summaryrefslogtreecommitdiff
path: root/libjava/classpath/gnu/javax/crypto/cipher/Twofish.java
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /libjava/classpath/gnu/javax/crypto/cipher/Twofish.java
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'libjava/classpath/gnu/javax/crypto/cipher/Twofish.java')
-rw-r--r--libjava/classpath/gnu/javax/crypto/cipher/Twofish.java737
1 files changed, 737 insertions, 0 deletions
diff --git a/libjava/classpath/gnu/javax/crypto/cipher/Twofish.java b/libjava/classpath/gnu/javax/crypto/cipher/Twofish.java
new file mode 100644
index 000000000..c9789a699
--- /dev/null
+++ b/libjava/classpath/gnu/javax/crypto/cipher/Twofish.java
@@ -0,0 +1,737 @@
+/* Twofish.java --
+ Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
+
+This file is a part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or (at
+your option) any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; if not, write to the Free Software
+Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
+USA
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package gnu.javax.crypto.cipher;
+
+import gnu.java.security.Configuration;
+import gnu.java.security.Registry;
+import gnu.java.security.util.Util;
+
+import java.security.InvalidKeyException;
+import java.util.ArrayList;
+import java.util.Collections;
+import java.util.Iterator;
+import java.util.logging.Logger;
+
+/**
+ * Twofish is a balanced 128-bit Feistel cipher, consisting of 16 rounds. In
+ * each round, a 64-bit S-box value is computed from 64 bits of the block, and
+ * this value is xored into the other half of the block. The two half-blocks are
+ * then exchanged, and the next round begins. Before the first round, all input
+ * bits are xored with key-dependent "whitening" subkeys, and after the final
+ * round the output bits are xored with other key-dependent whitening subkeys;
+ * these subkeys are not used anywhere else in the algorithm.
+ * <p>
+ * Twofish is designed by Bruce Schneier, Doug Whiting, John Kelsey, Chris
+ * Hall, David Wagner and Niels Ferguson.
+ * <p>
+ * References:
+ * <ol>
+ * <li><a href="http://www.counterpane.com/twofish-paper.html">Twofish: A
+ * 128-bit Block Cipher</a>.</li>
+ * </ol>
+ */
+public final class Twofish
+ extends BaseCipher
+{
+ private static final Logger log = Logger.getLogger(Twofish.class.getName());
+ private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes
+ private static final int DEFAULT_KEY_SIZE = 16; // in bytes
+ private static final int MAX_ROUNDS = 16; // max # rounds (for allocating subkeys)
+ private static final int ROUNDS = MAX_ROUNDS;
+ // subkey array indices
+ private static final int INPUT_WHITEN = 0;
+ private static final int OUTPUT_WHITEN = INPUT_WHITEN + DEFAULT_BLOCK_SIZE / 4;
+ private static final int ROUND_SUBKEYS = OUTPUT_WHITEN + DEFAULT_BLOCK_SIZE / 4;
+ private static final int SK_STEP = 0x02020202;
+ private static final int SK_BUMP = 0x01010101;
+ private static final int SK_ROTL = 9;
+ private static final String[] Pm = new String[] {
+ // p0
+ "\uA967\uB3E8\u04FD\uA376\u9A92\u8078\uE4DD\uD138"
+ + "\u0DC6\u3598\u18F7\uEC6C\u4375\u3726\uFA13\u9448"
+ + "\uF2D0\u8B30\u8454\uDF23\u195B\u3D59\uF3AE\uA282"
+ + "\u6301\u832E\uD951\u9B7C\uA6EB\uA5BE\u160C\uE361"
+ + "\uC08C\u3AF5\u732C\u250B\uBB4E\u896B\u536A\uB4F1"
+ + "\uE1E6\uBD45\uE2F4\uB666\uCC95\u0356\uD41C\u1ED7"
+ + "\uFBC3\u8EB5\uE9CF\uBFBA\uEA77\u39AF\u33C9\u6271"
+ + "\u8179\u09AD\u24CD\uF9D8\uE5C5\uB94D\u4408\u86E7"
+ + "\uA11D\uAAED\u0670\uB2D2\u417B\uA011\u31C2\u2790"
+ + "\u20F6\u60FF\u965C\uB1AB\u9E9C\u521B\u5F93\u0AEF"
+ + "\u9185\u49EE\u2D4F\u8F3B\u4787\u6D46\uD63E\u6964"
+ + "\u2ACE\uCB2F\uFC97\u057A\uAC7F\uD51A\u4B0E\uA75A"
+ + "\u2814\u3F29\u883C\u4C02\uB8DA\uB017\u551F\u8A7D"
+ + "\u57C7\u8D74\uB7C4\u9F72\u7E15\u2212\u5807\u9934"
+ + "\u6E50\uDE68\u65BC\uDBF8\uC8A8\u2B40\uDCFE\u32A4"
+ + "\uCA10\u21F0\uD35D\u0F00\u6F9D\u3642\u4A5E\uC1E0",
+ // p1
+ "\u75F3\uC6F4\uDB7B\uFBC8\u4AD3\uE66B\u457D\uE84B"
+ + "\uD632\uD8FD\u3771\uF1E1\u300F\uF81B\u87FA\u063F"
+ + "\u5EBA\uAE5B\u8A00\uBC9D\u6DC1\uB10E\u805D\uD2D5"
+ + "\uA084\u0714\uB590\u2CA3\uB273\u4C54\u9274\u3651"
+ + "\u38B0\uBD5A\uFC60\u6296\u6C42\uF710\u7C28\u278C"
+ + "\u1395\u9CC7\u2446\u3B70\uCAE3\u85CB\u11D0\u93B8"
+ + "\uA683\u20FF\u9F77\uC3CC\u036F\u08BF\u40E7\u2BE2"
+ + "\u790C\uAA82\u413A\uEAB9\uE49A\uA497\u7EDA\u7A17"
+ + "\u6694\uA11D\u3DF0\uDEB3\u0B72\uA71C\uEFD1\u533E"
+ + "\u8F33\u265F\uEC76\u2A49\u8188\uEE21\uC41A\uEBD9"
+ + "\uC539\u99CD\uAD31\u8B01\u1823\uDD1F\u4E2D\uF948"
+ + "\u4FF2\u658E\u785C\u5819\u8DE5\u9857\u677F\u0564"
+ + "\uAF63\uB6FE\uF5B7\u3CA5\uCEE9\u6844\uE04D\u4369"
+ + "\u292E\uAC15\u59A8\u0A9E\u6E47\uDF34\u356A\uCFDC"
+ + "\u22C9\uC09B\u89D4\uEDAB\u12A2\u0D52\uBB02\u2FA9"
+ + "\uD761\u1EB4\u5004\uF6C2\u1625\u8656\u5509\uBE91" };
+ /** Fixed 8x8 permutation S-boxes */
+ private static final byte[][] P = new byte[2][256]; // blank final
+ /**
+ * Define the fixed p0/p1 permutations used in keyed S-box lookup. By
+ * changing the following constant definitions, the S-boxes will
+ * automatically get changed in the Twofish engine.
+ */
+ private static final int P_00 = 1;
+ private static final int P_01 = 0;
+ private static final int P_02 = 0;
+ private static final int P_03 = P_01 ^ 1;
+ private static final int P_04 = 1;
+ private static final int P_10 = 0;
+ private static final int P_11 = 0;
+ private static final int P_12 = 1;
+ private static final int P_13 = P_11 ^ 1;
+ private static final int P_14 = 0;
+ private static final int P_20 = 1;
+ private static final int P_21 = 1;
+ private static final int P_22 = 0;
+ private static final int P_23 = P_21 ^ 1;
+ private static final int P_24 = 0;
+ private static final int P_30 = 0;
+ private static final int P_31 = 1;
+ private static final int P_32 = 1;
+ private static final int P_33 = P_31 ^ 1;
+ private static final int P_34 = 1;
+ /** Primitive polynomial for GF(256) */
+ private static final int GF256_FDBK_2 = 0x169 / 2;
+ private static final int GF256_FDBK_4 = 0x169 / 4;
+ /** MDS matrix */
+ private static final int[][] MDS = new int[4][256]; // blank final
+ private static final int RS_GF_FDBK = 0x14D; // field generator
+ /**
+ * KAT vector (from ecb_vk):
+ * I=183
+ * KEY=0000000000000000000000000000000000000000000002000000000000000000
+ * CT=F51410475B33FBD3DB2117B5C17C82D4
+ */
+ private static final byte[] KAT_KEY = Util.toBytesFromString(
+ "0000000000000000000000000000000000000000000002000000000000000000");
+ private static final byte[] KAT_CT =
+ Util.toBytesFromString("F51410475B33FBD3DB2117B5C17C82D4");
+ /** caches the result of the correctness test, once executed. */
+ private static Boolean valid;
+ static
+ {
+ long time = System.currentTimeMillis();
+ // expand the P arrays
+ int i;
+ char c;
+ for (i = 0; i < 256; i++)
+ {
+ c = Pm[0].charAt(i >>> 1);
+ P[0][i] = (byte)((i & 1) == 0 ? c >>> 8 : c);
+ c = Pm[1].charAt(i >>> 1);
+ P[1][i] = (byte)((i & 1) == 0 ? c >>> 8 : c);
+ }
+ // precompute the MDS matrix
+ int[] m1 = new int[2];
+ int[] mX = new int[2];
+ int[] mY = new int[2];
+ int j;
+ for (i = 0; i < 256; i++)
+ {
+ j = P[0][i] & 0xFF; // compute all the matrix elements
+ m1[0] = j;
+ mX[0] = Mx_X(j) & 0xFF;
+ mY[0] = Mx_Y(j) & 0xFF;
+ j = P[1][i] & 0xFF;
+ m1[1] = j;
+ mX[1] = Mx_X(j) & 0xFF;
+ mY[1] = Mx_Y(j) & 0xFF;
+ MDS[0][i] = m1[P_00] << 0
+ | mX[P_00] << 8
+ | mY[P_00] << 16
+ | mY[P_00] << 24;
+ MDS[1][i] = mY[P_10] << 0
+ | mY[P_10] << 8
+ | mX[P_10] << 16
+ | m1[P_10] << 24;
+ MDS[2][i] = mX[P_20] << 0
+ | mY[P_20] << 8
+ | m1[P_20] << 16
+ | mY[P_20] << 24;
+ MDS[3][i] = mX[P_30] << 0
+ | m1[P_30] << 8
+ | mY[P_30] << 16
+ | mX[P_30] << 24;
+ }
+ time = System.currentTimeMillis() - time;
+ if (Configuration.DEBUG)
+ {
+ log.fine("Static Data");
+ log.fine("MDS[0][]:");
+ StringBuilder sb;
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(MDS[0][i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("MDS[1][]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(MDS[1][i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("MDS[2][]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(MDS[2][i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("MDS[3][]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(MDS[3][i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("Total initialization time: " + time + " ms.");
+ }
+ }
+
+ private static final int LFSR1(int x)
+ {
+ return (x >> 1) ^ ((x & 0x01) != 0 ? GF256_FDBK_2 : 0);
+ }
+
+ private static final int LFSR2(int x)
+ {
+ return (x >> 2)
+ ^ ((x & 0x02) != 0 ? GF256_FDBK_2 : 0)
+ ^ ((x & 0x01) != 0 ? GF256_FDBK_4 : 0);
+ }
+
+ private static final int Mx_X(int x)
+ { // 5B
+ return x ^ LFSR2(x);
+ }
+
+ private static final int Mx_Y(int x)
+ { // EF
+ return x ^ LFSR1(x) ^ LFSR2(x);
+ }
+
+ /** Trivial 0-arguments constructor. */
+ public Twofish()
+ {
+ super(Registry.TWOFISH_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE);
+ }
+
+ private static final int b0(int x)
+ {
+ return x & 0xFF;
+ }
+
+ private static final int b1(int x)
+ {
+ return (x >>> 8) & 0xFF;
+ }
+
+ private static final int b2(int x)
+ {
+ return (x >>> 16) & 0xFF;
+ }
+
+ private static final int b3(int x)
+ {
+ return (x >>> 24) & 0xFF;
+ }
+
+ /**
+ * Use (12, 8) Reed-Solomon code over GF(256) to produce a key S-box 32-bit
+ * entity from two key material 32-bit entities.
+ *
+ * @param k0 1st 32-bit entity.
+ * @param k1 2nd 32-bit entity.
+ * @return remainder polynomial generated using RS code
+ */
+ private static final int RS_MDS_Encode(int k0, int k1)
+ {
+ int r = k1;
+ int i;
+ for (i = 0; i < 4; i++) // shift 1 byte at a time
+ r = RS_rem(r);
+ r ^= k0;
+ for (i = 0; i < 4; i++)
+ r = RS_rem(r);
+ return r;
+ }
+
+ /**
+ * Reed-Solomon code parameters: (12, 8) reversible code:<p>
+ * <pre>
+ * g(x) = x**4 + (a + 1/a) x**3 + a x**2 + (a + 1/a) x + 1
+ * </pre>
+ * where a = primitive root of field generator 0x14D
+ */
+ private static final int RS_rem(int x)
+ {
+ int b = (x >>> 24) & 0xFF;
+ int g2 = ((b << 1) ^ ((b & 0x80) != 0 ? RS_GF_FDBK : 0)) & 0xFF;
+ int g3 = (b >>> 1) ^ ((b & 0x01) != 0 ? (RS_GF_FDBK >>> 1) : 0) ^ g2;
+ int result = (x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b;
+ return result;
+ }
+
+ private static final int F32(int k64Cnt, int x, int[] k32)
+ {
+ int b0 = b0(x);
+ int b1 = b1(x);
+ int b2 = b2(x);
+ int b3 = b3(x);
+ int k0 = k32[0];
+ int k1 = k32[1];
+ int k2 = k32[2];
+ int k3 = k32[3];
+ int result = 0;
+ switch (k64Cnt & 3)
+ {
+ case 1:
+ result = MDS[0][(P[P_01][b0] & 0xFF) ^ b0(k0)]
+ ^ MDS[1][(P[P_11][b1] & 0xFF) ^ b1(k0)]
+ ^ MDS[2][(P[P_21][b2] & 0xFF) ^ b2(k0)]
+ ^ MDS[3][(P[P_31][b3] & 0xFF) ^ b3(k0)];
+ break;
+ case 0: // same as 4
+ b0 = (P[P_04][b0] & 0xFF) ^ b0(k3);
+ b1 = (P[P_14][b1] & 0xFF) ^ b1(k3);
+ b2 = (P[P_24][b2] & 0xFF) ^ b2(k3);
+ b3 = (P[P_34][b3] & 0xFF) ^ b3(k3);
+ case 3:
+ b0 = (P[P_03][b0] & 0xFF) ^ b0(k2);
+ b1 = (P[P_13][b1] & 0xFF) ^ b1(k2);
+ b2 = (P[P_23][b2] & 0xFF) ^ b2(k2);
+ b3 = (P[P_33][b3] & 0xFF) ^ b3(k2);
+ case 2: // 128-bit keys (optimize for this case)
+ result = MDS[0][(P[P_01][(P[P_02][b0] & 0xFF) ^ b0(k1)] & 0xFF) ^ b0(k0)]
+ ^ MDS[1][(P[P_11][(P[P_12][b1] & 0xFF) ^ b1(k1)] & 0xFF) ^ b1(k0)]
+ ^ MDS[2][(P[P_21][(P[P_22][b2] & 0xFF) ^ b2(k1)] & 0xFF) ^ b2(k0)]
+ ^ MDS[3][(P[P_31][(P[P_32][b3] & 0xFF) ^ b3(k1)] & 0xFF) ^ b3(k0)];
+ break;
+ }
+ return result;
+ }
+
+ private static final int Fe32(int[] sBox, int x, int R)
+ {
+ return sBox[ 2 * _b(x, R ) ]
+ ^ sBox[ 2 * _b(x, R + 1) + 1]
+ ^ sBox[0x200 + 2 * _b(x, R + 2) ]
+ ^ sBox[0x200 + 2 * _b(x, R + 3) + 1];
+ }
+
+ private static final int _b(int x, int N)
+ {
+ switch (N % 4)
+ {
+ case 0:
+ return x & 0xFF;
+ case 1:
+ return (x >>> 8) & 0xFF;
+ case 2:
+ return (x >>> 16) & 0xFF;
+ default:
+ return x >>> 24;
+ }
+ }
+
+ public Object clone()
+ {
+ Twofish result = new Twofish();
+ result.currentBlockSize = this.currentBlockSize;
+ return result;
+ }
+
+ public Iterator blockSizes()
+ {
+ ArrayList al = new ArrayList();
+ al.add(Integer.valueOf(DEFAULT_BLOCK_SIZE));
+ return Collections.unmodifiableList(al).iterator();
+ }
+
+ public Iterator keySizes()
+ {
+ ArrayList al = new ArrayList();
+ al.add(Integer.valueOf(8)); // 64-bit
+ al.add(Integer.valueOf(16)); // 128-bit
+ al.add(Integer.valueOf(24)); // 192-bit
+ al.add(Integer.valueOf(32)); // 256-bit
+ return Collections.unmodifiableList(al).iterator();
+ }
+
+ /**
+ * Expands a user-supplied key material into a session key for a designated
+ * <i>block size</i>.
+ *
+ * @param k the 64/128/192/256-bit user-key to use.
+ * @param bs the desired block size in bytes.
+ * @return an Object encapsulating the session key.
+ * @exception IllegalArgumentException if the block size is not 16 (128-bit).
+ * @exception InvalidKeyException if the key data is invalid.
+ */
+ public Object makeKey(byte[] k, int bs) throws InvalidKeyException
+ {
+ if (bs != DEFAULT_BLOCK_SIZE)
+ throw new IllegalArgumentException();
+ if (k == null)
+ throw new InvalidKeyException("Empty key");
+ int length = k.length;
+ if (! (length == 8 || length == 16 || length == 24 || length == 32))
+ throw new InvalidKeyException("Incorrect key length");
+ int k64Cnt = length / 8;
+ int subkeyCnt = ROUND_SUBKEYS + 2 * ROUNDS;
+ int[] k32e = new int[4]; // even 32-bit entities
+ int[] k32o = new int[4]; // odd 32-bit entities
+ int[] sBoxKey = new int[4];
+ // split user key material into even and odd 32-bit entities and
+ // compute S-box keys using (12, 8) Reed-Solomon code over GF(256)
+ int i, j, offset = 0;
+ for (i = 0, j = k64Cnt - 1; i < 4 && offset < length; i++, j--)
+ {
+ k32e[i] = (k[offset++] & 0xFF)
+ | (k[offset++] & 0xFF) << 8
+ | (k[offset++] & 0xFF) << 16
+ | (k[offset++] & 0xFF) << 24;
+ k32o[i] = (k[offset++] & 0xFF)
+ | (k[offset++] & 0xFF) << 8
+ | (k[offset++] & 0xFF) << 16
+ | (k[offset++] & 0xFF) << 24;
+ sBoxKey[j] = RS_MDS_Encode(k32e[i], k32o[i]); // reverse order
+ }
+ // compute the round decryption subkeys for PHT. these same subkeys
+ // will be used in encryption but will be applied in reverse order.
+ int q, A, B;
+ int[] subKeys = new int[subkeyCnt];
+ for (i = q = 0; i < subkeyCnt / 2; i++, q += SK_STEP)
+ {
+ A = F32(k64Cnt, q, k32e); // A uses even key entities
+ B = F32(k64Cnt, q + SK_BUMP, k32o); // B uses odd key entities
+ B = B << 8 | B >>> 24;
+ A += B;
+ subKeys[2 * i] = A; // combine with a PHT
+ A += B;
+ subKeys[2 * i + 1] = A << SK_ROTL | A >>> (32 - SK_ROTL);
+ }
+ // fully expand the table for speed
+ int k0 = sBoxKey[0];
+ int k1 = sBoxKey[1];
+ int k2 = sBoxKey[2];
+ int k3 = sBoxKey[3];
+ int b0, b1, b2, b3;
+ int[] sBox = new int[4 * 256];
+ for (i = 0; i < 256; i++)
+ {
+ b0 = b1 = b2 = b3 = i;
+ switch (k64Cnt & 3)
+ {
+ case 1:
+ sBox[ 2 * i ] = MDS[0][(P[P_01][b0] & 0xFF) ^ b0(k0)];
+ sBox[ 2 * i + 1] = MDS[1][(P[P_11][b1] & 0xFF) ^ b1(k0)];
+ sBox[0x200 + 2 * i ] = MDS[2][(P[P_21][b2] & 0xFF) ^ b2(k0)];
+ sBox[0x200 + 2 * i + 1] = MDS[3][(P[P_31][b3] & 0xFF) ^ b3(k0)];
+ break;
+ case 0: // same as 4
+ b0 = (P[P_04][b0] & 0xFF) ^ b0(k3);
+ b1 = (P[P_14][b1] & 0xFF) ^ b1(k3);
+ b2 = (P[P_24][b2] & 0xFF) ^ b2(k3);
+ b3 = (P[P_34][b3] & 0xFF) ^ b3(k3);
+ case 3:
+ b0 = (P[P_03][b0] & 0xFF) ^ b0(k2);
+ b1 = (P[P_13][b1] & 0xFF) ^ b1(k2);
+ b2 = (P[P_23][b2] & 0xFF) ^ b2(k2);
+ b3 = (P[P_33][b3] & 0xFF) ^ b3(k2);
+ case 2: // 128-bit keys
+ sBox[ 2 * i ] = MDS[0][(P[P_01][(P[P_02][b0] & 0xFF)
+ ^ b0(k1)] & 0xFF) ^ b0(k0)];
+ sBox[ 2 * i + 1] = MDS[1][(P[P_11][(P[P_12][b1] & 0xFF)
+ ^ b1(k1)] & 0xFF) ^ b1(k0)];
+ sBox[0x200 + 2 * i ] = MDS[2][(P[P_21][(P[P_22][b2] & 0xFF)
+ ^ b2(k1)] & 0xFF) ^ b2(k0)];
+ sBox[0x200 + 2 * i + 1] = MDS[3][(P[P_31][(P[P_32][b3] & 0xFF)
+ ^ b3(k1)] & 0xFF) ^ b3(k0)];
+ }
+ }
+ if (Configuration.DEBUG)
+ {
+ StringBuilder sb;
+ log.fine("S-box[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(sBox[i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(sBox[256 + i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(sBox[512 + i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(sBox[768 + i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("User (odd, even) keys --> S-Box keys:");
+ for (i = 0; i < k64Cnt; i++)
+ log.fine("0x" + Util.toString(k32o[i])
+ + " 0x" + Util.toString(k32e[i])
+ + " --> 0x" + Util.toString(sBoxKey[k64Cnt - 1 - i]));
+ log.fine("Round keys:");
+ for (i = 0; i < ROUND_SUBKEYS + 2 * ROUNDS; i += 2)
+ log.fine("0x" + Util.toString(subKeys[i])
+ + " 0x" + Util.toString(subKeys[i + 1]));
+ }
+ return new Object[] { sBox, subKeys };
+ }
+
+ public void encrypt(byte[] in, int inOffset, byte[] out, int outOffset,
+ Object sessionKey, int bs)
+ {
+ if (bs != DEFAULT_BLOCK_SIZE)
+ throw new IllegalArgumentException();
+ Object[] sk = (Object[]) sessionKey; // extract S-box and session key
+ int[] sBox = (int[]) sk[0];
+ int[] sKey = (int[]) sk[1];
+ if (Configuration.DEBUG)
+ log.fine("PT=" + Util.toString(in, inOffset, bs));
+ int x0 = (in[inOffset++] & 0xFF)
+ | (in[inOffset++] & 0xFF) << 8
+ | (in[inOffset++] & 0xFF) << 16
+ | (in[inOffset++] & 0xFF) << 24;
+ int x1 = (in[inOffset++] & 0xFF)
+ | (in[inOffset++] & 0xFF) << 8
+ | (in[inOffset++] & 0xFF) << 16
+ | (in[inOffset++] & 0xFF) << 24;
+ int x2 = (in[inOffset++] & 0xFF)
+ | (in[inOffset++] & 0xFF) << 8
+ | (in[inOffset++] & 0xFF) << 16
+ | (in[inOffset++] & 0xFF) << 24;
+ int x3 = (in[inOffset++] & 0xFF)
+ | (in[inOffset++] & 0xFF) << 8
+ | (in[inOffset++] & 0xFF) << 16
+ | (in[inOffset++] & 0xFF) << 24;
+ x0 ^= sKey[INPUT_WHITEN];
+ x1 ^= sKey[INPUT_WHITEN + 1];
+ x2 ^= sKey[INPUT_WHITEN + 2];
+ x3 ^= sKey[INPUT_WHITEN + 3];
+ if (Configuration.DEBUG)
+ log.fine("PTw=" + Util.toString(x0) + Util.toString(x1)
+ + Util.toString(x2) + Util.toString(x3));
+ int t0, t1;
+ int k = ROUND_SUBKEYS;
+ for (int R = 0; R < ROUNDS; R += 2)
+ {
+ t0 = Fe32(sBox, x0, 0);
+ t1 = Fe32(sBox, x1, 3);
+ x2 ^= t0 + t1 + sKey[k++];
+ x2 = x2 >>> 1 | x2 << 31;
+ x3 = x3 << 1 | x3 >>> 31;
+ x3 ^= t0 + 2 * t1 + sKey[k++];
+ if (Configuration.DEBUG)
+ log.fine("CT" + (R) + "=" + Util.toString(x0) + Util.toString(x1)
+ + Util.toString(x2) + Util.toString(x3));
+ t0 = Fe32(sBox, x2, 0);
+ t1 = Fe32(sBox, x3, 3);
+ x0 ^= t0 + t1 + sKey[k++];
+ x0 = x0 >>> 1 | x0 << 31;
+ x1 = x1 << 1 | x1 >>> 31;
+ x1 ^= t0 + 2 * t1 + sKey[k++];
+ if (Configuration.DEBUG)
+ log.fine("CT" + (R + 1) + "=" + Util.toString(x0) + Util.toString(x1)
+ + Util.toString(x2) + Util.toString(x3));
+ }
+ x2 ^= sKey[OUTPUT_WHITEN];
+ x3 ^= sKey[OUTPUT_WHITEN + 1];
+ x0 ^= sKey[OUTPUT_WHITEN + 2];
+ x1 ^= sKey[OUTPUT_WHITEN + 3];
+ if (Configuration.DEBUG)
+ log.fine("CTw=" + Util.toString(x0) + Util.toString(x1)
+ + Util.toString(x2) + Util.toString(x3));
+ out[outOffset++] = (byte) x2;
+ out[outOffset++] = (byte)(x2 >>> 8);
+ out[outOffset++] = (byte)(x2 >>> 16);
+ out[outOffset++] = (byte)(x2 >>> 24);
+ out[outOffset++] = (byte) x3;
+ out[outOffset++] = (byte)(x3 >>> 8);
+ out[outOffset++] = (byte)(x3 >>> 16);
+ out[outOffset++] = (byte)(x3 >>> 24);
+ out[outOffset++] = (byte) x0;
+ out[outOffset++] = (byte)(x0 >>> 8);
+ out[outOffset++] = (byte)(x0 >>> 16);
+ out[outOffset++] = (byte)(x0 >>> 24);
+ out[outOffset++] = (byte) x1;
+ out[outOffset++] = (byte)(x1 >>> 8);
+ out[outOffset++] = (byte)(x1 >>> 16);
+ out[outOffset ] = (byte)(x1 >>> 24);
+ if (Configuration.DEBUG)
+ log.fine("CT=" + Util.toString(out, outOffset - 15, 16) + "\n");
+ }
+
+ public void decrypt(byte[] in, int inOffset, byte[] out, int outOffset,
+ Object sessionKey, int bs)
+ {
+ if (bs != DEFAULT_BLOCK_SIZE)
+ throw new IllegalArgumentException();
+ Object[] sk = (Object[]) sessionKey; // extract S-box and session key
+ int[] sBox = (int[]) sk[0];
+ int[] sKey = (int[]) sk[1];
+ if (Configuration.DEBUG)
+ log.fine("CT=" + Util.toString(in, inOffset, bs));
+ int x2 = (in[inOffset++] & 0xFF)
+ | (in[inOffset++] & 0xFF) << 8
+ | (in[inOffset++] & 0xFF) << 16
+ | (in[inOffset++] & 0xFF) << 24;
+ int x3 = (in[inOffset++] & 0xFF)
+ | (in[inOffset++] & 0xFF) << 8
+ | (in[inOffset++] & 0xFF) << 16
+ | (in[inOffset++] & 0xFF) << 24;
+ int x0 = (in[inOffset++] & 0xFF)
+ | (in[inOffset++] & 0xFF) << 8
+ | (in[inOffset++] & 0xFF) << 16
+ | (in[inOffset++] & 0xFF) << 24;
+ int x1 = (in[inOffset++] & 0xFF)
+ | (in[inOffset++] & 0xFF) << 8
+ | (in[inOffset++] & 0xFF) << 16
+ | (in[inOffset++] & 0xFF) << 24;
+ x2 ^= sKey[OUTPUT_WHITEN];
+ x3 ^= sKey[OUTPUT_WHITEN + 1];
+ x0 ^= sKey[OUTPUT_WHITEN + 2];
+ x1 ^= sKey[OUTPUT_WHITEN + 3];
+ if (Configuration.DEBUG)
+ log.fine("CTw=" + Util.toString(x2) + Util.toString(x3)
+ + Util.toString(x0) + Util.toString(x1));
+ int k = ROUND_SUBKEYS + 2 * ROUNDS - 1;
+ int t0, t1;
+ for (int R = 0; R < ROUNDS; R += 2)
+ {
+ t0 = Fe32(sBox, x2, 0);
+ t1 = Fe32(sBox, x3, 3);
+ x1 ^= t0 + 2 * t1 + sKey[k--];
+ x1 = x1 >>> 1 | x1 << 31;
+ x0 = x0 << 1 | x0 >>> 31;
+ x0 ^= t0 + t1 + sKey[k--];
+ if (Configuration.DEBUG)
+ log.fine("PT" + (ROUNDS - R) + "=" + Util.toString(x2)
+ + Util.toString(x3) + Util.toString(x0) + Util.toString(x1));
+ t0 = Fe32(sBox, x0, 0);
+ t1 = Fe32(sBox, x1, 3);
+ x3 ^= t0 + 2 * t1 + sKey[k--];
+ x3 = x3 >>> 1 | x3 << 31;
+ x2 = x2 << 1 | x2 >>> 31;
+ x2 ^= t0 + t1 + sKey[k--];
+ if (Configuration.DEBUG)
+ log.fine("PT" + (ROUNDS - R - 1) + "=" + Util.toString(x2)
+ + Util.toString(x3) + Util.toString(x0) + Util.toString(x1));
+ }
+ x0 ^= sKey[INPUT_WHITEN];
+ x1 ^= sKey[INPUT_WHITEN + 1];
+ x2 ^= sKey[INPUT_WHITEN + 2];
+ x3 ^= sKey[INPUT_WHITEN + 3];
+ if (Configuration.DEBUG)
+ log.fine("PTw=" + Util.toString(x2) + Util.toString(x3)
+ + Util.toString(x0) + Util.toString(x1));
+ out[outOffset++] = (byte) x0;
+ out[outOffset++] = (byte)(x0 >>> 8);
+ out[outOffset++] = (byte)(x0 >>> 16);
+ out[outOffset++] = (byte)(x0 >>> 24);
+ out[outOffset++] = (byte) x1;
+ out[outOffset++] = (byte)(x1 >>> 8);
+ out[outOffset++] = (byte)(x1 >>> 16);
+ out[outOffset++] = (byte)(x1 >>> 24);
+ out[outOffset++] = (byte) x2;
+ out[outOffset++] = (byte)(x2 >>> 8);
+ out[outOffset++] = (byte)(x2 >>> 16);
+ out[outOffset++] = (byte)(x2 >>> 24);
+ out[outOffset++] = (byte) x3;
+ out[outOffset++] = (byte)(x3 >>> 8);
+ out[outOffset++] = (byte)(x3 >>> 16);
+ out[outOffset ] = (byte)(x3 >>> 24);
+ if (Configuration.DEBUG)
+ log.fine("PT=" + Util.toString(out, outOffset - 15, 16) + "\n");
+ }
+
+ public boolean selfTest()
+ {
+ if (valid == null)
+ {
+ boolean result = super.selfTest(); // do symmetry tests
+ if (result)
+ result = testKat(KAT_KEY, KAT_CT);
+ valid = Boolean.valueOf(result);
+ }
+ return valid.booleanValue();
+ }
+}