0x04200002, 0x04200002, 0x00000002, 0x00200002, 0x04000000, + 0x04000800, 0x00200000, 0x04200800, 0x00000802, 0x00200802, 0x04200800, + 0x00000802, 0x04000002, 0x04200802, 0x04200000, 0x00200800, 0x00000000, + 0x00000002, 0x04200802, 0x00000000, 0x00200802, 0x04200000, 0x00000800, + 0x04000002, 0x04000800, 0x00000800, 0x00200002 }; + private static final int[] SP8 = new int[] { + 0x10001040, 0x00001000, 0x00040000, 0x10041040, 0x10000000, 0x10001040, + 0x00000040, 0x10000000, 0x00040040, 0x10040000, 0x10041040, 0x00041000, + 0x10041000, 0x00041040, 0x00001000, 0x00000040, 0x10040000, 0x10000040, + 0x10001000, 0x00001040, 0x00041000, 0x00040040, 0x10040040, 0x10041000, + 0x00001040, 0x00000000, 0x00000000, 0x10040040, 0x10000040, 0x10001000, + 0x00041040, 0x00040000, 0x00041040, 0x00040000, 0x10041000, 0x00001000, + 0x00000040, 0x10040040, 0x00001000, 0x00041040, 0x10001000, 0x00000040, + 0x10000040, 0x10040000, 0x10040040, 0x10000000, 0x00040000, 0x10001040, + 0x00000000, 0x10041040, 0x00040040, 0x10000040, 0x10040000, 0x10001000, + 0x10001040, 0x00000000, 0x10041040, 0x00041000, 0x00041000, 0x00001040, + 0x00001040, 0x00040040, 0x10000000, 0x10041000 }; + /** + * Constants that help in determining whether or not a byte array is parity + * adjusted. + */ + private static final byte[] PARITY = { + 8, 1, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 2, 8, + 0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 3, + 0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0, + 8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8, + 0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0, + 8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8, + 8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8, + 0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0, + 0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0, + 8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8, + 8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8, + 0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0, + 8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8, + 0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0, + 4, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0, + 8, 5, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 6, 8 }; + // Key schedule constants. + private static final byte[] ROTARS = { + 1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28 }; + private static final byte[] PC1 = { + 56, 48, 40, 32, 24, 16, 8, 0, 57, 49, 41, 33, 25, 17, 9, 1, + 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 62, 54, 46, 38, + 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 60, 52, 44, 36, + 28, 20, 12, 4, 27, 19, 11, 3 }; + private static final byte[] PC2 = { + 13, 16, 10, 23, 0, 4, 2, 27, 14, 5, 20, 9, 22, 18, 11, 3, + 25, 7, 15, 6, 26, 19, 12, 1, 40, 51, 30, 36, 46, 54, 29, 39, + 50, 44, 32, 47, 43, 48, 38, 55, 33, 52, 45, 41, 49, 35, 28, 31 }; + /** + * Weak keys (parity adjusted): If all the bits in each half are either 0 + * or 1, then the key used for any cycle of the algorithm is the same as + * all other cycles. + */ + public static final byte[][] WEAK_KEYS = { + Util.toBytesFromString("0101010101010101"), + Util.toBytesFromString("01010101FEFEFEFE"), + Util.toBytesFromString("FEFEFEFE01010101"), + Util.toBytesFromString("FEFEFEFEFEFEFEFE") }; + /** + * Semi-weak keys (parity adjusted): Some pairs of keys encrypt plain text + * to identical cipher text. In other words, one key in the pair can decrypt + * messages that were encrypted with the other key. These keys are called + * semi-weak keys. This occurs because instead of 16 different sub-keys being + * generated, these semi-weak keys produce only two different sub-keys. + */ + public static final byte[][] SEMIWEAK_KEYS = { + Util.toBytesFromString("01FE01FE01FE01FE"), + Util.toBytesFromString("FE01FE01FE01FE01"), + Util.toBytesFromString("1FE01FE00EF10EF1"), + Util.toBytesFromString("E01FE01FF10EF10E"), + Util.toBytesFromString("01E001E001F101F1"), + Util.toBytesFromString("E001E001F101F101"), + Util.toBytesFromString("1FFE1FFE0EFE0EFE"), + Util.toBytesFromString("FE1FFE1FFE0EFE0E"), + Util.toBytesFromString("011F011F010E010E"), + Util.toBytesFromString("1F011F010E010E01"), + Util.toBytesFromString("E0FEE0FEF1FEF1FE"), + Util.toBytesFromString("FEE0FEE0FEF1FEF1") }; + /** Possible weak keys (parity adjusted) --produce 4 instead of 16 subkeys. */ + public static final byte[][] POSSIBLE_WEAK_KEYS = { + Util.toBytesFromString("1F1F01010E0E0101"), + Util.toBytesFromString("011F1F01010E0E01"), + Util.toBytesFromString("1F01011F0E01010E"), + Util.toBytesFromString("01011F1F01010E0E"), + Util.toBytesFromString("E0E00101F1F10101"), + Util.toBytesFromString("FEFE0101FEFE0101"), + Util.toBytesFromString("FEE01F01FEF10E01"), + Util.toBytesFromString("E0FE1F01F1FE0E01"), + Util.toBytesFromString("FEE0011FFEF1010E"), + Util.toBytesFromString("E0FE011FF1FE010E"), + Util.toBytesFromString("E0E01F1FF1F10E0E"), + Util.toBytesFromString("FEFE1F1FFEFE0E0E"), + Util.toBytesFromString("1F1F01010E0E0101"), + Util.toBytesFromString("011F1F01010E0E01"), + Util.toBytesFromString("1F01011F0E01010E"), + Util.toBytesFromString("01011F1F01010E0E"), + Util.toBytesFromString("01E0E00101F1F101"), + Util.toBytesFromString("1FFEE0010EFEF001"), + Util.toBytesFromString("1FE0FE010EF1FE01"), + Util.toBytesFromString("01FEFE0101FEFE01"), + Util.toBytesFromString("1FE0E01F0EF1F10E"), + Util.toBytesFromString("01FEE01F01FEF10E"), + Util.toBytesFromString("01E0FE1F01F1FE0E"), + Util.toBytesFromString("1FFEFE1F0EFEFE0E"), + + Util.toBytesFromString("E00101E0F10101F1"), + Util.toBytesFromString("FE1F01E0FE0E0EF1"), + Util.toBytesFromString("FE011FE0FE010EF1"), + Util.toBytesFromString("E01F1FE0F10E0EF1"), + Util.toBytesFromString("FE0101FEFE0101FE"), + Util.toBytesFromString("E01F01FEF10E01FE"), + Util.toBytesFromString("E0011FFEF1010EFE"), + Util.toBytesFromString("FE1F1FFEFE0E0EFE"), + Util.toBytesFromString("1FFE01E00EFE01F1"), + Util.toBytesFromString("01FE1FE001FE0EF1"), + Util.toBytesFromString("1FE001FE0EF101FE"), + Util.toBytesFromString("01E01FFE01F10EFE"), + Util.toBytesFromString("0101E0E00101F1F1"), + Util.toBytesFromString("1F1FE0E00E0EF1F1"), + Util.toBytesFromString("1F01FEE00E01FEF1"), + Util.toBytesFromString("011FFEE0010EFEF1"), + Util.toBytesFromString("1F01E0FE0E01F1FE"), + Util.toBytesFromString("011FE0FE010EF1FE"), + Util.toBytesFromString("0101FEFE0001FEFE"), + Util.toBytesFromString("1F1FFEFE0E0EFEFE"), + Util.toBytesFromString("FEFEE0E0FEFEF1F1"), + Util.toBytesFromString("E0FEFEE0F1FEFEF1"), + Util.toBytesFromString("FEE0E0FEFEF1F1FE"), + Util.toBytesFromString("E0E0FEFEF1F1FEFE") }; + + /** Default 0-argument constructor. */ + public DES() + { + super(Registry.DES_CIPHER, BLOCK_SIZE, KEY_SIZE); + } + + /** + * Adjust the parity for a raw key array. This essentially means that each + * byte in the array will have an odd number of '1' bits (the last bit in + * each byte is unused. + * + * @param kb The key array, to be parity-adjusted. + * @param offset The starting index into the key bytes. + */ + public static void adjustParity(byte[] kb, int offset) + { + for (int i = offset; i < offset + KEY_SIZE; i++) + kb[i] ^= (PARITY[kb[i] & 0xff] == 8) ? 1 : 0; + } + + /** + * Test if a byte array, which must be at least 8 bytes long, is parity + * adjusted. + * + * @param kb The key bytes. + * @param offset The starting index into the key bytes. + * @return <code>true</code> if the first 8 bytes of <i>kb</i> have been + * parity adjusted. <code>false</code> otherwise. + */ + public static boolean isParityAdjusted(byte[] kb, int offset) + { + int w = 0x88888888; + int n = PARITY[kb[offset + 0] & 0xff]; + n <<= 4; + n |= PARITY[kb[offset + 1] & 0xff]; + n <<= 4; + n |= PARITY[kb[offset + 2] & 0xff]; + n <<= 4; + n |= PARITY[kb[offset + 3] & 0xff]; + n <<= 4; + n |= PARITY[kb[offset + 4] & 0xff]; + n <<= 4; + n |= PARITY[kb[offset + 5] & 0xff]; + n <<= 4; + n |= PARITY[kb[offset + 6] & 0xff]; + n <<= 4; + n |= PARITY[kb[offset + 7] & 0xff]; + return (n & w) == 0; + } + + /** + * Test if a key is a weak key. + * + * @param kb The key to test. + * @return <code>true</code> if the key is weak. + */ + public static boolean isWeak(byte[] kb) + { + for (int i = 0; i < WEAK_KEYS.length; i++) + if (Arrays.equals(WEAK_KEYS[i], kb)) + return true; + return false; + } + + /** + * Test if a key is a semi-weak key. + * + * @param kb The key to test. + * @return <code>true</code> if this key is semi-weak. + */ + public static boolean isSemiWeak(byte[] kb) + { + for (int i = 0; i < SEMIWEAK_KEYS.length; i++) + if (Arrays.equals(SEMIWEAK_KEYS[i], kb)) + return true; + return false; + } + + /** + * Test if the designated byte array represents a possibly weak key. + * + * @param kb the byte array to test. + * @return <code>true</code> if <code>kb</code>represents a possibly weak key. + * Returns <code>false</code> otherwise. + */ + public static boolean isPossibleWeak(byte[] kb) + { + for (int i = 0; i < POSSIBLE_WEAK_KEYS.length; i++) + if (Arrays.equals(POSSIBLE_WEAK_KEYS[i], kb)) + return true; + return false; + } + + /** + * The core DES function. This is used for both encryption and decryption, + * the only difference being the key. + * + * @param in The input bytes. + * @param i The starting offset into the input bytes. + * @param out The output bytes. + * @param o The starting offset into the output bytes. + * @param key The working key. + */ + private static void desFunc(byte[] in, int i, byte[] out, int o, int[] key) + { + int right, left, work; + // Load. + left = (in[i++] & 0xff) << 24 + | (in[i++] & 0xff) << 16 + | (in[i++] & 0xff) << 8 + | in[i++] & 0xff; + right = (in[i++] & 0xff) << 24 + | (in[i++] & 0xff) << 16 + | (in[i++] & 0xff) << 8 + | in[i ] & 0xff; + // Initial permutation. + work = ((left >>> 4) ^ right) & 0x0F0F0F0F; + left ^= work << 4; + right ^= work; + + work = ((left >>> 16) ^ right) & 0x0000FFFF; + left ^= work << 16; + right ^= work; + + work = ((right >>> 2) ^ left) & 0x33333333; + right ^= work << 2; + left ^= work; + + work = ((right >>> 8) ^ left) & 0x00FF00FF; + right ^= work << 8; + left ^= work; + + right = ((right << 1) | ((right >>> 31) & 1)) & 0xFFFFFFFF; + work = (left ^ right) & 0xAAAAAAAA; + left ^= work; + right ^= work; + left = ((left << 1) | ((left >>> 31) & 1)) & 0xFFFFFFFF; + + int k = 0, t; + for (int round = 0; round < 8; round++) + { + work = right >>> 4 | right << 28; + work ^= key[k++]; + t = SP7[work & 0x3F]; + work >>>= 8; + t |= SP5[work & 0x3F]; + work >>>= 8; + t |= SP3[work & 0x3F]; + work >>>= 8; + t |= SP1[work & 0x3F]; + work = right ^ key[k++]; + t |= SP8[work & 0x3F]; + work >>>= 8; + t |= SP6[work & 0x3F]; + work >>>= 8; + t |= SP4[work & 0x3F]; + work >>>= 8; + t |= SP2[work & 0x3F]; + left ^= t; + + work = left >>> 4 | left << 28; + work ^= key[k++]; + t = SP7[work & 0x3F]; + work >>>= 8; + t |= SP5[work & 0x3F]; + work >>>= 8; + t |= SP3[work & 0x3F]; + work >>>= 8; + t |= SP1[work & 0x3F]; + work = left ^ key[k++]; + t |= SP8[work & 0x3F]; + work >>>= 8; + t |= SP6[work & 0x3F]; + work >>>= 8; + t |= SP4[work & 0x3F]; + work >>>= 8; + t |= SP2[work & 0x3F]; + right ^= t; + } + // The final permutation. + right = (right << 31) | (right >>> 1); + work = (left ^ right) & 0xAAAAAAAA; + left ^= work; + right ^= work; + left = (left << 31) | (left >>> 1); + + work = ((left >>> 8) ^ right) & 0x00FF00FF; + left ^= work << 8; + right ^= work; + + work = ((left >>> 2) ^ right) & 0x33333333; + left ^= work << 2; + right ^= work; + + work = ((right >>> 16) ^ left) & 0x0000FFFF; + right ^= work << 16; + left ^= work; + + work = ((right >>> 4) ^ left) & 0x0F0F0F0F; + right ^= work << 4; + left ^= work; + + out[o++] = (byte)(right >>> 24); + out[o++] = (byte)(right >>> 16); + out[o++] = (byte)(right >>> 8); + out[o++] = (byte) right; + out[o++] = (byte)(left >>> 24); + out[o++] = (byte)(left >>> 16); + out[o++] = (byte)(left >>> 8); + out[o ] = (byte) left; + } + + public Object clone() + { + return new DES(); + } + + public Iterator blockSizes() + { + return Collections.singleton(Integer.valueOf(BLOCK_SIZE)).iterator(); + } + + public Iterator keySizes() + { + return Collections.singleton(Integer.valueOf(KEY_SIZE)).iterator(); + } + + public Object makeKey(byte[] kb, int bs) throws InvalidKeyException + { + if (kb == null || kb.length != KEY_SIZE) + throw new InvalidKeyException("DES keys must be 8 bytes long"); + + if (Properties.checkForWeakKeys() + && (isWeak(kb) || isSemiWeak(kb) || isPossibleWeak(kb))) + throw new WeakKeyException(); + + int i, j, l, m, n; + long pc1m = 0, pcr = 0; + + for (i = 0; i < 56; i++) + { + l = PC1[i]; + pc1m |= ((kb[l >>> 3] & (0x80 >>> (l & 7))) != 0) ? (1L << (55 - i)) + : 0; + } + Context ctx = new Context(); + // Encryption key first. + for (i = 0; i < 16; i++) + { + pcr = 0; + m = i << 1; + n = m + 1; + for (j = 0; j < 28; j++) + { + l = j + ROTARS[i]; + if (l < 28) + pcr |= ((pc1m & 1L << (55 - l)) != 0) ? (1L << (55 - j)) : 0; + else + pcr |= ((pc1m & 1L << (55 - (l - 28))) != 0) ? (1L << (55 - j)) + : 0; + } + for (j = 28; j < 56; j++) + { + l = j + ROTARS[i]; + if (l < 56) + pcr |= ((pc1m & 1L << (55 - l)) != 0) ? (1L << (55 - j)) : 0; + else + pcr |= ((pc1m & 1L << (55 - (l - 28))) != 0) ? (1L << (55 - j)) + : 0; + } + for (j = 0; j < 24; j++) + { + if ((pcr & 1L << (55 - PC2[j])) != 0) + ctx.ek[m] |= 1 << (23 - j); + if ((pcr & 1L << (55 - PC2[j + 24])) != 0) + ctx.ek[n] |= 1 << (23 - j); + } + } + // The decryption key is the same, but in reversed order. + for (i = 0; i < Context.EXPANDED_KEY_SIZE; i += 2) + { + ctx.dk[30 - i] = ctx.ek[i]; + ctx.dk[31 - i] = ctx.ek[i + 1]; + } + // "Cook" the keys. + for (i = 0; i < 32; i += 2) + { + int x, y; + x = ctx.ek[i]; + y = ctx.ek[i + 1]; + ctx.ek[i ] = ((x & 0x00FC0000) << 6) + | ((x & 0x00000FC0) << 10) + | ((y & 0x00FC0000) >>> 10) + | ((y & 0x00000FC0) >>> 6); + ctx.ek[i + 1] = ((x & 0x0003F000) << 12) + | ((x & 0x0000003F) << 16) + | ((y & 0x0003F000) >>> 4) + | (y & 0x0000003F); + x = ctx.dk[i]; + y = ctx.dk[i + 1]; + ctx.dk[i ] = ((x & 0x00FC0000) << 6) + | ((x & 0x00000FC0) << 10) + | ((y & 0x00FC0000) >>> 10) + | ((y & 0x00000FC0) >>> 6); + ctx.dk[i + 1] = ((x & 0x0003F000) << 12) + | ((x & 0x0000003F) << 16) + | ((y & 0x0003F000) >>> 4) + | (y & 0x0000003F); + } + return ctx; + } + + public void encrypt(byte[] in, int i, byte[] out, int o, Object K, int bs) + { + desFunc(in, i, out, o, ((Context) K).ek); + } + + public void decrypt(byte[] in, int i, byte[] out, int o, Object K, int bs) + { + desFunc(in, i, out, o, ((Context) K).dk); + } + + /** + * Simple wrapper class around the session keys. Package-private so TripleDES + * can see it. + */ + final class Context + { + private static final int EXPANDED_KEY_SIZE = 32; + + /** The encryption key. */ + int[] ek; + + /** The decryption key. */ + int[] dk; + + /** Default 0-arguments constructor. */ + Context() + { + ek = new int[EXPANDED_KEY_SIZE]; + dk = new int[EXPANDED_KEY_SIZE]; + } + + byte[] getEncryptionKeyBytes() + { + return toByteArray(ek); + } + + byte[] getDecryptionKeyBytes() + { + return toByteArray(dk); + } + + byte[] toByteArray(int[] k) + { + byte[] result = new byte[4 * k.length]; + for (int i = 0, j = 0; i < k.length; i++) + { + result[j++] = (byte)(k[i] >>> 24); + result[j++] = (byte)(k[i] >>> 16); + result[j++] = (byte)(k[i] >>> 8); + result[j++] = (byte) k[i]; + } + return result; + } + } +} |