summaryrefslogtreecommitdiff
path: root/libjava/classpath/java/lang/StrictMath.java
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /libjava/classpath/java/lang/StrictMath.java
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'libjava/classpath/java/lang/StrictMath.java')
-rw-r--r--libjava/classpath/java/lang/StrictMath.java2575
1 files changed, 2575 insertions, 0 deletions
diff --git a/libjava/classpath/java/lang/StrictMath.java b/libjava/classpath/java/lang/StrictMath.java
new file mode 100644
index 000000000..88f5e5750
--- /dev/null
+++ b/libjava/classpath/java/lang/StrictMath.java
@@ -0,0 +1,2575 @@
+/* java.lang.StrictMath -- common mathematical functions, strict Java
+ Copyright (C) 1998, 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+/*
+ * Some of the algorithms in this class are in the public domain, as part
+ * of fdlibm (freely-distributable math library), available at
+ * http://www.netlib.org/fdlibm/, and carry the following copyright:
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+package java.lang;
+
+import gnu.classpath.Configuration;
+
+import java.util.Random;
+
+/**
+ * Helper class containing useful mathematical functions and constants.
+ * This class mirrors {@link Math}, but is 100% portable, because it uses
+ * no native methods whatsoever. Also, these algorithms are all accurate
+ * to less than 1 ulp, and execute in <code>strictfp</code> mode, while
+ * Math is allowed to vary in its results for some functions. Unfortunately,
+ * this usually means StrictMath has less efficiency and speed, as Math can
+ * use native methods.
+ *
+ * <p>The source of the various algorithms used is the fdlibm library, at:<br>
+ * <a href="http://www.netlib.org/fdlibm/">http://www.netlib.org/fdlibm/</a>
+ *
+ * Note that angles are specified in radians. Conversion functions are
+ * provided for your convenience.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.3
+ */
+public final strictfp class StrictMath
+{
+ /**
+ * StrictMath is non-instantiable.
+ */
+ private StrictMath()
+ {
+ }
+
+ /**
+ * A random number generator, initialized on first use.
+ *
+ * @see #random()
+ */
+ private static Random rand;
+
+ /**
+ * The most accurate approximation to the mathematical constant <em>e</em>:
+ * <code>2.718281828459045</code>. Used in natural log and exp.
+ *
+ * @see #log(double)
+ * @see #exp(double)
+ */
+ public static final double E
+ = 2.718281828459045; // Long bits 0x4005bf0z8b145769L.
+
+ /**
+ * The most accurate approximation to the mathematical constant <em>pi</em>:
+ * <code>3.141592653589793</code>. This is the ratio of a circle's diameter
+ * to its circumference.
+ */
+ public static final double PI
+ = 3.141592653589793; // Long bits 0x400921fb54442d18L.
+
+ /**
+ * Take the absolute value of the argument. (Absolute value means make
+ * it positive.)
+ *
+ * <p>Note that the the largest negative value (Integer.MIN_VALUE) cannot
+ * be made positive. In this case, because of the rules of negation in
+ * a computer, MIN_VALUE is what will be returned.
+ * This is a <em>negative</em> value. You have been warned.
+ *
+ * @param i the number to take the absolute value of
+ * @return the absolute value
+ * @see Integer#MIN_VALUE
+ */
+ public static int abs(int i)
+ {
+ return (i < 0) ? -i : i;
+ }
+
+ /**
+ * Take the absolute value of the argument. (Absolute value means make
+ * it positive.)
+ *
+ * <p>Note that the the largest negative value (Long.MIN_VALUE) cannot
+ * be made positive. In this case, because of the rules of negation in
+ * a computer, MIN_VALUE is what will be returned.
+ * This is a <em>negative</em> value. You have been warned.
+ *
+ * @param l the number to take the absolute value of
+ * @return the absolute value
+ * @see Long#MIN_VALUE
+ */
+ public static long abs(long l)
+ {
+ return (l < 0) ? -l : l;
+ }
+
+ /**
+ * Take the absolute value of the argument. (Absolute value means make
+ * it positive.)
+ *
+ * @param f the number to take the absolute value of
+ * @return the absolute value
+ */
+ public static float abs(float f)
+ {
+ return (f <= 0) ? 0 - f : f;
+ }
+
+ /**
+ * Take the absolute value of the argument. (Absolute value means make
+ * it positive.)
+ *
+ * @param d the number to take the absolute value of
+ * @return the absolute value
+ */
+ public static double abs(double d)
+ {
+ return (d <= 0) ? 0 - d : d;
+ }
+
+ /**
+ * Return whichever argument is smaller.
+ *
+ * @param a the first number
+ * @param b a second number
+ * @return the smaller of the two numbers
+ */
+ public static int min(int a, int b)
+ {
+ return (a < b) ? a : b;
+ }
+
+ /**
+ * Return whichever argument is smaller.
+ *
+ * @param a the first number
+ * @param b a second number
+ * @return the smaller of the two numbers
+ */
+ public static long min(long a, long b)
+ {
+ return (a < b) ? a : b;
+ }
+
+ /**
+ * Return whichever argument is smaller. If either argument is NaN, the
+ * result is NaN, and when comparing 0 and -0, -0 is always smaller.
+ *
+ * @param a the first number
+ * @param b a second number
+ * @return the smaller of the two numbers
+ */
+ public static float min(float a, float b)
+ {
+ // this check for NaN, from JLS 15.21.1, saves a method call
+ if (a != a)
+ return a;
+ // no need to check if b is NaN; < will work correctly
+ // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
+ if (a == 0 && b == 0)
+ return -(-a - b);
+ return (a < b) ? a : b;
+ }
+
+ /**
+ * Return whichever argument is smaller. If either argument is NaN, the
+ * result is NaN, and when comparing 0 and -0, -0 is always smaller.
+ *
+ * @param a the first number
+ * @param b a second number
+ * @return the smaller of the two numbers
+ */
+ public static double min(double a, double b)
+ {
+ // this check for NaN, from JLS 15.21.1, saves a method call
+ if (a != a)
+ return a;
+ // no need to check if b is NaN; < will work correctly
+ // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
+ if (a == 0 && b == 0)
+ return -(-a - b);
+ return (a < b) ? a : b;
+ }
+
+ /**
+ * Return whichever argument is larger.
+ *
+ * @param a the first number
+ * @param b a second number
+ * @return the larger of the two numbers
+ */
+ public static int max(int a, int b)
+ {
+ return (a > b) ? a : b;
+ }
+
+ /**
+ * Return whichever argument is larger.
+ *
+ * @param a the first number
+ * @param b a second number
+ * @return the larger of the two numbers
+ */
+ public static long max(long a, long b)
+ {
+ return (a > b) ? a : b;
+ }
+
+ /**
+ * Return whichever argument is larger. If either argument is NaN, the
+ * result is NaN, and when comparing 0 and -0, 0 is always larger.
+ *
+ * @param a the first number
+ * @param b a second number
+ * @return the larger of the two numbers
+ */
+ public static float max(float a, float b)
+ {
+ // this check for NaN, from JLS 15.21.1, saves a method call
+ if (a != a)
+ return a;
+ // no need to check if b is NaN; > will work correctly
+ // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
+ if (a == 0 && b == 0)
+ return a - -b;
+ return (a > b) ? a : b;
+ }
+
+ /**
+ * Return whichever argument is larger. If either argument is NaN, the
+ * result is NaN, and when comparing 0 and -0, 0 is always larger.
+ *
+ * @param a the first number
+ * @param b a second number
+ * @return the larger of the two numbers
+ */
+ public static double max(double a, double b)
+ {
+ // this check for NaN, from JLS 15.21.1, saves a method call
+ if (a != a)
+ return a;
+ // no need to check if b is NaN; > will work correctly
+ // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
+ if (a == 0 && b == 0)
+ return a - -b;
+ return (a > b) ? a : b;
+ }
+
+ /**
+ * The trigonometric function <em>sin</em>. The sine of NaN or infinity is
+ * NaN, and the sine of 0 retains its sign.
+ *
+ * @param a the angle (in radians)
+ * @return sin(a)
+ */
+ public static double sin(double a)
+ {
+ if (a == Double.NEGATIVE_INFINITY || ! (a < Double.POSITIVE_INFINITY))
+ return Double.NaN;
+
+ if (abs(a) <= PI / 4)
+ return sin(a, 0);
+
+ // Argument reduction needed.
+ double[] y = new double[2];
+ int n = remPiOver2(a, y);
+ switch (n & 3)
+ {
+ case 0:
+ return sin(y[0], y[1]);
+ case 1:
+ return cos(y[0], y[1]);
+ case 2:
+ return -sin(y[0], y[1]);
+ default:
+ return -cos(y[0], y[1]);
+ }
+ }
+
+ /**
+ * The trigonometric function <em>cos</em>. The cosine of NaN or infinity is
+ * NaN.
+ *
+ * @param a the angle (in radians).
+ * @return cos(a).
+ */
+ public static double cos(double a)
+ {
+ if (a == Double.NEGATIVE_INFINITY || ! (a < Double.POSITIVE_INFINITY))
+ return Double.NaN;
+
+ if (abs(a) <= PI / 4)
+ return cos(a, 0);
+
+ // Argument reduction needed.
+ double[] y = new double[2];
+ int n = remPiOver2(a, y);
+ switch (n & 3)
+ {
+ case 0:
+ return cos(y[0], y[1]);
+ case 1:
+ return -sin(y[0], y[1]);
+ case 2:
+ return -cos(y[0], y[1]);
+ default:
+ return sin(y[0], y[1]);
+ }
+ }
+
+ /**
+ * The trigonometric function <em>tan</em>. The tangent of NaN or infinity
+ * is NaN, and the tangent of 0 retains its sign.
+ *
+ * @param a the angle (in radians)
+ * @return tan(a)
+ */
+ public static double tan(double a)
+ {
+ if (a == Double.NEGATIVE_INFINITY || ! (a < Double.POSITIVE_INFINITY))
+ return Double.NaN;
+
+ if (abs(a) <= PI / 4)
+ return tan(a, 0, false);
+
+ // Argument reduction needed.
+ double[] y = new double[2];
+ int n = remPiOver2(a, y);
+ return tan(y[0], y[1], (n & 1) == 1);
+ }
+
+ /**
+ * The trigonometric function <em>arcsin</em>. The range of angles returned
+ * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN or
+ * its absolute value is beyond 1, the result is NaN; and the arcsine of
+ * 0 retains its sign.
+ *
+ * @param x the sin to turn back into an angle
+ * @return arcsin(x)
+ */
+ public static double asin(double x)
+ {
+ boolean negative = x < 0;
+ if (negative)
+ x = -x;
+ if (! (x <= 1))
+ return Double.NaN;
+ if (x == 1)
+ return negative ? -PI / 2 : PI / 2;
+ if (x < 0.5)
+ {
+ if (x < 1 / TWO_27)
+ return negative ? -x : x;
+ double t = x * x;
+ double p = t * (PS0 + t * (PS1 + t * (PS2 + t * (PS3 + t
+ * (PS4 + t * PS5)))));
+ double q = 1 + t * (QS1 + t * (QS2 + t * (QS3 + t * QS4)));
+ return negative ? -x - x * (p / q) : x + x * (p / q);
+ }
+ double w = 1 - x; // 1>|x|>=0.5.
+ double t = w * 0.5;
+ double p = t * (PS0 + t * (PS1 + t * (PS2 + t * (PS3 + t
+ * (PS4 + t * PS5)))));
+ double q = 1 + t * (QS1 + t * (QS2 + t * (QS3 + t * QS4)));
+ double s = sqrt(t);
+ if (x >= 0.975)
+ {
+ w = p / q;
+ t = PI / 2 - (2 * (s + s * w) - PI_L / 2);
+ }
+ else
+ {
+ w = (float) s;
+ double c = (t - w * w) / (s + w);
+ p = 2 * s * (p / q) - (PI_L / 2 - 2 * c);
+ q = PI / 4 - 2 * w;
+ t = PI / 4 - (p - q);
+ }
+ return negative ? -t : t;
+ }
+
+ /**
+ * The trigonometric function <em>arccos</em>. The range of angles returned
+ * is 0 to pi radians (0 to 180 degrees). If the argument is NaN or
+ * its absolute value is beyond 1, the result is NaN.
+ *
+ * @param x the cos to turn back into an angle
+ * @return arccos(x)
+ */
+ public static double acos(double x)
+ {
+ boolean negative = x < 0;
+ if (negative)
+ x = -x;
+ if (! (x <= 1))
+ return Double.NaN;
+ if (x == 1)
+ return negative ? PI : 0;
+ if (x < 0.5)
+ {
+ if (x < 1 / TWO_57)
+ return PI / 2;
+ double z = x * x;
+ double p = z * (PS0 + z * (PS1 + z * (PS2 + z * (PS3 + z
+ * (PS4 + z * PS5)))));
+ double q = 1 + z * (QS1 + z * (QS2 + z * (QS3 + z * QS4)));
+ double r = x - (PI_L / 2 - x * (p / q));
+ return negative ? PI / 2 + r : PI / 2 - r;
+ }
+ if (negative) // x<=-0.5.
+ {
+ double z = (1 + x) * 0.5;
+ double p = z * (PS0 + z * (PS1 + z * (PS2 + z * (PS3 + z
+ * (PS4 + z * PS5)))));
+ double q = 1 + z * (QS1 + z * (QS2 + z * (QS3 + z * QS4)));
+ double s = sqrt(z);
+ double w = p / q * s - PI_L / 2;
+ return PI - 2 * (s + w);
+ }
+ double z = (1 - x) * 0.5; // x>0.5.
+ double s = sqrt(z);
+ double df = (float) s;
+ double c = (z - df * df) / (s + df);
+ double p = z * (PS0 + z * (PS1 + z * (PS2 + z * (PS3 + z
+ * (PS4 + z * PS5)))));
+ double q = 1 + z * (QS1 + z * (QS2 + z * (QS3 + z * QS4)));
+ double w = p / q * s + c;
+ return 2 * (df + w);
+ }
+
+ /**
+ * The trigonometric function <em>arcsin</em>. The range of angles returned
+ * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN, the
+ * result is NaN; and the arctangent of 0 retains its sign.
+ *
+ * @param x the tan to turn back into an angle
+ * @return arcsin(x)
+ * @see #atan2(double, double)
+ */
+ public static double atan(double x)
+ {
+ double lo;
+ double hi;
+ boolean negative = x < 0;
+ if (negative)
+ x = -x;
+ if (x >= TWO_66)
+ return negative ? -PI / 2 : PI / 2;
+ if (! (x >= 0.4375)) // |x|<7/16, or NaN.
+ {
+ if (! (x >= 1 / TWO_29)) // Small, or NaN.
+ return negative ? -x : x;
+ lo = hi = 0;
+ }
+ else if (x < 1.1875)
+ {
+ if (x < 0.6875) // 7/16<=|x|<11/16.
+ {
+ x = (2 * x - 1) / (2 + x);
+ hi = ATAN_0_5H;
+ lo = ATAN_0_5L;
+ }
+ else // 11/16<=|x|<19/16.
+ {
+ x = (x - 1) / (x + 1);
+ hi = PI / 4;
+ lo = PI_L / 4;
+ }
+ }
+ else if (x < 2.4375) // 19/16<=|x|<39/16.
+ {
+ x = (x - 1.5) / (1 + 1.5 * x);
+ hi = ATAN_1_5H;
+ lo = ATAN_1_5L;
+ }
+ else // 39/16<=|x|<2**66.
+ {
+ x = -1 / x;
+ hi = PI / 2;
+ lo = PI_L / 2;
+ }
+
+ // Break sum from i=0 to 10 ATi*z**(i+1) into odd and even poly.
+ double z = x * x;
+ double w = z * z;
+ double s1 = z * (AT0 + w * (AT2 + w * (AT4 + w * (AT6 + w
+ * (AT8 + w * AT10)))));
+ double s2 = w * (AT1 + w * (AT3 + w * (AT5 + w * (AT7 + w * AT9))));
+ if (hi == 0)
+ return negative ? x * (s1 + s2) - x : x - x * (s1 + s2);
+ z = hi - ((x * (s1 + s2) - lo) - x);
+ return negative ? -z : z;
+ }
+
+ /**
+ * A special version of the trigonometric function <em>arctan</em>, for
+ * converting rectangular coordinates <em>(x, y)</em> to polar
+ * <em>(r, theta)</em>. This computes the arctangent of x/y in the range
+ * of -pi to pi radians (-180 to 180 degrees). Special cases:<ul>
+ * <li>If either argument is NaN, the result is NaN.</li>
+ * <li>If the first argument is positive zero and the second argument is
+ * positive, or the first argument is positive and finite and the second
+ * argument is positive infinity, then the result is positive zero.</li>
+ * <li>If the first argument is negative zero and the second argument is
+ * positive, or the first argument is negative and finite and the second
+ * argument is positive infinity, then the result is negative zero.</li>
+ * <li>If the first argument is positive zero and the second argument is
+ * negative, or the first argument is positive and finite and the second
+ * argument is negative infinity, then the result is the double value
+ * closest to pi.</li>
+ * <li>If the first argument is negative zero and the second argument is
+ * negative, or the first argument is negative and finite and the second
+ * argument is negative infinity, then the result is the double value
+ * closest to -pi.</li>
+ * <li>If the first argument is positive and the second argument is
+ * positive zero or negative zero, or the first argument is positive
+ * infinity and the second argument is finite, then the result is the
+ * double value closest to pi/2.</li>
+ * <li>If the first argument is negative and the second argument is
+ * positive zero or negative zero, or the first argument is negative
+ * infinity and the second argument is finite, then the result is the
+ * double value closest to -pi/2.</li>
+ * <li>If both arguments are positive infinity, then the result is the
+ * double value closest to pi/4.</li>
+ * <li>If the first argument is positive infinity and the second argument
+ * is negative infinity, then the result is the double value closest to
+ * 3*pi/4.</li>
+ * <li>If the first argument is negative infinity and the second argument
+ * is positive infinity, then the result is the double value closest to
+ * -pi/4.</li>
+ * <li>If both arguments are negative infinity, then the result is the
+ * double value closest to -3*pi/4.</li>
+ *
+ * </ul><p>This returns theta, the angle of the point. To get r, albeit
+ * slightly inaccurately, use sqrt(x*x+y*y).
+ *
+ * @param y the y position
+ * @param x the x position
+ * @return <em>theta</em> in the conversion of (x, y) to (r, theta)
+ * @see #atan(double)
+ */
+ public static double atan2(double y, double x)
+ {
+ if (x != x || y != y)
+ return Double.NaN;
+ if (x == 1)
+ return atan(y);
+ if (x == Double.POSITIVE_INFINITY)
+ {
+ if (y == Double.POSITIVE_INFINITY)
+ return PI / 4;
+ if (y == Double.NEGATIVE_INFINITY)
+ return -PI / 4;
+ return 0 * y;
+ }
+ if (x == Double.NEGATIVE_INFINITY)
+ {
+ if (y == Double.POSITIVE_INFINITY)
+ return 3 * PI / 4;
+ if (y == Double.NEGATIVE_INFINITY)
+ return -3 * PI / 4;
+ return (1 / (0 * y) == Double.POSITIVE_INFINITY) ? PI : -PI;
+ }
+ if (y == 0)
+ {
+ if (1 / (0 * x) == Double.POSITIVE_INFINITY)
+ return y;
+ return (1 / y == Double.POSITIVE_INFINITY) ? PI : -PI;
+ }
+ if (y == Double.POSITIVE_INFINITY || y == Double.NEGATIVE_INFINITY
+ || x == 0)
+ return y < 0 ? -PI / 2 : PI / 2;
+
+ double z = abs(y / x); // Safe to do y/x.
+ if (z > TWO_60)
+ z = PI / 2 + 0.5 * PI_L;
+ else if (x < 0 && z < 1 / TWO_60)
+ z = 0;
+ else
+ z = atan(z);
+ if (x > 0)
+ return y > 0 ? z : -z;
+ return y > 0 ? PI - (z - PI_L) : z - PI_L - PI;
+ }
+
+ /**
+ * Returns the hyperbolic sine of <code>x</code> which is defined as
+ * (exp(x) - exp(-x)) / 2.
+ *
+ * Special cases:
+ * <ul>
+ * <li>If the argument is NaN, the result is NaN</li>
+ * <li>If the argument is positive infinity, the result is positive
+ * infinity.</li>
+ * <li>If the argument is negative infinity, the result is negative
+ * infinity.</li>
+ * <li>If the argument is zero, the result is zero.</li>
+ * </ul>
+ *
+ * @param x the argument to <em>sinh</em>
+ * @return the hyperbolic sine of <code>x</code>
+ *
+ * @since 1.5
+ */
+ public static double sinh(double x)
+ {
+ // Method :
+ // mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
+ // 1. Replace x by |x| (sinh(-x) = -sinh(x)).
+ // 2.
+ // E + E/(E+1)
+ // 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
+ // 2
+ //
+ // 22 <= x <= lnovft : sinh(x) := exp(x)/2
+ // lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
+ // ln2ovft < x : sinh(x) := +inf (overflow)
+
+ double t, w, h;
+
+ long bits;
+ long h_bits;
+ long l_bits;
+
+ // handle special cases
+ if (x != x)
+ return x;
+ if (x == Double.POSITIVE_INFINITY)
+ return Double.POSITIVE_INFINITY;
+ if (x == Double.NEGATIVE_INFINITY)
+ return Double.NEGATIVE_INFINITY;
+
+ if (x < 0)
+ h = - 0.5;
+ else
+ h = 0.5;
+
+ bits = Double.doubleToLongBits(x);
+ h_bits = getHighDWord(bits) & 0x7fffffffL; // ignore sign
+ l_bits = getLowDWord(bits);
+
+ // |x| in [0, 22], return sign(x) * 0.5 * (E+E/(E+1))
+ if (h_bits < 0x40360000L) // |x| < 22
+ {
+ if (h_bits < 0x3e300000L) // |x| < 2^-28
+ return x; // for tiny arguments return x
+
+ t = expm1(abs(x));
+
+ if (h_bits < 0x3ff00000L)
+ return h * (2.0 * t - t * t / (t + 1.0));
+
+ return h * (t + t / (t + 1.0));
+ }
+
+ // |x| in [22, log(Double.MAX_VALUE)], return 0.5 * exp(|x|)
+ if (h_bits < 0x40862e42L)
+ return h * exp(abs(x));
+
+ // |x| in [log(Double.MAX_VALUE), overflowthreshold]
+ if ((h_bits < 0x408633ceL)
+ || ((h_bits == 0x408633ceL) && (l_bits <= 0x8fb9f87dL)))
+ {
+ w = exp(0.5 * abs(x));
+ t = h * w;
+
+ return t * w;
+ }
+
+ // |x| > overflowthershold
+ return h * Double.POSITIVE_INFINITY;
+ }
+
+ /**
+ * Returns the hyperbolic cosine of <code>x</code>, which is defined as
+ * (exp(x) + exp(-x)) / 2.
+ *
+ * Special cases:
+ * <ul>
+ * <li>If the argument is NaN, the result is NaN</li>
+ * <li>If the argument is positive infinity, the result is positive
+ * infinity.</li>
+ * <li>If the argument is negative infinity, the result is positive
+ * infinity.</li>
+ * <li>If the argument is zero, the result is one.</li>
+ * </ul>
+ *
+ * @param x the argument to <em>cosh</em>
+ * @return the hyperbolic cosine of <code>x</code>
+ *
+ * @since 1.5
+ */
+ public static double cosh(double x)
+ {
+ // Method :
+ // mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
+ // 1. Replace x by |x| (cosh(x) = cosh(-x)).
+ // 2.
+ // [ exp(x) - 1 ]^2
+ // 0 <= x <= ln2/2 : cosh(x) := 1 + -------------------
+ // 2*exp(x)
+ //
+ // exp(x) + 1/exp(x)
+ // ln2/2 <= x <= 22 : cosh(x) := ------------------
+ // 2
+ // 22 <= x <= lnovft : cosh(x) := exp(x)/2
+ // lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2)
+ // ln2ovft < x : cosh(x) := +inf (overflow)
+
+ double t, w;
+ long bits;
+ long hx;
+ long lx;
+
+ // handle special cases
+ if (x != x)
+ return x;
+ if (x == Double.POSITIVE_INFINITY)
+ return Double.POSITIVE_INFINITY;
+ if (x == Double.NEGATIVE_INFINITY)
+ return Double.POSITIVE_INFINITY;
+
+ bits = Double.doubleToLongBits(x);
+ hx = getHighDWord(bits) & 0x7fffffffL; // ignore sign
+ lx = getLowDWord(bits);
+
+ // |x| in [0, 0.5 * ln(2)], return 1 + expm1(|x|)^2 / (2 * exp(|x|))
+ if (hx < 0x3fd62e43L)
+ {
+ t = expm1(abs(x));
+ w = 1.0 + t;
+
+ // for tiny arguments return 1.
+ if (hx < 0x3c800000L)
+ return w;
+
+ return 1.0 + (t * t) / (w + w);
+ }
+
+ // |x| in [0.5 * ln(2), 22], return exp(|x|)/2 + 1 / (2 * exp(|x|))
+ if (hx < 0x40360000L)
+ {
+ t = exp(abs(x));
+
+ return 0.5 * t + 0.5 / t;
+ }
+
+ // |x| in [22, log(Double.MAX_VALUE)], return 0.5 * exp(|x|)
+ if (hx < 0x40862e42L)
+ return 0.5 * exp(abs(x));
+
+ // |x| in [log(Double.MAX_VALUE), overflowthreshold],
+ // return exp(x/2)/2 * exp(x/2)
+ if ((hx < 0x408633ceL)
+ || ((hx == 0x408633ceL) && (lx <= 0x8fb9f87dL)))
+ {
+ w = exp(0.5 * abs(x));
+ t = 0.5 * w;
+
+ return t * w;
+ }
+
+ // |x| > overflowthreshold
+ return Double.POSITIVE_INFINITY;
+ }
+
+ /**
+ * Returns the hyperbolic tangent of <code>x</code>, which is defined as
+ * (exp(x) - exp(-x)) / (exp(x) + exp(-x)), i.e. sinh(x) / cosh(x).
+ *
+ Special cases:
+ * <ul>
+ * <li>If the argument is NaN, the result is NaN</li>
+ * <li>If the argument is positive infinity, the result is 1.</li>
+ * <li>If the argument is negative infinity, the result is -1.</li>
+ * <li>If the argument is zero, the result is zero.</li>
+ * </ul>
+ *
+ * @param x the argument to <em>tanh</em>
+ * @return the hyperbolic tagent of <code>x</code>
+ *
+ * @since 1.5
+ */
+ public static double tanh(double x)
+ {
+ // Method :
+ // 0. tanh(x) is defined to be (exp(x) - exp(-x)) / (exp(x) + exp(-x))
+ // 1. reduce x to non-negative by tanh(-x) = -tanh(x).
+ // 2. 0 <= x <= 2^-55 : tanh(x) := x * (1.0 + x)
+ // -t
+ // 2^-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x)
+ // t + 2
+ // 2
+ // 1 <= x <= 22.0 : tanh(x) := 1 - ----- ; t=expm1(2x)
+ // t + 2
+ // 22.0 < x <= INF : tanh(x) := 1.
+
+ double t, z;
+
+ long bits;
+ long h_bits;
+
+ // handle special cases
+ if (x != x)
+ return x;
+ if (x == Double.POSITIVE_INFINITY)
+ return 1.0;
+ if (x == Double.NEGATIVE_INFINITY)
+ return -1.0;
+
+ bits = Double.doubleToLongBits(x);
+ h_bits = getHighDWord(bits) & 0x7fffffffL; // ingnore sign
+
+ if (h_bits < 0x40360000L) // |x| < 22
+ {
+ if (h_bits < 0x3c800000L) // |x| < 2^-55
+ return x * (1.0 + x);
+
+ if (h_bits >= 0x3ff00000L) // |x| >= 1
+ {
+ t = expm1(2.0 * abs(x));
+ z = 1.0 - 2.0 / (t + 2.0);
+ }
+ else // |x| < 1
+ {
+ t = expm1(-2.0 * abs(x));
+ z = -t / (t + 2.0);
+ }
+ }
+ else // |x| >= 22
+ z = 1.0;
+
+ return (x >= 0) ? z : -z;
+ }
+
+ /**
+ * Returns the lower two words of a long. This is intended to be
+ * used like this:
+ * <code>getLowDWord(Double.doubleToLongBits(x))</code>.
+ */
+ private static long getLowDWord(long x)
+ {
+ return x & 0x00000000ffffffffL;
+ }
+
+ /**
+ * Returns the higher two words of a long. This is intended to be
+ * used like this:
+ * <code>getHighDWord(Double.doubleToLongBits(x))</code>.
+ */
+ private static long getHighDWord(long x)
+ {
+ return (x & 0xffffffff00000000L) >> 32;
+ }
+
+ /**
+ * Returns a double with the IEEE754 bit pattern given in the lower
+ * and higher two words <code>lowDWord</code> and <code>highDWord</code>.
+ */
+ private static double buildDouble(long lowDWord, long highDWord)
+ {
+ return Double.longBitsToDouble(((highDWord & 0xffffffffL) << 32)
+ | (lowDWord & 0xffffffffL));
+ }
+
+ /**
+ * Returns the cube root of <code>x</code>. The sign of the cube root
+ * is equal to the sign of <code>x</code>.
+ *
+ * Special cases:
+ * <ul>
+ * <li>If the argument is NaN, the result is NaN</li>
+ * <li>If the argument is positive infinity, the result is positive
+ * infinity.</li>
+ * <li>If the argument is negative infinity, the result is negative
+ * infinity.</li>
+ * <li>If the argument is zero, the result is zero with the same
+ * sign as the argument.</li>
+ * </ul>
+ *
+ * @param x the number to take the cube root of
+ * @return the cube root of <code>x</code>
+ * @see #sqrt(double)
+ *
+ * @since 1.5
+ */
+ public static double cbrt(double x)
+ {
+ boolean negative = (x < 0);
+ double r;
+ double s;
+ double t;
+ double w;
+
+ long bits;
+ long l;
+ long h;
+
+ // handle the special cases
+ if (x != x)
+ return x;
+ if (x == Double.POSITIVE_INFINITY)
+ return Double.POSITIVE_INFINITY;
+ if (x == Double.NEGATIVE_INFINITY)
+ return Double.NEGATIVE_INFINITY;
+ if (x == 0)
+ return x;
+
+ x = abs(x);
+ bits = Double.doubleToLongBits(x);
+
+ if (bits < 0x0010000000000000L) // subnormal number
+ {
+ t = TWO_54;
+ t *= x;
+
+ // __HI(t)=__HI(t)/3+B2;
+ bits = Double.doubleToLongBits(t);
+ h = getHighDWord(bits);
+ l = getLowDWord(bits);
+
+ h = h / 3 + CBRT_B2;
+
+ t = buildDouble(l, h);
+ }
+ else
+ {
+ // __HI(t)=__HI(x)/3+B1;
+ h = getHighDWord(bits);
+ l = 0;
+
+ h = h / 3 + CBRT_B1;
+ t = buildDouble(l, h);
+ }
+
+ // new cbrt to 23 bits
+ r = t * t / x;
+ s = CBRT_C + r * t;
+ t *= CBRT_G + CBRT_F / (s + CBRT_E + CBRT_D / s);
+
+ // chopped to 20 bits and make it larger than cbrt(x)
+ bits = Double.doubleToLongBits(t);
+ h = getHighDWord(bits);
+
+ // __LO(t)=0;
+ // __HI(t)+=0x00000001;
+ l = 0;
+ h += 1;
+ t = buildDouble(l, h);
+
+ // one step newton iteration to 53 bits with error less than 0.667 ulps
+ s = t * t; // t * t is exact
+ r = x / s;
+ w = t + t;
+ r = (r - t) / (w + r); // r - t is exact
+ t = t + t * r;
+
+ return negative ? -t : t;
+ }
+
+ /**
+ * Take <em>e</em><sup>a</sup>. The opposite of <code>log()</code>. If the
+ * argument is NaN, the result is NaN; if the argument is positive infinity,
+ * the result is positive infinity; and if the argument is negative
+ * infinity, the result is positive zero.
+ *
+ * @param x the number to raise to the power
+ * @return the number raised to the power of <em>e</em>
+ * @see #log(double)
+ * @see #pow(double, double)
+ */
+ public static double exp(double x)
+ {
+ if (x != x)
+ return x;
+ if (x > EXP_LIMIT_H)
+ return Double.POSITIVE_INFINITY;
+ if (x < EXP_LIMIT_L)
+ return 0;
+
+ // Argument reduction.
+ double hi;
+ double lo;
+ int k;
+ double t = abs(x);
+ if (t > 0.5 * LN2)
+ {
+ if (t < 1.5 * LN2)
+ {
+ hi = t - LN2_H;
+ lo = LN2_L;
+ k = 1;
+ }
+ else
+ {
+ k = (int) (INV_LN2 * t + 0.5);
+ hi = t - k * LN2_H;
+ lo = k * LN2_L;
+ }
+ if (x < 0)
+ {
+ hi = -hi;
+ lo = -lo;
+ k = -k;
+ }
+ x = hi - lo;
+ }
+ else if (t < 1 / TWO_28)
+ return 1;
+ else
+ lo = hi = k = 0;
+
+ // Now x is in primary range.
+ t = x * x;
+ double c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
+ if (k == 0)
+ return 1 - (x * c / (c - 2) - x);
+ double y = 1 - (lo - x * c / (2 - c) - hi);
+ return scale(y, k);
+ }
+
+ /**
+ * Returns <em>e</em><sup>x</sup> - 1.
+ * Special cases:
+ * <ul>
+ * <li>If the argument is NaN, the result is NaN.</li>
+ * <li>If the argument is positive infinity, the result is positive
+ * infinity</li>
+ * <li>If the argument is negative infinity, the result is -1.</li>
+ * <li>If the argument is zero, the result is zero.</li>
+ * </ul>
+ *
+ * @param x the argument to <em>e</em><sup>x</sup> - 1.
+ * @return <em>e</em> raised to the power <code>x</code> minus one.
+ * @see #exp(double)
+ */
+ public static double expm1(double x)
+ {
+ // Method
+ // 1. Argument reduction:
+ // Given x, find r and integer k such that
+ //
+ // x = k * ln(2) + r, |r| <= 0.5 * ln(2)
+ //
+ // Here a correction term c will be computed to compensate
+ // the error in r when rounded to a floating-point number.
+ //
+ // 2. Approximating expm1(r) by a special rational function on
+ // the interval [0, 0.5 * ln(2)]:
+ // Since
+ // r*(exp(r)+1)/(exp(r)-1) = 2 + r^2/6 - r^4/360 + ...
+ // we define R1(r*r) by
+ // r*(exp(r)+1)/(exp(r)-1) = 2 + r^2/6 * R1(r*r)
+ // That is,
+ // R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
+ // = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
+ // = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
+ // We use a special Remes algorithm on [0, 0.347] to generate
+ // a polynomial of degree 5 in r*r to approximate R1. The
+ // maximum error of this polynomial approximation is bounded
+ // by 2**-61. In other words,
+ // R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
+ // where Q1 = -1.6666666666666567384E-2,
+ // Q2 = 3.9682539681370365873E-4,
+ // Q3 = -9.9206344733435987357E-6,
+ // Q4 = 2.5051361420808517002E-7,
+ // Q5 = -6.2843505682382617102E-9;
+ // (where z=r*r, and Q1 to Q5 are called EXPM1_Qx in the source)
+ // with error bounded by
+ // | 5 | -61
+ // | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
+ // | |
+ //
+ // expm1(r) = exp(r)-1 is then computed by the following
+ // specific way which minimize the accumulation rounding error:
+ // 2 3
+ // r r [ 3 - (R1 + R1*r/2) ]
+ // expm1(r) = r + --- + --- * [--------------------]
+ // 2 2 [ 6 - r*(3 - R1*r/2) ]
+ //
+ // To compensate the error in the argument reduction, we use
+ // expm1(r+c) = expm1(r) + c + expm1(r)*c
+ // ~ expm1(r) + c + r*c
+ // Thus c+r*c will be added in as the correction terms for
+ // expm1(r+c). Now rearrange the term to avoid optimization
+ // screw up:
+ // ( 2 2 )
+ // ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
+ // expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
+ // ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
+ // ( )
+ //
+ // = r - E
+ // 3. Scale back to obtain expm1(x):
+ // From step 1, we have
+ // expm1(x) = either 2^k*[expm1(r)+1] - 1
+ // = or 2^k*[expm1(r) + (1-2^-k)]
+ // 4. Implementation notes:
+ // (A). To save one multiplication, we scale the coefficient Qi
+ // to Qi*2^i, and replace z by (x^2)/2.
+ // (B). To achieve maximum accuracy, we compute expm1(x) by
+ // (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
+ // (ii) if k=0, return r-E
+ // (iii) if k=-1, return 0.5*(r-E)-0.5
+ // (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
+ // else return 1.0+2.0*(r-E);
+ // (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
+ // (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
+ // (vii) return 2^k(1-((E+2^-k)-r))
+
+ boolean negative = (x < 0);
+ double y, hi, lo, c, t, e, hxs, hfx, r1;
+ int k;
+
+ long bits;
+ long h_bits;
+ long l_bits;
+
+ c = 0.0;
+ y = abs(x);
+
+ bits = Double.doubleToLongBits(y);
+ h_bits = getHighDWord(bits);
+ l_bits = getLowDWord(bits);
+
+ // handle special cases and large arguments
+ if (h_bits >= 0x4043687aL) // if |x| >= 56 * ln(2)
+ {
+ if (h_bits >= 0x40862e42L) // if |x| >= EXP_LIMIT_H
+ {
+ if (h_bits >= 0x7ff00000L)
+ {
+ if (((h_bits & 0x000fffffL) | (l_bits & 0xffffffffL)) != 0)
+ return x; // exp(NaN) = NaN
+ else
+ return negative ? -1.0 : x; // exp({+-inf}) = {+inf, -1}
+ }
+
+ if (x > EXP_LIMIT_H)
+ return Double.POSITIVE_INFINITY; // overflow
+ }
+
+ if (negative) // x <= -56 * ln(2)
+ return -1.0;
+ }
+
+ // argument reduction
+ if (h_bits > 0x3fd62e42L) // |x| > 0.5 * ln(2)
+ {
+ if (h_bits < 0x3ff0a2b2L) // |x| < 1.5 * ln(2)
+ {
+ if (negative)
+ {
+ hi = x + LN2_H;
+ lo = -LN2_L;
+ k = -1;
+ }
+ else
+ {
+ hi = x - LN2_H;
+ lo = LN2_L;
+ k = 1;
+ }
+ }
+ else
+ {
+ k = (int) (INV_LN2 * x + (negative ? - 0.5 : 0.5));
+ t = k;
+ hi = x - t * LN2_H;
+ lo = t * LN2_L;
+ }
+
+ x = hi - lo;
+ c = (hi - x) - lo;
+
+ }
+ else if (h_bits < 0x3c900000L) // |x| < 2^-54 return x
+ return x;
+ else
+ k = 0;
+
+ // x is now in primary range
+ hfx = 0.5 * x;
+ hxs = x * hfx;
+ r1 = 1.0 + hxs * (EXPM1_Q1
+ + hxs * (EXPM1_Q2
+ + hxs * (EXPM1_Q3
+ + hxs * (EXPM1_Q4
+ + hxs * EXPM1_Q5))));
+ t = 3.0 - r1 * hfx;
+ e = hxs * ((r1 - t) / (6.0 - x * t));
+
+ if (k == 0)
+ {
+ return x - (x * e - hxs); // c == 0
+ }
+ else
+ {
+ e = x * (e - c) - c;
+ e -= hxs;
+
+ if (k == -1)
+ return 0.5 * (x - e) - 0.5;
+
+ if (k == 1)
+ {
+ if (x < - 0.25)
+ return -2.0 * (e - (x + 0.5));
+ else
+ return 1.0 + 2.0 * (x - e);
+ }
+
+ if (k <= -2 || k > 56) // sufficient to return exp(x) - 1
+ {
+ y = 1.0 - (e - x);
+
+ bits = Double.doubleToLongBits(y);
+ h_bits = getHighDWord(bits);
+ l_bits = getLowDWord(bits);
+
+ h_bits += (k << 20); // add k to y's exponent
+
+ y = buildDouble(l_bits, h_bits);
+
+ return y - 1.0;
+ }
+
+ t = 1.0;
+ if (k < 20)
+ {
+ bits = Double.doubleToLongBits(t);
+ h_bits = 0x3ff00000L - (0x00200000L >> k);
+ l_bits = getLowDWord(bits);
+
+ t = buildDouble(l_bits, h_bits); // t = 1 - 2^(-k)
+ y = t - (e - x);
+
+ bits = Double.doubleToLongBits(y);
+ h_bits = getHighDWord(bits);
+ l_bits = getLowDWord(bits);
+
+ h_bits += (k << 20); // add k to y's exponent
+
+ y = buildDouble(l_bits, h_bits);
+ }
+ else
+ {
+ bits = Double.doubleToLongBits(t);
+ h_bits = (0x000003ffL - k) << 20;
+ l_bits = getLowDWord(bits);
+
+ t = buildDouble(l_bits, h_bits); // t = 2^(-k)
+
+ y = x - (e + t);
+ y += 1.0;
+
+ bits = Double.doubleToLongBits(y);
+ h_bits = getHighDWord(bits);
+ l_bits = getLowDWord(bits);
+
+ h_bits += (k << 20); // add k to y's exponent
+
+ y = buildDouble(l_bits, h_bits);
+ }
+ }
+
+ return y;
+ }
+
+ /**
+ * Take ln(a) (the natural log). The opposite of <code>exp()</code>. If the
+ * argument is NaN or negative, the result is NaN; if the argument is
+ * positive infinity, the result is positive infinity; and if the argument
+ * is either zero, the result is negative infinity.
+ *
+ * <p>Note that the way to get log<sub>b</sub>(a) is to do this:
+ * <code>ln(a) / ln(b)</code>.
+ *
+ * @param x the number to take the natural log of
+ * @return the natural log of <code>a</code>
+ * @see #exp(double)
+ */
+ public static double log(double x)
+ {
+ if (x == 0)
+ return Double.NEGATIVE_INFINITY;
+ if (x < 0)
+ return Double.NaN;
+ if (! (x < Double.POSITIVE_INFINITY))
+ return x;
+
+ // Normalize x.
+ long bits = Double.doubleToLongBits(x);
+ int exp = (int) (bits >> 52);
+ if (exp == 0) // Subnormal x.
+ {
+ x *= TWO_54;
+ bits = Double.doubleToLongBits(x);
+ exp = (int) (bits >> 52) - 54;
+ }
+ exp -= 1023; // Unbias exponent.
+ bits = (bits & 0x000fffffffffffffL) | 0x3ff0000000000000L;
+ x = Double.longBitsToDouble(bits);
+ if (x >= SQRT_2)
+ {
+ x *= 0.5;
+ exp++;
+ }
+ x--;
+ if (abs(x) < 1 / TWO_20)
+ {
+ if (x == 0)
+ return exp * LN2_H + exp * LN2_L;
+ double r = x * x * (0.5 - 1 / 3.0 * x);
+ if (exp == 0)
+ return x - r;
+ return exp * LN2_H - ((r - exp * LN2_L) - x);
+ }
+ double s = x / (2 + x);
+ double z = s * s;
+ double w = z * z;
+ double t1 = w * (LG2 + w * (LG4 + w * LG6));
+ double t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
+ double r = t2 + t1;
+ if (bits >= 0x3ff6174a00000000L && bits < 0x3ff6b85200000000L)
+ {
+ double h = 0.5 * x * x; // Need more accuracy for x near sqrt(2).
+ if (exp == 0)
+ return x - (h - s * (h + r));
+ return exp * LN2_H - ((h - (s * (h + r) + exp * LN2_L)) - x);
+ }
+ if (exp == 0)
+ return x - s * (x - r);
+ return exp * LN2_H - ((s * (x - r) - exp * LN2_L) - x);
+ }
+
+ /**
+ * Take a square root. If the argument is NaN or negative, the result is
+ * NaN; if the argument is positive infinity, the result is positive
+ * infinity; and if the result is either zero, the result is the same.
+ *
+ * <p>For other roots, use pow(x, 1/rootNumber).
+ *
+ * @param x the numeric argument
+ * @return the square root of the argument
+ * @see #pow(double, double)
+ */
+ public static double sqrt(double x)
+ {
+ if (x < 0)
+ return Double.NaN;
+ if (x == 0 || ! (x < Double.POSITIVE_INFINITY))
+ return x;
+
+ // Normalize x.
+ long bits = Double.doubleToLongBits(x);
+ int exp = (int) (bits >> 52);
+ if (exp == 0) // Subnormal x.
+ {
+ x *= TWO_54;
+ bits = Double.doubleToLongBits(x);
+ exp = (int) (bits >> 52) - 54;
+ }
+ exp -= 1023; // Unbias exponent.
+ bits = (bits & 0x000fffffffffffffL) | 0x0010000000000000L;
+ if ((exp & 1) == 1) // Odd exp, double x to make it even.
+ bits <<= 1;
+ exp >>= 1;
+
+ // Generate sqrt(x) bit by bit.
+ bits <<= 1;
+ long q = 0;
+ long s = 0;
+ long r = 0x0020000000000000L; // Move r right to left.
+ while (r != 0)
+ {
+ long t = s + r;
+ if (t <= bits)
+ {
+ s = t + r;
+ bits -= t;
+ q += r;
+ }
+ bits <<= 1;
+ r >>= 1;
+ }
+
+ // Use floating add to round correctly.
+ if (bits != 0)
+ q += q & 1;
+ return Double.longBitsToDouble((q >> 1) + ((exp + 1022L) << 52));
+ }
+
+ /**
+ * Raise a number to a power. Special cases:<ul>
+ * <li>If the second argument is positive or negative zero, then the result
+ * is 1.0.</li>
+ * <li>If the second argument is 1.0, then the result is the same as the
+ * first argument.</li>
+ * <li>If the second argument is NaN, then the result is NaN.</li>
+ * <li>If the first argument is NaN and the second argument is nonzero,
+ * then the result is NaN.</li>
+ * <li>If the absolute value of the first argument is greater than 1 and
+ * the second argument is positive infinity, or the absolute value of the
+ * first argument is less than 1 and the second argument is negative
+ * infinity, then the result is positive infinity.</li>
+ * <li>If the absolute value of the first argument is greater than 1 and
+ * the second argument is negative infinity, or the absolute value of the
+ * first argument is less than 1 and the second argument is positive
+ * infinity, then the result is positive zero.</li>
+ * <li>If the absolute value of the first argument equals 1 and the second
+ * argument is infinite, then the result is NaN.</li>
+ * <li>If the first argument is positive zero and the second argument is
+ * greater than zero, or the first argument is positive infinity and the
+ * second argument is less than zero, then the result is positive zero.</li>
+ * <li>If the first argument is positive zero and the second argument is
+ * less than zero, or the first argument is positive infinity and the
+ * second argument is greater than zero, then the result is positive
+ * infinity.</li>
+ * <li>If the first argument is negative zero and the second argument is
+ * greater than zero but not a finite odd integer, or the first argument is
+ * negative infinity and the second argument is less than zero but not a
+ * finite odd integer, then the result is positive zero.</li>
+ * <li>If the first argument is negative zero and the second argument is a
+ * positive finite odd integer, or the first argument is negative infinity
+ * and the second argument is a negative finite odd integer, then the result
+ * is negative zero.</li>
+ * <li>If the first argument is negative zero and the second argument is
+ * less than zero but not a finite odd integer, or the first argument is
+ * negative infinity and the second argument is greater than zero but not a
+ * finite odd integer, then the result is positive infinity.</li>
+ * <li>If the first argument is negative zero and the second argument is a
+ * negative finite odd integer, or the first argument is negative infinity
+ * and the second argument is a positive finite odd integer, then the result
+ * is negative infinity.</li>
+ * <li>If the first argument is less than zero and the second argument is a
+ * finite even integer, then the result is equal to the result of raising
+ * the absolute value of the first argument to the power of the second
+ * argument.</li>
+ * <li>If the first argument is less than zero and the second argument is a
+ * finite odd integer, then the result is equal to the negative of the
+ * result of raising the absolute value of the first argument to the power
+ * of the second argument.</li>
+ * <li>If the first argument is finite and less than zero and the second
+ * argument is finite and not an integer, then the result is NaN.</li>
+ * <li>If both arguments are integers, then the result is exactly equal to
+ * the mathematical result of raising the first argument to the power of
+ * the second argument if that result can in fact be represented exactly as
+ * a double value.</li>
+ *
+ * </ul><p>(In the foregoing descriptions, a floating-point value is
+ * considered to be an integer if and only if it is a fixed point of the
+ * method {@link #ceil(double)} or, equivalently, a fixed point of the
+ * method {@link #floor(double)}. A value is a fixed point of a one-argument
+ * method if and only if the result of applying the method to the value is
+ * equal to the value.)
+ *
+ * @param x the number to raise
+ * @param y the power to raise it to
+ * @return x<sup>y</sup>
+ */
+ public static double pow(double x, double y)
+ {
+ // Special cases first.
+ if (y == 0)
+ return 1;
+ if (y == 1)
+ return x;
+ if (y == -1)
+ return 1 / x;
+ if (x != x || y != y)
+ return Double.NaN;
+
+ // When x < 0, yisint tells if y is not an integer (0), even(1),
+ // or odd (2).
+ int yisint = 0;
+ if (x < 0 && floor(y) == y)
+ yisint = (y % 2 == 0) ? 2 : 1;
+ double ax = abs(x);
+ double ay = abs(y);
+
+ // More special cases, of y.
+ if (ay == Double.POSITIVE_INFINITY)
+ {
+ if (ax == 1)
+ return Double.NaN;
+ if (ax > 1)
+ return y > 0 ? y : 0;
+ return y < 0 ? -y : 0;
+ }
+ if (y == 2)
+ return x * x;
+ if (y == 0.5)
+ return sqrt(x);
+
+ // More special cases, of x.
+ if (x == 0 || ax == Double.POSITIVE_INFINITY || ax == 1)
+ {
+ if (y < 0)
+ ax = 1 / ax;
+ if (x < 0)
+ {
+ if (x == -1 && yisint == 0)
+ ax = Double.NaN;
+ else if (yisint == 1)
+ ax = -ax;
+ }
+ return ax;
+ }
+ if (x < 0 && yisint == 0)
+ return Double.NaN;
+
+ // Now we can start!
+ double t;
+ double t1;
+ double t2;
+ double u;
+ double v;
+ double w;
+ if (ay > TWO_31)
+ {
+ if (ay > TWO_64) // Automatic over/underflow.
+ return ((ax < 1) ? y < 0 : y > 0) ? Double.POSITIVE_INFINITY : 0;
+ // Over/underflow if x is not close to one.
+ if (ax < 0.9999995231628418)
+ return y < 0 ? Double.POSITIVE_INFINITY : 0;
+ if (ax >= 1.0000009536743164)
+ return y > 0 ? Double.POSITIVE_INFINITY : 0;
+ // Now |1-x| is <= 2**-20, sufficient to compute
+ // log(x) by x-x^2/2+x^3/3-x^4/4.
+ t = x - 1;
+ w = t * t * (0.5 - t * (1 / 3.0 - t * 0.25));
+ u = INV_LN2_H * t;
+ v = t * INV_LN2_L - w * INV_LN2;
+ t1 = (float) (u + v);
+ t2 = v - (t1 - u);
+ }
+ else
+ {
+ long bits = Double.doubleToLongBits(ax);
+ int exp = (int) (bits >> 52);
+ if (exp == 0) // Subnormal x.
+ {
+ ax *= TWO_54;
+ bits = Double.doubleToLongBits(ax);
+ exp = (int) (bits >> 52) - 54;
+ }
+ exp -= 1023; // Unbias exponent.
+ ax = Double.longBitsToDouble((bits & 0x000fffffffffffffL)
+ | 0x3ff0000000000000L);
+ boolean k;
+ if (ax < SQRT_1_5) // |x|<sqrt(3/2).
+ k = false;
+ else if (ax < SQRT_3) // |x|<sqrt(3).
+ k = true;
+ else
+ {
+ k = false;
+ ax *= 0.5;
+ exp++;
+ }
+
+ // Compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5).
+ u = ax - (k ? 1.5 : 1);
+ v = 1 / (ax + (k ? 1.5 : 1));
+ double s = u * v;
+ double s_h = (float) s;
+ double t_h = (float) (ax + (k ? 1.5 : 1));
+ double t_l = ax - (t_h - (k ? 1.5 : 1));
+ double s_l = v * ((u - s_h * t_h) - s_h * t_l);
+ // Compute log(ax).
+ double s2 = s * s;
+ double r = s_l * (s_h + s) + s2 * s2
+ * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
+ s2 = s_h * s_h;
+ t_h = (float) (3.0 + s2 + r);
+ t_l = r - (t_h - 3.0 - s2);
+ // u+v = s*(1+...).
+ u = s_h * t_h;
+ v = s_l * t_h + t_l * s;
+ // 2/(3log2)*(s+...).
+ double p_h = (float) (u + v);
+ double p_l = v - (p_h - u);
+ double z_h = CP_H * p_h;
+ double z_l = CP_L * p_h + p_l * CP + (k ? DP_L : 0);
+ // log2(ax) = (s+..)*2/(3*log2) = exp + dp_h + z_h + z_l.
+ t = exp;
+ t1 = (float) (z_h + z_l + (k ? DP_H : 0) + t);
+ t2 = z_l - (t1 - t - (k ? DP_H : 0) - z_h);
+ }
+
+ // Split up y into y1+y2 and compute (y1+y2)*(t1+t2).
+ boolean negative = x < 0 && yisint == 1;
+ double y1 = (float) y;
+ double p_l = (y - y1) * t1 + y * t2;
+ double p_h = y1 * t1;
+ double z = p_l + p_h;
+ if (z >= 1024) // Detect overflow.
+ {
+ if (z > 1024 || p_l + OVT > z - p_h)
+ return negative ? Double.NEGATIVE_INFINITY
+ : Double.POSITIVE_INFINITY;
+ }
+ else if (z <= -1075) // Detect underflow.
+ {
+ if (z < -1075 || p_l <= z - p_h)
+ return negative ? -0.0 : 0;
+ }
+
+ // Compute 2**(p_h+p_l).
+ int n = round((float) z);
+ p_h -= n;
+ t = (float) (p_l + p_h);
+ u = t * LN2_H;
+ v = (p_l - (t - p_h)) * LN2 + t * LN2_L;
+ z = u + v;
+ w = v - (z - u);
+ t = z * z;
+ t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
+ double r = (z * t1) / (t1 - 2) - (w + z * w);
+ z = scale(1 - (r - z), n);
+ return negative ? -z : z;
+ }
+
+ /**
+ * Get the IEEE 754 floating point remainder on two numbers. This is the
+ * value of <code>x - y * <em>n</em></code>, where <em>n</em> is the closest
+ * double to <code>x / y</code> (ties go to the even n); for a zero
+ * remainder, the sign is that of <code>x</code>. If either argument is NaN,
+ * the first argument is infinite, or the second argument is zero, the result
+ * is NaN; if x is finite but y is infinite, the result is x.
+ *
+ * @param x the dividend (the top half)
+ * @param y the divisor (the bottom half)
+ * @return the IEEE 754-defined floating point remainder of x/y
+ * @see #rint(double)
+ */
+ public static double IEEEremainder(double x, double y)
+ {
+ // Purge off exception values.
+ if (x == Double.NEGATIVE_INFINITY || ! (x < Double.POSITIVE_INFINITY)
+ || y == 0 || y != y)
+ return Double.NaN;
+
+ boolean negative = x < 0;
+ x = abs(x);
+ y = abs(y);
+ if (x == y || x == 0)
+ return 0 * x; // Get correct sign.
+
+ // Achieve x < 2y, then take first shot at remainder.
+ if (y < TWO_1023)
+ x %= y + y;
+
+ // Now adjust x to get correct precision.
+ if (y < 4 / TWO_1023)
+ {
+ if (x + x > y)
+ {
+ x -= y;
+ if (x + x >= y)
+ x -= y;
+ }
+ }
+ else
+ {
+ y *= 0.5;
+ if (x > y)
+ {
+ x -= y;
+ if (x >= y)
+ x -= y;
+ }
+ }
+ return negative ? -x : x;
+ }
+
+ /**
+ * Take the nearest integer that is that is greater than or equal to the
+ * argument. If the argument is NaN, infinite, or zero, the result is the
+ * same; if the argument is between -1 and 0, the result is negative zero.
+ * Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
+ *
+ * @param a the value to act upon
+ * @return the nearest integer &gt;= <code>a</code>
+ */
+ public static double ceil(double a)
+ {
+ return -floor(-a);
+ }
+
+ /**
+ * Take the nearest integer that is that is less than or equal to the
+ * argument. If the argument is NaN, infinite, or zero, the result is the
+ * same. Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
+ *
+ * @param a the value to act upon
+ * @return the nearest integer &lt;= <code>a</code>
+ */
+ public static double floor(double a)
+ {
+ double x = abs(a);
+ if (! (x < TWO_52) || (long) a == a)
+ return a; // No fraction bits; includes NaN and infinity.
+ if (x < 1)
+ return a >= 0 ? 0 * a : -1; // Worry about signed zero.
+ return a < 0 ? (long) a - 1.0 : (long) a; // Cast to long truncates.
+ }
+
+ /**
+ * Take the nearest integer to the argument. If it is exactly between
+ * two integers, the even integer is taken. If the argument is NaN,
+ * infinite, or zero, the result is the same.
+ *
+ * @param a the value to act upon
+ * @return the nearest integer to <code>a</code>
+ */
+ public static double rint(double a)
+ {
+ double x = abs(a);
+ if (! (x < TWO_52))
+ return a; // No fraction bits; includes NaN and infinity.
+ if (x <= 0.5)
+ return 0 * a; // Worry about signed zero.
+ if (x % 2 <= 0.5)
+ return (long) a; // Catch round down to even.
+ return (long) (a + (a < 0 ? -0.5 : 0.5)); // Cast to long truncates.
+ }
+
+ /**
+ * Take the nearest integer to the argument. This is equivalent to
+ * <code>(int) Math.floor(f + 0.5f)</code>. If the argument is NaN, the
+ * result is 0; otherwise if the argument is outside the range of int, the
+ * result will be Integer.MIN_VALUE or Integer.MAX_VALUE, as appropriate.
+ *
+ * @param f the argument to round
+ * @return the nearest integer to the argument
+ * @see Integer#MIN_VALUE
+ * @see Integer#MAX_VALUE
+ */
+ public static int round(float f)
+ {
+ return (int) floor(f + 0.5f);
+ }
+
+ /**
+ * Take the nearest long to the argument. This is equivalent to
+ * <code>(long) Math.floor(d + 0.5)</code>. If the argument is NaN, the
+ * result is 0; otherwise if the argument is outside the range of long, the
+ * result will be Long.MIN_VALUE or Long.MAX_VALUE, as appropriate.
+ *
+ * @param d the argument to round
+ * @return the nearest long to the argument
+ * @see Long#MIN_VALUE
+ * @see Long#MAX_VALUE
+ */
+ public static long round(double d)
+ {
+ return (long) floor(d + 0.5);
+ }
+
+ /**
+ * Get a random number. This behaves like Random.nextDouble(), seeded by
+ * System.currentTimeMillis() when first called. In other words, the number
+ * is from a pseudorandom sequence, and lies in the range [+0.0, 1.0).
+ * This random sequence is only used by this method, and is threadsafe,
+ * although you may want your own random number generator if it is shared
+ * among threads.
+ *
+ * @return a random number
+ * @see Random#nextDouble()
+ * @see System#currentTimeMillis()
+ */
+ public static synchronized double random()
+ {
+ if (rand == null)
+ rand = new Random();
+ return rand.nextDouble();
+ }
+
+ /**
+ * Convert from degrees to radians. The formula for this is
+ * radians = degrees * (pi/180); however it is not always exact given the
+ * limitations of floating point numbers.
+ *
+ * @param degrees an angle in degrees
+ * @return the angle in radians
+ */
+ public static double toRadians(double degrees)
+ {
+ return (degrees * PI) / 180;
+ }
+
+ /**
+ * Convert from radians to degrees. The formula for this is
+ * degrees = radians * (180/pi); however it is not always exact given the
+ * limitations of floating point numbers.
+ *
+ * @param rads an angle in radians
+ * @return the angle in degrees
+ */
+ public static double toDegrees(double rads)
+ {
+ return (rads * 180) / PI;
+ }
+
+ /**
+ * Constants for scaling and comparing doubles by powers of 2. The compiler
+ * must automatically inline constructs like (1/TWO_54), so we don't list
+ * negative powers of two here.
+ */
+ private static final double
+ TWO_16 = 0x10000, // Long bits 0x40f0000000000000L.
+ TWO_20 = 0x100000, // Long bits 0x4130000000000000L.
+ TWO_24 = 0x1000000, // Long bits 0x4170000000000000L.
+ TWO_27 = 0x8000000, // Long bits 0x41a0000000000000L.
+ TWO_28 = 0x10000000, // Long bits 0x41b0000000000000L.
+ TWO_29 = 0x20000000, // Long bits 0x41c0000000000000L.
+ TWO_31 = 0x80000000L, // Long bits 0x41e0000000000000L.
+ TWO_49 = 0x2000000000000L, // Long bits 0x4300000000000000L.
+ TWO_52 = 0x10000000000000L, // Long bits 0x4330000000000000L.
+ TWO_54 = 0x40000000000000L, // Long bits 0x4350000000000000L.
+ TWO_57 = 0x200000000000000L, // Long bits 0x4380000000000000L.
+ TWO_60 = 0x1000000000000000L, // Long bits 0x43b0000000000000L.
+ TWO_64 = 1.8446744073709552e19, // Long bits 0x43f0000000000000L.
+ TWO_66 = 7.378697629483821e19, // Long bits 0x4410000000000000L.
+ TWO_1023 = 8.98846567431158e307; // Long bits 0x7fe0000000000000L.
+
+ /**
+ * Super precision for 2/pi in 24-bit chunks, for use in
+ * {@link #remPiOver2(double, double[])}.
+ */
+ private static final int TWO_OVER_PI[] = {
+ 0xa2f983, 0x6e4e44, 0x1529fc, 0x2757d1, 0xf534dd, 0xc0db62,
+ 0x95993c, 0x439041, 0xfe5163, 0xabdebb, 0xc561b7, 0x246e3a,
+ 0x424dd2, 0xe00649, 0x2eea09, 0xd1921c, 0xfe1deb, 0x1cb129,
+ 0xa73ee8, 0x8235f5, 0x2ebb44, 0x84e99c, 0x7026b4, 0x5f7e41,
+ 0x3991d6, 0x398353, 0x39f49c, 0x845f8b, 0xbdf928, 0x3b1ff8,
+ 0x97ffde, 0x05980f, 0xef2f11, 0x8b5a0a, 0x6d1f6d, 0x367ecf,
+ 0x27cb09, 0xb74f46, 0x3f669e, 0x5fea2d, 0x7527ba, 0xc7ebe5,
+ 0xf17b3d, 0x0739f7, 0x8a5292, 0xea6bfb, 0x5fb11f, 0x8d5d08,
+ 0x560330, 0x46fc7b, 0x6babf0, 0xcfbc20, 0x9af436, 0x1da9e3,
+ 0x91615e, 0xe61b08, 0x659985, 0x5f14a0, 0x68408d, 0xffd880,
+ 0x4d7327, 0x310606, 0x1556ca, 0x73a8c9, 0x60e27b, 0xc08c6b,
+ };
+
+ /**
+ * Super precision for pi/2 in 24-bit chunks, for use in
+ * {@link #remPiOver2(double, double[])}.
+ */
+ private static final double PI_OVER_TWO[] = {
+ 1.570796251296997, // Long bits 0x3ff921fb40000000L.
+ 7.549789415861596e-8, // Long bits 0x3e74442d00000000L.
+ 5.390302529957765e-15, // Long bits 0x3cf8469880000000L.
+ 3.282003415807913e-22, // Long bits 0x3b78cc5160000000L.
+ 1.270655753080676e-29, // Long bits 0x39f01b8380000000L.
+ 1.2293330898111133e-36, // Long bits 0x387a252040000000L.
+ 2.7337005381646456e-44, // Long bits 0x36e3822280000000L.
+ 2.1674168387780482e-51, // Long bits 0x3569f31d00000000L.
+ };
+
+ /**
+ * More constants related to pi, used in
+ * {@link #remPiOver2(double, double[])} and elsewhere.
+ */
+ private static final double
+ PI_L = 1.2246467991473532e-16, // Long bits 0x3ca1a62633145c07L.
+ PIO2_1 = 1.5707963267341256, // Long bits 0x3ff921fb54400000L.
+ PIO2_1L = 6.077100506506192e-11, // Long bits 0x3dd0b4611a626331L.
+ PIO2_2 = 6.077100506303966e-11, // Long bits 0x3dd0b4611a600000L.
+ PIO2_2L = 2.0222662487959506e-21, // Long bits 0x3ba3198a2e037073L.
+ PIO2_3 = 2.0222662487111665e-21, // Long bits 0x3ba3198a2e000000L.
+ PIO2_3L = 8.4784276603689e-32; // Long bits 0x397b839a252049c1L.
+
+ /**
+ * Natural log and square root constants, for calculation of
+ * {@link #exp(double)}, {@link #log(double)} and
+ * {@link #pow(double, double)}. CP is 2/(3*ln(2)).
+ */
+ private static final double
+ SQRT_1_5 = 1.224744871391589, // Long bits 0x3ff3988e1409212eL.
+ SQRT_2 = 1.4142135623730951, // Long bits 0x3ff6a09e667f3bcdL.
+ SQRT_3 = 1.7320508075688772, // Long bits 0x3ffbb67ae8584caaL.
+ EXP_LIMIT_H = 709.782712893384, // Long bits 0x40862e42fefa39efL.
+ EXP_LIMIT_L = -745.1332191019411, // Long bits 0xc0874910d52d3051L.
+ CP = 0.9617966939259756, // Long bits 0x3feec709dc3a03fdL.
+ CP_H = 0.9617967009544373, // Long bits 0x3feec709e0000000L.
+ CP_L = -7.028461650952758e-9, // Long bits 0xbe3e2fe0145b01f5L.
+ LN2 = 0.6931471805599453, // Long bits 0x3fe62e42fefa39efL.
+ LN2_H = 0.6931471803691238, // Long bits 0x3fe62e42fee00000L.
+ LN2_L = 1.9082149292705877e-10, // Long bits 0x3dea39ef35793c76L.
+ INV_LN2 = 1.4426950408889634, // Long bits 0x3ff71547652b82feL.
+ INV_LN2_H = 1.4426950216293335, // Long bits 0x3ff7154760000000L.
+ INV_LN2_L = 1.9259629911266175e-8; // Long bits 0x3e54ae0bf85ddf44L.
+
+ /**
+ * Constants for computing {@link #log(double)}.
+ */
+ private static final double
+ LG1 = 0.6666666666666735, // Long bits 0x3fe5555555555593L.
+ LG2 = 0.3999999999940942, // Long bits 0x3fd999999997fa04L.
+ LG3 = 0.2857142874366239, // Long bits 0x3fd2492494229359L.
+ LG4 = 0.22222198432149784, // Long bits 0x3fcc71c51d8e78afL.
+ LG5 = 0.1818357216161805, // Long bits 0x3fc7466496cb03deL.
+ LG6 = 0.15313837699209373, // Long bits 0x3fc39a09d078c69fL.
+ LG7 = 0.14798198605116586; // Long bits 0x3fc2f112df3e5244L.
+
+ /**
+ * Constants for computing {@link #pow(double, double)}. L and P are
+ * coefficients for series; OVT is -(1024-log2(ovfl+.5ulp)); and DP is ???.
+ * The P coefficients also calculate {@link #exp(double)}.
+ */
+ private static final double
+ L1 = 0.5999999999999946, // Long bits 0x3fe3333333333303L.
+ L2 = 0.4285714285785502, // Long bits 0x3fdb6db6db6fabffL.
+ L3 = 0.33333332981837743, // Long bits 0x3fd55555518f264dL.
+ L4 = 0.272728123808534, // Long bits 0x3fd17460a91d4101L.
+ L5 = 0.23066074577556175, // Long bits 0x3fcd864a93c9db65L.
+ L6 = 0.20697501780033842, // Long bits 0x3fca7e284a454eefL.
+ P1 = 0.16666666666666602, // Long bits 0x3fc555555555553eL.
+ P2 = -2.7777777777015593e-3, // Long bits 0xbf66c16c16bebd93L.
+ P3 = 6.613756321437934e-5, // Long bits 0x3f11566aaf25de2cL.
+ P4 = -1.6533902205465252e-6, // Long bits 0xbebbbd41c5d26bf1L.
+ P5 = 4.1381367970572385e-8, // Long bits 0x3e66376972bea4d0L.
+ DP_H = 0.5849624872207642, // Long bits 0x3fe2b80340000000L.
+ DP_L = 1.350039202129749e-8, // Long bits 0x3e4cfdeb43cfd006L.
+ OVT = 8.008566259537294e-17; // Long bits 0x3c971547652b82feL.
+
+ /**
+ * Coefficients for computing {@link #sin(double)}.
+ */
+ private static final double
+ S1 = -0.16666666666666632, // Long bits 0xbfc5555555555549L.
+ S2 = 8.33333333332249e-3, // Long bits 0x3f8111111110f8a6L.
+ S3 = -1.984126982985795e-4, // Long bits 0xbf2a01a019c161d5L.
+ S4 = 2.7557313707070068e-6, // Long bits 0x3ec71de357b1fe7dL.
+ S5 = -2.5050760253406863e-8, // Long bits 0xbe5ae5e68a2b9cebL.
+ S6 = 1.58969099521155e-10; // Long bits 0x3de5d93a5acfd57cL.
+
+ /**
+ * Coefficients for computing {@link #cos(double)}.
+ */
+ private static final double
+ C1 = 0.0416666666666666, // Long bits 0x3fa555555555554cL.
+ C2 = -1.388888888887411e-3, // Long bits 0xbf56c16c16c15177L.
+ C3 = 2.480158728947673e-5, // Long bits 0x3efa01a019cb1590L.
+ C4 = -2.7557314351390663e-7, // Long bits 0xbe927e4f809c52adL.
+ C5 = 2.087572321298175e-9, // Long bits 0x3e21ee9ebdb4b1c4L.
+ C6 = -1.1359647557788195e-11; // Long bits 0xbda8fae9be8838d4L.
+
+ /**
+ * Coefficients for computing {@link #tan(double)}.
+ */
+ private static final double
+ T0 = 0.3333333333333341, // Long bits 0x3fd5555555555563L.
+ T1 = 0.13333333333320124, // Long bits 0x3fc111111110fe7aL.
+ T2 = 0.05396825397622605, // Long bits 0x3faba1ba1bb341feL.
+ T3 = 0.021869488294859542, // Long bits 0x3f9664f48406d637L.
+ T4 = 8.8632398235993e-3, // Long bits 0x3f8226e3e96e8493L.
+ T5 = 3.5920791075913124e-3, // Long bits 0x3f6d6d22c9560328L.
+ T6 = 1.4562094543252903e-3, // Long bits 0x3f57dbc8fee08315L.
+ T7 = 5.880412408202641e-4, // Long bits 0x3f4344d8f2f26501L.
+ T8 = 2.464631348184699e-4, // Long bits 0x3f3026f71a8d1068L.
+ T9 = 7.817944429395571e-5, // Long bits 0x3f147e88a03792a6L.
+ T10 = 7.140724913826082e-5, // Long bits 0x3f12b80f32f0a7e9L.
+ T11 = -1.8558637485527546e-5, // Long bits 0xbef375cbdb605373L.
+ T12 = 2.590730518636337e-5; // Long bits 0x3efb2a7074bf7ad4L.
+
+ /**
+ * Coefficients for computing {@link #asin(double)} and
+ * {@link #acos(double)}.
+ */
+ private static final double
+ PS0 = 0.16666666666666666, // Long bits 0x3fc5555555555555L.
+ PS1 = -0.3255658186224009, // Long bits 0xbfd4d61203eb6f7dL.
+ PS2 = 0.20121253213486293, // Long bits 0x3fc9c1550e884455L.
+ PS3 = -0.04005553450067941, // Long bits 0xbfa48228b5688f3bL.
+ PS4 = 7.915349942898145e-4, // Long bits 0x3f49efe07501b288L.
+ PS5 = 3.479331075960212e-5, // Long bits 0x3f023de10dfdf709L.
+ QS1 = -2.403394911734414, // Long bits 0xc0033a271c8a2d4bL.
+ QS2 = 2.0209457602335057, // Long bits 0x40002ae59c598ac8L.
+ QS3 = -0.6882839716054533, // Long bits 0xbfe6066c1b8d0159L.
+ QS4 = 0.07703815055590194; // Long bits 0x3fb3b8c5b12e9282L.
+
+ /**
+ * Coefficients for computing {@link #atan(double)}.
+ */
+ private static final double
+ ATAN_0_5H = 0.4636476090008061, // Long bits 0x3fddac670561bb4fL.
+ ATAN_0_5L = 2.2698777452961687e-17, // Long bits 0x3c7a2b7f222f65e2L.
+ ATAN_1_5H = 0.982793723247329, // Long bits 0x3fef730bd281f69bL.
+ ATAN_1_5L = 1.3903311031230998e-17, // Long bits 0x3c7007887af0cbbdL.
+ AT0 = 0.3333333333333293, // Long bits 0x3fd555555555550dL.
+ AT1 = -0.19999999999876483, // Long bits 0xbfc999999998ebc4L.
+ AT2 = 0.14285714272503466, // Long bits 0x3fc24924920083ffL.
+ AT3 = -0.11111110405462356, // Long bits 0xbfbc71c6fe231671L.
+ AT4 = 0.09090887133436507, // Long bits 0x3fb745cdc54c206eL.
+ AT5 = -0.0769187620504483, // Long bits 0xbfb3b0f2af749a6dL.
+ AT6 = 0.06661073137387531, // Long bits 0x3fb10d66a0d03d51L.
+ AT7 = -0.058335701337905735, // Long bits 0xbfadde2d52defd9aL.
+ AT8 = 0.049768779946159324, // Long bits 0x3fa97b4b24760debL.
+ AT9 = -0.036531572744216916, // Long bits 0xbfa2b4442c6a6c2fL.
+ AT10 = 0.016285820115365782; // Long bits 0x3f90ad3ae322da11L.
+
+ /**
+ * Constants for computing {@link #cbrt(double)}.
+ */
+ private static final int
+ CBRT_B1 = 715094163, // B1 = (682-0.03306235651)*2**20
+ CBRT_B2 = 696219795; // B2 = (664-0.03306235651)*2**20
+
+ /**
+ * Constants for computing {@link #cbrt(double)}.
+ */
+ private static final double
+ CBRT_C = 5.42857142857142815906e-01, // Long bits 0x3fe15f15f15f15f1L
+ CBRT_D = -7.05306122448979611050e-01, // Long bits 0xbfe691de2532c834L
+ CBRT_E = 1.41428571428571436819e+00, // Long bits 0x3ff6a0ea0ea0ea0fL
+ CBRT_F = 1.60714285714285720630e+00, // Long bits 0x3ff9b6db6db6db6eL
+ CBRT_G = 3.57142857142857150787e-01; // Long bits 0x3fd6db6db6db6db7L
+
+ /**
+ * Constants for computing {@link #expm1(double)}
+ */
+ private static final double
+ EXPM1_Q1 = -3.33333333333331316428e-02, // Long bits 0xbfa11111111110f4L
+ EXPM1_Q2 = 1.58730158725481460165e-03, // Long bits 0x3f5a01a019fe5585L
+ EXPM1_Q3 = -7.93650757867487942473e-05, // Long bits 0xbf14ce199eaadbb7L
+ EXPM1_Q4 = 4.00821782732936239552e-06, // Long bits 0x3ed0cfca86e65239L
+ EXPM1_Q5 = -2.01099218183624371326e-07; // Long bits 0xbe8afdb76e09c32dL
+
+ /**
+ * Helper function for reducing an angle to a multiple of pi/2 within
+ * [-pi/4, pi/4].
+ *
+ * @param x the angle; not infinity or NaN, and outside pi/4
+ * @param y an array of 2 doubles modified to hold the remander x % pi/2
+ * @return the quadrant of the result, mod 4: 0: [-pi/4, pi/4],
+ * 1: [pi/4, 3*pi/4], 2: [3*pi/4, 5*pi/4], 3: [-3*pi/4, -pi/4]
+ */
+ private static int remPiOver2(double x, double[] y)
+ {
+ boolean negative = x < 0;
+ x = abs(x);
+ double z;
+ int n;
+ if (Configuration.DEBUG && (x <= PI / 4 || x != x
+ || x == Double.POSITIVE_INFINITY))
+ throw new InternalError("Assertion failure");
+ if (x < 3 * PI / 4) // If |x| is small.
+ {
+ z = x - PIO2_1;
+ if ((float) x != (float) (PI / 2)) // 33+53 bit pi is good enough.
+ {
+ y[0] = z - PIO2_1L;
+ y[1] = z - y[0] - PIO2_1L;
+ }
+ else // Near pi/2, use 33+33+53 bit pi.
+ {
+ z -= PIO2_2;
+ y[0] = z - PIO2_2L;
+ y[1] = z - y[0] - PIO2_2L;
+ }
+ n = 1;
+ }
+ else if (x <= TWO_20 * PI / 2) // Medium size.
+ {
+ n = (int) (2 / PI * x + 0.5);
+ z = x - n * PIO2_1;
+ double w = n * PIO2_1L; // First round good to 85 bits.
+ y[0] = z - w;
+ if (n >= 32 || (float) x == (float) (w))
+ {
+ if (x / y[0] >= TWO_16) // Second iteration, good to 118 bits.
+ {
+ double t = z;
+ w = n * PIO2_2;
+ z = t - w;
+ w = n * PIO2_2L - (t - z - w);
+ y[0] = z - w;
+ if (x / y[0] >= TWO_49) // Third iteration, 151 bits accuracy.
+ {
+ t = z;
+ w = n * PIO2_3;
+ z = t - w;
+ w = n * PIO2_3L - (t - z - w);
+ y[0] = z - w;
+ }
+ }
+ }
+ y[1] = z - y[0] - w;
+ }
+ else
+ {
+ // All other (large) arguments.
+ int e0 = (int) (Double.doubleToLongBits(x) >> 52) - 1046;
+ z = scale(x, -e0); // e0 = ilogb(z) - 23.
+ double[] tx = new double[3];
+ for (int i = 0; i < 2; i++)
+ {
+ tx[i] = (int) z;
+ z = (z - tx[i]) * TWO_24;
+ }
+ tx[2] = z;
+ int nx = 2;
+ while (tx[nx] == 0)
+ nx--;
+ n = remPiOver2(tx, y, e0, nx);
+ }
+ if (negative)
+ {
+ y[0] = -y[0];
+ y[1] = -y[1];
+ return -n;
+ }
+ return n;
+ }
+
+ /**
+ * Helper function for reducing an angle to a multiple of pi/2 within
+ * [-pi/4, pi/4].
+ *
+ * @param x the positive angle, broken into 24-bit chunks
+ * @param y an array of 2 doubles modified to hold the remander x % pi/2
+ * @param e0 the exponent of x[0]
+ * @param nx the last index used in x
+ * @return the quadrant of the result, mod 4: 0: [-pi/4, pi/4],
+ * 1: [pi/4, 3*pi/4], 2: [3*pi/4, 5*pi/4], 3: [-3*pi/4, -pi/4]
+ */
+ private static int remPiOver2(double[] x, double[] y, int e0, int nx)
+ {
+ int i;
+ int ih;
+ int n;
+ double fw;
+ double z;
+ int[] iq = new int[20];
+ double[] f = new double[20];
+ double[] q = new double[20];
+ boolean recompute = false;
+
+ // Initialize jk, jz, jv, q0; note that 3>q0.
+ int jk = 4;
+ int jz = jk;
+ int jv = max((e0 - 3) / 24, 0);
+ int q0 = e0 - 24 * (jv + 1);
+
+ // Set up f[0] to f[nx+jk] where f[nx+jk] = TWO_OVER_PI[jv+jk].
+ int j = jv - nx;
+ int m = nx + jk;
+ for (i = 0; i <= m; i++, j++)
+ f[i] = (j < 0) ? 0 : TWO_OVER_PI[j];
+
+ // Compute q[0],q[1],...q[jk].
+ for (i = 0; i <= jk; i++)
+ {
+ for (j = 0, fw = 0; j <= nx; j++)
+ fw += x[j] * f[nx + i - j];
+ q[i] = fw;
+ }
+
+ do
+ {
+ // Distill q[] into iq[] reversingly.
+ for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--)
+ {
+ fw = (int) (1 / TWO_24 * z);
+ iq[i] = (int) (z - TWO_24 * fw);
+ z = q[j - 1] + fw;
+ }
+
+ // Compute n.
+ z = scale(z, q0);
+ z -= 8 * floor(z * 0.125); // Trim off integer >= 8.
+ n = (int) z;
+ z -= n;
+ ih = 0;
+ if (q0 > 0) // Need iq[jz-1] to determine n.
+ {
+ i = iq[jz - 1] >> (24 - q0);
+ n += i;
+ iq[jz - 1] -= i << (24 - q0);
+ ih = iq[jz - 1] >> (23 - q0);
+ }
+ else if (q0 == 0)
+ ih = iq[jz - 1] >> 23;
+ else if (z >= 0.5)
+ ih = 2;
+
+ if (ih > 0) // If q > 0.5.
+ {
+ n += 1;
+ int carry = 0;
+ for (i = 0; i < jz; i++) // Compute 1-q.
+ {
+ j = iq[i];
+ if (carry == 0)
+ {
+ if (j != 0)
+ {
+ carry = 1;
+ iq[i] = 0x1000000 - j;
+ }
+ }
+ else
+ iq[i] = 0xffffff - j;
+ }
+ switch (q0)
+ {
+ case 1: // Rare case: chance is 1 in 12 for non-default.
+ iq[jz - 1] &= 0x7fffff;
+ break;
+ case 2:
+ iq[jz - 1] &= 0x3fffff;
+ }
+ if (ih == 2)
+ {
+ z = 1 - z;
+ if (carry != 0)
+ z -= scale(1, q0);
+ }
+ }
+
+ // Check if recomputation is needed.
+ if (z == 0)
+ {
+ j = 0;
+ for (i = jz - 1; i >= jk; i--)
+ j |= iq[i];
+ if (j == 0) // Need recomputation.
+ {
+ int k; // k = no. of terms needed.
+ for (k = 1; iq[jk - k] == 0; k++)
+ ;
+
+ for (i = jz + 1; i <= jz + k; i++) // Add q[jz+1] to q[jz+k].
+ {
+ f[nx + i] = TWO_OVER_PI[jv + i];
+ for (j = 0, fw = 0; j <= nx; j++)
+ fw += x[j] * f[nx + i - j];
+ q[i] = fw;
+ }
+ jz += k;
+ recompute = true;
+ }
+ }
+ }
+ while (recompute);
+
+ // Chop off zero terms.
+ if (z == 0)
+ {
+ jz--;
+ q0 -= 24;
+ while (iq[jz] == 0)
+ {
+ jz--;
+ q0 -= 24;
+ }
+ }
+ else // Break z into 24-bit if necessary.
+ {
+ z = scale(z, -q0);
+ if (z >= TWO_24)
+ {
+ fw = (int) (1 / TWO_24 * z);
+ iq[jz] = (int) (z - TWO_24 * fw);
+ jz++;
+ q0 += 24;
+ iq[jz] = (int) fw;
+ }
+ else
+ iq[jz] = (int) z;
+ }
+
+ // Convert integer "bit" chunk to floating-point value.
+ fw = scale(1, q0);
+ for (i = jz; i >= 0; i--)
+ {
+ q[i] = fw * iq[i];
+ fw *= 1 / TWO_24;
+ }
+
+ // Compute PI_OVER_TWO[0,...,jk]*q[jz,...,0].
+ double[] fq = new double[20];
+ for (i = jz; i >= 0; i--)
+ {
+ fw = 0;
+ for (int k = 0; k <= jk && k <= jz - i; k++)
+ fw += PI_OVER_TWO[k] * q[i + k];
+ fq[jz - i] = fw;
+ }
+
+ // Compress fq[] into y[].
+ fw = 0;
+ for (i = jz; i >= 0; i--)
+ fw += fq[i];
+ y[0] = (ih == 0) ? fw : -fw;
+ fw = fq[0] - fw;
+ for (i = 1; i <= jz; i++)
+ fw += fq[i];
+ y[1] = (ih == 0) ? fw : -fw;
+ return n;
+ }
+
+ /**
+ * Helper method for scaling a double by a power of 2.
+ *
+ * @param x the double
+ * @param n the scale; |n| < 2048
+ * @return x * 2**n
+ */
+ private static double scale(double x, int n)
+ {
+ if (Configuration.DEBUG && abs(n) >= 2048)
+ throw new InternalError("Assertion failure");
+ if (x == 0 || x == Double.NEGATIVE_INFINITY
+ || ! (x < Double.POSITIVE_INFINITY) || n == 0)
+ return x;
+ long bits = Double.doubleToLongBits(x);
+ int exp = (int) (bits >> 52) & 0x7ff;
+ if (exp == 0) // Subnormal x.
+ {
+ x *= TWO_54;
+ exp = ((int) (Double.doubleToLongBits(x) >> 52) & 0x7ff) - 54;
+ }
+ exp += n;
+ if (exp > 0x7fe) // Overflow.
+ return Double.POSITIVE_INFINITY * x;
+ if (exp > 0) // Normal.
+ return Double.longBitsToDouble((bits & 0x800fffffffffffffL)
+ | ((long) exp << 52));
+ if (exp <= -54)
+ return 0 * x; // Underflow.
+ exp += 54; // Subnormal result.
+ x = Double.longBitsToDouble((bits & 0x800fffffffffffffL)
+ | ((long) exp << 52));
+ return x * (1 / TWO_54);
+ }
+
+ /**
+ * Helper trig function; computes sin in range [-pi/4, pi/4].
+ *
+ * @param x angle within about pi/4
+ * @param y tail of x, created by remPiOver2
+ * @return sin(x+y)
+ */
+ private static double sin(double x, double y)
+ {
+ if (Configuration.DEBUG && abs(x + y) > 0.7854)
+ throw new InternalError("Assertion failure");
+ if (abs(x) < 1 / TWO_27)
+ return x; // If |x| ~< 2**-27, already know answer.
+
+ double z = x * x;
+ double v = z * x;
+ double r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6)));
+ if (y == 0)
+ return x + v * (S1 + z * r);
+ return x - ((z * (0.5 * y - v * r) - y) - v * S1);
+ }
+
+ /**
+ * Helper trig function; computes cos in range [-pi/4, pi/4].
+ *
+ * @param x angle within about pi/4
+ * @param y tail of x, created by remPiOver2
+ * @return cos(x+y)
+ */
+ private static double cos(double x, double y)
+ {
+ if (Configuration.DEBUG && abs(x + y) > 0.7854)
+ throw new InternalError("Assertion failure");
+ x = abs(x);
+ if (x < 1 / TWO_27)
+ return 1; // If |x| ~< 2**-27, already know answer.
+
+ double z = x * x;
+ double r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6)))));
+
+ if (x < 0.3)
+ return 1 - (0.5 * z - (z * r - x * y));
+
+ double qx = (x > 0.78125) ? 0.28125 : (x * 0.25);
+ return 1 - qx - ((0.5 * z - qx) - (z * r - x * y));
+ }
+
+ /**
+ * Helper trig function; computes tan in range [-pi/4, pi/4].
+ *
+ * @param x angle within about pi/4
+ * @param y tail of x, created by remPiOver2
+ * @param invert true iff -1/tan should be returned instead
+ * @return tan(x+y)
+ */
+ private static double tan(double x, double y, boolean invert)
+ {
+ // PI/2 is irrational, so no double is a perfect multiple of it.
+ if (Configuration.DEBUG && (abs(x + y) > 0.7854 || (x == 0 && invert)))
+ throw new InternalError("Assertion failure");
+ boolean negative = x < 0;
+ if (negative)
+ {
+ x = -x;
+ y = -y;
+ }
+ if (x < 1 / TWO_28) // If |x| ~< 2**-28, already know answer.
+ return (negative ? -1 : 1) * (invert ? -1 / x : x);
+
+ double z;
+ double w;
+ boolean large = x >= 0.6744;
+ if (large)
+ {
+ z = PI / 4 - x;
+ w = PI_L / 4 - y;
+ x = z + w;
+ y = 0;
+ }
+ z = x * x;
+ w = z * z;
+ // Break x**5*(T1+x**2*T2+...) into
+ // x**5(T1+x**4*T3+...+x**20*T11)
+ // + x**5(x**2*(T2+x**4*T4+...+x**22*T12)).
+ double r = T1 + w * (T3 + w * (T5 + w * (T7 + w * (T9 + w * T11))));
+ double v = z * (T2 + w * (T4 + w * (T6 + w * (T8 + w * (T10 + w * T12)))));
+ double s = z * x;
+ r = y + z * (s * (r + v) + y);
+ r += T0 * s;
+ w = x + r;
+ if (large)
+ {
+ v = invert ? -1 : 1;
+ return (negative ? -1 : 1) * (v - 2 * (x - (w * w / (w + v) - r)));
+ }
+ if (! invert)
+ return w;
+
+ // Compute -1.0/(x+r) accurately.
+ z = (float) w;
+ v = r - (z - x);
+ double a = -1 / w;
+ double t = (float) a;
+ return t + a * (1 + t * z + t * v);
+ }
+
+ /**
+ * <p>
+ * Returns the sign of the argument as follows:
+ * </p>
+ * <ul>
+ * <li>If <code>a</code> is greater than zero, the result is 1.0.</li>
+ * <li>If <code>a</code> is less than zero, the result is -1.0.</li>
+ * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
+ * <li>If <code>a</code> is positive or negative zero, the result is the
+ * same.</li>
+ * </ul>
+ *
+ * @param a the numeric argument.
+ * @return the sign of the argument.
+ * @since 1.5.
+ */
+ public static double signum(double a)
+ {
+ // There's no difference.
+ return Math.signum(a);
+ }
+
+ /**
+ * <p>
+ * Returns the sign of the argument as follows:
+ * </p>
+ * <ul>
+ * <li>If <code>a</code> is greater than zero, the result is 1.0f.</li>
+ * <li>If <code>a</code> is less than zero, the result is -1.0f.</li>
+ * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
+ * <li>If <code>a</code> is positive or negative zero, the result is the
+ * same.</li>
+ * </ul>
+ *
+ * @param a the numeric argument.
+ * @return the sign of the argument.
+ * @since 1.5.
+ */
+ public static float signum(float a)
+ {
+ // There's no difference.
+ return Math.signum(a);
+ }
+
+ /**
+ * Return the ulp for the given double argument. The ulp is the
+ * difference between the argument and the next larger double. Note
+ * that the sign of the double argument is ignored, that is,
+ * ulp(x) == ulp(-x). If the argument is a NaN, then NaN is returned.
+ * If the argument is an infinity, then +Inf is returned. If the
+ * argument is zero (either positive or negative), then
+ * {@link Double#MIN_VALUE} is returned.
+ * @param d the double whose ulp should be returned
+ * @return the difference between the argument and the next larger double
+ * @since 1.5
+ */
+ public static double ulp(double d)
+ {
+ // There's no difference.
+ return Math.ulp(d);
+ }
+
+ /**
+ * Return the ulp for the given float argument. The ulp is the
+ * difference between the argument and the next larger float. Note
+ * that the sign of the float argument is ignored, that is,
+ * ulp(x) == ulp(-x). If the argument is a NaN, then NaN is returned.
+ * If the argument is an infinity, then +Inf is returned. If the
+ * argument is zero (either positive or negative), then
+ * {@link Float#MIN_VALUE} is returned.
+ * @param f the float whose ulp should be returned
+ * @return the difference between the argument and the next larger float
+ * @since 1.5
+ */
+ public static float ulp(float f)
+ {
+ // There's no difference.
+ return Math.ulp(f);
+ }
+}