summaryrefslogtreecommitdiff
path: root/libjava/classpath/gnu/javax/crypto/kwa/TripleDESKeyWrap.java
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /libjava/classpath/gnu/javax/crypto/kwa/TripleDESKeyWrap.java
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'libjava/classpath/gnu/javax/crypto/kwa/TripleDESKeyWrap.java')
-rw-r--r--libjava/classpath/gnu/javax/crypto/kwa/TripleDESKeyWrap.java292
1 files changed, 292 insertions, 0 deletions
diff --git a/libjava/classpath/gnu/javax/crypto/kwa/TripleDESKeyWrap.java b/libjava/classpath/gnu/javax/crypto/kwa/TripleDESKeyWrap.java
new file mode 100644
index 000000000..28b16cf31
--- /dev/null
+++ b/libjava/classpath/gnu/javax/crypto/kwa/TripleDESKeyWrap.java
@@ -0,0 +1,292 @@
+/* TripleDESKeyWrap.java -- FIXME: briefly describe file purpose
+ Copyright (C) 2006 Free Software Foundation, Inc.
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package gnu.javax.crypto.kwa;
+
+import gnu.java.security.Registry;
+import gnu.java.security.hash.Sha160;
+import gnu.javax.crypto.assembly.Assembly;
+import gnu.javax.crypto.assembly.Cascade;
+import gnu.javax.crypto.assembly.Direction;
+import gnu.javax.crypto.assembly.Stage;
+import gnu.javax.crypto.assembly.Transformer;
+import gnu.javax.crypto.assembly.TransformerException;
+import gnu.javax.crypto.cipher.IBlockCipher;
+import gnu.javax.crypto.cipher.TripleDES;
+import gnu.javax.crypto.mode.IMode;
+import gnu.javax.crypto.mode.ModeFactory;
+
+import java.security.InvalidKeyException;
+import java.security.SecureRandom;
+import java.util.Arrays;
+import java.util.HashMap;
+import java.util.Map;
+
+/**
+ * The GNU implementation of the Triple DES Key Wrap Algorithm as described in
+ * [1].
+ * <p>
+ * <b>IMPORTANT</b>: This class is NOT thread safe.
+ * <p>
+ * References:
+ * <ol>
+ * <li><a href="http://www.rfc-archive.org/getrfc.php?rfc=3217">Triple-DES and
+ * RC2 Key Wrapping</a>.</li>
+ * <li><a href="http://www.w3.org/TR/xmlenc-core/">XML Encryption Syntax and
+ * Processing</a>.</li>
+ * </ol>
+ */
+public class TripleDESKeyWrap
+ extends BaseKeyWrappingAlgorithm
+{
+ private static final byte[] DEFAULT_IV = new byte[] {
+ (byte) 0x4A, (byte) 0xDD, (byte) 0xA2, (byte) 0x2C,
+ (byte) 0x79, (byte) 0xE8, (byte) 0x21, (byte) 0x05 };
+
+ private Assembly asm;
+ private HashMap asmAttributes = new HashMap();
+ private HashMap modeAttributes = new HashMap();
+ private Sha160 sha = new Sha160();
+ private SecureRandom rnd;
+
+ public TripleDESKeyWrap()
+ {
+ super(Registry.TRIPLEDES_KWA);
+ }
+
+ protected void engineInit(Map attributes) throws InvalidKeyException
+ {
+ rnd = (SecureRandom) attributes.get(IKeyWrappingAlgorithm.SOURCE_OF_RANDOMNESS);
+ IMode des3CBC = ModeFactory.getInstance(Registry.CBC_MODE, new TripleDES(), 8);
+ Stage des3CBCStage = Stage.getInstance(des3CBC, Direction.FORWARD);
+ Cascade cascade = new Cascade();
+ Object modeNdx = cascade.append(des3CBCStage);
+
+ asmAttributes.put(modeNdx, modeAttributes);
+
+ asm = new Assembly();
+ asm.addPreTransformer(Transformer.getCascadeTransformer(cascade));
+
+ modeAttributes.put(IBlockCipher.KEY_MATERIAL,
+ attributes.get(KEY_ENCRYPTION_KEY_MATERIAL));
+ asmAttributes.put(Assembly.DIRECTION, Direction.FORWARD);
+ }
+
+ protected byte[] engineWrap(byte[] in, int inOffset, int length)
+ {
+ // The same key wrap algorithm is used for both Two-key Triple-DES and
+ // Three-key Triple-DES keys. When a Two-key Triple-DES key is to be
+ // wrapped, a third DES key with the same value as the first DES key is
+ // created. Thus, all wrapped Triple-DES keys include three DES keys.
+ if (length != 16 && length != 24)
+ throw new IllegalArgumentException("Only 2- and 3-key Triple DES keys are alowed");
+
+ byte[] CEK = new byte[24];
+ if (length == 16)
+ {
+ System.arraycopy(in, inOffset, CEK, 0, 16);
+ System.arraycopy(in, inOffset, CEK, 16, 8);
+ }
+ else
+ System.arraycopy(in, inOffset, CEK, 0, 24);
+
+ // TODO: check for the following:
+ // However, a Two-key Triple-DES key MUST NOT be used to wrap a Three-
+ // key Triple-DES key that is comprised of three unique DES keys.
+
+ // 1. Set odd parity for each of the DES key octets comprising the
+ // Three-Key Triple-DES key that is to be wrapped, call the result
+ // CEK.
+ TripleDES.adjustParity(CEK, 0);
+
+ // 2. Compute an 8 octet key checksum value on CEK as described above in
+ // Section 2, call the result ICV.
+ sha.update(CEK);
+ byte[] hash = sha.digest();
+ byte[] ICV = new byte[8];
+ System.arraycopy(hash, 0, ICV, 0, 8);
+
+ // 3. Let CEKICV = CEK || ICV.
+ byte[] CEKICV = new byte[CEK.length + ICV.length];
+ System.arraycopy(CEK, 0, CEKICV, 0, CEK.length);
+ System.arraycopy(ICV, 0, CEKICV, CEK.length, ICV.length);
+
+ // 4. Generate 8 octets at random, call the result IV.
+ byte[] IV = new byte[8];
+ nextRandomBytes(IV);
+
+ // 5. Encrypt CEKICV in CBC mode using the key-encryption key. Use the
+ // random value generated in the previous step as the initialization
+ // vector (IV). Call the ciphertext TEMP1.
+ modeAttributes.put(IMode.IV, IV);
+ asmAttributes.put(Assembly.DIRECTION, Direction.FORWARD);
+ byte[] TEMP1;
+ try
+ {
+ asm.init(asmAttributes);
+ TEMP1 = asm.lastUpdate(CEKICV);
+ }
+ catch (TransformerException x)
+ {
+ throw new RuntimeException(x);
+ }
+
+ // 6. Let TEMP2 = IV || TEMP1.
+ byte[] TEMP2 = new byte[IV.length + TEMP1.length];
+ System.arraycopy(IV, 0, TEMP2, 0, IV.length);
+ System.arraycopy(TEMP1, 0, TEMP2, IV.length, TEMP1.length);
+
+ // 7. Reverse the order of the octets in TEMP2. That is, the most
+ // significant (first) octet is swapped with the least significant
+ // (last) octet, and so on. Call the result TEMP3.
+ byte[] TEMP3 = new byte[TEMP2.length];
+ for (int i = 0, j = TEMP2.length - 1; i < TEMP2.length; i++, j--)
+ TEMP3[j] = TEMP2[i];
+
+ // 8. Encrypt TEMP3 in CBC mode using the key-encryption key. Use an
+ // initialization vector (IV) of 0x4adda22c79e82105. The ciphertext
+ // is 40 octets long.
+ modeAttributes.put(IMode.IV, DEFAULT_IV);
+ asmAttributes.put(Assembly.DIRECTION, Direction.FORWARD);
+ byte[] result;
+ try
+ {
+ asm.init(asmAttributes);
+ result = asm.lastUpdate(TEMP3);
+ }
+ catch (TransformerException x)
+ {
+ throw new RuntimeException(x);
+ }
+ return result;
+ }
+
+ protected byte[] engineUnwrap(byte[] in, int inOffset, int length)
+ throws KeyUnwrappingException
+ {
+ // 1. If the wrapped key is not 40 octets, then error.
+ if (length != 40)
+ throw new IllegalArgumentException("length MUST be 40");
+
+ // 2. Decrypt the wrapped key in CBC mode using the key-encryption key.
+ // Use an initialization vector (IV) of 0x4adda22c79e82105. Call the
+ // output TEMP3.
+ modeAttributes.put(IMode.IV, DEFAULT_IV);
+ asmAttributes.put(Assembly.DIRECTION, Direction.REVERSED);
+ byte[] TEMP3;
+ try
+ {
+ asm.init(asmAttributes);
+ TEMP3 = asm.lastUpdate(in, inOffset, 40);
+ }
+ catch (TransformerException x)
+ {
+ throw new RuntimeException(x);
+ }
+
+ // 3. Reverse the order of the octets in TEMP3. That is, the most
+ // significant (first) octet is swapped with the least significant
+ // (last) octet, and so on. Call the result TEMP2.
+ byte[] TEMP2 = new byte[40];
+ for (int i = 0, j = 40 - 1; i < 40; i++, j--)
+ TEMP2[j] = TEMP3[i];
+
+ // 4. Decompose TEMP2 into IV and TEMP1. IV is the most significant
+ // (first) 8 octets, and TEMP1 is the least significant (last) 32
+ // octets.
+ byte[] IV = new byte[8];
+ byte[] TEMP1 = new byte[32];
+ System.arraycopy(TEMP2, 0, IV, 0, 8);
+ System.arraycopy(TEMP2, 8, TEMP1, 0, 32);
+
+ // 5. Decrypt TEMP1 in CBC mode using the key-encryption key. Use the
+ // IV value from the previous step as the initialization vector.
+ // Call the ciphertext CEKICV.
+ modeAttributes.put(IMode.IV, IV);
+ asmAttributes.put(Assembly.DIRECTION, Direction.REVERSED);
+ byte[] CEKICV;
+ try
+ {
+ asm.init(asmAttributes);
+ CEKICV = asm.lastUpdate(TEMP1, 0, 32);
+ }
+ catch (TransformerException x)
+ {
+ throw new RuntimeException(x);
+ }
+
+ // 6. Decompose CEKICV into CEK and ICV. CEK is the most significant
+ // (first) 24 octets, and ICV is the least significant (last) 8
+ // octets.
+ byte[] CEK = new byte[24];
+ byte[] ICV = new byte[8];
+ System.arraycopy(CEKICV, 0, CEK, 0, 24);
+ System.arraycopy(CEKICV, 24, ICV, 0, 8);
+
+ // 7. Compute an 8 octet key checksum value on CEK as described above in
+ // Section 2. If the computed key checksum value does not match the
+ // decrypted key checksum value, ICV, then error.
+ sha.update(CEK);
+ byte[] hash = sha.digest();
+ byte[] computedICV = new byte[8];
+ System.arraycopy(hash, 0, computedICV, 0, 8);
+ if (! Arrays.equals(ICV, computedICV))
+ throw new KeyUnwrappingException("ICV and computed ICV MUST match");
+
+ // 8. Check for odd parity each of the DES key octets comprising CEK.
+ // If parity is incorrect, then error.
+ if (! TripleDES.isParityAdjusted(CEK, 0))
+ throw new KeyUnwrappingException("Triple-DES key parity MUST be adjusted");
+
+ // 9. Use CEK as a Triple-DES key.
+ return CEK;
+ }
+
+ /**
+ * Fills the designated byte array with random data.
+ *
+ * @param buffer the byte array to fill with random data.
+ */
+ private void nextRandomBytes(byte[] buffer)
+ {
+ if (rnd != null)
+ rnd.nextBytes(buffer);
+ else
+ getDefaultPRNG().nextBytes(buffer);
+ }
+}