summaryrefslogtreecommitdiff
path: root/gcc/config/pa/pa64-regs.h
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/config/pa/pa64-regs.h')
-rw-r--r--gcc/config/pa/pa64-regs.h294
1 files changed, 294 insertions, 0 deletions
diff --git a/gcc/config/pa/pa64-regs.h b/gcc/config/pa/pa64-regs.h
new file mode 100644
index 000000000..313577b62
--- /dev/null
+++ b/gcc/config/pa/pa64-regs.h
@@ -0,0 +1,294 @@
+/* Configuration for GCC-compiler for PA-RISC.
+ Copyright (C) 1999, 2000, 2003, 2004, 2007, 2008, 2010
+ Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* Standard register usage.
+
+ It is safe to refer to actual register numbers in this file. */
+
+/* Number of actual hardware registers.
+ The hardware registers are assigned numbers for the compiler
+ from 0 to just below FIRST_PSEUDO_REGISTER.
+ All registers that the compiler knows about must be given numbers,
+ even those that are not normally considered general registers.
+
+ HP-PA 2.0w has 32 fullword registers and 32 floating point
+ registers. However, the floating point registers behave
+ differently: the left and right halves of registers are addressable
+ as 32-bit registers.
+
+ Due to limitations within GCC itself, we do not expose the left/right
+ half addressability when in wide mode. This is not a major performance
+ issue as using the halves independently triggers false dependency stalls
+ anyway. */
+
+#define FIRST_PSEUDO_REGISTER 62 /* 32 general regs + 28 fp regs +
+ + 1 shift reg + frame pointer */
+
+/* 1 for registers that have pervasive standard uses
+ and are not available for the register allocator.
+
+ On the HP-PA, these are:
+ Reg 0 = 0 (hardware). However, 0 is used for condition code,
+ so is not fixed.
+ Reg 1 = ADDIL target/Temporary (hardware).
+ Reg 2 = Return Pointer
+ Reg 3 = Frame Pointer
+ Reg 4 = Frame Pointer (>8k varying frame with HP compilers only)
+ Reg 4-18 = Preserved Registers
+ Reg 19 = Linkage Table Register in HPUX 8.0 shared library scheme.
+ Reg 20-22 = Temporary Registers
+ Reg 23-26 = Temporary/Parameter Registers
+ Reg 27 = Global Data Pointer (hp)
+ Reg 28 = Temporary/Return Value register
+ Reg 29 = Temporary/Static Chain/Return Value register #2
+ Reg 30 = stack pointer
+ Reg 31 = Temporary/Millicode Return Pointer (hp)
+
+ Freg 0-3 = Status Registers -- Not known to the compiler.
+ Freg 4-7 = Arguments/Return Value
+ Freg 8-11 = Temporary Registers
+ Freg 12-21 = Preserved Registers
+ Freg 22-31 = Temporary Registers
+
+*/
+
+#define FIXED_REGISTERS \
+ {0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 1, 0, 0, 1, 0, \
+ /* fp registers */ \
+ 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, \
+ /* shift register and soft frame pointer */ \
+ 0, 1}
+
+/* 1 for registers not available across function calls.
+ These must include the FIXED_REGISTERS and also any
+ registers that can be used without being saved.
+ The latter must include the registers where values are returned
+ and the register where structure-value addresses are passed.
+ Aside from that, you can include as many other registers as you like. */
+#define CALL_USED_REGISTERS \
+ {1, 1, 1, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 1, 1, 1, 1, 1, \
+ 1, 1, 1, 1, 1, 1, 1, 1, \
+ /* fp registers */ \
+ 1, 1, 1, 1, 1, 1, 1, 1, \
+ 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 1, 1, 1, 1, 1, 1, \
+ 1, 1, 1, 1, \
+ /* shift register and soft frame pointer */ \
+ 1, 1}
+
+/* Allocate the call used registers first. This should minimize
+ the number of registers that need to be saved (as call used
+ registers will generally not be allocated across a call).
+
+ Experimentation has shown slightly better results by allocating
+ FP registers first. We allocate the caller-saved registers more
+ or less in reverse order to their allocation as arguments. */
+
+#define REG_ALLOC_ORDER \
+ { \
+ /* caller-saved fp regs. */ \
+ 50, 51, 52, 53, 54, 55, 56, 57, \
+ 58, 59, 39, 38, 37, 36, 35, 34, \
+ 33, 32, \
+ /* caller-saved general regs. */ \
+ 28, 31, 19, 20, 21, 22, 23, 24, \
+ 25, 26, 29, 2, \
+ /* callee-saved fp regs. */ \
+ 40, 41, 42, 43, 44, 45, 46, 47, \
+ 48, 49, \
+ /* callee-saved general regs. */ \
+ 3, 4, 5, 6, 7, 8, 9, 10, \
+ 11, 12, 13, 14, 15, 16, 17, 18, \
+ /* special registers. */ \
+ 1, 27, 30, 0, 60, 61}
+
+
+/* Return number of consecutive hard regs needed starting at reg REGNO
+ to hold something of mode MODE.
+ This is ordinarily the length in words of a value of mode MODE
+ but can be less for certain modes in special long registers.
+
+ For PA64, GPRs and FPRs hold 64 bits worth. We ignore the 32-bit
+ addressability of the FPRs and pretend each register holds precisely
+ WORD_SIZE bits. Note that SCmode values are placed in a single FPR.
+ Thus, any patterns defined to operate on these values would have to
+ use the 32-bit addressability of the FPR registers. */
+#define HARD_REGNO_NREGS(REGNO, MODE) \
+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
+
+/* These are the valid FP modes. */
+#define VALID_FP_MODE_P(MODE) \
+ ((MODE) == SFmode || (MODE) == DFmode \
+ || (MODE) == SCmode || (MODE) == DCmode \
+ || (MODE) == SImode || (MODE) == DImode)
+
+/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
+ On the HP-PA, the cpu registers can hold any mode. We
+ force this to be an even register if it cannot hold the full mode. */
+#define HARD_REGNO_MODE_OK(REGNO, MODE) \
+ ((REGNO) == 0 \
+ ? (MODE) == CCmode || (MODE) == CCFPmode \
+ : (REGNO) == 60 ? SCALAR_INT_MODE_P (MODE) \
+ /* Make wide modes be in aligned registers. */ \
+ : FP_REGNO_P (REGNO) \
+ ? (VALID_FP_MODE_P (MODE) \
+ && (GET_MODE_SIZE (MODE) <= 8 \
+ || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 1) == 0) \
+ || (GET_MODE_SIZE (MODE) == 32 && ((REGNO) & 3) == 0))) \
+ : (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD \
+ || (GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD \
+ && ((((REGNO) & 1) == 1 && (REGNO) <= 25) || (REGNO) == 28)) \
+ || (GET_MODE_SIZE (MODE) == 4 * UNITS_PER_WORD \
+ && ((REGNO) & 3) == 3 && (REGNO) <= 23)))
+
+/* How to renumber registers for dbx and gdb.
+
+ Registers 0 - 31 remain unchanged.
+
+ Registers 32 - 59 are mapped to 72, 74, 76 ...
+
+ Register 60 is mapped to 32. */
+#define DBX_REGISTER_NUMBER(REGNO) \
+ ((REGNO) <= 31 ? (REGNO) : ((REGNO) < 60 ? (REGNO - 32) * 2 + 72 : 32))
+
+/* We must not use the DBX register numbers for the DWARF 2 CFA column
+ numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
+ Instead use the identity mapping. */
+#define DWARF_FRAME_REGNUM(REG) REG
+
+/* Define the classes of registers for register constraints in the
+ machine description. Also define ranges of constants.
+
+ One of the classes must always be named ALL_REGS and include all hard regs.
+ If there is more than one class, another class must be named NO_REGS
+ and contain no registers.
+
+ The name GENERAL_REGS must be the name of a class (or an alias for
+ another name such as ALL_REGS). This is the class of registers
+ that is allowed by "g" or "r" in a register constraint.
+ Also, registers outside this class are allocated only when
+ instructions express preferences for them.
+
+ The classes must be numbered in nondecreasing order; that is,
+ a larger-numbered class must never be contained completely
+ in a smaller-numbered class.
+
+ For any two classes, it is very desirable that there be another
+ class that represents their union. */
+
+ /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
+ 1.1 fp regs, and the high 1.1 fp regs, to which the operands of
+ fmpyadd and fmpysub are restricted. */
+
+enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FPUPPER_REGS, FP_REGS,
+ GENERAL_OR_FP_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};
+
+#define N_REG_CLASSES (int) LIM_REG_CLASSES
+
+/* Give names of register classes as strings for dump file. */
+
+#define REG_CLASS_NAMES \
+ {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \
+ "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"}
+
+/* Define which registers fit in which classes.
+ This is an initializer for a vector of HARD_REG_SET
+ of length N_REG_CLASSES. Register 0, the "condition code" register,
+ is in no class. */
+
+#define REG_CLASS_CONTENTS \
+ {{0x00000000, 0x00000000}, /* NO_REGS */ \
+ {0x00000002, 0x00000000}, /* R1_REGS */ \
+ {0xfffffffe, 0x20000000}, /* GENERAL_REGS */ \
+ {0x00000000, 0x00000000}, /* FPUPPER_REGS */ \
+ {0x00000000, 0x0fffffff}, /* FP_REGS */ \
+ {0xfffffffe, 0x2fffffff}, /* GENERAL_OR_FP_REGS */ \
+ {0x00000000, 0x10000000}, /* SHIFT_REGS */ \
+ {0xfffffffe, 0x3fffffff}} /* ALL_REGS */
+
+/* The following macro defines cover classes for Integrated Register
+ Allocator. Cover classes is a set of non-intersected register
+ classes covering all hard registers used for register allocation
+ purpose. Any move between two registers of a cover class should be
+ cheaper than load or store of the registers. The macro value is
+ array of register classes with LIM_REG_CLASSES used as the end
+ marker. */
+
+#define IRA_COVER_CLASSES \
+{ \
+ GENERAL_REGS, FP_REGS, SHIFT_REGS, LIM_REG_CLASSES \
+}
+
+/* Defines invalid mode changes. */
+
+#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
+ pa_cannot_change_mode_class (FROM, TO, CLASS)
+
+/* Return the class number of the smallest class containing
+ reg number REGNO. This could be a conditional expression
+ or could index an array. */
+
+#define REGNO_REG_CLASS(REGNO) \
+ ((REGNO) == 0 ? NO_REGS \
+ : (REGNO) == 1 ? R1_REGS \
+ : (REGNO) < 32 || (REGNO) == 61 ? GENERAL_REGS \
+ : (REGNO) < 60 ? FP_REGS \
+ : SHIFT_REGS)
+
+/* Return the maximum number of consecutive registers
+ needed to represent mode MODE in a register of class CLASS. */
+#define CLASS_MAX_NREGS(CLASS, MODE) \
+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
+
+/* 1 if N is a possible register number for function argument passing. */
+
+#define FUNCTION_ARG_REGNO_P(N) \
+ ((((N) >= 19) && (N) <= 26) \
+ || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39))
+
+/* How to refer to registers in assembler output.
+ This sequence is indexed by compiler's hard-register-number (see above). */
+
+#define REGISTER_NAMES \
+{"%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
+ "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
+ "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23", \
+ "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31", \
+ "%fr4", "%fr5", "%fr6", "%fr7", "%fr8", "%fr9", "%fr10", "%fr11", \
+ "%fr12", "%fr13", "%fr14", "%fr15", "%fr16", "%fr17", "%fr18", "%fr19", \
+ "%fr20", "%fr21", "%fr22", "%fr23", "%fr24", "%fr25", "%fr26", "%fr27", \
+ "%fr28", "%fr29", "%fr30", "%fr31", "SAR", "sfp"}
+
+#define ADDITIONAL_REGISTER_NAMES \
+ {{"%cr11",60}}
+
+#define FP_SAVED_REG_LAST 49
+#define FP_SAVED_REG_FIRST 40
+#define FP_REG_STEP 1
+#define FP_REG_FIRST 32
+#define FP_REG_LAST 59