summaryrefslogtreecommitdiff
path: root/libjava/classpath/java/util/HashMap.java
diff options
context:
space:
mode:
authorupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
committerupstream source tree <ports@midipix.org>2015-03-15 20:14:05 -0400
commit554fd8c5195424bdbcabf5de30fdc183aba391bd (patch)
tree976dc5ab7fddf506dadce60ae936f43f58787092 /libjava/classpath/java/util/HashMap.java
downloadcbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.bz2
cbb-gcc-4.6.4-554fd8c5195424bdbcabf5de30fdc183aba391bd.tar.xz
obtained gcc-4.6.4.tar.bz2 from upstream website;upstream
verified gcc-4.6.4.tar.bz2.sig; imported gcc-4.6.4 source tree from verified upstream tarball. downloading a git-generated archive based on the 'upstream' tag should provide you with a source tree that is binary identical to the one extracted from the above tarball. if you have obtained the source via the command 'git clone', however, do note that line-endings of files in your working directory might differ from line-endings of the respective files in the upstream repository.
Diffstat (limited to 'libjava/classpath/java/util/HashMap.java')
-rw-r--r--libjava/classpath/java/util/HashMap.java907
1 files changed, 907 insertions, 0 deletions
diff --git a/libjava/classpath/java/util/HashMap.java b/libjava/classpath/java/util/HashMap.java
new file mode 100644
index 000000000..55d81c620
--- /dev/null
+++ b/libjava/classpath/java/util/HashMap.java
@@ -0,0 +1,907 @@
+/* HashMap.java -- a class providing a basic hashtable data structure,
+ mapping Object --> Object
+ Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package java.util;
+
+import java.io.IOException;
+import java.io.ObjectInputStream;
+import java.io.ObjectOutputStream;
+import java.io.Serializable;
+
+// NOTE: This implementation is very similar to that of Hashtable. If you fix
+// a bug in here, chances are you should make a similar change to the Hashtable
+// code.
+
+// NOTE: This implementation has some nasty coding style in order to
+// support LinkedHashMap, which extends this.
+
+/**
+ * This class provides a hashtable-backed implementation of the
+ * Map interface.
+ * <p>
+ *
+ * It uses a hash-bucket approach; that is, hash collisions are handled
+ * by linking the new node off of the pre-existing node (or list of
+ * nodes). In this manner, techniques such as linear probing (which
+ * can cause primary clustering) and rehashing (which does not fit very
+ * well with Java's method of precomputing hash codes) are avoided.
+ * <p>
+ *
+ * Under ideal circumstances (no collisions), HashMap offers O(1)
+ * performance on most operations (<code>containsValue()</code> is,
+ * of course, O(n)). In the worst case (all keys map to the same
+ * hash code -- very unlikely), most operations are O(n).
+ * <p>
+ *
+ * HashMap is part of the JDK1.2 Collections API. It differs from
+ * Hashtable in that it accepts the null key and null values, and it
+ * does not support "Enumeration views." Also, it is not synchronized;
+ * if you plan to use it in multiple threads, consider using:<br>
+ * <code>Map m = Collections.synchronizedMap(new HashMap(...));</code>
+ * <p>
+ *
+ * The iterators are <i>fail-fast</i>, meaning that any structural
+ * modification, except for <code>remove()</code> called on the iterator
+ * itself, cause the iterator to throw a
+ * <code>ConcurrentModificationException</code> rather than exhibit
+ * non-deterministic behavior.
+ *
+ * @author Jon Zeppieri
+ * @author Jochen Hoenicke
+ * @author Bryce McKinlay
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @see Object#hashCode()
+ * @see Collection
+ * @see Map
+ * @see TreeMap
+ * @see LinkedHashMap
+ * @see IdentityHashMap
+ * @see Hashtable
+ * @since 1.2
+ * @status updated to 1.4
+ */
+public class HashMap<K, V> extends AbstractMap<K, V>
+ implements Map<K, V>, Cloneable, Serializable
+{
+ /**
+ * Default number of buckets. This is the value the JDK 1.3 uses. Some
+ * early documentation specified this value as 101. That is incorrect.
+ * Package visible for use by HashSet.
+ */
+ static final int DEFAULT_CAPACITY = 11;
+
+ /**
+ * The default load factor; this is explicitly specified by the spec.
+ * Package visible for use by HashSet.
+ */
+ static final float DEFAULT_LOAD_FACTOR = 0.75f;
+
+ /**
+ * Compatible with JDK 1.2.
+ */
+ private static final long serialVersionUID = 362498820763181265L;
+
+ /**
+ * The rounded product of the capacity and the load factor; when the number
+ * of elements exceeds the threshold, the HashMap calls
+ * <code>rehash()</code>.
+ * @serial the threshold for rehashing
+ */
+ private int threshold;
+
+ /**
+ * Load factor of this HashMap: used in computing the threshold.
+ * Package visible for use by HashSet.
+ * @serial the load factor
+ */
+ final float loadFactor;
+
+ /**
+ * Array containing the actual key-value mappings.
+ * Package visible for use by nested and subclasses.
+ */
+ transient HashEntry<K, V>[] buckets;
+
+ /**
+ * Counts the number of modifications this HashMap has undergone, used
+ * by Iterators to know when to throw ConcurrentModificationExceptions.
+ * Package visible for use by nested and subclasses.
+ */
+ transient int modCount;
+
+ /**
+ * The size of this HashMap: denotes the number of key-value pairs.
+ * Package visible for use by nested and subclasses.
+ */
+ transient int size;
+
+ /**
+ * The cache for {@link #entrySet()}.
+ */
+ private transient Set<Map.Entry<K, V>> entries;
+
+ /**
+ * Class to represent an entry in the hash table. Holds a single key-value
+ * pair. Package visible for use by subclass.
+ *
+ * @author Eric Blake (ebb9@email.byu.edu)
+ */
+ static class HashEntry<K, V> extends AbstractMap.SimpleEntry<K, V>
+ {
+ /**
+ * The next entry in the linked list. Package visible for use by subclass.
+ */
+ HashEntry<K, V> next;
+
+ /**
+ * Simple constructor.
+ * @param key the key
+ * @param value the value
+ */
+ HashEntry(K key, V value)
+ {
+ super(key, value);
+ }
+
+ /**
+ * Called when this entry is accessed via {@link #put(Object, Object)}.
+ * This version does nothing, but in LinkedHashMap, it must do some
+ * bookkeeping for access-traversal mode.
+ */
+ void access()
+ {
+ }
+
+ /**
+ * Called when this entry is removed from the map. This version simply
+ * returns the value, but in LinkedHashMap, it must also do bookkeeping.
+ *
+ * @return the value of this key as it is removed
+ */
+ V cleanup()
+ {
+ return value;
+ }
+ }
+
+ /**
+ * Construct a new HashMap with the default capacity (11) and the default
+ * load factor (0.75).
+ */
+ public HashMap()
+ {
+ this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR);
+ }
+
+ /**
+ * Construct a new HashMap from the given Map, with initial capacity
+ * the greater of the size of <code>m</code> or the default of 11.
+ * <p>
+ *
+ * Every element in Map m will be put into this new HashMap.
+ *
+ * @param m a Map whose key / value pairs will be put into the new HashMap.
+ * <b>NOTE: key / value pairs are not cloned in this constructor.</b>
+ * @throws NullPointerException if m is null
+ */
+ public HashMap(Map<? extends K, ? extends V> m)
+ {
+ this(Math.max(m.size() * 2, DEFAULT_CAPACITY), DEFAULT_LOAD_FACTOR);
+ putAll(m);
+ }
+
+ /**
+ * Construct a new HashMap with a specific inital capacity and
+ * default load factor of 0.75.
+ *
+ * @param initialCapacity the initial capacity of this HashMap (&gt;=0)
+ * @throws IllegalArgumentException if (initialCapacity &lt; 0)
+ */
+ public HashMap(int initialCapacity)
+ {
+ this(initialCapacity, DEFAULT_LOAD_FACTOR);
+ }
+
+ /**
+ * Construct a new HashMap with a specific inital capacity and load factor.
+ *
+ * @param initialCapacity the initial capacity (&gt;=0)
+ * @param loadFactor the load factor (&gt; 0, not NaN)
+ * @throws IllegalArgumentException if (initialCapacity &lt; 0) ||
+ * ! (loadFactor &gt; 0.0)
+ */
+ public HashMap(int initialCapacity, float loadFactor)
+ {
+ if (initialCapacity < 0)
+ throw new IllegalArgumentException("Illegal Capacity: "
+ + initialCapacity);
+ if (! (loadFactor > 0)) // check for NaN too
+ throw new IllegalArgumentException("Illegal Load: " + loadFactor);
+
+ if (initialCapacity == 0)
+ initialCapacity = 1;
+ buckets = (HashEntry<K, V>[]) new HashEntry[initialCapacity];
+ this.loadFactor = loadFactor;
+ threshold = (int) (initialCapacity * loadFactor);
+ }
+
+ /**
+ * Returns the number of kay-value mappings currently in this Map.
+ *
+ * @return the size
+ */
+ public int size()
+ {
+ return size;
+ }
+
+ /**
+ * Returns true if there are no key-value mappings currently in this Map.
+ *
+ * @return <code>size() == 0</code>
+ */
+ public boolean isEmpty()
+ {
+ return size == 0;
+ }
+
+ /**
+ * Return the value in this HashMap associated with the supplied key,
+ * or <code>null</code> if the key maps to nothing. NOTE: Since the value
+ * could also be null, you must use containsKey to see if this key
+ * actually maps to something.
+ *
+ * @param key the key for which to fetch an associated value
+ * @return what the key maps to, if present
+ * @see #put(Object, Object)
+ * @see #containsKey(Object)
+ */
+ public V get(Object key)
+ {
+ int idx = hash(key);
+ HashEntry<K, V> e = buckets[idx];
+ while (e != null)
+ {
+ if (equals(key, e.key))
+ return e.value;
+ e = e.next;
+ }
+ return null;
+ }
+
+ /**
+ * Returns true if the supplied object <code>equals()</code> a key
+ * in this HashMap.
+ *
+ * @param key the key to search for in this HashMap
+ * @return true if the key is in the table
+ * @see #containsValue(Object)
+ */
+ public boolean containsKey(Object key)
+ {
+ int idx = hash(key);
+ HashEntry<K, V> e = buckets[idx];
+ while (e != null)
+ {
+ if (equals(key, e.key))
+ return true;
+ e = e.next;
+ }
+ return false;
+ }
+
+ /**
+ * Puts the supplied value into the Map, mapped by the supplied key.
+ * The value may be retrieved by any object which <code>equals()</code>
+ * this key. NOTE: Since the prior value could also be null, you must
+ * first use containsKey if you want to see if you are replacing the
+ * key's mapping.
+ *
+ * @param key the key used to locate the value
+ * @param value the value to be stored in the HashMap
+ * @return the prior mapping of the key, or null if there was none
+ * @see #get(Object)
+ * @see Object#equals(Object)
+ */
+ public V put(K key, V value)
+ {
+ int idx = hash(key);
+ HashEntry<K, V> e = buckets[idx];
+
+ while (e != null)
+ {
+ if (equals(key, e.key))
+ {
+ e.access(); // Must call this for bookkeeping in LinkedHashMap.
+ V r = e.value;
+ e.value = value;
+ return r;
+ }
+ else
+ e = e.next;
+ }
+
+ // At this point, we know we need to add a new entry.
+ modCount++;
+ if (++size > threshold)
+ {
+ rehash();
+ // Need a new hash value to suit the bigger table.
+ idx = hash(key);
+ }
+
+ // LinkedHashMap cannot override put(), hence this call.
+ addEntry(key, value, idx, true);
+ return null;
+ }
+
+ /**
+ * Copies all elements of the given map into this hashtable. If this table
+ * already has a mapping for a key, the new mapping replaces the current
+ * one.
+ *
+ * @param m the map to be hashed into this
+ */
+ public void putAll(Map<? extends K, ? extends V> m)
+ {
+ final Map<K,V> addMap = (Map<K,V>) m;
+ final Iterator<Map.Entry<K,V>> it = addMap.entrySet().iterator();
+ while (it.hasNext())
+ {
+ final Map.Entry<K,V> e = it.next();
+ // Optimize in case the Entry is one of our own.
+ if (e instanceof AbstractMap.SimpleEntry)
+ {
+ AbstractMap.SimpleEntry<? extends K, ? extends V> entry
+ = (AbstractMap.SimpleEntry<? extends K, ? extends V>) e;
+ put(entry.key, entry.value);
+ }
+ else
+ put(e.getKey(), e.getValue());
+ }
+ }
+
+ /**
+ * Removes from the HashMap and returns the value which is mapped by the
+ * supplied key. If the key maps to nothing, then the HashMap remains
+ * unchanged, and <code>null</code> is returned. NOTE: Since the value
+ * could also be null, you must use containsKey to see if you are
+ * actually removing a mapping.
+ *
+ * @param key the key used to locate the value to remove
+ * @return whatever the key mapped to, if present
+ */
+ public V remove(Object key)
+ {
+ int idx = hash(key);
+ HashEntry<K, V> e = buckets[idx];
+ HashEntry<K, V> last = null;
+
+ while (e != null)
+ {
+ if (equals(key, e.key))
+ {
+ modCount++;
+ if (last == null)
+ buckets[idx] = e.next;
+ else
+ last.next = e.next;
+ size--;
+ // Method call necessary for LinkedHashMap to work correctly.
+ return e.cleanup();
+ }
+ last = e;
+ e = e.next;
+ }
+ return null;
+ }
+
+ /**
+ * Clears the Map so it has no keys. This is O(1).
+ */
+ public void clear()
+ {
+ if (size != 0)
+ {
+ modCount++;
+ Arrays.fill(buckets, null);
+ size = 0;
+ }
+ }
+
+ /**
+ * Returns true if this HashMap contains a value <code>o</code>, such that
+ * <code>o.equals(value)</code>.
+ *
+ * @param value the value to search for in this HashMap
+ * @return true if at least one key maps to the value
+ * @see #containsKey(Object)
+ */
+ public boolean containsValue(Object value)
+ {
+ for (int i = buckets.length - 1; i >= 0; i--)
+ {
+ HashEntry<K, V> e = buckets[i];
+ while (e != null)
+ {
+ if (equals(value, e.value))
+ return true;
+ e = e.next;
+ }
+ }
+ return false;
+ }
+
+ /**
+ * Returns a shallow clone of this HashMap. The Map itself is cloned,
+ * but its contents are not. This is O(n).
+ *
+ * @return the clone
+ */
+ public Object clone()
+ {
+ HashMap<K, V> copy = null;
+ try
+ {
+ copy = (HashMap<K, V>) super.clone();
+ }
+ catch (CloneNotSupportedException x)
+ {
+ // This is impossible.
+ }
+ copy.buckets = (HashEntry<K, V>[]) new HashEntry[buckets.length];
+ copy.putAllInternal(this);
+ // Clear the entry cache. AbstractMap.clone() does the others.
+ copy.entries = null;
+ return copy;
+ }
+
+ /**
+ * Returns a "set view" of this HashMap's keys. The set is backed by the
+ * HashMap, so changes in one show up in the other. The set supports
+ * element removal, but not element addition.
+ *
+ * @return a set view of the keys
+ * @see #values()
+ * @see #entrySet()
+ */
+ public Set<K> keySet()
+ {
+ if (keys == null)
+ // Create an AbstractSet with custom implementations of those methods
+ // that can be overridden easily and efficiently.
+ keys = new AbstractSet<K>()
+ {
+ public int size()
+ {
+ return size;
+ }
+
+ public Iterator<K> iterator()
+ {
+ // Cannot create the iterator directly, because of LinkedHashMap.
+ return HashMap.this.iterator(KEYS);
+ }
+
+ public void clear()
+ {
+ HashMap.this.clear();
+ }
+
+ public boolean contains(Object o)
+ {
+ return containsKey(o);
+ }
+
+ public boolean remove(Object o)
+ {
+ // Test against the size of the HashMap to determine if anything
+ // really got removed. This is necessary because the return value
+ // of HashMap.remove() is ambiguous in the null case.
+ int oldsize = size;
+ HashMap.this.remove(o);
+ return oldsize != size;
+ }
+ };
+ return keys;
+ }
+
+ /**
+ * Returns a "collection view" (or "bag view") of this HashMap's values.
+ * The collection is backed by the HashMap, so changes in one show up
+ * in the other. The collection supports element removal, but not element
+ * addition.
+ *
+ * @return a bag view of the values
+ * @see #keySet()
+ * @see #entrySet()
+ */
+ public Collection<V> values()
+ {
+ if (values == null)
+ // We don't bother overriding many of the optional methods, as doing so
+ // wouldn't provide any significant performance advantage.
+ values = new AbstractCollection<V>()
+ {
+ public int size()
+ {
+ return size;
+ }
+
+ public Iterator<V> iterator()
+ {
+ // Cannot create the iterator directly, because of LinkedHashMap.
+ return HashMap.this.iterator(VALUES);
+ }
+
+ public void clear()
+ {
+ HashMap.this.clear();
+ }
+ };
+ return values;
+ }
+
+ /**
+ * Returns a "set view" of this HashMap's entries. The set is backed by
+ * the HashMap, so changes in one show up in the other. The set supports
+ * element removal, but not element addition.<p>
+ *
+ * Note that the iterators for all three views, from keySet(), entrySet(),
+ * and values(), traverse the HashMap in the same sequence.
+ *
+ * @return a set view of the entries
+ * @see #keySet()
+ * @see #values()
+ * @see Map.Entry
+ */
+ public Set<Map.Entry<K, V>> entrySet()
+ {
+ if (entries == null)
+ // Create an AbstractSet with custom implementations of those methods
+ // that can be overridden easily and efficiently.
+ entries = new AbstractSet<Map.Entry<K, V>>()
+ {
+ public int size()
+ {
+ return size;
+ }
+
+ public Iterator<Map.Entry<K, V>> iterator()
+ {
+ // Cannot create the iterator directly, because of LinkedHashMap.
+ return HashMap.this.iterator(ENTRIES);
+ }
+
+ public void clear()
+ {
+ HashMap.this.clear();
+ }
+
+ public boolean contains(Object o)
+ {
+ return getEntry(o) != null;
+ }
+
+ public boolean remove(Object o)
+ {
+ HashEntry<K, V> e = getEntry(o);
+ if (e != null)
+ {
+ HashMap.this.remove(e.key);
+ return true;
+ }
+ return false;
+ }
+ };
+ return entries;
+ }
+
+ /**
+ * Helper method for put, that creates and adds a new Entry. This is
+ * overridden in LinkedHashMap for bookkeeping purposes.
+ *
+ * @param key the key of the new Entry
+ * @param value the value
+ * @param idx the index in buckets where the new Entry belongs
+ * @param callRemove whether to call the removeEldestEntry method
+ * @see #put(Object, Object)
+ */
+ void addEntry(K key, V value, int idx, boolean callRemove)
+ {
+ HashEntry<K, V> e = new HashEntry<K, V>(key, value);
+ e.next = buckets[idx];
+ buckets[idx] = e;
+ }
+
+ /**
+ * Helper method for entrySet(), which matches both key and value
+ * simultaneously.
+ *
+ * @param o the entry to match
+ * @return the matching entry, if found, or null
+ * @see #entrySet()
+ */
+ // Package visible, for use in nested classes.
+ final HashEntry<K, V> getEntry(Object o)
+ {
+ if (! (o instanceof Map.Entry))
+ return null;
+ Map.Entry<K, V> me = (Map.Entry<K, V>) o;
+ K key = me.getKey();
+ int idx = hash(key);
+ HashEntry<K, V> e = buckets[idx];
+ while (e != null)
+ {
+ if (equals(e.key, key))
+ return equals(e.value, me.getValue()) ? e : null;
+ e = e.next;
+ }
+ return null;
+ }
+
+ /**
+ * Helper method that returns an index in the buckets array for `key'
+ * based on its hashCode(). Package visible for use by subclasses.
+ *
+ * @param key the key
+ * @return the bucket number
+ */
+ final int hash(Object key)
+ {
+ return key == null ? 0 : Math.abs(key.hashCode() % buckets.length);
+ }
+
+ /**
+ * Generates a parameterized iterator. Must be overrideable, since
+ * LinkedHashMap iterates in a different order.
+ *
+ * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
+ * @return the appropriate iterator
+ */
+ <T> Iterator<T> iterator(int type)
+ {
+ // FIXME: bogus cast here.
+ return new HashIterator<T>(type);
+ }
+
+ /**
+ * A simplified, more efficient internal implementation of putAll(). clone()
+ * should not call putAll or put, in order to be compatible with the JDK
+ * implementation with respect to subclasses.
+ *
+ * @param m the map to initialize this from
+ */
+ void putAllInternal(Map<? extends K, ? extends V> m)
+ {
+ final Map<K,V> addMap = (Map<K,V>) m;
+ final Iterator<Map.Entry<K,V>> it = addMap.entrySet().iterator();
+ size = 0;
+ while (it.hasNext())
+ {
+ final Map.Entry<K,V> e = it.next();
+ size++;
+ K key = e.getKey();
+ int idx = hash(key);
+ addEntry(key, e.getValue(), idx, false);
+ }
+ }
+
+ /**
+ * Increases the size of the HashMap and rehashes all keys to new
+ * array indices; this is called when the addition of a new value
+ * would cause size() &gt; threshold. Note that the existing Entry
+ * objects are reused in the new hash table.
+ *
+ * <p>This is not specified, but the new size is twice the current size
+ * plus one; this number is not always prime, unfortunately.
+ */
+ private void rehash()
+ {
+ HashEntry<K, V>[] oldBuckets = buckets;
+
+ int newcapacity = (buckets.length * 2) + 1;
+ threshold = (int) (newcapacity * loadFactor);
+ buckets = (HashEntry<K, V>[]) new HashEntry[newcapacity];
+
+ for (int i = oldBuckets.length - 1; i >= 0; i--)
+ {
+ HashEntry<K, V> e = oldBuckets[i];
+ while (e != null)
+ {
+ int idx = hash(e.key);
+ HashEntry<K, V> dest = buckets[idx];
+ HashEntry<K, V> next = e.next;
+ e.next = buckets[idx];
+ buckets[idx] = e;
+ e = next;
+ }
+ }
+ }
+
+ /**
+ * Serializes this object to the given stream.
+ *
+ * @param s the stream to write to
+ * @throws IOException if the underlying stream fails
+ * @serialData the <i>capacity</i>(int) that is the length of the
+ * bucket array, the <i>size</i>(int) of the hash map
+ * are emitted first. They are followed by size entries,
+ * each consisting of a key (Object) and a value (Object).
+ */
+ private void writeObject(ObjectOutputStream s) throws IOException
+ {
+ // Write the threshold and loadFactor fields.
+ s.defaultWriteObject();
+
+ s.writeInt(buckets.length);
+ s.writeInt(size);
+ // Avoid creating a wasted Set by creating the iterator directly.
+ Iterator<HashEntry<K, V>> it = iterator(ENTRIES);
+ while (it.hasNext())
+ {
+ HashEntry<K, V> entry = it.next();
+ s.writeObject(entry.key);
+ s.writeObject(entry.value);
+ }
+ }
+
+ /**
+ * Deserializes this object from the given stream.
+ *
+ * @param s the stream to read from
+ * @throws ClassNotFoundException if the underlying stream fails
+ * @throws IOException if the underlying stream fails
+ * @serialData the <i>capacity</i>(int) that is the length of the
+ * bucket array, the <i>size</i>(int) of the hash map
+ * are emitted first. They are followed by size entries,
+ * each consisting of a key (Object) and a value (Object).
+ */
+ private void readObject(ObjectInputStream s)
+ throws IOException, ClassNotFoundException
+ {
+ // Read the threshold and loadFactor fields.
+ s.defaultReadObject();
+
+ // Read and use capacity, followed by key/value pairs.
+ buckets = (HashEntry<K, V>[]) new HashEntry[s.readInt()];
+ int len = s.readInt();
+ size = len;
+ while (len-- > 0)
+ {
+ Object key = s.readObject();
+ addEntry((K) key, (V) s.readObject(), hash(key), false);
+ }
+ }
+
+ /**
+ * Iterate over HashMap's entries.
+ * This implementation is parameterized to give a sequential view of
+ * keys, values, or entries.
+ *
+ * @author Jon Zeppieri
+ */
+ private final class HashIterator<T> implements Iterator<T>
+ {
+ /**
+ * The type of this Iterator: {@link #KEYS}, {@link #VALUES},
+ * or {@link #ENTRIES}.
+ */
+ private final int type;
+ /**
+ * The number of modifications to the backing HashMap that we know about.
+ */
+ private int knownMod = modCount;
+ /** The number of elements remaining to be returned by next(). */
+ private int count = size;
+ /** Current index in the physical hash table. */
+ private int idx = buckets.length;
+ /** The last Entry returned by a next() call. */
+ private HashEntry last;
+ /**
+ * The next entry that should be returned by next(). It is set to something
+ * if we're iterating through a bucket that contains multiple linked
+ * entries. It is null if next() needs to find a new bucket.
+ */
+ private HashEntry next;
+
+ /**
+ * Construct a new HashIterator with the supplied type.
+ * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
+ */
+ HashIterator(int type)
+ {
+ this.type = type;
+ }
+
+ /**
+ * Returns true if the Iterator has more elements.
+ * @return true if there are more elements
+ */
+ public boolean hasNext()
+ {
+ return count > 0;
+ }
+
+ /**
+ * Returns the next element in the Iterator's sequential view.
+ * @return the next element
+ * @throws ConcurrentModificationException if the HashMap was modified
+ * @throws NoSuchElementException if there is none
+ */
+ public T next()
+ {
+ if (knownMod != modCount)
+ throw new ConcurrentModificationException();
+ if (count == 0)
+ throw new NoSuchElementException();
+ count--;
+ HashEntry e = next;
+
+ while (e == null)
+ e = buckets[--idx];
+
+ next = e.next;
+ last = e;
+ if (type == VALUES)
+ return (T) e.value;
+ if (type == KEYS)
+ return (T) e.key;
+ return (T) e;
+ }
+
+ /**
+ * Removes from the backing HashMap the last element which was fetched
+ * with the <code>next()</code> method.
+ * @throws ConcurrentModificationException if the HashMap was modified
+ * @throws IllegalStateException if called when there is no last element
+ */
+ public void remove()
+ {
+ if (knownMod != modCount)
+ throw new ConcurrentModificationException();
+ if (last == null)
+ throw new IllegalStateException();
+
+ HashMap.this.remove(last.key);
+ last = null;
+ knownMod++;
+ }
+ }
+}