summaryrefslogtreecommitdiff
path: root/libjava/classpath/java/math/BigDecimal.java
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /libjava/classpath/java/math/BigDecimal.java
downloadcbb-gcc-4.6.4-upstream.tar.bz2
cbb-gcc-4.6.4-upstream.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'libjava/classpath/java/math/BigDecimal.java')
-rw-r--r--libjava/classpath/java/math/BigDecimal.java1559
1 files changed, 1559 insertions, 0 deletions
diff --git a/libjava/classpath/java/math/BigDecimal.java b/libjava/classpath/java/math/BigDecimal.java
new file mode 100644
index 000000000..7f4546cda
--- /dev/null
+++ b/libjava/classpath/java/math/BigDecimal.java
@@ -0,0 +1,1559 @@
+/* java.math.BigDecimal -- Arbitrary precision decimals.
+ Copyright (C) 1999, 2000, 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package java.math;
+
+import gnu.java.lang.CPStringBuilder;
+
+public class BigDecimal extends Number implements Comparable<BigDecimal>
+{
+ private BigInteger intVal;
+ private int scale;
+ private int precision = 0;
+ private static final long serialVersionUID = 6108874887143696463L;
+
+ /**
+ * The constant zero as a BigDecimal with scale zero.
+ * @since 1.5
+ */
+ public static final BigDecimal ZERO =
+ new BigDecimal (BigInteger.ZERO, 0);
+
+ /**
+ * The constant one as a BigDecimal with scale zero.
+ * @since 1.5
+ */
+ public static final BigDecimal ONE =
+ new BigDecimal (BigInteger.ONE, 0);
+
+ /**
+ * The constant ten as a BigDecimal with scale zero.
+ * @since 1.5
+ */
+ public static final BigDecimal TEN =
+ new BigDecimal (BigInteger.TEN, 0);
+
+ public static final int ROUND_UP = 0;
+ public static final int ROUND_DOWN = 1;
+ public static final int ROUND_CEILING = 2;
+ public static final int ROUND_FLOOR = 3;
+ public static final int ROUND_HALF_UP = 4;
+ public static final int ROUND_HALF_DOWN = 5;
+ public static final int ROUND_HALF_EVEN = 6;
+ public static final int ROUND_UNNECESSARY = 7;
+
+ /**
+ * Constructs a new BigDecimal whose unscaled value is val and whose
+ * scale is zero.
+ * @param val the value of the new BigDecimal
+ * @since 1.5
+ */
+ public BigDecimal (int val)
+ {
+ this.intVal = BigInteger.valueOf(val);
+ this.scale = 0;
+ }
+
+ /**
+ * Constructs a BigDecimal using the BigDecimal(int) constructor and then
+ * rounds according to the MathContext.
+ * @param val the value for the initial (unrounded) BigDecimal
+ * @param mc the MathContext specifying the rounding
+ * @throws ArithmeticException if the result is inexact but the rounding type
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal (int val, MathContext mc)
+ {
+ this (val);
+ if (mc.getPrecision() != 0)
+ {
+ BigDecimal result = this.round(mc);
+ this.intVal = result.intVal;
+ this.scale = result.scale;
+ this.precision = result.precision;
+ }
+ }
+
+ /**
+ * Constructs a new BigDecimal whose unscaled value is val and whose
+ * scale is zero.
+ * @param val the value of the new BigDecimal
+ */
+ public BigDecimal (long val)
+ {
+ this.intVal = BigInteger.valueOf(val);
+ this.scale = 0;
+ }
+
+ /**
+ * Constructs a BigDecimal from the long in the same way as BigDecimal(long)
+ * and then rounds according to the MathContext.
+ * @param val the long from which we create the initial BigDecimal
+ * @param mc the MathContext that specifies the rounding behaviour
+ * @throws ArithmeticException if the result is inexact but the rounding type
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal (long val, MathContext mc)
+ {
+ this(val);
+ if (mc.getPrecision() != 0)
+ {
+ BigDecimal result = this.round(mc);
+ this.intVal = result.intVal;
+ this.scale = result.scale;
+ this.precision = result.precision;
+ }
+ }
+
+ /**
+ * Constructs a BigDecimal whose value is given by num rounded according to
+ * mc. Since num is already a BigInteger, the rounding refers only to the
+ * precision setting in mc, if mc.getPrecision() returns an int lower than
+ * the number of digits in num, then rounding is necessary.
+ * @param num the unscaledValue, before rounding
+ * @param mc the MathContext that specifies the precision
+ * @throws ArithmeticException if the result is inexact but the rounding type
+ * is RoundingMode.UNNECESSARY
+ * * @since 1.5
+ */
+ public BigDecimal (BigInteger num, MathContext mc)
+ {
+ this (num, 0);
+ if (mc.getPrecision() != 0)
+ {
+ BigDecimal result = this.round(mc);
+ this.intVal = result.intVal;
+ this.scale = result.scale;
+ this.precision = result.precision;
+ }
+ }
+
+ /**
+ * Constructs a BigDecimal from the String val according to the same
+ * rules as the BigDecimal(String) constructor and then rounds
+ * according to the MathContext mc.
+ * @param val the String from which we construct the initial BigDecimal
+ * @param mc the MathContext that specifies the rounding
+ * @throws ArithmeticException if the result is inexact but the rounding type
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal (String val, MathContext mc)
+ {
+ this (val);
+ if (mc.getPrecision() != 0)
+ {
+ BigDecimal result = this.round(mc);
+ this.intVal = result.intVal;
+ this.scale = result.scale;
+ this.precision = result.precision;
+ }
+ }
+
+ /**
+ * Constructs a BigDecimal whose unscaled value is num and whose
+ * scale is zero.
+ * @param num the value of the new BigDecimal
+ */
+ public BigDecimal (BigInteger num)
+ {
+ this (num, 0);
+ }
+
+ /**
+ * Constructs a BigDecimal whose unscaled value is num and whose
+ * scale is scale.
+ * @param num
+ * @param scale
+ */
+ public BigDecimal (BigInteger num, int scale)
+ {
+ this.intVal = num;
+ this.scale = scale;
+ }
+
+ /**
+ * Constructs a BigDecimal using the BigDecimal(BigInteger, int)
+ * constructor and then rounds according to the MathContext.
+ * @param num the unscaled value of the unrounded BigDecimal
+ * @param scale the scale of the unrounded BigDecimal
+ * @param mc the MathContext specifying the rounding
+ * @throws ArithmeticException if the result is inexact but the rounding type
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal (BigInteger num, int scale, MathContext mc)
+ {
+ this (num, scale);
+ if (mc.getPrecision() != 0)
+ {
+ BigDecimal result = this.round(mc);
+ this.intVal = result.intVal;
+ this.scale = result.scale;
+ this.precision = result.precision;
+ }
+ }
+
+ /**
+ * Constructs a BigDecimal in the same way as BigDecimal(double) and then
+ * rounds according to the MathContext.
+ * @param num the double from which the initial BigDecimal is created
+ * @param mc the MathContext that specifies the rounding behaviour
+ * @throws ArithmeticException if the result is inexact but the rounding type
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal (double num, MathContext mc)
+ {
+ this (num);
+ if (mc.getPrecision() != 0)
+ {
+ BigDecimal result = this.round(mc);
+ this.intVal = result.intVal;
+ this.scale = result.scale;
+ this.precision = result.precision;
+ }
+ }
+
+ public BigDecimal (double num) throws NumberFormatException
+ {
+ if (Double.isInfinite (num) || Double.isNaN (num))
+ throw new NumberFormatException ("invalid argument: " + num);
+ // Note we can't convert NUM to a String and then use the
+ // String-based constructor. The BigDecimal documentation makes
+ // it clear that the two constructors work differently.
+
+ final int mantissaBits = 52;
+ final int exponentBits = 11;
+ final long mantMask = (1L << mantissaBits) - 1;
+ final long expMask = (1L << exponentBits) - 1;
+
+ long bits = Double.doubleToLongBits (num);
+ long mantissa = bits & mantMask;
+ long exponent = (bits >>> mantissaBits) & expMask;
+ boolean denormal = exponent == 0;
+
+ // Correct the exponent for the bias.
+ exponent -= denormal ? 1022 : 1023;
+
+ // Now correct the exponent to account for the bits to the right
+ // of the decimal.
+ exponent -= mantissaBits;
+ // Ordinary numbers have an implied leading `1' bit.
+ if (! denormal)
+ mantissa |= (1L << mantissaBits);
+
+ // Shave off factors of 10.
+ while (exponent < 0 && (mantissa & 1) == 0)
+ {
+ ++exponent;
+ mantissa >>= 1;
+ }
+
+ intVal = BigInteger.valueOf (bits < 0 ? - mantissa : mantissa);
+ if (exponent < 0)
+ {
+ // We have MANTISSA * 2 ^ (EXPONENT).
+ // Since (1/2)^N == 5^N * 10^-N we can easily convert this
+ // into a power of 10.
+ scale = (int) (- exponent);
+ BigInteger mult = BigInteger.valueOf (5).pow (scale);
+ intVal = intVal.multiply (mult);
+ }
+ else
+ {
+ intVal = intVal.shiftLeft ((int) exponent);
+ scale = 0;
+ }
+ }
+
+ /**
+ * Constructs a BigDecimal from the char subarray and rounding
+ * according to the MathContext.
+ * @param in the char array
+ * @param offset the start of the subarray
+ * @param len the length of the subarray
+ * @param mc the MathContext for rounding
+ * @throws NumberFormatException if the char subarray is not a valid
+ * BigDecimal representation
+ * @throws ArithmeticException if the result is inexact but the rounding
+ * mode is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal(char[] in, int offset, int len, MathContext mc)
+ {
+ this(in, offset, len);
+ // If mc has precision other than zero then we must round.
+ if (mc.getPrecision() != 0)
+ {
+ BigDecimal temp = this.round(mc);
+ this.intVal = temp.intVal;
+ this.scale = temp.scale;
+ this.precision = temp.precision;
+ }
+ }
+
+ /**
+ * Constructs a BigDecimal from the char array and rounding according
+ * to the MathContext.
+ * @param in the char array
+ * @param mc the MathContext
+ * @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
+ * representation
+ * @throws ArithmeticException if the result is inexact but the rounding mode
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal(char[] in, MathContext mc)
+ {
+ this(in, 0, in.length);
+ // If mc has precision other than zero then we must round.
+ if (mc.getPrecision() != 0)
+ {
+ BigDecimal temp = this.round(mc);
+ this.intVal = temp.intVal;
+ this.scale = temp.scale;
+ this.precision = temp.precision;
+ }
+ }
+
+ /**
+ * Constructs a BigDecimal from the given char array, accepting the same
+ * sequence of characters as the BigDecimal(String) constructor.
+ * @param in the char array
+ * @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
+ * representation
+ * @since 1.5
+ */
+ public BigDecimal(char[] in)
+ {
+ this(in, 0, in.length);
+ }
+
+ /**
+ * Constructs a BigDecimal from a char subarray, accepting the same sequence
+ * of characters as the BigDecimal(String) constructor.
+ * @param in the char array
+ * @param offset the start of the subarray
+ * @param len the length of the subarray
+ * @throws NumberFormatException if <code>in</code> is not a valid
+ * BigDecimal representation.
+ * @since 1.5
+ */
+ public BigDecimal(char[] in, int offset, int len)
+ {
+ // start is the index into the char array where the significand starts
+ int start = offset;
+ // end is one greater than the index of the last character used
+ int end = offset + len;
+ // point is the index into the char array where the exponent starts
+ // (or, if there is no exponent, this is equal to end)
+ int point = offset;
+ // dot is the index into the char array where the decimal point is
+ // found, or -1 if there is no decimal point
+ int dot = -1;
+
+ // The following examples show what these variables mean. Note that
+ // point and dot don't yet have the correct values, they will be
+ // properly assigned in a loop later on in this method.
+ //
+ // Example 1
+ //
+ // + 1 0 2 . 4 6 9
+ // __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
+ //
+ // offset = 2, len = 8, start = 3, dot = 6, point = end = 10
+ //
+ // Example 2
+ //
+ // + 2 3 4 . 6 1 3 E - 1
+ // __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
+ //
+ // offset = 2, len = 11, start = 3, dot = 6, point = 10, end = 13
+ //
+ // Example 3
+ //
+ // - 1 2 3 4 5 e 7
+ // __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
+ //
+ // offset = 2, len = 8, start = 3, dot = -1, point = 8, end = 10
+
+ // Determine the sign of the number.
+ boolean negative = false;
+ if (in[offset] == '+')
+ {
+ ++start;
+ ++point;
+ }
+ else if (in[offset] == '-')
+ {
+ ++start;
+ ++point;
+ negative = true;
+ }
+
+ // Check each character looking for the decimal point and the
+ // start of the exponent.
+ while (point < end)
+ {
+ char c = in[point];
+ if (c == '.')
+ {
+ // If dot != -1 then we've seen more than one decimal point.
+ if (dot != -1)
+ throw new NumberFormatException("multiple `.'s in number");
+ dot = point;
+ }
+ // Break when we reach the start of the exponent.
+ else if (c == 'e' || c == 'E')
+ break;
+ // Throw an exception if the character was not a decimal or an
+ // exponent and is not a digit.
+ else if (!Character.isDigit(c))
+ throw new NumberFormatException("unrecognized character at " + point
+ + ": " + c);
+ ++point;
+ }
+
+ // val is a StringBuilder from which we'll create a BigInteger
+ // which will be the unscaled value for this BigDecimal
+ CPStringBuilder val = new CPStringBuilder(point - start - 1);
+ if (dot != -1)
+ {
+ // If there was a decimal we must combine the two parts that
+ // contain only digits and we must set the scale properly.
+ val.append(in, start, dot - start);
+ val.append(in, dot + 1, point - dot - 1);
+ scale = point - 1 - dot;
+ }
+ else
+ {
+ // If there was no decimal then the unscaled value is just the number
+ // formed from all the digits and the scale is zero.
+ val.append(in, start, point - start);
+ scale = 0;
+ }
+ if (val.length() == 0)
+ throw new NumberFormatException("no digits seen");
+
+ // Prepend a negative sign if necessary.
+ if (negative)
+ val.insert(0, '-');
+ intVal = new BigInteger(val.toString());
+
+ // Now parse exponent.
+ // If point < end that means we broke out of the previous loop when we
+ // saw an 'e' or an 'E'.
+ if (point < end)
+ {
+ point++;
+ // Ignore a '+' sign.
+ if (in[point] == '+')
+ point++;
+
+ // Throw an exception if there were no digits found after the 'e'
+ // or 'E'.
+ if (point >= end)
+ throw new NumberFormatException("no exponent following e or E");
+
+ try
+ {
+ // Adjust the scale according to the exponent.
+ // Remember that the value of a BigDecimal is
+ // unscaledValue x Math.pow(10, -scale)
+ scale -= Integer.parseInt(new String(in, point, end - point));
+ }
+ catch (NumberFormatException ex)
+ {
+ throw new NumberFormatException("malformed exponent");
+ }
+ }
+ }
+
+ public BigDecimal (String num) throws NumberFormatException
+ {
+ int len = num.length();
+ int start = 0, point = 0;
+ int dot = -1;
+ boolean negative = false;
+ if (num.charAt(0) == '+')
+ {
+ ++start;
+ ++point;
+ }
+ else if (num.charAt(0) == '-')
+ {
+ ++start;
+ ++point;
+ negative = true;
+ }
+
+ while (point < len)
+ {
+ char c = num.charAt (point);
+ if (c == '.')
+ {
+ if (dot >= 0)
+ throw new NumberFormatException ("multiple `.'s in number");
+ dot = point;
+ }
+ else if (c == 'e' || c == 'E')
+ break;
+ else if (Character.digit (c, 10) < 0)
+ throw new NumberFormatException ("unrecognized character: " + c);
+ ++point;
+ }
+
+ String val;
+ if (dot >= 0)
+ {
+ val = num.substring (start, dot) + num.substring (dot + 1, point);
+ scale = point - 1 - dot;
+ }
+ else
+ {
+ val = num.substring (start, point);
+ scale = 0;
+ }
+ if (val.length () == 0)
+ throw new NumberFormatException ("no digits seen");
+
+ if (negative)
+ val = "-" + val;
+ intVal = new BigInteger (val);
+
+ // Now parse exponent.
+ if (point < len)
+ {
+ point++;
+ if (num.charAt(point) == '+')
+ point++;
+
+ if (point >= len )
+ throw new NumberFormatException ("no exponent following e or E");
+
+ try
+ {
+ scale -= Integer.parseInt (num.substring (point));
+ }
+ catch (NumberFormatException ex)
+ {
+ throw new NumberFormatException ("malformed exponent");
+ }
+ }
+ }
+
+ public static BigDecimal valueOf (long val)
+ {
+ return valueOf (val, 0);
+ }
+
+ public static BigDecimal valueOf (long val, int scale)
+ throws NumberFormatException
+ {
+ if ((scale == 0) && ((int)val == val))
+ switch ((int) val)
+ {
+ case 0:
+ return ZERO;
+ case 1:
+ return ONE;
+ }
+
+ return new BigDecimal (BigInteger.valueOf (val), scale);
+ }
+
+ public BigDecimal add (BigDecimal val)
+ {
+ // For addition, need to line up decimals. Note that the movePointRight
+ // method cannot be used for this as it might return a BigDecimal with
+ // scale == 0 instead of the scale we need.
+ BigInteger op1 = intVal;
+ BigInteger op2 = val.intVal;
+ if (scale < val.scale)
+ op1 = op1.multiply (BigInteger.TEN.pow (val.scale - scale));
+ else if (scale > val.scale)
+ op2 = op2.multiply (BigInteger.TEN.pow (scale - val.scale));
+
+ return new BigDecimal (op1.add (op2), Math.max (scale, val.scale));
+ }
+
+ /**
+ * Returns a BigDecimal whose value is found first by calling the
+ * method add(val) and then by rounding according to the MathContext mc.
+ * @param val the augend
+ * @param mc the MathContext for rounding
+ * @throws ArithmeticException if the value is inexact but the rounding is
+ * RoundingMode.UNNECESSARY
+ * @return <code>this</code> + <code>val</code>, rounded if need be
+ * @since 1.5
+ */
+ public BigDecimal add (BigDecimal val, MathContext mc)
+ {
+ return add(val).round(mc);
+ }
+
+ public BigDecimal subtract (BigDecimal val)
+ {
+ return this.add(val.negate());
+ }
+
+ /**
+ * Returns a BigDecimal whose value is found first by calling the
+ * method subtract(val) and then by rounding according to the MathContext mc.
+ * @param val the subtrahend
+ * @param mc the MathContext for rounding
+ * @throws ArithmeticException if the value is inexact but the rounding is
+ * RoundingMode.UNNECESSARY
+ * @return <code>this</code> - <code>val</code>, rounded if need be
+ * @since 1.5
+ */
+ public BigDecimal subtract (BigDecimal val, MathContext mc)
+ {
+ return subtract(val).round(mc);
+ }
+
+ public BigDecimal multiply (BigDecimal val)
+ {
+ return new BigDecimal (intVal.multiply (val.intVal), scale + val.scale);
+ }
+
+ /**
+ * Returns a BigDecimal whose value is (this x val) before it is rounded
+ * according to the MathContext mc.
+ * @param val the multiplicand
+ * @param mc the MathContext for rounding
+ * @return a new BigDecimal with value approximately (this x val)
+ * @throws ArithmeticException if the value is inexact but the rounding mode
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal multiply (BigDecimal val, MathContext mc)
+ {
+ return multiply(val).round(mc);
+ }
+
+ public BigDecimal divide (BigDecimal val, int roundingMode)
+ throws ArithmeticException, IllegalArgumentException
+ {
+ return divide (val, scale, roundingMode);
+ }
+
+ /**
+ * Returns a BigDecimal whose value is (this / val), with the specified scale
+ * and rounding according to the RoundingMode
+ * @param val the divisor
+ * @param scale the scale of the BigDecimal returned
+ * @param roundingMode the rounding mode to use
+ * @return a BigDecimal whose value is approximately (this / val)
+ * @throws ArithmeticException if divisor is zero or the rounding mode is
+ * UNNECESSARY but the specified scale cannot represent the value exactly
+ * @since 1.5
+ */
+ public BigDecimal divide(BigDecimal val,
+ int scale, RoundingMode roundingMode)
+ {
+ return divide (val, scale, roundingMode.ordinal());
+ }
+
+ /**
+ * Returns a BigDecimal whose value is (this / val) rounded according to the
+ * RoundingMode
+ * @param val the divisor
+ * @param roundingMode the rounding mode to use
+ * @return a BigDecimal whose value is approximately (this / val)
+ * @throws ArithmeticException if divisor is zero or the rounding mode is
+ * UNNECESSARY but the specified scale cannot represent the value exactly
+ */
+ public BigDecimal divide (BigDecimal val, RoundingMode roundingMode)
+ {
+ return divide (val, scale, roundingMode.ordinal());
+ }
+
+ public BigDecimal divide(BigDecimal val, int newScale, int roundingMode)
+ throws ArithmeticException, IllegalArgumentException
+ {
+ if (roundingMode < 0 || roundingMode > 7)
+ throw
+ new IllegalArgumentException("illegal rounding mode: " + roundingMode);
+
+ if (intVal.signum () == 0) // handle special case of 0.0/0.0
+ return newScale == 0 ? ZERO : new BigDecimal (ZERO.intVal, newScale);
+
+ // Ensure that pow gets a non-negative value.
+ BigInteger valIntVal = val.intVal;
+ int power = newScale - (scale - val.scale);
+ if (power < 0)
+ {
+ // Effectively increase the scale of val to avoid an
+ // ArithmeticException for a negative power.
+ valIntVal = valIntVal.multiply (BigInteger.TEN.pow (-power));
+ power = 0;
+ }
+
+ BigInteger dividend = intVal.multiply (BigInteger.TEN.pow (power));
+
+ BigInteger parts[] = dividend.divideAndRemainder (valIntVal);
+
+ BigInteger unrounded = parts[0];
+ if (parts[1].signum () == 0) // no remainder, no rounding necessary
+ return new BigDecimal (unrounded, newScale);
+
+ if (roundingMode == ROUND_UNNECESSARY)
+ throw new ArithmeticException ("Rounding necessary");
+
+ int sign = intVal.signum () * valIntVal.signum ();
+
+ if (roundingMode == ROUND_CEILING)
+ roundingMode = (sign > 0) ? ROUND_UP : ROUND_DOWN;
+ else if (roundingMode == ROUND_FLOOR)
+ roundingMode = (sign < 0) ? ROUND_UP : ROUND_DOWN;
+ else
+ {
+ // half is -1 if remainder*2 < positive intValue (*power), 0 if equal,
+ // 1 if >. This implies that the remainder to round is less than,
+ // equal to, or greater than half way to the next digit.
+ BigInteger posRemainder
+ = parts[1].signum () < 0 ? parts[1].negate() : parts[1];
+ valIntVal = valIntVal.signum () < 0 ? valIntVal.negate () : valIntVal;
+ int half = posRemainder.shiftLeft(1).compareTo(valIntVal);
+
+ switch(roundingMode)
+ {
+ case ROUND_HALF_UP:
+ roundingMode = (half < 0) ? ROUND_DOWN : ROUND_UP;
+ break;
+ case ROUND_HALF_DOWN:
+ roundingMode = (half > 0) ? ROUND_UP : ROUND_DOWN;
+ break;
+ case ROUND_HALF_EVEN:
+ if (half < 0)
+ roundingMode = ROUND_DOWN;
+ else if (half > 0)
+ roundingMode = ROUND_UP;
+ else if (unrounded.testBit(0)) // odd, then ROUND_HALF_UP
+ roundingMode = ROUND_UP;
+ else // even, ROUND_HALF_DOWN
+ roundingMode = ROUND_DOWN;
+ break;
+ }
+ }
+
+ if (roundingMode == ROUND_UP)
+ unrounded = unrounded.add (BigInteger.valueOf (sign > 0 ? 1 : -1));
+
+ // roundingMode == ROUND_DOWN
+ return new BigDecimal (unrounded, newScale);
+ }
+
+ /**
+ * Performs division, if the resulting quotient requires rounding
+ * (has a nonterminating decimal expansion),
+ * an ArithmeticException is thrown.
+ * #see divide(BigDecimal, int, int)
+ * @since 1.5
+ */
+ public BigDecimal divide(BigDecimal divisor)
+ throws ArithmeticException, IllegalArgumentException
+ {
+ return divide(divisor, scale, ROUND_UNNECESSARY);
+ }
+
+ /**
+ * Returns a BigDecimal whose value is the remainder in the quotient
+ * this / val. This is obtained by
+ * subtract(divideToIntegralValue(val).multiply(val)).
+ * @param val the divisor
+ * @return a BigDecimal whose value is the remainder
+ * @throws ArithmeticException if val == 0
+ * @since 1.5
+ */
+ public BigDecimal remainder(BigDecimal val)
+ {
+ return subtract(divideToIntegralValue(val).multiply(val));
+ }
+
+ /**
+ * Returns a BigDecimal array, the first element of which is the integer part
+ * of this / val, and the second element of which is the remainder of
+ * that quotient.
+ * @param val the divisor
+ * @return the above described BigDecimal array
+ * @throws ArithmeticException if val == 0
+ * @since 1.5
+ */
+ public BigDecimal[] divideAndRemainder(BigDecimal val)
+ {
+ BigDecimal[] result = new BigDecimal[2];
+ result[0] = divideToIntegralValue(val);
+ result[1] = subtract(result[0].multiply(val));
+ return result;
+ }
+
+ /**
+ * Returns a BigDecimal whose value is the integer part of the quotient
+ * this / val. The preferred scale is this.scale - val.scale.
+ * @param val the divisor
+ * @return a BigDecimal whose value is the integer part of this / val.
+ * @throws ArithmeticException if val == 0
+ * @since 1.5
+ */
+ public BigDecimal divideToIntegralValue(BigDecimal val)
+ {
+ return divide(val, ROUND_DOWN).floor().setScale(scale - val.scale, ROUND_DOWN);
+ }
+
+ /**
+ * Mutates this BigDecimal into one with no fractional part, whose value is
+ * equal to the largest integer that is <= to this BigDecimal. Note that
+ * since this method is private it is okay to mutate this BigDecimal.
+ * @return the BigDecimal obtained through the floor operation on this
+ * BigDecimal.
+ */
+ private BigDecimal floor()
+ {
+ if (scale <= 0)
+ return this;
+ String intValStr = intVal.toString();
+ intValStr = intValStr.substring(0, intValStr.length() - scale);
+ intVal = new BigInteger(intValStr).multiply(BigInteger.TEN.pow(scale));
+ return this;
+ }
+
+ public int compareTo (BigDecimal val)
+ {
+ if (scale == val.scale)
+ return intVal.compareTo (val.intVal);
+
+ BigInteger thisParts[] =
+ intVal.divideAndRemainder (BigInteger.TEN.pow (scale));
+ BigInteger valParts[] =
+ val.intVal.divideAndRemainder (BigInteger.TEN.pow (val.scale));
+
+ int compare;
+ if ((compare = thisParts[0].compareTo (valParts[0])) != 0)
+ return compare;
+
+ // quotients are the same, so compare remainders
+
+ // Add some trailing zeros to the remainder with the smallest scale
+ if (scale < val.scale)
+ thisParts[1] = thisParts[1].multiply
+ (BigInteger.valueOf (10).pow (val.scale - scale));
+ else if (scale > val.scale)
+ valParts[1] = valParts[1].multiply
+ (BigInteger.valueOf (10).pow (scale - val.scale));
+
+ // and compare them
+ return thisParts[1].compareTo (valParts[1]);
+ }
+
+ public boolean equals (Object o)
+ {
+ return (o instanceof BigDecimal
+ && scale == ((BigDecimal) o).scale
+ && compareTo ((BigDecimal) o) == 0);
+ }
+
+ public int hashCode()
+ {
+ return intValue() ^ scale;
+ }
+
+ public BigDecimal max (BigDecimal val)
+ {
+ switch (compareTo (val))
+ {
+ case 1:
+ return this;
+ default:
+ return val;
+ }
+ }
+
+ public BigDecimal min (BigDecimal val)
+ {
+ switch (compareTo (val))
+ {
+ case -1:
+ return this;
+ default:
+ return val;
+ }
+ }
+
+ public BigDecimal movePointLeft (int n)
+ {
+ return (n < 0) ? movePointRight (-n) : new BigDecimal (intVal, scale + n);
+ }
+
+ public BigDecimal movePointRight (int n)
+ {
+ if (n < 0)
+ return movePointLeft (-n);
+
+ if (scale >= n)
+ return new BigDecimal (intVal, scale - n);
+
+ return new BigDecimal (intVal.multiply
+ (BigInteger.TEN.pow (n - scale)), 0);
+ }
+
+ public int signum ()
+ {
+ return intVal.signum ();
+ }
+
+ public int scale ()
+ {
+ return scale;
+ }
+
+ public BigInteger unscaledValue()
+ {
+ return intVal;
+ }
+
+ public BigDecimal abs ()
+ {
+ return new BigDecimal (intVal.abs (), scale);
+ }
+
+ public BigDecimal negate ()
+ {
+ return new BigDecimal (intVal.negate (), scale);
+ }
+
+ /**
+ * Returns a BigDecimal whose value is found first by negating this via
+ * the negate() method, then by rounding according to the MathContext mc.
+ * @param mc the MathContext for rounding
+ * @return a BigDecimal whose value is approximately (-this)
+ * @throws ArithmeticException if the value is inexact but the rounding mode
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal negate(MathContext mc)
+ {
+ BigDecimal result = negate();
+ if (mc.getPrecision() != 0)
+ result = result.round(mc);
+ return result;
+ }
+
+ /**
+ * Returns this BigDecimal. This is included for symmetry with the
+ * method negate().
+ * @return this
+ * @since 1.5
+ */
+ public BigDecimal plus()
+ {
+ return this;
+ }
+
+ /**
+ * Returns a BigDecimal whose value is found by rounding <code>this</code>
+ * according to the MathContext. This is the same as round(MathContext).
+ * @param mc the MathContext for rounding
+ * @return a BigDecimal whose value is <code>this</code> before being rounded
+ * @throws ArithmeticException if the value is inexact but the rounding mode
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal plus(MathContext mc)
+ {
+ return round(mc);
+ }
+
+ /**
+ * Returns a BigDecimal which is this BigDecimal rounded according to the
+ * MathContext rounding settings.
+ * @param mc the MathContext that tells us how to round
+ * @return the rounded BigDecimal
+ */
+ public BigDecimal round(MathContext mc)
+ {
+ int mcPrecision = mc.getPrecision();
+ int numToChop = precision() - mcPrecision;
+ // If mc specifies not to chop any digits or if we've already chopped
+ // enough digits (say by using a MathContext in the constructor for this
+ // BigDecimal) then just return this.
+ if (mcPrecision == 0 || numToChop <= 0)
+ return this;
+
+ // Make a new BigDecimal which is the correct power of 10 to chop off
+ // the required number of digits and then call divide.
+ BigDecimal div = new BigDecimal(BigInteger.TEN.pow(numToChop));
+ BigDecimal rounded = divide(div, scale, mc.getRoundingMode().ordinal());
+ rounded.scale -= numToChop;
+ rounded.precision = mcPrecision;
+ return rounded;
+ }
+
+ /**
+ * Returns the precision of this BigDecimal (the number of digits in the
+ * unscaled value). The precision of a zero value is 1.
+ * @return the number of digits in the unscaled value, or 1 if the value
+ * is zero.
+ */
+ public int precision()
+ {
+ if (precision == 0)
+ {
+ String s = intVal.toString();
+ precision = s.length() - (( s.charAt(0) == '-' ) ? 1 : 0);
+ }
+ return precision;
+ }
+
+ /**
+ * Returns the String representation of this BigDecimal, using scientific
+ * notation if necessary. The following steps are taken to generate
+ * the result:
+ *
+ * 1. the BigInteger unscaledValue's toString method is called and if
+ * <code>scale == 0<code> is returned.
+ * 2. an <code>int adjExp</code> is created which is equal to the negation
+ * of <code>scale</code> plus the number of digits in the unscaled value,
+ * minus one.
+ * 3. if <code>scale >= 0 && adjExp >= -6</code> then we represent this
+ * BigDecimal without scientific notation. A decimal is added if the
+ * scale is positive and zeros are prepended as necessary.
+ * 4. if scale is negative or adjExp is less than -6 we use scientific
+ * notation. If the unscaled value has more than one digit, a decimal
+ * as inserted after the first digit, the character 'E' is appended
+ * and adjExp is appended.
+ */
+ public String toString()
+ {
+ // bigStr is the String representation of the unscaled value. If
+ // scale is zero we simply return this.
+ String bigStr = intVal.toString();
+ if (scale == 0)
+ return bigStr;
+
+ boolean negative = (bigStr.charAt(0) == '-');
+ int point = bigStr.length() - scale - (negative ? 1 : 0);
+
+ CPStringBuilder val = new CPStringBuilder();
+
+ if (scale >= 0 && (point - 1) >= -6)
+ {
+ // Convert to character form without scientific notation.
+ if (point <= 0)
+ {
+ // Zeros need to be prepended to the StringBuilder.
+ if (negative)
+ val.append('-');
+ // Prepend a '0' and a '.' and then as many more '0's as necessary.
+ val.append('0').append('.');
+ while (point < 0)
+ {
+ val.append('0');
+ point++;
+ }
+ // Append the unscaled value.
+ val.append(bigStr.substring(negative ? 1 : 0));
+ }
+ else
+ {
+ // No zeros need to be prepended so the String is simply the
+ // unscaled value with the decimal point inserted.
+ val.append(bigStr);
+ val.insert(point + (negative ? 1 : 0), '.');
+ }
+ }
+ else
+ {
+ // We must use scientific notation to represent this BigDecimal.
+ val.append(bigStr);
+ // If there is more than one digit in the unscaled value we put a
+ // decimal after the first digit.
+ if (bigStr.length() > 1)
+ val.insert( ( negative ? 2 : 1 ), '.');
+ // And then append 'E' and the exponent = (point - 1).
+ val.append('E');
+ if (point - 1 >= 0)
+ val.append('+');
+ val.append( point - 1 );
+ }
+ return val.toString();
+ }
+
+ /**
+ * Returns the String representation of this BigDecimal, using engineering
+ * notation if necessary. This is similar to toString() but when exponents
+ * are used the exponent is made to be a multiple of 3 such that the integer
+ * part is between 1 and 999.
+ *
+ * @return a String representation of this BigDecimal in engineering notation
+ * @since 1.5
+ */
+ public String toEngineeringString()
+ {
+ // bigStr is the String representation of the unscaled value. If
+ // scale is zero we simply return this.
+ String bigStr = intVal.toString();
+ if (scale == 0)
+ return bigStr;
+
+ boolean negative = (bigStr.charAt(0) == '-');
+ int point = bigStr.length() - scale - (negative ? 1 : 0);
+
+ // This is the adjusted exponent described above.
+ int adjExp = point - 1;
+ CPStringBuilder val = new CPStringBuilder();
+
+ if (scale >= 0 && adjExp >= -6)
+ {
+ // Convert to character form without scientific notation.
+ if (point <= 0)
+ {
+ // Zeros need to be prepended to the StringBuilder.
+ if (negative)
+ val.append('-');
+ // Prepend a '0' and a '.' and then as many more '0's as necessary.
+ val.append('0').append('.');
+ while (point < 0)
+ {
+ val.append('0');
+ point++;
+ }
+ // Append the unscaled value.
+ val.append(bigStr.substring(negative ? 1 : 0));
+ }
+ else
+ {
+ // No zeros need to be prepended so the String is simply the
+ // unscaled value with the decimal point inserted.
+ val.append(bigStr);
+ val.insert(point + (negative ? 1 : 0), '.');
+ }
+ }
+ else
+ {
+ // We must use scientific notation to represent this BigDecimal.
+ // The exponent must be a multiple of 3 and the integer part
+ // must be between 1 and 999.
+ val.append(bigStr);
+ int zeros = adjExp % 3;
+ int dot = 1;
+ if (adjExp > 0)
+ {
+ // If the exponent is positive we just move the decimal to the
+ // right and decrease the exponent until it is a multiple of 3.
+ dot += zeros;
+ adjExp -= zeros;
+ }
+ else
+ {
+ // If the exponent is negative then we move the dot to the right
+ // and decrease the exponent (increase its magnitude) until
+ // it is a multiple of 3. Note that this is not adjExp -= zeros
+ // because the mod operator doesn't give us the distance to the
+ // correct multiple of 3. (-5 mod 3) is -2 but the distance from
+ // -5 to the correct multiple of 3 (-6) is 1, not 2.
+ if (zeros == -2)
+ {
+ dot += 1;
+ adjExp -= 1;
+ }
+ else if (zeros == -1)
+ {
+ dot += 2;
+ adjExp -= 2;
+ }
+ }
+
+ // Either we have to append zeros because, for example, 1.1E+5 should
+ // be 110E+3, or we just have to put the decimal in the right place.
+ if (dot > val.length())
+ {
+ while (dot > val.length())
+ val.append('0');
+ }
+ else if (bigStr.length() > dot)
+ val.insert(dot + (negative ? 1 : 0), '.');
+
+ // And then append 'E' and the exponent (adjExp).
+ val.append('E');
+ if (adjExp >= 0)
+ val.append('+');
+ val.append(adjExp);
+ }
+ return val.toString();
+ }
+
+ /**
+ * Returns a String representation of this BigDecimal without using
+ * scientific notation. This is how toString() worked for releases 1.4
+ * and previous. Zeros may be added to the end of the String. For
+ * example, an unscaled value of 1234 and a scale of -3 would result in
+ * the String 1234000, but the toString() method would return
+ * 1.234E+6.
+ * @return a String representation of this BigDecimal
+ * @since 1.5
+ */
+ public String toPlainString()
+ {
+ // If the scale is zero we simply return the String representation of the
+ // unscaled value.
+ String bigStr = intVal.toString();
+ if (scale == 0)
+ return bigStr;
+
+ // Remember if we have to put a negative sign at the start.
+ boolean negative = (bigStr.charAt(0) == '-');
+
+ int point = bigStr.length() - scale - (negative ? 1 : 0);
+
+ CPStringBuilder sb = new CPStringBuilder(bigStr.length() + 2
+ + (point <= 0 ? (-point + 1) : 0));
+ if (point <= 0)
+ {
+ // We have to prepend zeros and a decimal point.
+ if (negative)
+ sb.append('-');
+ sb.append('0').append('.');
+ while (point < 0)
+ {
+ sb.append('0');
+ point++;
+ }
+ sb.append(bigStr.substring(negative ? 1 : 0));
+ }
+ else if (point < bigStr.length())
+ {
+ // No zeros need to be prepended or appended, just put the decimal
+ // in the right place.
+ sb.append(bigStr);
+ sb.insert(point + (negative ? 1 : 0), '.');
+ }
+ else
+ {
+ // We must append zeros instead of using scientific notation.
+ sb.append(bigStr);
+ for (int i = bigStr.length(); i < point; i++)
+ sb.append('0');
+ }
+ return sb.toString();
+ }
+
+ /**
+ * Converts this BigDecimal to a BigInteger. Any fractional part will
+ * be discarded.
+ * @return a BigDecimal whose value is equal to floor[this]
+ */
+ public BigInteger toBigInteger ()
+ {
+ // If scale > 0 then we must divide, if scale > 0 then we must multiply,
+ // and if scale is zero then we just return intVal;
+ if (scale > 0)
+ return intVal.divide (BigInteger.TEN.pow (scale));
+ else if (scale < 0)
+ return intVal.multiply(BigInteger.TEN.pow(-scale));
+ return intVal;
+ }
+
+ /**
+ * Converts this BigDecimal into a BigInteger, throwing an
+ * ArithmeticException if the conversion is not exact.
+ * @return a BigInteger whose value is equal to the value of this BigDecimal
+ * @since 1.5
+ */
+ public BigInteger toBigIntegerExact()
+ {
+ if (scale > 0)
+ {
+ // If we have to divide, we must check if the result is exact.
+ BigInteger[] result =
+ intVal.divideAndRemainder(BigInteger.TEN.pow(scale));
+ if (result[1].equals(BigInteger.ZERO))
+ return result[0];
+ throw new ArithmeticException("No exact BigInteger representation");
+ }
+ else if (scale < 0)
+ // If we're multiplying instead, then we needn't check for exactness.
+ return intVal.multiply(BigInteger.TEN.pow(-scale));
+ // If the scale is zero we can simply return intVal.
+ return intVal;
+ }
+
+ public int intValue ()
+ {
+ return toBigInteger ().intValue ();
+ }
+
+ /**
+ * Returns a BigDecimal which is numerically equal to this BigDecimal but
+ * with no trailing zeros in the representation. For example, if this
+ * BigDecimal has [unscaledValue, scale] = [6313000, 4] this method returns
+ * a BigDecimal with [unscaledValue, scale] = [6313, 1]. As another
+ * example, [12400, -2] would become [124, -4].
+ * @return a numerically equal BigDecimal with no trailing zeros
+ */
+ public BigDecimal stripTrailingZeros()
+ {
+ String intValStr = intVal.toString();
+ int newScale = scale;
+ int pointer = intValStr.length() - 1;
+ // This loop adjusts pointer which will be used to give us the substring
+ // of intValStr to use in our new BigDecimal, and also accordingly
+ // adjusts the scale of our new BigDecimal.
+ while (intValStr.charAt(pointer) == '0')
+ {
+ pointer --;
+ newScale --;
+ }
+ // Create a new BigDecimal with the appropriate substring and then
+ // set its scale.
+ BigDecimal result = new BigDecimal(intValStr.substring(0, pointer + 1));
+ result.scale = newScale;
+ return result;
+ }
+
+ public long longValue ()
+ {
+ return toBigInteger().longValue();
+ }
+
+ public float floatValue()
+ {
+ return Float.valueOf(toString()).floatValue();
+ }
+
+ public double doubleValue()
+ {
+ return Double.valueOf(toString()).doubleValue();
+ }
+
+ public BigDecimal setScale (int scale) throws ArithmeticException
+ {
+ return setScale (scale, ROUND_UNNECESSARY);
+ }
+
+ public BigDecimal setScale (int scale, int roundingMode)
+ throws ArithmeticException, IllegalArgumentException
+ {
+ // NOTE: The 1.5 JRE doesn't throw this, ones prior to it do and
+ // the spec says it should. Nevertheless, if 1.6 doesn't fix this
+ // we should consider removing it.
+ if( scale < 0 ) throw new ArithmeticException("Scale parameter < 0.");
+ return divide (ONE, scale, roundingMode);
+ }
+
+ /**
+ * Returns a BigDecimal whose value is the same as this BigDecimal but whose
+ * representation has a scale of <code>newScale</code>. If the scale is
+ * reduced then rounding may occur, according to the RoundingMode.
+ * @param newScale
+ * @param roundingMode
+ * @return a BigDecimal whose scale is as given, whose value is
+ * <code>this</code> with possible rounding
+ * @throws ArithmeticException if the rounding mode is UNNECESSARY but
+ * rounding is required
+ * @since 1.5
+ */
+ public BigDecimal setScale(int newScale, RoundingMode roundingMode)
+ {
+ return setScale(newScale, roundingMode.ordinal());
+ }
+
+ /**
+ * Returns a new BigDecimal constructed from the BigDecimal(String)
+ * constructor using the Double.toString(double) method to obtain
+ * the String.
+ * @param val the double value used in Double.toString(double)
+ * @return a BigDecimal representation of val
+ * @throws NumberFormatException if val is NaN or infinite
+ * @since 1.5
+ */
+ public static BigDecimal valueOf(double val)
+ {
+ if (Double.isInfinite(val) || Double.isNaN(val))
+ throw new NumberFormatException("argument cannot be NaN or infinite.");
+ return new BigDecimal(Double.toString(val));
+ }
+
+ /**
+ * Returns a BigDecimal whose numerical value is the numerical value
+ * of this BigDecimal multiplied by 10 to the power of <code>n</code>.
+ * @param n the power of ten
+ * @return the new BigDecimal
+ * @since 1.5
+ */
+ public BigDecimal scaleByPowerOfTen(int n)
+ {
+ BigDecimal result = new BigDecimal(intVal, scale - n);
+ result.precision = precision;
+ return result;
+ }
+
+ /**
+ * Returns a BigDecimal whose value is <code>this</code> to the power of
+ * <code>n</code>.
+ * @param n the power
+ * @return the new BigDecimal
+ * @since 1.5
+ */
+ public BigDecimal pow(int n)
+ {
+ if (n < 0 || n > 999999999)
+ throw new ArithmeticException("n must be between 0 and 999999999");
+ BigDecimal result = new BigDecimal(intVal.pow(n), scale * n);
+ return result;
+ }
+
+ /**
+ * Returns a BigDecimal whose value is determined by first calling pow(n)
+ * and then by rounding according to the MathContext mc.
+ * @param n the power
+ * @param mc the MathContext
+ * @return the new BigDecimal
+ * @throws ArithmeticException if n < 0 or n > 999999999 or if the result is
+ * inexact but the rounding is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal pow(int n, MathContext mc)
+ {
+ // FIXME: The specs claim to use the X3.274-1996 algorithm. We
+ // currently do not.
+ return pow(n).round(mc);
+ }
+
+ /**
+ * Returns a BigDecimal whose value is the absolute value of this BigDecimal
+ * with rounding according to the given MathContext.
+ * @param mc the MathContext
+ * @return the new BigDecimal
+ */
+ public BigDecimal abs(MathContext mc)
+ {
+ BigDecimal result = abs();
+ result = result.round(mc);
+ return result;
+ }
+
+ /**
+ * Returns the size of a unit in the last place of this BigDecimal. This
+ * returns a BigDecimal with [unscaledValue, scale] = [1, this.scale()].
+ * @return the size of a unit in the last place of <code>this</code>.
+ * @since 1.5
+ */
+ public BigDecimal ulp()
+ {
+ return new BigDecimal(BigInteger.ONE, scale);
+ }
+
+ /**
+ * Converts this BigDecimal to a long value.
+ * @return the long value
+ * @throws ArithmeticException if rounding occurs or if overflow occurs
+ * @since 1.5
+ */
+ public long longValueExact()
+ {
+ // Set scale will throw an exception if rounding occurs.
+ BigDecimal temp = setScale(0, ROUND_UNNECESSARY);
+ BigInteger tempVal = temp.intVal;
+ // Check for overflow.
+ long result = intVal.longValue();
+ if (tempVal.compareTo(BigInteger.valueOf(Long.MAX_VALUE)) > 1
+ || (result < 0 && signum() == 1) || (result > 0 && signum() == -1))
+ throw new ArithmeticException("this BigDecimal is too " +
+ "large to fit into the return type");
+
+ return intVal.longValue();
+ }
+
+ /**
+ * Converts this BigDecimal into an int by first calling longValueExact
+ * and then checking that the <code>long</code> returned from that
+ * method fits into an <code>int</code>.
+ * @return an int whose value is <code>this</code>
+ * @throws ArithmeticException if this BigDecimal has a fractional part
+ * or is too large to fit into an int.
+ * @since 1.5
+ */
+ public int intValueExact()
+ {
+ long temp = longValueExact();
+ int result = (int)temp;
+ if (result != temp)
+ throw new ArithmeticException ("this BigDecimal cannot fit into an int");
+ return result;
+ }
+
+ /**
+ * Converts this BigDecimal into a byte by first calling longValueExact
+ * and then checking that the <code>long</code> returned from that
+ * method fits into a <code>byte</code>.
+ * @return a byte whose value is <code>this</code>
+ * @throws ArithmeticException if this BigDecimal has a fractional part
+ * or is too large to fit into a byte.
+ * @since 1.5
+ */
+ public byte byteValueExact()
+ {
+ long temp = longValueExact();
+ byte result = (byte)temp;
+ if (result != temp)
+ throw new ArithmeticException ("this BigDecimal cannot fit into a byte");
+ return result;
+ }
+
+ /**
+ * Converts this BigDecimal into a short by first calling longValueExact
+ * and then checking that the <code>long</code> returned from that
+ * method fits into a <code>short</code>.
+ * @return a short whose value is <code>this</code>
+ * @throws ArithmeticException if this BigDecimal has a fractional part
+ * or is too large to fit into a short.
+ * @since 1.5
+ */
+ public short shortValueExact()
+ {
+ long temp = longValueExact();
+ short result = (short)temp;
+ if (result != temp)
+ throw new ArithmeticException ("this BigDecimal cannot fit into a short");
+ return result;
+ }
+}