diff options
author | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
---|---|---|
committer | upstream source tree <ports@midipix.org> | 2015-03-15 20:14:05 -0400 |
commit | 554fd8c5195424bdbcabf5de30fdc183aba391bd (patch) | |
tree | 976dc5ab7fddf506dadce60ae936f43f58787092 /libjava/classpath/gnu/javax/crypto/cipher/Square.java | |
download | cbb-gcc-4.6.4-upstream.tar.bz2 cbb-gcc-4.6.4-upstream.tar.xz |
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig;
imported gcc-4.6.4 source tree from verified upstream tarball.
downloading a git-generated archive based on the 'upstream' tag
should provide you with a source tree that is binary identical
to the one extracted from the above tarball.
if you have obtained the source via the command 'git clone',
however, do note that line-endings of files in your working
directory might differ from line-endings of the respective
files in the upstream repository.
Diffstat (limited to 'libjava/classpath/gnu/javax/crypto/cipher/Square.java')
-rw-r--r-- | libjava/classpath/gnu/javax/crypto/cipher/Square.java | 425 |
1 files changed, 425 insertions, 0 deletions
diff --git a/libjava/classpath/gnu/javax/crypto/cipher/Square.java b/libjava/classpath/gnu/javax/crypto/cipher/Square.java new file mode 100644 index 000000000..231df0a47 --- /dev/null +++ b/libjava/classpath/gnu/javax/crypto/cipher/Square.java @@ -0,0 +1,425 @@ +/* Square.java -- + Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc. + +This file is a part of GNU Classpath. + +GNU Classpath is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or (at +your option) any later version. + +GNU Classpath is distributed in the hope that it will be useful, but +WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU Classpath; if not, write to the Free Software +Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 +USA + +Linking this library statically or dynamically with other modules is +making a combined work based on this library. Thus, the terms and +conditions of the GNU General Public License cover the whole +combination. + +As a special exception, the copyright holders of this library give you +permission to link this library with independent modules to produce an +executable, regardless of the license terms of these independent +modules, and to copy and distribute the resulting executable under +terms of your choice, provided that you also meet, for each linked +independent module, the terms and conditions of the license of that +module. An independent module is a module which is not derived from +or based on this library. If you modify this library, you may extend +this exception to your version of the library, but you are not +obligated to do so. If you do not wish to do so, delete this +exception statement from your version. */ + + +package gnu.javax.crypto.cipher; + +import gnu.java.security.Registry; +import gnu.java.security.util.Util; + +import java.security.InvalidKeyException; +import java.util.ArrayList; +import java.util.Collections; +import java.util.Iterator; + +/** + * Square is a 128-bit key, 128-bit block cipher algorithm developed by Joan + * Daemen, Lars Knudsen and Vincent Rijmen. + * <p> + * References: + * <ol> + * <li><a href="http://www.esat.kuleuven.ac.be/~rijmen/square/">The block + * cipher Square</a>.<br> + * <a href="mailto:daemen.j@protonworld.com">Joan Daemen</a>, <a + * href="mailto:lars.knudsen@esat.kuleuven.ac.be">Lars Knudsen</a> and <a + * href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a>.</li> + * </ol> + */ +public final class Square + extends BaseCipher +{ + private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes + private static final int DEFAULT_KEY_SIZE = 16; // in bytes + private static final int ROUNDS = 8; + private static final int ROOT = 0x1F5; // for generating GF(2**8) + private static final int[] OFFSET = new int[ROUNDS]; + private static final String Sdata = + "\uB1CE\uC395\u5AAD\uE702\u4D44\uFB91\u0C87\uA150" + + "\uCB67\u54DD\u468F\uE14E\uF0FD\uFCEB\uF9C4\u1A6E" + + "\u5EF5\uCC8D\u1C56\u43FE\u0761\uF875\u59FF\u0322" + + "\u8AD1\u13EE\u8800\u0E34\u1580\u94E3\uEDB5\u5323" + + "\u4B47\u17A7\u9035\uABD8\uB8DF\u4F57\u9A92\uDB1B" + + "\u3CC8\u9904\u8EE0\uD77D\u85BB\u402C\u3A45\uF142" + + "\u6520\u4118\u7225\u9370\u3605\uF20B\uA379\uEC08" + + "\u2731\u32B6\u7CB0\u0A73\u5B7B\uB781\uD20D\u6A26" + + "\u9E58\u9C83\u74B3\uAC30\u7A69\u770F\uAE21\uDED0" + + "\u2E97\u10A4\u98A8\uD468\u2D62\u296D\u1649\u76C7" + + "\uE8C1\u9637\uE5CA\uF4E9\u6312\uC2A6\u14BC\uD328" + + "\uAF2F\uE624\u52C6\uA009\uBD8C\uCF5D\u115F\u01C5" + + "\u9F3D\uA29B\uC93B\uBE51\u191F\u3F5C\uB2EF\u4ACD" + + "\uBFBA\u6F64\uD9F3\u3EB4\uAADC\uD506\uC07E\uF666" + + "\u6C84\u7138\uB91D\u7F9D\u488B\u2ADA\uA533\u8239" + + "\uD678\u86FA\uE42B\uA91E\u8960\u6BEA\u554C\uF7E2"; + /** Substitution boxes for encryption and decryption. */ + private static final byte[] Se = new byte[256]; + private static final byte[] Sd = new byte[256]; + /** Transposition boxes for encryption and decryption. */ + private static final int[] Te = new int[256]; + private static final int[] Td = new int[256]; + /** + * KAT vector (from ecb_vk): I=87 KEY=00000000000000000000020000000000 + * CT=A9DF031B4E25E89F527EFFF89CB0BEBA + */ + private static final byte[] KAT_KEY = + Util.toBytesFromString("00000000000000000000020000000000"); + private static final byte[] KAT_CT = + Util.toBytesFromString("A9DF031B4E25E89F527EFFF89CB0BEBA"); + /** caches the result of the correctness test, once executed. */ + private static Boolean valid; + static + { + int i, j; + // re-construct Se box values + int limit = Sdata.length(); + char c1; + for (i = 0, j = 0; i < limit; i++) + { + c1 = Sdata.charAt(i); + Se[j++] = (byte)(c1 >>> 8); + Se[j++] = (byte) c1; + } + // compute Sd box values + for (i = 0; i < 256; i++) + Sd[Se[i] & 0xFF] = (byte) i; + // generate OFFSET values + OFFSET[0] = 1; + for (i = 1; i < ROUNDS; i++) + { + OFFSET[i] = mul(OFFSET[i - 1], 2); + OFFSET[i - 1] <<= 24; + } + OFFSET[ROUNDS - 1] <<= 24; + // generate Te and Td boxes if we're not reading their values + // Notes: + // (1) The function mul() computes the product of two elements of GF(2**8) + // with ROOT as reduction polynomial. + // (2) the values used in computing the Te and Td are the GF(2**8) + // coefficients of the diffusion polynomial c(x) and its inverse + // (modulo x**4 + 1) d(x), defined in sections 2.1 and 4 of the Square + // paper. + for (i = 0; i < 256; i++) + { + j = Se[i] & 0xFF; + Te[i] = (Se[i & 3] == 0) ? 0 + : mul(j, 2) << 24 + | j << 16 + | j << 8 + | mul(j, 3); + j = Sd[i] & 0xFF; + Td[i] = (Sd[i & 3] == 0) ? 0 + : mul(j, 14) << 24 + | mul(j, 9) << 16 + | mul(j, 13) << 8 + | mul(j, 11); + } + } + + /** Trivial 0-arguments constructor. */ + public Square() + { + super(Registry.SQUARE_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE); + } + + private static void square(byte[] in, int i, byte[] out, int j, int[][] K, + int[] T, byte[] S) + { + int a = ((in[i++]) << 24 + | (in[i++] & 0xFF) << 16 + | (in[i++] & 0xFF) << 8 + | (in[i++] & 0xFF) ) ^ K[0][0]; + int b = ((in[i++]) << 24 + | (in[i++] & 0xFF) << 16 + | (in[i++] & 0xFF) << 8 + | (in[i++] & 0xFF) ) ^ K[0][1]; + int c = ((in[i++]) << 24 + | (in[i++] & 0xFF) << 16 + | (in[i++] & 0xFF) << 8 + | (in[i++] & 0xFF) ) ^ K[0][2]; + int d = ((in[i++]) << 24 + | (in[i++] & 0xFF) << 16 + | (in[i++] & 0xFF) << 8 + | (in[i ] & 0xFF) ) ^ K[0][3]; + int r, aa, bb, cc, dd; + for (r = 1; r < ROUNDS; r++) + { // R - 1 full rounds + aa = T[(a >>> 24) ] + ^ rot32R(T[(b >>> 24) ], 8) + ^ rot32R(T[(c >>> 24) ], 16) + ^ rot32R(T[(d >>> 24) ], 24) ^ K[r][0]; + bb = T[(a >>> 16) & 0xFF] + ^ rot32R(T[(b >>> 16) & 0xFF], 8) + ^ rot32R(T[(c >>> 16) & 0xFF], 16) + ^ rot32R(T[(d >>> 16) & 0xFF], 24) ^ K[r][1]; + cc = T[(a >>> 8) & 0xFF] + ^ rot32R(T[(b >>> 8) & 0xFF], 8) + ^ rot32R(T[(c >>> 8) & 0xFF], 16) + ^ rot32R(T[(d >>> 8) & 0xFF], 24) ^ K[r][2]; + dd = T[ a & 0xFF] + ^ rot32R(T[ b & 0xFF], 8) + ^ rot32R(T[ c & 0xFF], 16) + ^ rot32R(T[ d & 0xFF], 24) ^ K[r][3]; + a = aa; + b = bb; + c = cc; + d = dd; + } + // last round (diffusion becomes only transposition) + aa = ((S[(a >>> 24) ] ) << 24 + | (S[(b >>> 24) ] & 0xFF) << 16 + | (S[(c >>> 24) ] & 0xFF) << 8 + | (S[(d >>> 24) ] & 0xFF) ) ^ K[r][0]; + bb = ((S[(a >>> 16) & 0xFF] ) << 24 + | (S[(b >>> 16) & 0xFF] & 0xFF) << 16 + | (S[(c >>> 16) & 0xFF] & 0xFF) << 8 + | (S[(d >>> 16) & 0xFF] & 0xFF) ) ^ K[r][1]; + cc = ((S[(a >>> 8) & 0xFF] ) << 24 + | (S[(b >>> 8) & 0xFF] & 0xFF) << 16 + | (S[(c >>> 8) & 0xFF] & 0xFF) << 8 + | (S[(d >>> 8) & 0xFF] & 0xFF) ) ^ K[r][2]; + dd = ((S[ a & 0xFF] ) << 24 + | (S[ b & 0xFF] & 0xFF) << 16 + | (S[ c & 0xFF] & 0xFF) << 8 + | (S[ d & 0xFF] & 0xFF) ) ^ K[r][3]; + out[j++] = (byte)(aa >>> 24); + out[j++] = (byte)(aa >>> 16); + out[j++] = (byte)(aa >>> 8); + out[j++] = (byte) aa; + out[j++] = (byte)(bb >>> 24); + out[j++] = (byte)(bb >>> 16); + out[j++] = (byte)(bb >>> 8); + out[j++] = (byte) bb; + out[j++] = (byte)(cc >>> 24); + out[j++] = (byte)(cc >>> 16); + out[j++] = (byte)(cc >>> 8); + out[j++] = (byte) cc; + out[j++] = (byte)(dd >>> 24); + out[j++] = (byte)(dd >>> 16); + out[j++] = (byte)(dd >>> 8); + out[j ] = (byte) dd; + } + + /** + * Applies the Theta function to an input <i>in</i> in order to produce in + * <i>out</i> an internal session sub-key. + * <p> + * Both <i>in</i> and <i>out</i> are arrays of four ints. + * <p> + * Pseudo-code is: + * <pre> + * for (i = 0; i < 4; i++) + * { + * out[i] = 0; + * for (j = 0, n = 24; j < 4; j++, n -= 8) + * { + * k = mul(in[i] >>> 24, G[0][j]) ˆ mul(in[i] >>> 16, G[1][j]) + * ˆ mul(in[i] >>> 8, G[2][j]) ˆ mul(in[i], G[3][j]); + * out[i] ˆ= k << n; + * } + * } + * </pre> + */ + private static void transform(int[] in, int[] out) + { + int l3, l2, l1, l0, m; + for (int i = 0; i < 4; i++) + { + l3 = in[i]; + l2 = l3 >>> 8; + l1 = l3 >>> 16; + l0 = l3 >>> 24; + m = ((mul(l0, 2) ^ mul(l1, 3) ^ l2 ^ l3) & 0xFF) << 24; + m ^= ((l0 ^ mul(l1, 2) ^ mul(l2, 3) ^ l3) & 0xFF) << 16; + m ^= ((l0 ^ l1 ^ mul(l2, 2) ^ mul(l3, 3)) & 0xFF) << 8; + m ^= ((mul(l0, 3) ^ l1 ^ l2 ^ mul(l3, 2)) & 0xFF); + out[i] = m; + } + } + + /** + * Left rotate a 32-bit chunk. + * + * @param x the 32-bit data to rotate + * @param s number of places to left-rotate by + * @return the newly permutated value. + */ + private static int rot32L(int x, int s) + { + return x << s | x >>> (32 - s); + } + + /** + * Right rotate a 32-bit chunk. + * + * @param x the 32-bit data to rotate + * @param s number of places to right-rotate by + * @return the newly permutated value. + */ + private static int rot32R(int x, int s) + { + return x >>> s | x << (32 - s); + } + + /** + * Returns the product of two binary numbers a and b, using the generator ROOT + * as the modulus: p = (a * b) mod ROOT. ROOT Generates a suitable Galois + * Field in GF(2**8). + * <p> + * For best performance call it with abs(b) < abs(a). + * + * @param a operand for multiply. + * @param b operand for multiply. + * @return the result of (a * b) % ROOT. + */ + private static final int mul(int a, int b) + { + if (a == 0) + return 0; + a &= 0xFF; + b &= 0xFF; + int result = 0; + while (b != 0) + { + if ((b & 0x01) != 0) + result ^= a; + b >>>= 1; + a <<= 1; + if (a > 0xFF) + a ^= ROOT; + } + return result & 0xFF; + } + + public Object clone() + { + Square result = new Square(); + result.currentBlockSize = this.currentBlockSize; + + return result; + } + + public Iterator blockSizes() + { + ArrayList al = new ArrayList(); + al.add(Integer.valueOf(DEFAULT_BLOCK_SIZE)); + + return Collections.unmodifiableList(al).iterator(); + } + + public Iterator keySizes() + { + ArrayList al = new ArrayList(); + al.add(Integer.valueOf(DEFAULT_KEY_SIZE)); + + return Collections.unmodifiableList(al).iterator(); + } + + public Object makeKey(byte[] uk, int bs) throws InvalidKeyException + { + if (bs != DEFAULT_BLOCK_SIZE) + throw new IllegalArgumentException(); + if (uk == null) + throw new InvalidKeyException("Empty key"); + if (uk.length != DEFAULT_KEY_SIZE) + throw new InvalidKeyException("Key is not 128-bit."); + int[][] Ke = new int[ROUNDS + 1][4]; + int[][] Kd = new int[ROUNDS + 1][4]; + int[][] tK = new int[ROUNDS + 1][4]; + int i = 0; + Ke[0][0] = (uk[i++] & 0xFF) << 24 + | (uk[i++] & 0xFF) << 16 + | (uk[i++] & 0xFF) << 8 + | (uk[i++] & 0xFF); + tK[0][0] = Ke[0][0]; + Ke[0][1] = (uk[i++] & 0xFF) << 24 + | (uk[i++] & 0xFF) << 16 + | (uk[i++] & 0xFF) << 8 + | (uk[i++] & 0xFF); + tK[0][1] = Ke[0][1]; + Ke[0][2] = (uk[i++] & 0xFF) << 24 + | (uk[i++] & 0xFF) << 16 + | (uk[i++] & 0xFF) << 8 + | (uk[i++] & 0xFF); + tK[0][2] = Ke[0][2]; + Ke[0][3] = (uk[i++] & 0xFF) << 24 + | (uk[i++] & 0xFF) << 16 + | (uk[i++] & 0xFF) << 8 + | (uk[i ] & 0xFF); + tK[0][3] = Ke[0][3]; + int j; + for (i = 1, j = 0; i < ROUNDS + 1; i++, j++) + { + tK[i][0] = tK[j][0] ^ rot32L(tK[j][3], 8) ^ OFFSET[j]; + tK[i][1] = tK[j][1] ^ tK[i][0]; + tK[i][2] = tK[j][2] ^ tK[i][1]; + tK[i][3] = tK[j][3] ^ tK[i][2]; + System.arraycopy(tK[i], 0, Ke[i], 0, 4); + transform(Ke[j], Ke[j]); + } + for (i = 0; i < ROUNDS; i++) + System.arraycopy(tK[ROUNDS - i], 0, Kd[i], 0, 4); + transform(tK[0], Kd[ROUNDS]); + return new Object[] { Ke, Kd }; + } + + public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) + { + if (bs != DEFAULT_BLOCK_SIZE) + throw new IllegalArgumentException(); + int[][] K = (int[][])((Object[]) k)[0]; + square(in, i, out, j, K, Te, Se); + } + + public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) + { + if (bs != DEFAULT_BLOCK_SIZE) + throw new IllegalArgumentException(); + int[][] K = (int[][])((Object[]) k)[1]; + square(in, i, out, j, K, Td, Sd); + } + + public boolean selfTest() + { + if (valid == null) + { + boolean result = super.selfTest(); // do symmetry tests + if (result) + result = testKat(KAT_KEY, KAT_CT); + valid = Boolean.valueOf(result); + } + return valid.booleanValue(); + } +} |