diff options
Diffstat (limited to 'gcc/config/sparc/sparc.c')
-rw-r--r-- | gcc/config/sparc/sparc.c | 9873 |
1 files changed, 9873 insertions, 0 deletions
diff --git a/gcc/config/sparc/sparc.c b/gcc/config/sparc/sparc.c new file mode 100644 index 000000000..9682609fe --- /dev/null +++ b/gcc/config/sparc/sparc.c @@ -0,0 +1,9873 @@ +/* Subroutines for insn-output.c for SPARC. + Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, + 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 + Free Software Foundation, Inc. + Contributed by Michael Tiemann (tiemann@cygnus.com) + 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans, + at Cygnus Support. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "tree.h" +#include "rtl.h" +#include "regs.h" +#include "hard-reg-set.h" +#include "insn-config.h" +#include "insn-codes.h" +#include "conditions.h" +#include "output.h" +#include "insn-attr.h" +#include "flags.h" +#include "function.h" +#include "except.h" +#include "expr.h" +#include "optabs.h" +#include "recog.h" +#include "diagnostic-core.h" +#include "ggc.h" +#include "tm_p.h" +#include "debug.h" +#include "target.h" +#include "target-def.h" +#include "cfglayout.h" +#include "gimple.h" +#include "langhooks.h" +#include "reload.h" +#include "params.h" +#include "df.h" +#include "dwarf2out.h" + +/* Processor costs */ +static const +struct processor_costs cypress_costs = { + COSTS_N_INSNS (2), /* int load */ + COSTS_N_INSNS (2), /* int signed load */ + COSTS_N_INSNS (2), /* int zeroed load */ + COSTS_N_INSNS (2), /* float load */ + COSTS_N_INSNS (5), /* fmov, fneg, fabs */ + COSTS_N_INSNS (5), /* fadd, fsub */ + COSTS_N_INSNS (1), /* fcmp */ + COSTS_N_INSNS (1), /* fmov, fmovr */ + COSTS_N_INSNS (7), /* fmul */ + COSTS_N_INSNS (37), /* fdivs */ + COSTS_N_INSNS (37), /* fdivd */ + COSTS_N_INSNS (63), /* fsqrts */ + COSTS_N_INSNS (63), /* fsqrtd */ + COSTS_N_INSNS (1), /* imul */ + COSTS_N_INSNS (1), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (1), /* idiv */ + COSTS_N_INSNS (1), /* idivX */ + COSTS_N_INSNS (1), /* movcc/movr */ + 0, /* shift penalty */ +}; + +static const +struct processor_costs supersparc_costs = { + COSTS_N_INSNS (1), /* int load */ + COSTS_N_INSNS (1), /* int signed load */ + COSTS_N_INSNS (1), /* int zeroed load */ + COSTS_N_INSNS (0), /* float load */ + COSTS_N_INSNS (3), /* fmov, fneg, fabs */ + COSTS_N_INSNS (3), /* fadd, fsub */ + COSTS_N_INSNS (3), /* fcmp */ + COSTS_N_INSNS (1), /* fmov, fmovr */ + COSTS_N_INSNS (3), /* fmul */ + COSTS_N_INSNS (6), /* fdivs */ + COSTS_N_INSNS (9), /* fdivd */ + COSTS_N_INSNS (12), /* fsqrts */ + COSTS_N_INSNS (12), /* fsqrtd */ + COSTS_N_INSNS (4), /* imul */ + COSTS_N_INSNS (4), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (4), /* idiv */ + COSTS_N_INSNS (4), /* idivX */ + COSTS_N_INSNS (1), /* movcc/movr */ + 1, /* shift penalty */ +}; + +static const +struct processor_costs hypersparc_costs = { + COSTS_N_INSNS (1), /* int load */ + COSTS_N_INSNS (1), /* int signed load */ + COSTS_N_INSNS (1), /* int zeroed load */ + COSTS_N_INSNS (1), /* float load */ + COSTS_N_INSNS (1), /* fmov, fneg, fabs */ + COSTS_N_INSNS (1), /* fadd, fsub */ + COSTS_N_INSNS (1), /* fcmp */ + COSTS_N_INSNS (1), /* fmov, fmovr */ + COSTS_N_INSNS (1), /* fmul */ + COSTS_N_INSNS (8), /* fdivs */ + COSTS_N_INSNS (12), /* fdivd */ + COSTS_N_INSNS (17), /* fsqrts */ + COSTS_N_INSNS (17), /* fsqrtd */ + COSTS_N_INSNS (17), /* imul */ + COSTS_N_INSNS (17), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (17), /* idiv */ + COSTS_N_INSNS (17), /* idivX */ + COSTS_N_INSNS (1), /* movcc/movr */ + 0, /* shift penalty */ +}; + +static const +struct processor_costs leon_costs = { + COSTS_N_INSNS (1), /* int load */ + COSTS_N_INSNS (1), /* int signed load */ + COSTS_N_INSNS (1), /* int zeroed load */ + COSTS_N_INSNS (1), /* float load */ + COSTS_N_INSNS (1), /* fmov, fneg, fabs */ + COSTS_N_INSNS (1), /* fadd, fsub */ + COSTS_N_INSNS (1), /* fcmp */ + COSTS_N_INSNS (1), /* fmov, fmovr */ + COSTS_N_INSNS (1), /* fmul */ + COSTS_N_INSNS (15), /* fdivs */ + COSTS_N_INSNS (15), /* fdivd */ + COSTS_N_INSNS (23), /* fsqrts */ + COSTS_N_INSNS (23), /* fsqrtd */ + COSTS_N_INSNS (5), /* imul */ + COSTS_N_INSNS (5), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (5), /* idiv */ + COSTS_N_INSNS (5), /* idivX */ + COSTS_N_INSNS (1), /* movcc/movr */ + 0, /* shift penalty */ +}; + +static const +struct processor_costs sparclet_costs = { + COSTS_N_INSNS (3), /* int load */ + COSTS_N_INSNS (3), /* int signed load */ + COSTS_N_INSNS (1), /* int zeroed load */ + COSTS_N_INSNS (1), /* float load */ + COSTS_N_INSNS (1), /* fmov, fneg, fabs */ + COSTS_N_INSNS (1), /* fadd, fsub */ + COSTS_N_INSNS (1), /* fcmp */ + COSTS_N_INSNS (1), /* fmov, fmovr */ + COSTS_N_INSNS (1), /* fmul */ + COSTS_N_INSNS (1), /* fdivs */ + COSTS_N_INSNS (1), /* fdivd */ + COSTS_N_INSNS (1), /* fsqrts */ + COSTS_N_INSNS (1), /* fsqrtd */ + COSTS_N_INSNS (5), /* imul */ + COSTS_N_INSNS (5), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (5), /* idiv */ + COSTS_N_INSNS (5), /* idivX */ + COSTS_N_INSNS (1), /* movcc/movr */ + 0, /* shift penalty */ +}; + +static const +struct processor_costs ultrasparc_costs = { + COSTS_N_INSNS (2), /* int load */ + COSTS_N_INSNS (3), /* int signed load */ + COSTS_N_INSNS (2), /* int zeroed load */ + COSTS_N_INSNS (2), /* float load */ + COSTS_N_INSNS (1), /* fmov, fneg, fabs */ + COSTS_N_INSNS (4), /* fadd, fsub */ + COSTS_N_INSNS (1), /* fcmp */ + COSTS_N_INSNS (2), /* fmov, fmovr */ + COSTS_N_INSNS (4), /* fmul */ + COSTS_N_INSNS (13), /* fdivs */ + COSTS_N_INSNS (23), /* fdivd */ + COSTS_N_INSNS (13), /* fsqrts */ + COSTS_N_INSNS (23), /* fsqrtd */ + COSTS_N_INSNS (4), /* imul */ + COSTS_N_INSNS (4), /* imulX */ + 2, /* imul bit factor */ + COSTS_N_INSNS (37), /* idiv */ + COSTS_N_INSNS (68), /* idivX */ + COSTS_N_INSNS (2), /* movcc/movr */ + 2, /* shift penalty */ +}; + +static const +struct processor_costs ultrasparc3_costs = { + COSTS_N_INSNS (2), /* int load */ + COSTS_N_INSNS (3), /* int signed load */ + COSTS_N_INSNS (3), /* int zeroed load */ + COSTS_N_INSNS (2), /* float load */ + COSTS_N_INSNS (3), /* fmov, fneg, fabs */ + COSTS_N_INSNS (4), /* fadd, fsub */ + COSTS_N_INSNS (5), /* fcmp */ + COSTS_N_INSNS (3), /* fmov, fmovr */ + COSTS_N_INSNS (4), /* fmul */ + COSTS_N_INSNS (17), /* fdivs */ + COSTS_N_INSNS (20), /* fdivd */ + COSTS_N_INSNS (20), /* fsqrts */ + COSTS_N_INSNS (29), /* fsqrtd */ + COSTS_N_INSNS (6), /* imul */ + COSTS_N_INSNS (6), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (40), /* idiv */ + COSTS_N_INSNS (71), /* idivX */ + COSTS_N_INSNS (2), /* movcc/movr */ + 0, /* shift penalty */ +}; + +static const +struct processor_costs niagara_costs = { + COSTS_N_INSNS (3), /* int load */ + COSTS_N_INSNS (3), /* int signed load */ + COSTS_N_INSNS (3), /* int zeroed load */ + COSTS_N_INSNS (9), /* float load */ + COSTS_N_INSNS (8), /* fmov, fneg, fabs */ + COSTS_N_INSNS (8), /* fadd, fsub */ + COSTS_N_INSNS (26), /* fcmp */ + COSTS_N_INSNS (8), /* fmov, fmovr */ + COSTS_N_INSNS (29), /* fmul */ + COSTS_N_INSNS (54), /* fdivs */ + COSTS_N_INSNS (83), /* fdivd */ + COSTS_N_INSNS (100), /* fsqrts - not implemented in hardware */ + COSTS_N_INSNS (100), /* fsqrtd - not implemented in hardware */ + COSTS_N_INSNS (11), /* imul */ + COSTS_N_INSNS (11), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (72), /* idiv */ + COSTS_N_INSNS (72), /* idivX */ + COSTS_N_INSNS (1), /* movcc/movr */ + 0, /* shift penalty */ +}; + +static const +struct processor_costs niagara2_costs = { + COSTS_N_INSNS (3), /* int load */ + COSTS_N_INSNS (3), /* int signed load */ + COSTS_N_INSNS (3), /* int zeroed load */ + COSTS_N_INSNS (3), /* float load */ + COSTS_N_INSNS (6), /* fmov, fneg, fabs */ + COSTS_N_INSNS (6), /* fadd, fsub */ + COSTS_N_INSNS (6), /* fcmp */ + COSTS_N_INSNS (6), /* fmov, fmovr */ + COSTS_N_INSNS (6), /* fmul */ + COSTS_N_INSNS (19), /* fdivs */ + COSTS_N_INSNS (33), /* fdivd */ + COSTS_N_INSNS (19), /* fsqrts */ + COSTS_N_INSNS (33), /* fsqrtd */ + COSTS_N_INSNS (5), /* imul */ + COSTS_N_INSNS (5), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (31), /* idiv, average of 12 - 41 cycle range */ + COSTS_N_INSNS (31), /* idivX, average of 12 - 41 cycle range */ + COSTS_N_INSNS (1), /* movcc/movr */ + 0, /* shift penalty */ +}; + +const struct processor_costs *sparc_costs = &cypress_costs; + +#ifdef HAVE_AS_RELAX_OPTION +/* If 'as' and 'ld' are relaxing tail call insns into branch always, use + "or %o7,%g0,X; call Y; or X,%g0,%o7" always, so that it can be optimized. + With sethi/jmp, neither 'as' nor 'ld' has an easy way how to find out if + somebody does not branch between the sethi and jmp. */ +#define LEAF_SIBCALL_SLOT_RESERVED_P 1 +#else +#define LEAF_SIBCALL_SLOT_RESERVED_P \ + ((TARGET_ARCH64 && !TARGET_CM_MEDLOW) || flag_pic) +#endif + +/* Global variables for machine-dependent things. */ + +/* Size of frame. Need to know this to emit return insns from leaf procedures. + ACTUAL_FSIZE is set by sparc_compute_frame_size() which is called during the + reload pass. This is important as the value is later used for scheduling + (to see what can go in a delay slot). + APPARENT_FSIZE is the size of the stack less the register save area and less + the outgoing argument area. It is used when saving call preserved regs. */ +static HOST_WIDE_INT apparent_fsize; +static HOST_WIDE_INT actual_fsize; + +/* Number of live general or floating point registers needed to be + saved (as 4-byte quantities). */ +static int num_gfregs; + +/* Vector to say how input registers are mapped to output registers. + HARD_FRAME_POINTER_REGNUM cannot be remapped by this function to + eliminate it. You must use -fomit-frame-pointer to get that. */ +char leaf_reg_remap[] = +{ 0, 1, 2, 3, 4, 5, 6, 7, + -1, -1, -1, -1, -1, -1, 14, -1, + -1, -1, -1, -1, -1, -1, -1, -1, + 8, 9, 10, 11, 12, 13, -1, 15, + + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, + 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, + 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100}; + +/* Vector, indexed by hard register number, which contains 1 + for a register that is allowable in a candidate for leaf + function treatment. */ +char sparc_leaf_regs[] = +{ 1, 1, 1, 1, 1, 1, 1, 1, + 0, 0, 0, 0, 0, 0, 1, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 1, 1, 1, 1, 1, 1, 0, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1}; + +struct GTY(()) machine_function +{ + /* Some local-dynamic TLS symbol name. */ + const char *some_ld_name; + + /* True if the current function is leaf and uses only leaf regs, + so that the SPARC leaf function optimization can be applied. + Private version of current_function_uses_only_leaf_regs, see + sparc_expand_prologue for the rationale. */ + int leaf_function_p; + + /* True if the data calculated by sparc_expand_prologue are valid. */ + bool prologue_data_valid_p; +}; + +#define sparc_leaf_function_p cfun->machine->leaf_function_p +#define sparc_prologue_data_valid_p cfun->machine->prologue_data_valid_p + +/* Register we pretend to think the frame pointer is allocated to. + Normally, this is %fp, but if we are in a leaf procedure, this + is %sp+"something". We record "something" separately as it may + be too big for reg+constant addressing. */ +static rtx frame_base_reg; +static HOST_WIDE_INT frame_base_offset; + +/* 1 if the next opcode is to be specially indented. */ +int sparc_indent_opcode = 0; + +static bool sparc_handle_option (size_t, const char *, int); +static void sparc_option_override (void); +static void sparc_init_modes (void); +static void scan_record_type (const_tree, int *, int *, int *); +static int function_arg_slotno (const CUMULATIVE_ARGS *, enum machine_mode, + const_tree, bool, bool, int *, int *); + +static int supersparc_adjust_cost (rtx, rtx, rtx, int); +static int hypersparc_adjust_cost (rtx, rtx, rtx, int); + +static void sparc_emit_set_const32 (rtx, rtx); +static void sparc_emit_set_const64 (rtx, rtx); +static void sparc_output_addr_vec (rtx); +static void sparc_output_addr_diff_vec (rtx); +static void sparc_output_deferred_case_vectors (void); +static bool sparc_legitimate_address_p (enum machine_mode, rtx, bool); +static rtx sparc_builtin_saveregs (void); +static int epilogue_renumber (rtx *, int); +static bool sparc_assemble_integer (rtx, unsigned int, int); +static int set_extends (rtx); +static void load_got_register (void); +static int save_or_restore_regs (int, int, rtx, int, int); +static void emit_save_or_restore_regs (int); +static void sparc_asm_function_prologue (FILE *, HOST_WIDE_INT); +static void sparc_asm_function_epilogue (FILE *, HOST_WIDE_INT); +static void sparc_solaris_elf_asm_named_section (const char *, unsigned int, + tree) ATTRIBUTE_UNUSED; +static int sparc_adjust_cost (rtx, rtx, rtx, int); +static int sparc_issue_rate (void); +static void sparc_sched_init (FILE *, int, int); +static int sparc_use_sched_lookahead (void); + +static void emit_soft_tfmode_libcall (const char *, int, rtx *); +static void emit_soft_tfmode_binop (enum rtx_code, rtx *); +static void emit_soft_tfmode_unop (enum rtx_code, rtx *); +static void emit_soft_tfmode_cvt (enum rtx_code, rtx *); +static void emit_hard_tfmode_operation (enum rtx_code, rtx *); + +static bool sparc_function_ok_for_sibcall (tree, tree); +static void sparc_init_libfuncs (void); +static void sparc_init_builtins (void); +static void sparc_vis_init_builtins (void); +static rtx sparc_expand_builtin (tree, rtx, rtx, enum machine_mode, int); +static tree sparc_fold_builtin (tree, int, tree *, bool); +static int sparc_vis_mul8x16 (int, int); +static tree sparc_handle_vis_mul8x16 (int, tree, tree, tree); +static void sparc_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, + HOST_WIDE_INT, tree); +static bool sparc_can_output_mi_thunk (const_tree, HOST_WIDE_INT, + HOST_WIDE_INT, const_tree); +static void sparc_reorg (void); +static struct machine_function * sparc_init_machine_status (void); +static bool sparc_cannot_force_const_mem (rtx); +static rtx sparc_tls_get_addr (void); +static rtx sparc_tls_got (void); +static const char *get_some_local_dynamic_name (void); +static int get_some_local_dynamic_name_1 (rtx *, void *); +static bool sparc_rtx_costs (rtx, int, int, int *, bool); +static rtx sparc_function_value (const_tree, const_tree, bool); +static rtx sparc_libcall_value (enum machine_mode, const_rtx); +static bool sparc_function_value_regno_p (const unsigned int); +static rtx sparc_struct_value_rtx (tree, int); +static enum machine_mode sparc_promote_function_mode (const_tree, enum machine_mode, + int *, const_tree, int); +static bool sparc_return_in_memory (const_tree, const_tree); +static bool sparc_strict_argument_naming (CUMULATIVE_ARGS *); +static void sparc_va_start (tree, rtx); +static tree sparc_gimplify_va_arg (tree, tree, gimple_seq *, gimple_seq *); +static bool sparc_vector_mode_supported_p (enum machine_mode); +static bool sparc_tls_referenced_p (rtx); +static rtx sparc_legitimize_tls_address (rtx); +static rtx sparc_legitimize_pic_address (rtx, rtx); +static rtx sparc_legitimize_address (rtx, rtx, enum machine_mode); +static rtx sparc_delegitimize_address (rtx); +static bool sparc_mode_dependent_address_p (const_rtx); +static bool sparc_pass_by_reference (CUMULATIVE_ARGS *, + enum machine_mode, const_tree, bool); +static void sparc_function_arg_advance (CUMULATIVE_ARGS *, + enum machine_mode, const_tree, bool); +static rtx sparc_function_arg_1 (const CUMULATIVE_ARGS *, + enum machine_mode, const_tree, bool, bool); +static rtx sparc_function_arg (CUMULATIVE_ARGS *, + enum machine_mode, const_tree, bool); +static rtx sparc_function_incoming_arg (CUMULATIVE_ARGS *, + enum machine_mode, const_tree, bool); +static unsigned int sparc_function_arg_boundary (enum machine_mode, + const_tree); +static int sparc_arg_partial_bytes (CUMULATIVE_ARGS *, + enum machine_mode, tree, bool); +static void sparc_dwarf_handle_frame_unspec (const char *, rtx, int); +static void sparc_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED; +static void sparc_file_end (void); +static bool sparc_frame_pointer_required (void); +static bool sparc_can_eliminate (const int, const int); +static void sparc_conditional_register_usage (void); +#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING +static const char *sparc_mangle_type (const_tree); +#endif +static void sparc_trampoline_init (rtx, tree, rtx); +static enum machine_mode sparc_preferred_simd_mode (enum machine_mode); + +#ifdef SUBTARGET_ATTRIBUTE_TABLE +/* Table of valid machine attributes. */ +static const struct attribute_spec sparc_attribute_table[] = +{ + /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */ + SUBTARGET_ATTRIBUTE_TABLE, + { NULL, 0, 0, false, false, false, NULL } +}; +#endif + +/* Option handling. */ + +/* Parsed value. */ +enum cmodel sparc_cmodel; + +char sparc_hard_reg_printed[8]; + +struct sparc_cpu_select sparc_select[] = +{ + /* switch name, tune arch */ + { (char *)0, "default", 1, 1 }, + { (char *)0, "-mcpu=", 1, 1 }, + { (char *)0, "-mtune=", 1, 0 }, + { 0, 0, 0, 0 } +}; + +/* CPU type. This is set from TARGET_CPU_DEFAULT and -m{cpu,tune}=xxx. */ +enum processor_type sparc_cpu; + +/* Whetheran FPU option was specified. */ +static bool fpu_option_set = false; + +/* Implement TARGET_OPTION_OPTIMIZATION_TABLE. */ +static const struct default_options sparc_option_optimization_table[] = + { + { OPT_LEVELS_1_PLUS, OPT_fomit_frame_pointer, NULL, 1 }, + { OPT_LEVELS_NONE, 0, NULL, 0 } + }; + +/* Initialize the GCC target structure. */ + +/* The default is to use .half rather than .short for aligned HI objects. */ +#undef TARGET_ASM_ALIGNED_HI_OP +#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t" + +#undef TARGET_ASM_UNALIGNED_HI_OP +#define TARGET_ASM_UNALIGNED_HI_OP "\t.uahalf\t" +#undef TARGET_ASM_UNALIGNED_SI_OP +#define TARGET_ASM_UNALIGNED_SI_OP "\t.uaword\t" +#undef TARGET_ASM_UNALIGNED_DI_OP +#define TARGET_ASM_UNALIGNED_DI_OP "\t.uaxword\t" + +/* The target hook has to handle DI-mode values. */ +#undef TARGET_ASM_INTEGER +#define TARGET_ASM_INTEGER sparc_assemble_integer + +#undef TARGET_ASM_FUNCTION_PROLOGUE +#define TARGET_ASM_FUNCTION_PROLOGUE sparc_asm_function_prologue +#undef TARGET_ASM_FUNCTION_EPILOGUE +#define TARGET_ASM_FUNCTION_EPILOGUE sparc_asm_function_epilogue + +#undef TARGET_SCHED_ADJUST_COST +#define TARGET_SCHED_ADJUST_COST sparc_adjust_cost +#undef TARGET_SCHED_ISSUE_RATE +#define TARGET_SCHED_ISSUE_RATE sparc_issue_rate +#undef TARGET_SCHED_INIT +#define TARGET_SCHED_INIT sparc_sched_init +#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD +#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD sparc_use_sched_lookahead + +#undef TARGET_FUNCTION_OK_FOR_SIBCALL +#define TARGET_FUNCTION_OK_FOR_SIBCALL sparc_function_ok_for_sibcall + +#undef TARGET_INIT_LIBFUNCS +#define TARGET_INIT_LIBFUNCS sparc_init_libfuncs +#undef TARGET_INIT_BUILTINS +#define TARGET_INIT_BUILTINS sparc_init_builtins + +#undef TARGET_LEGITIMIZE_ADDRESS +#define TARGET_LEGITIMIZE_ADDRESS sparc_legitimize_address +#undef TARGET_DELEGITIMIZE_ADDRESS +#define TARGET_DELEGITIMIZE_ADDRESS sparc_delegitimize_address +#undef TARGET_MODE_DEPENDENT_ADDRESS_P +#define TARGET_MODE_DEPENDENT_ADDRESS_P sparc_mode_dependent_address_p + +#undef TARGET_EXPAND_BUILTIN +#define TARGET_EXPAND_BUILTIN sparc_expand_builtin +#undef TARGET_FOLD_BUILTIN +#define TARGET_FOLD_BUILTIN sparc_fold_builtin + +#if TARGET_TLS +#undef TARGET_HAVE_TLS +#define TARGET_HAVE_TLS true +#endif + +#undef TARGET_CANNOT_FORCE_CONST_MEM +#define TARGET_CANNOT_FORCE_CONST_MEM sparc_cannot_force_const_mem + +#undef TARGET_ASM_OUTPUT_MI_THUNK +#define TARGET_ASM_OUTPUT_MI_THUNK sparc_output_mi_thunk +#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK +#define TARGET_ASM_CAN_OUTPUT_MI_THUNK sparc_can_output_mi_thunk + +#undef TARGET_MACHINE_DEPENDENT_REORG +#define TARGET_MACHINE_DEPENDENT_REORG sparc_reorg + +#undef TARGET_RTX_COSTS +#define TARGET_RTX_COSTS sparc_rtx_costs +#undef TARGET_ADDRESS_COST +#define TARGET_ADDRESS_COST hook_int_rtx_bool_0 + +#undef TARGET_PROMOTE_FUNCTION_MODE +#define TARGET_PROMOTE_FUNCTION_MODE sparc_promote_function_mode + +#undef TARGET_FUNCTION_VALUE +#define TARGET_FUNCTION_VALUE sparc_function_value +#undef TARGET_LIBCALL_VALUE +#define TARGET_LIBCALL_VALUE sparc_libcall_value +#undef TARGET_FUNCTION_VALUE_REGNO_P +#define TARGET_FUNCTION_VALUE_REGNO_P sparc_function_value_regno_p + +#undef TARGET_STRUCT_VALUE_RTX +#define TARGET_STRUCT_VALUE_RTX sparc_struct_value_rtx +#undef TARGET_RETURN_IN_MEMORY +#define TARGET_RETURN_IN_MEMORY sparc_return_in_memory +#undef TARGET_MUST_PASS_IN_STACK +#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size +#undef TARGET_PASS_BY_REFERENCE +#define TARGET_PASS_BY_REFERENCE sparc_pass_by_reference +#undef TARGET_ARG_PARTIAL_BYTES +#define TARGET_ARG_PARTIAL_BYTES sparc_arg_partial_bytes +#undef TARGET_FUNCTION_ARG_ADVANCE +#define TARGET_FUNCTION_ARG_ADVANCE sparc_function_arg_advance +#undef TARGET_FUNCTION_ARG +#define TARGET_FUNCTION_ARG sparc_function_arg +#undef TARGET_FUNCTION_INCOMING_ARG +#define TARGET_FUNCTION_INCOMING_ARG sparc_function_incoming_arg +#undef TARGET_FUNCTION_ARG_BOUNDARY +#define TARGET_FUNCTION_ARG_BOUNDARY sparc_function_arg_boundary + +#undef TARGET_EXPAND_BUILTIN_SAVEREGS +#define TARGET_EXPAND_BUILTIN_SAVEREGS sparc_builtin_saveregs +#undef TARGET_STRICT_ARGUMENT_NAMING +#define TARGET_STRICT_ARGUMENT_NAMING sparc_strict_argument_naming + +#undef TARGET_EXPAND_BUILTIN_VA_START +#define TARGET_EXPAND_BUILTIN_VA_START sparc_va_start +#undef TARGET_GIMPLIFY_VA_ARG_EXPR +#define TARGET_GIMPLIFY_VA_ARG_EXPR sparc_gimplify_va_arg + +#undef TARGET_VECTOR_MODE_SUPPORTED_P +#define TARGET_VECTOR_MODE_SUPPORTED_P sparc_vector_mode_supported_p + +#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE +#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE sparc_preferred_simd_mode + +#undef TARGET_DWARF_HANDLE_FRAME_UNSPEC +#define TARGET_DWARF_HANDLE_FRAME_UNSPEC sparc_dwarf_handle_frame_unspec + +#ifdef SUBTARGET_INSERT_ATTRIBUTES +#undef TARGET_INSERT_ATTRIBUTES +#define TARGET_INSERT_ATTRIBUTES SUBTARGET_INSERT_ATTRIBUTES +#endif + +#ifdef SUBTARGET_ATTRIBUTE_TABLE +#undef TARGET_ATTRIBUTE_TABLE +#define TARGET_ATTRIBUTE_TABLE sparc_attribute_table +#endif + +#undef TARGET_RELAXED_ORDERING +#define TARGET_RELAXED_ORDERING SPARC_RELAXED_ORDERING + +#undef TARGET_DEFAULT_TARGET_FLAGS +#define TARGET_DEFAULT_TARGET_FLAGS TARGET_DEFAULT +#undef TARGET_HANDLE_OPTION +#define TARGET_HANDLE_OPTION sparc_handle_option +#undef TARGET_OPTION_OVERRIDE +#define TARGET_OPTION_OVERRIDE sparc_option_override +#undef TARGET_OPTION_OPTIMIZATION_TABLE +#define TARGET_OPTION_OPTIMIZATION_TABLE sparc_option_optimization_table + +#if TARGET_GNU_TLS && defined(HAVE_AS_SPARC_UA_PCREL) +#undef TARGET_ASM_OUTPUT_DWARF_DTPREL +#define TARGET_ASM_OUTPUT_DWARF_DTPREL sparc_output_dwarf_dtprel +#endif + +#undef TARGET_ASM_FILE_END +#define TARGET_ASM_FILE_END sparc_file_end + +#undef TARGET_FRAME_POINTER_REQUIRED +#define TARGET_FRAME_POINTER_REQUIRED sparc_frame_pointer_required + +#undef TARGET_CAN_ELIMINATE +#define TARGET_CAN_ELIMINATE sparc_can_eliminate + +#undef TARGET_CONDITIONAL_REGISTER_USAGE +#define TARGET_CONDITIONAL_REGISTER_USAGE sparc_conditional_register_usage + +#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING +#undef TARGET_MANGLE_TYPE +#define TARGET_MANGLE_TYPE sparc_mangle_type +#endif + +#undef TARGET_LEGITIMATE_ADDRESS_P +#define TARGET_LEGITIMATE_ADDRESS_P sparc_legitimate_address_p + +#undef TARGET_TRAMPOLINE_INIT +#define TARGET_TRAMPOLINE_INIT sparc_trampoline_init + +struct gcc_target targetm = TARGET_INITIALIZER; + +/* Implement TARGET_HANDLE_OPTION. */ + +static bool +sparc_handle_option (size_t code, const char *arg, int value ATTRIBUTE_UNUSED) +{ + switch (code) + { + case OPT_mfpu: + case OPT_mhard_float: + case OPT_msoft_float: + fpu_option_set = true; + break; + + case OPT_mcpu_: + sparc_select[1].string = arg; + break; + + case OPT_mtune_: + sparc_select[2].string = arg; + break; + } + + return true; +} + +/* Validate and override various options, and do some machine dependent + initialization. */ + +static void +sparc_option_override (void) +{ + static struct code_model { + const char *const name; + const enum cmodel value; + } const cmodels[] = { + { "32", CM_32 }, + { "medlow", CM_MEDLOW }, + { "medmid", CM_MEDMID }, + { "medany", CM_MEDANY }, + { "embmedany", CM_EMBMEDANY }, + { NULL, (enum cmodel) 0 } + }; + const struct code_model *cmodel; + /* Map TARGET_CPU_DEFAULT to value for -m{cpu,tune}=. */ + static struct cpu_default { + const int cpu; + const char *const name; + } const cpu_default[] = { + /* There must be one entry here for each TARGET_CPU value. */ + { TARGET_CPU_sparc, "cypress" }, + { TARGET_CPU_v8, "v8" }, + { TARGET_CPU_supersparc, "supersparc" }, + { TARGET_CPU_hypersparc, "hypersparc" }, + { TARGET_CPU_leon, "leon" }, + { TARGET_CPU_sparclite, "f930" }, + { TARGET_CPU_sparclite86x, "sparclite86x" }, + { TARGET_CPU_sparclet, "tsc701" }, + { TARGET_CPU_v9, "v9" }, + { TARGET_CPU_ultrasparc, "ultrasparc" }, + { TARGET_CPU_ultrasparc3, "ultrasparc3" }, + { TARGET_CPU_niagara, "niagara" }, + { TARGET_CPU_niagara2, "niagara2" }, + { 0, 0 } + }; + const struct cpu_default *def; + /* Table of values for -m{cpu,tune}=. */ + static struct cpu_table { + const char *const name; + const enum processor_type processor; + const int disable; + const int enable; + } const cpu_table[] = { + { "v7", PROCESSOR_V7, MASK_ISA, 0 }, + { "cypress", PROCESSOR_CYPRESS, MASK_ISA, 0 }, + { "v8", PROCESSOR_V8, MASK_ISA, MASK_V8 }, + /* TI TMS390Z55 supersparc */ + { "supersparc", PROCESSOR_SUPERSPARC, MASK_ISA, MASK_V8 }, + { "hypersparc", PROCESSOR_HYPERSPARC, MASK_ISA, MASK_V8|MASK_FPU }, + /* LEON */ + { "leon", PROCESSOR_LEON, MASK_ISA, MASK_V8|MASK_FPU }, + { "sparclite", PROCESSOR_SPARCLITE, MASK_ISA, MASK_SPARCLITE }, + /* The Fujitsu MB86930 is the original sparclite chip, with no FPU. */ + { "f930", PROCESSOR_F930, MASK_ISA|MASK_FPU, MASK_SPARCLITE }, + /* The Fujitsu MB86934 is the recent sparclite chip, with an FPU. */ + { "f934", PROCESSOR_F934, MASK_ISA, MASK_SPARCLITE|MASK_FPU }, + { "sparclite86x", PROCESSOR_SPARCLITE86X, MASK_ISA|MASK_FPU, + MASK_SPARCLITE }, + { "sparclet", PROCESSOR_SPARCLET, MASK_ISA, MASK_SPARCLET }, + /* TEMIC sparclet */ + { "tsc701", PROCESSOR_TSC701, MASK_ISA, MASK_SPARCLET }, + { "v9", PROCESSOR_V9, MASK_ISA, MASK_V9 }, + /* UltraSPARC I, II, IIi */ + { "ultrasparc", PROCESSOR_ULTRASPARC, MASK_ISA, + /* Although insns using %y are deprecated, it is a clear win. */ + MASK_V9|MASK_DEPRECATED_V8_INSNS}, + /* UltraSPARC III */ + /* ??? Check if %y issue still holds true. */ + { "ultrasparc3", PROCESSOR_ULTRASPARC3, MASK_ISA, + MASK_V9|MASK_DEPRECATED_V8_INSNS}, + /* UltraSPARC T1 */ + { "niagara", PROCESSOR_NIAGARA, MASK_ISA, + MASK_V9|MASK_DEPRECATED_V8_INSNS}, + /* UltraSPARC T2 */ + { "niagara2", PROCESSOR_NIAGARA2, MASK_ISA, MASK_V9}, + { 0, (enum processor_type) 0, 0, 0 } + }; + const struct cpu_table *cpu; + const struct sparc_cpu_select *sel; + int fpu; + +#ifdef SUBTARGET_OVERRIDE_OPTIONS + SUBTARGET_OVERRIDE_OPTIONS; +#endif + +#ifndef SPARC_BI_ARCH + /* Check for unsupported architecture size. */ + if (! TARGET_64BIT != DEFAULT_ARCH32_P) + error ("%s is not supported by this configuration", + DEFAULT_ARCH32_P ? "-m64" : "-m32"); +#endif + + /* We force all 64bit archs to use 128 bit long double */ + if (TARGET_64BIT && ! TARGET_LONG_DOUBLE_128) + { + error ("-mlong-double-64 not allowed with -m64"); + target_flags |= MASK_LONG_DOUBLE_128; + } + + /* Code model selection. */ + sparc_cmodel = SPARC_DEFAULT_CMODEL; + +#ifdef SPARC_BI_ARCH + if (TARGET_ARCH32) + sparc_cmodel = CM_32; +#endif + + if (sparc_cmodel_string != NULL) + { + if (TARGET_ARCH64) + { + for (cmodel = &cmodels[0]; cmodel->name; cmodel++) + if (strcmp (sparc_cmodel_string, cmodel->name) == 0) + break; + if (cmodel->name == NULL) + error ("bad value (%s) for -mcmodel= switch", sparc_cmodel_string); + else + sparc_cmodel = cmodel->value; + } + else + error ("-mcmodel= is not supported on 32 bit systems"); + } + + fpu = target_flags & MASK_FPU; /* save current -mfpu status */ + + /* Set the default CPU. */ + for (def = &cpu_default[0]; def->name; ++def) + if (def->cpu == TARGET_CPU_DEFAULT) + break; + gcc_assert (def->name); + sparc_select[0].string = def->name; + + for (sel = &sparc_select[0]; sel->name; ++sel) + { + if (sel->string) + { + for (cpu = &cpu_table[0]; cpu->name; ++cpu) + if (! strcmp (sel->string, cpu->name)) + { + if (sel->set_tune_p) + sparc_cpu = cpu->processor; + + if (sel->set_arch_p) + { + target_flags &= ~cpu->disable; + target_flags |= cpu->enable; + } + break; + } + + if (! cpu->name) + error ("bad value (%s) for %s switch", sel->string, sel->name); + } + } + + /* If -mfpu or -mno-fpu was explicitly used, don't override with + the processor default. */ + if (fpu_option_set) + target_flags = (target_flags & ~MASK_FPU) | fpu; + + /* Don't allow -mvis if FPU is disabled. */ + if (! TARGET_FPU) + target_flags &= ~MASK_VIS; + + /* -mvis assumes UltraSPARC+, so we are sure v9 instructions + are available. + -m64 also implies v9. */ + if (TARGET_VIS || TARGET_ARCH64) + { + target_flags |= MASK_V9; + target_flags &= ~(MASK_V8 | MASK_SPARCLET | MASK_SPARCLITE); + } + + /* Use the deprecated v8 insns for sparc64 in 32 bit mode. */ + if (TARGET_V9 && TARGET_ARCH32) + target_flags |= MASK_DEPRECATED_V8_INSNS; + + /* V8PLUS requires V9, makes no sense in 64 bit mode. */ + if (! TARGET_V9 || TARGET_ARCH64) + target_flags &= ~MASK_V8PLUS; + + /* Don't use stack biasing in 32 bit mode. */ + if (TARGET_ARCH32) + target_flags &= ~MASK_STACK_BIAS; + + /* Supply a default value for align_functions. */ + if (align_functions == 0 + && (sparc_cpu == PROCESSOR_ULTRASPARC + || sparc_cpu == PROCESSOR_ULTRASPARC3 + || sparc_cpu == PROCESSOR_NIAGARA + || sparc_cpu == PROCESSOR_NIAGARA2)) + align_functions = 32; + + /* Validate PCC_STRUCT_RETURN. */ + if (flag_pcc_struct_return == DEFAULT_PCC_STRUCT_RETURN) + flag_pcc_struct_return = (TARGET_ARCH64 ? 0 : 1); + + /* Only use .uaxword when compiling for a 64-bit target. */ + if (!TARGET_ARCH64) + targetm.asm_out.unaligned_op.di = NULL; + + /* Do various machine dependent initializations. */ + sparc_init_modes (); + + /* Set up function hooks. */ + init_machine_status = sparc_init_machine_status; + + switch (sparc_cpu) + { + case PROCESSOR_V7: + case PROCESSOR_CYPRESS: + sparc_costs = &cypress_costs; + break; + case PROCESSOR_V8: + case PROCESSOR_SPARCLITE: + case PROCESSOR_SUPERSPARC: + sparc_costs = &supersparc_costs; + break; + case PROCESSOR_F930: + case PROCESSOR_F934: + case PROCESSOR_HYPERSPARC: + case PROCESSOR_SPARCLITE86X: + sparc_costs = &hypersparc_costs; + break; + case PROCESSOR_LEON: + sparc_costs = &leon_costs; + break; + case PROCESSOR_SPARCLET: + case PROCESSOR_TSC701: + sparc_costs = &sparclet_costs; + break; + case PROCESSOR_V9: + case PROCESSOR_ULTRASPARC: + sparc_costs = &ultrasparc_costs; + break; + case PROCESSOR_ULTRASPARC3: + sparc_costs = &ultrasparc3_costs; + break; + case PROCESSOR_NIAGARA: + sparc_costs = &niagara_costs; + break; + case PROCESSOR_NIAGARA2: + sparc_costs = &niagara2_costs; + break; + }; + +#ifdef TARGET_DEFAULT_LONG_DOUBLE_128 + if (!(target_flags_explicit & MASK_LONG_DOUBLE_128)) + target_flags |= MASK_LONG_DOUBLE_128; +#endif + + maybe_set_param_value (PARAM_SIMULTANEOUS_PREFETCHES, + ((sparc_cpu == PROCESSOR_ULTRASPARC + || sparc_cpu == PROCESSOR_NIAGARA + || sparc_cpu == PROCESSOR_NIAGARA2) + ? 2 + : (sparc_cpu == PROCESSOR_ULTRASPARC3 + ? 8 : 3)), + global_options.x_param_values, + global_options_set.x_param_values); + maybe_set_param_value (PARAM_L1_CACHE_LINE_SIZE, + ((sparc_cpu == PROCESSOR_ULTRASPARC + || sparc_cpu == PROCESSOR_ULTRASPARC3 + || sparc_cpu == PROCESSOR_NIAGARA + || sparc_cpu == PROCESSOR_NIAGARA2) + ? 64 : 32), + global_options.x_param_values, + global_options_set.x_param_values); + + /* Disable save slot sharing for call-clobbered registers by default. + The IRA sharing algorithm works on single registers only and this + pessimizes for double floating-point registers. */ + if (!global_options_set.x_flag_ira_share_save_slots) + flag_ira_share_save_slots = 0; +} + +/* Miscellaneous utilities. */ + +/* Nonzero if CODE, a comparison, is suitable for use in v9 conditional move + or branch on register contents instructions. */ + +int +v9_regcmp_p (enum rtx_code code) +{ + return (code == EQ || code == NE || code == GE || code == LT + || code == LE || code == GT); +} + +/* Nonzero if OP is a floating point constant which can + be loaded into an integer register using a single + sethi instruction. */ + +int +fp_sethi_p (rtx op) +{ + if (GET_CODE (op) == CONST_DOUBLE) + { + REAL_VALUE_TYPE r; + long i; + + REAL_VALUE_FROM_CONST_DOUBLE (r, op); + REAL_VALUE_TO_TARGET_SINGLE (r, i); + return !SPARC_SIMM13_P (i) && SPARC_SETHI_P (i); + } + + return 0; +} + +/* Nonzero if OP is a floating point constant which can + be loaded into an integer register using a single + mov instruction. */ + +int +fp_mov_p (rtx op) +{ + if (GET_CODE (op) == CONST_DOUBLE) + { + REAL_VALUE_TYPE r; + long i; + + REAL_VALUE_FROM_CONST_DOUBLE (r, op); + REAL_VALUE_TO_TARGET_SINGLE (r, i); + return SPARC_SIMM13_P (i); + } + + return 0; +} + +/* Nonzero if OP is a floating point constant which can + be loaded into an integer register using a high/losum + instruction sequence. */ + +int +fp_high_losum_p (rtx op) +{ + /* The constraints calling this should only be in + SFmode move insns, so any constant which cannot + be moved using a single insn will do. */ + if (GET_CODE (op) == CONST_DOUBLE) + { + REAL_VALUE_TYPE r; + long i; + + REAL_VALUE_FROM_CONST_DOUBLE (r, op); + REAL_VALUE_TO_TARGET_SINGLE (r, i); + return !SPARC_SIMM13_P (i) && !SPARC_SETHI_P (i); + } + + return 0; +} + +/* Return true if the address of LABEL can be loaded by means of the + mov{si,di}_pic_label_ref patterns in PIC mode. */ + +static bool +can_use_mov_pic_label_ref (rtx label) +{ + /* VxWorks does not impose a fixed gap between segments; the run-time + gap can be different from the object-file gap. We therefore can't + assume X - _GLOBAL_OFFSET_TABLE_ is a link-time constant unless we + are absolutely sure that X is in the same segment as the GOT. + Unfortunately, the flexibility of linker scripts means that we + can't be sure of that in general, so assume that GOT-relative + accesses are never valid on VxWorks. */ + if (TARGET_VXWORKS_RTP) + return false; + + /* Similarly, if the label is non-local, it might end up being placed + in a different section than the current one; now mov_pic_label_ref + requires the label and the code to be in the same section. */ + if (LABEL_REF_NONLOCAL_P (label)) + return false; + + /* Finally, if we are reordering basic blocks and partition into hot + and cold sections, this might happen for any label. */ + if (flag_reorder_blocks_and_partition) + return false; + + return true; +} + +/* Expand a move instruction. Return true if all work is done. */ + +bool +sparc_expand_move (enum machine_mode mode, rtx *operands) +{ + /* Handle sets of MEM first. */ + if (GET_CODE (operands[0]) == MEM) + { + /* 0 is a register (or a pair of registers) on SPARC. */ + if (register_or_zero_operand (operands[1], mode)) + return false; + + if (!reload_in_progress) + { + operands[0] = validize_mem (operands[0]); + operands[1] = force_reg (mode, operands[1]); + } + } + + /* Fixup TLS cases. */ + if (TARGET_HAVE_TLS + && CONSTANT_P (operands[1]) + && sparc_tls_referenced_p (operands [1])) + { + operands[1] = sparc_legitimize_tls_address (operands[1]); + return false; + } + + /* Fixup PIC cases. */ + if (flag_pic && CONSTANT_P (operands[1])) + { + if (pic_address_needs_scratch (operands[1])) + operands[1] = sparc_legitimize_pic_address (operands[1], NULL_RTX); + + /* We cannot use the mov{si,di}_pic_label_ref patterns in all cases. */ + if (GET_CODE (operands[1]) == LABEL_REF + && can_use_mov_pic_label_ref (operands[1])) + { + if (mode == SImode) + { + emit_insn (gen_movsi_pic_label_ref (operands[0], operands[1])); + return true; + } + + if (mode == DImode) + { + gcc_assert (TARGET_ARCH64); + emit_insn (gen_movdi_pic_label_ref (operands[0], operands[1])); + return true; + } + } + + if (symbolic_operand (operands[1], mode)) + { + operands[1] + = sparc_legitimize_pic_address (operands[1], + reload_in_progress + ? operands[0] : NULL_RTX); + return false; + } + } + + /* If we are trying to toss an integer constant into FP registers, + or loading a FP or vector constant, force it into memory. */ + if (CONSTANT_P (operands[1]) + && REG_P (operands[0]) + && (SPARC_FP_REG_P (REGNO (operands[0])) + || SCALAR_FLOAT_MODE_P (mode) + || VECTOR_MODE_P (mode))) + { + /* emit_group_store will send such bogosity to us when it is + not storing directly into memory. So fix this up to avoid + crashes in output_constant_pool. */ + if (operands [1] == const0_rtx) + operands[1] = CONST0_RTX (mode); + + /* We can clear FP registers if TARGET_VIS, and always other regs. */ + if ((TARGET_VIS || REGNO (operands[0]) < SPARC_FIRST_FP_REG) + && const_zero_operand (operands[1], mode)) + return false; + + if (REGNO (operands[0]) < SPARC_FIRST_FP_REG + /* We are able to build any SF constant in integer registers + with at most 2 instructions. */ + && (mode == SFmode + /* And any DF constant in integer registers. */ + || (mode == DFmode + && (reload_completed || reload_in_progress)))) + return false; + + operands[1] = force_const_mem (mode, operands[1]); + if (!reload_in_progress) + operands[1] = validize_mem (operands[1]); + return false; + } + + /* Accept non-constants and valid constants unmodified. */ + if (!CONSTANT_P (operands[1]) + || GET_CODE (operands[1]) == HIGH + || input_operand (operands[1], mode)) + return false; + + switch (mode) + { + case QImode: + /* All QImode constants require only one insn, so proceed. */ + break; + + case HImode: + case SImode: + sparc_emit_set_const32 (operands[0], operands[1]); + return true; + + case DImode: + /* input_operand should have filtered out 32-bit mode. */ + sparc_emit_set_const64 (operands[0], operands[1]); + return true; + + default: + gcc_unreachable (); + } + + return false; +} + +/* Load OP1, a 32-bit constant, into OP0, a register. + We know it can't be done in one insn when we get + here, the move expander guarantees this. */ + +static void +sparc_emit_set_const32 (rtx op0, rtx op1) +{ + enum machine_mode mode = GET_MODE (op0); + rtx temp; + + if (reload_in_progress || reload_completed) + temp = op0; + else + temp = gen_reg_rtx (mode); + + if (GET_CODE (op1) == CONST_INT) + { + gcc_assert (!small_int_operand (op1, mode) + && !const_high_operand (op1, mode)); + + /* Emit them as real moves instead of a HIGH/LO_SUM, + this way CSE can see everything and reuse intermediate + values if it wants. */ + emit_insn (gen_rtx_SET (VOIDmode, temp, + GEN_INT (INTVAL (op1) + & ~(HOST_WIDE_INT)0x3ff))); + + emit_insn (gen_rtx_SET (VOIDmode, + op0, + gen_rtx_IOR (mode, temp, + GEN_INT (INTVAL (op1) & 0x3ff)))); + } + else + { + /* A symbol, emit in the traditional way. */ + emit_insn (gen_rtx_SET (VOIDmode, temp, + gen_rtx_HIGH (mode, op1))); + emit_insn (gen_rtx_SET (VOIDmode, + op0, gen_rtx_LO_SUM (mode, temp, op1))); + } +} + +/* Load OP1, a symbolic 64-bit constant, into OP0, a DImode register. + If TEMP is nonzero, we are forbidden to use any other scratch + registers. Otherwise, we are allowed to generate them as needed. + + Note that TEMP may have TImode if the code model is TARGET_CM_MEDANY + or TARGET_CM_EMBMEDANY (see the reload_indi and reload_outdi patterns). */ + +void +sparc_emit_set_symbolic_const64 (rtx op0, rtx op1, rtx temp) +{ + rtx temp1, temp2, temp3, temp4, temp5; + rtx ti_temp = 0; + + if (temp && GET_MODE (temp) == TImode) + { + ti_temp = temp; + temp = gen_rtx_REG (DImode, REGNO (temp)); + } + + /* SPARC-V9 code-model support. */ + switch (sparc_cmodel) + { + case CM_MEDLOW: + /* The range spanned by all instructions in the object is less + than 2^31 bytes (2GB) and the distance from any instruction + to the location of the label _GLOBAL_OFFSET_TABLE_ is less + than 2^31 bytes (2GB). + + The executable must be in the low 4TB of the virtual address + space. + + sethi %hi(symbol), %temp1 + or %temp1, %lo(symbol), %reg */ + if (temp) + temp1 = temp; /* op0 is allowed. */ + else + temp1 = gen_reg_rtx (DImode); + + emit_insn (gen_rtx_SET (VOIDmode, temp1, gen_rtx_HIGH (DImode, op1))); + emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_LO_SUM (DImode, temp1, op1))); + break; + + case CM_MEDMID: + /* The range spanned by all instructions in the object is less + than 2^31 bytes (2GB) and the distance from any instruction + to the location of the label _GLOBAL_OFFSET_TABLE_ is less + than 2^31 bytes (2GB). + + The executable must be in the low 16TB of the virtual address + space. + + sethi %h44(symbol), %temp1 + or %temp1, %m44(symbol), %temp2 + sllx %temp2, 12, %temp3 + or %temp3, %l44(symbol), %reg */ + if (temp) + { + temp1 = op0; + temp2 = op0; + temp3 = temp; /* op0 is allowed. */ + } + else + { + temp1 = gen_reg_rtx (DImode); + temp2 = gen_reg_rtx (DImode); + temp3 = gen_reg_rtx (DImode); + } + + emit_insn (gen_seth44 (temp1, op1)); + emit_insn (gen_setm44 (temp2, temp1, op1)); + emit_insn (gen_rtx_SET (VOIDmode, temp3, + gen_rtx_ASHIFT (DImode, temp2, GEN_INT (12)))); + emit_insn (gen_setl44 (op0, temp3, op1)); + break; + + case CM_MEDANY: + /* The range spanned by all instructions in the object is less + than 2^31 bytes (2GB) and the distance from any instruction + to the location of the label _GLOBAL_OFFSET_TABLE_ is less + than 2^31 bytes (2GB). + + The executable can be placed anywhere in the virtual address + space. + + sethi %hh(symbol), %temp1 + sethi %lm(symbol), %temp2 + or %temp1, %hm(symbol), %temp3 + sllx %temp3, 32, %temp4 + or %temp4, %temp2, %temp5 + or %temp5, %lo(symbol), %reg */ + if (temp) + { + /* It is possible that one of the registers we got for operands[2] + might coincide with that of operands[0] (which is why we made + it TImode). Pick the other one to use as our scratch. */ + if (rtx_equal_p (temp, op0)) + { + gcc_assert (ti_temp); + temp = gen_rtx_REG (DImode, REGNO (temp) + 1); + } + temp1 = op0; + temp2 = temp; /* op0 is _not_ allowed, see above. */ + temp3 = op0; + temp4 = op0; + temp5 = op0; + } + else + { + temp1 = gen_reg_rtx (DImode); + temp2 = gen_reg_rtx (DImode); + temp3 = gen_reg_rtx (DImode); + temp4 = gen_reg_rtx (DImode); + temp5 = gen_reg_rtx (DImode); + } + + emit_insn (gen_sethh (temp1, op1)); + emit_insn (gen_setlm (temp2, op1)); + emit_insn (gen_sethm (temp3, temp1, op1)); + emit_insn (gen_rtx_SET (VOIDmode, temp4, + gen_rtx_ASHIFT (DImode, temp3, GEN_INT (32)))); + emit_insn (gen_rtx_SET (VOIDmode, temp5, + gen_rtx_PLUS (DImode, temp4, temp2))); + emit_insn (gen_setlo (op0, temp5, op1)); + break; + + case CM_EMBMEDANY: + /* Old old old backwards compatibility kruft here. + Essentially it is MEDLOW with a fixed 64-bit + virtual base added to all data segment addresses. + Text-segment stuff is computed like MEDANY, we can't + reuse the code above because the relocation knobs + look different. + + Data segment: sethi %hi(symbol), %temp1 + add %temp1, EMBMEDANY_BASE_REG, %temp2 + or %temp2, %lo(symbol), %reg */ + if (data_segment_operand (op1, GET_MODE (op1))) + { + if (temp) + { + temp1 = temp; /* op0 is allowed. */ + temp2 = op0; + } + else + { + temp1 = gen_reg_rtx (DImode); + temp2 = gen_reg_rtx (DImode); + } + + emit_insn (gen_embmedany_sethi (temp1, op1)); + emit_insn (gen_embmedany_brsum (temp2, temp1)); + emit_insn (gen_embmedany_losum (op0, temp2, op1)); + } + + /* Text segment: sethi %uhi(symbol), %temp1 + sethi %hi(symbol), %temp2 + or %temp1, %ulo(symbol), %temp3 + sllx %temp3, 32, %temp4 + or %temp4, %temp2, %temp5 + or %temp5, %lo(symbol), %reg */ + else + { + if (temp) + { + /* It is possible that one of the registers we got for operands[2] + might coincide with that of operands[0] (which is why we made + it TImode). Pick the other one to use as our scratch. */ + if (rtx_equal_p (temp, op0)) + { + gcc_assert (ti_temp); + temp = gen_rtx_REG (DImode, REGNO (temp) + 1); + } + temp1 = op0; + temp2 = temp; /* op0 is _not_ allowed, see above. */ + temp3 = op0; + temp4 = op0; + temp5 = op0; + } + else + { + temp1 = gen_reg_rtx (DImode); + temp2 = gen_reg_rtx (DImode); + temp3 = gen_reg_rtx (DImode); + temp4 = gen_reg_rtx (DImode); + temp5 = gen_reg_rtx (DImode); + } + + emit_insn (gen_embmedany_textuhi (temp1, op1)); + emit_insn (gen_embmedany_texthi (temp2, op1)); + emit_insn (gen_embmedany_textulo (temp3, temp1, op1)); + emit_insn (gen_rtx_SET (VOIDmode, temp4, + gen_rtx_ASHIFT (DImode, temp3, GEN_INT (32)))); + emit_insn (gen_rtx_SET (VOIDmode, temp5, + gen_rtx_PLUS (DImode, temp4, temp2))); + emit_insn (gen_embmedany_textlo (op0, temp5, op1)); + } + break; + + default: + gcc_unreachable (); + } +} + +#if HOST_BITS_PER_WIDE_INT == 32 +static void +sparc_emit_set_const64 (rtx op0 ATTRIBUTE_UNUSED, rtx op1 ATTRIBUTE_UNUSED) +{ + gcc_unreachable (); +} +#else +/* These avoid problems when cross compiling. If we do not + go through all this hair then the optimizer will see + invalid REG_EQUAL notes or in some cases none at all. */ +static rtx gen_safe_HIGH64 (rtx, HOST_WIDE_INT); +static rtx gen_safe_SET64 (rtx, HOST_WIDE_INT); +static rtx gen_safe_OR64 (rtx, HOST_WIDE_INT); +static rtx gen_safe_XOR64 (rtx, HOST_WIDE_INT); + +/* The optimizer is not to assume anything about exactly + which bits are set for a HIGH, they are unspecified. + Unfortunately this leads to many missed optimizations + during CSE. We mask out the non-HIGH bits, and matches + a plain movdi, to alleviate this problem. */ +static rtx +gen_safe_HIGH64 (rtx dest, HOST_WIDE_INT val) +{ + return gen_rtx_SET (VOIDmode, dest, GEN_INT (val & ~(HOST_WIDE_INT)0x3ff)); +} + +static rtx +gen_safe_SET64 (rtx dest, HOST_WIDE_INT val) +{ + return gen_rtx_SET (VOIDmode, dest, GEN_INT (val)); +} + +static rtx +gen_safe_OR64 (rtx src, HOST_WIDE_INT val) +{ + return gen_rtx_IOR (DImode, src, GEN_INT (val)); +} + +static rtx +gen_safe_XOR64 (rtx src, HOST_WIDE_INT val) +{ + return gen_rtx_XOR (DImode, src, GEN_INT (val)); +} + +/* Worker routines for 64-bit constant formation on arch64. + One of the key things to be doing in these emissions is + to create as many temp REGs as possible. This makes it + possible for half-built constants to be used later when + such values are similar to something required later on. + Without doing this, the optimizer cannot see such + opportunities. */ + +static void sparc_emit_set_const64_quick1 (rtx, rtx, + unsigned HOST_WIDE_INT, int); + +static void +sparc_emit_set_const64_quick1 (rtx op0, rtx temp, + unsigned HOST_WIDE_INT low_bits, int is_neg) +{ + unsigned HOST_WIDE_INT high_bits; + + if (is_neg) + high_bits = (~low_bits) & 0xffffffff; + else + high_bits = low_bits; + + emit_insn (gen_safe_HIGH64 (temp, high_bits)); + if (!is_neg) + { + emit_insn (gen_rtx_SET (VOIDmode, op0, + gen_safe_OR64 (temp, (high_bits & 0x3ff)))); + } + else + { + /* If we are XOR'ing with -1, then we should emit a one's complement + instead. This way the combiner will notice logical operations + such as ANDN later on and substitute. */ + if ((low_bits & 0x3ff) == 0x3ff) + { + emit_insn (gen_rtx_SET (VOIDmode, op0, + gen_rtx_NOT (DImode, temp))); + } + else + { + emit_insn (gen_rtx_SET (VOIDmode, op0, + gen_safe_XOR64 (temp, + (-(HOST_WIDE_INT)0x400 + | (low_bits & 0x3ff))))); + } + } +} + +static void sparc_emit_set_const64_quick2 (rtx, rtx, unsigned HOST_WIDE_INT, + unsigned HOST_WIDE_INT, int); + +static void +sparc_emit_set_const64_quick2 (rtx op0, rtx temp, + unsigned HOST_WIDE_INT high_bits, + unsigned HOST_WIDE_INT low_immediate, + int shift_count) +{ + rtx temp2 = op0; + + if ((high_bits & 0xfffffc00) != 0) + { + emit_insn (gen_safe_HIGH64 (temp, high_bits)); + if ((high_bits & ~0xfffffc00) != 0) + emit_insn (gen_rtx_SET (VOIDmode, op0, + gen_safe_OR64 (temp, (high_bits & 0x3ff)))); + else + temp2 = temp; + } + else + { + emit_insn (gen_safe_SET64 (temp, high_bits)); + temp2 = temp; + } + + /* Now shift it up into place. */ + emit_insn (gen_rtx_SET (VOIDmode, op0, + gen_rtx_ASHIFT (DImode, temp2, + GEN_INT (shift_count)))); + + /* If there is a low immediate part piece, finish up by + putting that in as well. */ + if (low_immediate != 0) + emit_insn (gen_rtx_SET (VOIDmode, op0, + gen_safe_OR64 (op0, low_immediate))); +} + +static void sparc_emit_set_const64_longway (rtx, rtx, unsigned HOST_WIDE_INT, + unsigned HOST_WIDE_INT); + +/* Full 64-bit constant decomposition. Even though this is the + 'worst' case, we still optimize a few things away. */ +static void +sparc_emit_set_const64_longway (rtx op0, rtx temp, + unsigned HOST_WIDE_INT high_bits, + unsigned HOST_WIDE_INT low_bits) +{ + rtx sub_temp; + + if (reload_in_progress || reload_completed) + sub_temp = op0; + else + sub_temp = gen_reg_rtx (DImode); + + if ((high_bits & 0xfffffc00) != 0) + { + emit_insn (gen_safe_HIGH64 (temp, high_bits)); + if ((high_bits & ~0xfffffc00) != 0) + emit_insn (gen_rtx_SET (VOIDmode, + sub_temp, + gen_safe_OR64 (temp, (high_bits & 0x3ff)))); + else + sub_temp = temp; + } + else + { + emit_insn (gen_safe_SET64 (temp, high_bits)); + sub_temp = temp; + } + + if (!reload_in_progress && !reload_completed) + { + rtx temp2 = gen_reg_rtx (DImode); + rtx temp3 = gen_reg_rtx (DImode); + rtx temp4 = gen_reg_rtx (DImode); + + emit_insn (gen_rtx_SET (VOIDmode, temp4, + gen_rtx_ASHIFT (DImode, sub_temp, + GEN_INT (32)))); + + emit_insn (gen_safe_HIGH64 (temp2, low_bits)); + if ((low_bits & ~0xfffffc00) != 0) + { + emit_insn (gen_rtx_SET (VOIDmode, temp3, + gen_safe_OR64 (temp2, (low_bits & 0x3ff)))); + emit_insn (gen_rtx_SET (VOIDmode, op0, + gen_rtx_PLUS (DImode, temp4, temp3))); + } + else + { + emit_insn (gen_rtx_SET (VOIDmode, op0, + gen_rtx_PLUS (DImode, temp4, temp2))); + } + } + else + { + rtx low1 = GEN_INT ((low_bits >> (32 - 12)) & 0xfff); + rtx low2 = GEN_INT ((low_bits >> (32 - 12 - 12)) & 0xfff); + rtx low3 = GEN_INT ((low_bits >> (32 - 12 - 12 - 8)) & 0x0ff); + int to_shift = 12; + + /* We are in the middle of reload, so this is really + painful. However we do still make an attempt to + avoid emitting truly stupid code. */ + if (low1 != const0_rtx) + { + emit_insn (gen_rtx_SET (VOIDmode, op0, + gen_rtx_ASHIFT (DImode, sub_temp, + GEN_INT (to_shift)))); + emit_insn (gen_rtx_SET (VOIDmode, op0, + gen_rtx_IOR (DImode, op0, low1))); + sub_temp = op0; + to_shift = 12; + } + else + { + to_shift += 12; + } + if (low2 != const0_rtx) + { + emit_insn (gen_rtx_SET (VOIDmode, op0, + gen_rtx_ASHIFT (DImode, sub_temp, + GEN_INT (to_shift)))); + emit_insn (gen_rtx_SET (VOIDmode, op0, + gen_rtx_IOR (DImode, op0, low2))); + sub_temp = op0; + to_shift = 8; + } + else + { + to_shift += 8; + } + emit_insn (gen_rtx_SET (VOIDmode, op0, + gen_rtx_ASHIFT (DImode, sub_temp, + GEN_INT (to_shift)))); + if (low3 != const0_rtx) + emit_insn (gen_rtx_SET (VOIDmode, op0, + gen_rtx_IOR (DImode, op0, low3))); + /* phew... */ + } +} + +/* Analyze a 64-bit constant for certain properties. */ +static void analyze_64bit_constant (unsigned HOST_WIDE_INT, + unsigned HOST_WIDE_INT, + int *, int *, int *); + +static void +analyze_64bit_constant (unsigned HOST_WIDE_INT high_bits, + unsigned HOST_WIDE_INT low_bits, + int *hbsp, int *lbsp, int *abbasp) +{ + int lowest_bit_set, highest_bit_set, all_bits_between_are_set; + int i; + + lowest_bit_set = highest_bit_set = -1; + i = 0; + do + { + if ((lowest_bit_set == -1) + && ((low_bits >> i) & 1)) + lowest_bit_set = i; + if ((highest_bit_set == -1) + && ((high_bits >> (32 - i - 1)) & 1)) + highest_bit_set = (64 - i - 1); + } + while (++i < 32 + && ((highest_bit_set == -1) + || (lowest_bit_set == -1))); + if (i == 32) + { + i = 0; + do + { + if ((lowest_bit_set == -1) + && ((high_bits >> i) & 1)) + lowest_bit_set = i + 32; + if ((highest_bit_set == -1) + && ((low_bits >> (32 - i - 1)) & 1)) + highest_bit_set = 32 - i - 1; + } + while (++i < 32 + && ((highest_bit_set == -1) + || (lowest_bit_set == -1))); + } + /* If there are no bits set this should have gone out + as one instruction! */ + gcc_assert (lowest_bit_set != -1 && highest_bit_set != -1); + all_bits_between_are_set = 1; + for (i = lowest_bit_set; i <= highest_bit_set; i++) + { + if (i < 32) + { + if ((low_bits & (1 << i)) != 0) + continue; + } + else + { + if ((high_bits & (1 << (i - 32))) != 0) + continue; + } + all_bits_between_are_set = 0; + break; + } + *hbsp = highest_bit_set; + *lbsp = lowest_bit_set; + *abbasp = all_bits_between_are_set; +} + +static int const64_is_2insns (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT); + +static int +const64_is_2insns (unsigned HOST_WIDE_INT high_bits, + unsigned HOST_WIDE_INT low_bits) +{ + int highest_bit_set, lowest_bit_set, all_bits_between_are_set; + + if (high_bits == 0 + || high_bits == 0xffffffff) + return 1; + + analyze_64bit_constant (high_bits, low_bits, + &highest_bit_set, &lowest_bit_set, + &all_bits_between_are_set); + + if ((highest_bit_set == 63 + || lowest_bit_set == 0) + && all_bits_between_are_set != 0) + return 1; + + if ((highest_bit_set - lowest_bit_set) < 21) + return 1; + + return 0; +} + +static unsigned HOST_WIDE_INT create_simple_focus_bits (unsigned HOST_WIDE_INT, + unsigned HOST_WIDE_INT, + int, int); + +static unsigned HOST_WIDE_INT +create_simple_focus_bits (unsigned HOST_WIDE_INT high_bits, + unsigned HOST_WIDE_INT low_bits, + int lowest_bit_set, int shift) +{ + HOST_WIDE_INT hi, lo; + + if (lowest_bit_set < 32) + { + lo = (low_bits >> lowest_bit_set) << shift; + hi = ((high_bits << (32 - lowest_bit_set)) << shift); + } + else + { + lo = 0; + hi = ((high_bits >> (lowest_bit_set - 32)) << shift); + } + gcc_assert (! (hi & lo)); + return (hi | lo); +} + +/* Here we are sure to be arch64 and this is an integer constant + being loaded into a register. Emit the most efficient + insn sequence possible. Detection of all the 1-insn cases + has been done already. */ +static void +sparc_emit_set_const64 (rtx op0, rtx op1) +{ + unsigned HOST_WIDE_INT high_bits, low_bits; + int lowest_bit_set, highest_bit_set; + int all_bits_between_are_set; + rtx temp = 0; + + /* Sanity check that we know what we are working with. */ + gcc_assert (TARGET_ARCH64 + && (GET_CODE (op0) == SUBREG + || (REG_P (op0) && ! SPARC_FP_REG_P (REGNO (op0))))); + + if (reload_in_progress || reload_completed) + temp = op0; + + if (GET_CODE (op1) != CONST_INT) + { + sparc_emit_set_symbolic_const64 (op0, op1, temp); + return; + } + + if (! temp) + temp = gen_reg_rtx (DImode); + + high_bits = ((INTVAL (op1) >> 32) & 0xffffffff); + low_bits = (INTVAL (op1) & 0xffffffff); + + /* low_bits bits 0 --> 31 + high_bits bits 32 --> 63 */ + + analyze_64bit_constant (high_bits, low_bits, + &highest_bit_set, &lowest_bit_set, + &all_bits_between_are_set); + + /* First try for a 2-insn sequence. */ + + /* These situations are preferred because the optimizer can + * do more things with them: + * 1) mov -1, %reg + * sllx %reg, shift, %reg + * 2) mov -1, %reg + * srlx %reg, shift, %reg + * 3) mov some_small_const, %reg + * sllx %reg, shift, %reg + */ + if (((highest_bit_set == 63 + || lowest_bit_set == 0) + && all_bits_between_are_set != 0) + || ((highest_bit_set - lowest_bit_set) < 12)) + { + HOST_WIDE_INT the_const = -1; + int shift = lowest_bit_set; + + if ((highest_bit_set != 63 + && lowest_bit_set != 0) + || all_bits_between_are_set == 0) + { + the_const = + create_simple_focus_bits (high_bits, low_bits, + lowest_bit_set, 0); + } + else if (lowest_bit_set == 0) + shift = -(63 - highest_bit_set); + + gcc_assert (SPARC_SIMM13_P (the_const)); + gcc_assert (shift != 0); + + emit_insn (gen_safe_SET64 (temp, the_const)); + if (shift > 0) + emit_insn (gen_rtx_SET (VOIDmode, + op0, + gen_rtx_ASHIFT (DImode, + temp, + GEN_INT (shift)))); + else if (shift < 0) + emit_insn (gen_rtx_SET (VOIDmode, + op0, + gen_rtx_LSHIFTRT (DImode, + temp, + GEN_INT (-shift)))); + return; + } + + /* Now a range of 22 or less bits set somewhere. + * 1) sethi %hi(focus_bits), %reg + * sllx %reg, shift, %reg + * 2) sethi %hi(focus_bits), %reg + * srlx %reg, shift, %reg + */ + if ((highest_bit_set - lowest_bit_set) < 21) + { + unsigned HOST_WIDE_INT focus_bits = + create_simple_focus_bits (high_bits, low_bits, + lowest_bit_set, 10); + + gcc_assert (SPARC_SETHI_P (focus_bits)); + gcc_assert (lowest_bit_set != 10); + + emit_insn (gen_safe_HIGH64 (temp, focus_bits)); + + /* If lowest_bit_set == 10 then a sethi alone could have done it. */ + if (lowest_bit_set < 10) + emit_insn (gen_rtx_SET (VOIDmode, + op0, + gen_rtx_LSHIFTRT (DImode, temp, + GEN_INT (10 - lowest_bit_set)))); + else if (lowest_bit_set > 10) + emit_insn (gen_rtx_SET (VOIDmode, + op0, + gen_rtx_ASHIFT (DImode, temp, + GEN_INT (lowest_bit_set - 10)))); + return; + } + + /* 1) sethi %hi(low_bits), %reg + * or %reg, %lo(low_bits), %reg + * 2) sethi %hi(~low_bits), %reg + * xor %reg, %lo(-0x400 | (low_bits & 0x3ff)), %reg + */ + if (high_bits == 0 + || high_bits == 0xffffffff) + { + sparc_emit_set_const64_quick1 (op0, temp, low_bits, + (high_bits == 0xffffffff)); + return; + } + + /* Now, try 3-insn sequences. */ + + /* 1) sethi %hi(high_bits), %reg + * or %reg, %lo(high_bits), %reg + * sllx %reg, 32, %reg + */ + if (low_bits == 0) + { + sparc_emit_set_const64_quick2 (op0, temp, high_bits, 0, 32); + return; + } + + /* We may be able to do something quick + when the constant is negated, so try that. */ + if (const64_is_2insns ((~high_bits) & 0xffffffff, + (~low_bits) & 0xfffffc00)) + { + /* NOTE: The trailing bits get XOR'd so we need the + non-negated bits, not the negated ones. */ + unsigned HOST_WIDE_INT trailing_bits = low_bits & 0x3ff; + + if ((((~high_bits) & 0xffffffff) == 0 + && ((~low_bits) & 0x80000000) == 0) + || (((~high_bits) & 0xffffffff) == 0xffffffff + && ((~low_bits) & 0x80000000) != 0)) + { + unsigned HOST_WIDE_INT fast_int = (~low_bits & 0xffffffff); + + if ((SPARC_SETHI_P (fast_int) + && (~high_bits & 0xffffffff) == 0) + || SPARC_SIMM13_P (fast_int)) + emit_insn (gen_safe_SET64 (temp, fast_int)); + else + sparc_emit_set_const64 (temp, GEN_INT (fast_int)); + } + else + { + rtx negated_const; + negated_const = GEN_INT (((~low_bits) & 0xfffffc00) | + (((HOST_WIDE_INT)((~high_bits) & 0xffffffff))<<32)); + sparc_emit_set_const64 (temp, negated_const); + } + + /* If we are XOR'ing with -1, then we should emit a one's complement + instead. This way the combiner will notice logical operations + such as ANDN later on and substitute. */ + if (trailing_bits == 0x3ff) + { + emit_insn (gen_rtx_SET (VOIDmode, op0, + gen_rtx_NOT (DImode, temp))); + } + else + { + emit_insn (gen_rtx_SET (VOIDmode, + op0, + gen_safe_XOR64 (temp, + (-0x400 | trailing_bits)))); + } + return; + } + + /* 1) sethi %hi(xxx), %reg + * or %reg, %lo(xxx), %reg + * sllx %reg, yyy, %reg + * + * ??? This is just a generalized version of the low_bits==0 + * thing above, FIXME... + */ + if ((highest_bit_set - lowest_bit_set) < 32) + { + unsigned HOST_WIDE_INT focus_bits = + create_simple_focus_bits (high_bits, low_bits, + lowest_bit_set, 0); + + /* We can't get here in this state. */ + gcc_assert (highest_bit_set >= 32 && lowest_bit_set < 32); + + /* So what we know is that the set bits straddle the + middle of the 64-bit word. */ + sparc_emit_set_const64_quick2 (op0, temp, + focus_bits, 0, + lowest_bit_set); + return; + } + + /* 1) sethi %hi(high_bits), %reg + * or %reg, %lo(high_bits), %reg + * sllx %reg, 32, %reg + * or %reg, low_bits, %reg + */ + if (SPARC_SIMM13_P(low_bits) + && ((int)low_bits > 0)) + { + sparc_emit_set_const64_quick2 (op0, temp, high_bits, low_bits, 32); + return; + } + + /* The easiest way when all else fails, is full decomposition. */ + sparc_emit_set_const64_longway (op0, temp, high_bits, low_bits); +} +#endif /* HOST_BITS_PER_WIDE_INT == 32 */ + +/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, + return the mode to be used for the comparison. For floating-point, + CCFP[E]mode is used. CC_NOOVmode should be used when the first operand + is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special + processing is needed. */ + +enum machine_mode +select_cc_mode (enum rtx_code op, rtx x, rtx y ATTRIBUTE_UNUSED) +{ + if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) + { + switch (op) + { + case EQ: + case NE: + case UNORDERED: + case ORDERED: + case UNLT: + case UNLE: + case UNGT: + case UNGE: + case UNEQ: + case LTGT: + return CCFPmode; + + case LT: + case LE: + case GT: + case GE: + return CCFPEmode; + + default: + gcc_unreachable (); + } + } + else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS + || GET_CODE (x) == NEG || GET_CODE (x) == ASHIFT) + { + if (TARGET_ARCH64 && GET_MODE (x) == DImode) + return CCX_NOOVmode; + else + return CC_NOOVmode; + } + else + { + if (TARGET_ARCH64 && GET_MODE (x) == DImode) + return CCXmode; + else + return CCmode; + } +} + +/* Emit the compare insn and return the CC reg for a CODE comparison + with operands X and Y. */ + +static rtx +gen_compare_reg_1 (enum rtx_code code, rtx x, rtx y) +{ + enum machine_mode mode; + rtx cc_reg; + + if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC) + return x; + + mode = SELECT_CC_MODE (code, x, y); + + /* ??? We don't have movcc patterns so we cannot generate pseudo regs for the + fcc regs (cse can't tell they're really call clobbered regs and will + remove a duplicate comparison even if there is an intervening function + call - it will then try to reload the cc reg via an int reg which is why + we need the movcc patterns). It is possible to provide the movcc + patterns by using the ldxfsr/stxfsr v9 insns. I tried it: you need two + registers (say %g1,%g5) and it takes about 6 insns. A better fix would be + to tell cse that CCFPE mode registers (even pseudos) are call + clobbered. */ + + /* ??? This is an experiment. Rather than making changes to cse which may + or may not be easy/clean, we do our own cse. This is possible because + we will generate hard registers. Cse knows they're call clobbered (it + doesn't know the same thing about pseudos). If we guess wrong, no big + deal, but if we win, great! */ + + if (TARGET_V9 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) +#if 1 /* experiment */ + { + int reg; + /* We cycle through the registers to ensure they're all exercised. */ + static int next_fcc_reg = 0; + /* Previous x,y for each fcc reg. */ + static rtx prev_args[4][2]; + + /* Scan prev_args for x,y. */ + for (reg = 0; reg < 4; reg++) + if (prev_args[reg][0] == x && prev_args[reg][1] == y) + break; + if (reg == 4) + { + reg = next_fcc_reg; + prev_args[reg][0] = x; + prev_args[reg][1] = y; + next_fcc_reg = (next_fcc_reg + 1) & 3; + } + cc_reg = gen_rtx_REG (mode, reg + SPARC_FIRST_V9_FCC_REG); + } +#else + cc_reg = gen_reg_rtx (mode); +#endif /* ! experiment */ + else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) + cc_reg = gen_rtx_REG (mode, SPARC_FCC_REG); + else + cc_reg = gen_rtx_REG (mode, SPARC_ICC_REG); + + /* We shouldn't get there for TFmode if !TARGET_HARD_QUAD. If we do, this + will only result in an unrecognizable insn so no point in asserting. */ + emit_insn (gen_rtx_SET (VOIDmode, cc_reg, gen_rtx_COMPARE (mode, x, y))); + + return cc_reg; +} + + +/* Emit the compare insn and return the CC reg for the comparison in CMP. */ + +rtx +gen_compare_reg (rtx cmp) +{ + return gen_compare_reg_1 (GET_CODE (cmp), XEXP (cmp, 0), XEXP (cmp, 1)); +} + +/* This function is used for v9 only. + DEST is the target of the Scc insn. + CODE is the code for an Scc's comparison. + X and Y are the values we compare. + + This function is needed to turn + + (set (reg:SI 110) + (gt (reg:CCX 100 %icc) + (const_int 0))) + into + (set (reg:SI 110) + (gt:DI (reg:CCX 100 %icc) + (const_int 0))) + + IE: The instruction recognizer needs to see the mode of the comparison to + find the right instruction. We could use "gt:DI" right in the + define_expand, but leaving it out allows us to handle DI, SI, etc. */ + +static int +gen_v9_scc (rtx dest, enum rtx_code compare_code, rtx x, rtx y) +{ + if (! TARGET_ARCH64 + && (GET_MODE (x) == DImode + || GET_MODE (dest) == DImode)) + return 0; + + /* Try to use the movrCC insns. */ + if (TARGET_ARCH64 + && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT + && y == const0_rtx + && v9_regcmp_p (compare_code)) + { + rtx op0 = x; + rtx temp; + + /* Special case for op0 != 0. This can be done with one instruction if + dest == x. */ + + if (compare_code == NE + && GET_MODE (dest) == DImode + && rtx_equal_p (op0, dest)) + { + emit_insn (gen_rtx_SET (VOIDmode, dest, + gen_rtx_IF_THEN_ELSE (DImode, + gen_rtx_fmt_ee (compare_code, DImode, + op0, const0_rtx), + const1_rtx, + dest))); + return 1; + } + + if (reg_overlap_mentioned_p (dest, op0)) + { + /* Handle the case where dest == x. + We "early clobber" the result. */ + op0 = gen_reg_rtx (GET_MODE (x)); + emit_move_insn (op0, x); + } + + emit_insn (gen_rtx_SET (VOIDmode, dest, const0_rtx)); + if (GET_MODE (op0) != DImode) + { + temp = gen_reg_rtx (DImode); + convert_move (temp, op0, 0); + } + else + temp = op0; + emit_insn (gen_rtx_SET (VOIDmode, dest, + gen_rtx_IF_THEN_ELSE (GET_MODE (dest), + gen_rtx_fmt_ee (compare_code, DImode, + temp, const0_rtx), + const1_rtx, + dest))); + return 1; + } + else + { + x = gen_compare_reg_1 (compare_code, x, y); + y = const0_rtx; + + gcc_assert (GET_MODE (x) != CC_NOOVmode + && GET_MODE (x) != CCX_NOOVmode); + + emit_insn (gen_rtx_SET (VOIDmode, dest, const0_rtx)); + emit_insn (gen_rtx_SET (VOIDmode, dest, + gen_rtx_IF_THEN_ELSE (GET_MODE (dest), + gen_rtx_fmt_ee (compare_code, + GET_MODE (x), x, y), + const1_rtx, dest))); + return 1; + } +} + + +/* Emit an scc insn. For seq, sne, sgeu, and sltu, we can do this + without jumps using the addx/subx instructions. */ + +bool +emit_scc_insn (rtx operands[]) +{ + rtx tem; + rtx x; + rtx y; + enum rtx_code code; + + /* The quad-word fp compare library routines all return nonzero to indicate + true, which is different from the equivalent libgcc routines, so we must + handle them specially here. */ + if (GET_MODE (operands[2]) == TFmode && ! TARGET_HARD_QUAD) + { + operands[1] = sparc_emit_float_lib_cmp (operands[2], operands[3], + GET_CODE (operands[1])); + operands[2] = XEXP (operands[1], 0); + operands[3] = XEXP (operands[1], 1); + } + + code = GET_CODE (operands[1]); + x = operands[2]; + y = operands[3]; + + /* For seq/sne on v9 we use the same code as v8 (the addx/subx method has + more applications). The exception to this is "reg != 0" which can + be done in one instruction on v9 (so we do it). */ + if (code == EQ) + { + if (GET_MODE (x) == SImode) + { + rtx pat = gen_seqsi_special (operands[0], x, y); + emit_insn (pat); + return true; + } + else if (GET_MODE (x) == DImode) + { + rtx pat = gen_seqdi_special (operands[0], x, y); + emit_insn (pat); + return true; + } + } + + if (code == NE) + { + if (GET_MODE (x) == SImode) + { + rtx pat = gen_snesi_special (operands[0], x, y); + emit_insn (pat); + return true; + } + else if (GET_MODE (x) == DImode) + { + rtx pat = gen_snedi_special (operands[0], x, y); + emit_insn (pat); + return true; + } + } + + /* For the rest, on v9 we can use conditional moves. */ + + if (TARGET_V9) + { + if (gen_v9_scc (operands[0], code, x, y)) + return true; + } + + /* We can do LTU and GEU using the addx/subx instructions too. And + for GTU/LEU, if both operands are registers swap them and fall + back to the easy case. */ + if (code == GTU || code == LEU) + { + if ((GET_CODE (x) == REG || GET_CODE (x) == SUBREG) + && (GET_CODE (y) == REG || GET_CODE (y) == SUBREG)) + { + tem = x; + x = y; + y = tem; + code = swap_condition (code); + } + } + + if (code == LTU || code == GEU) + { + emit_insn (gen_rtx_SET (VOIDmode, operands[0], + gen_rtx_fmt_ee (code, SImode, + gen_compare_reg_1 (code, x, y), + const0_rtx))); + return true; + } + + /* Nope, do branches. */ + return false; +} + +/* Emit a conditional jump insn for the v9 architecture using comparison code + CODE and jump target LABEL. + This function exists to take advantage of the v9 brxx insns. */ + +static void +emit_v9_brxx_insn (enum rtx_code code, rtx op0, rtx label) +{ + emit_jump_insn (gen_rtx_SET (VOIDmode, + pc_rtx, + gen_rtx_IF_THEN_ELSE (VOIDmode, + gen_rtx_fmt_ee (code, GET_MODE (op0), + op0, const0_rtx), + gen_rtx_LABEL_REF (VOIDmode, label), + pc_rtx))); +} + +void +emit_conditional_branch_insn (rtx operands[]) +{ + /* The quad-word fp compare library routines all return nonzero to indicate + true, which is different from the equivalent libgcc routines, so we must + handle them specially here. */ + if (GET_MODE (operands[1]) == TFmode && ! TARGET_HARD_QUAD) + { + operands[0] = sparc_emit_float_lib_cmp (operands[1], operands[2], + GET_CODE (operands[0])); + operands[1] = XEXP (operands[0], 0); + operands[2] = XEXP (operands[0], 1); + } + + if (TARGET_ARCH64 && operands[2] == const0_rtx + && GET_CODE (operands[1]) == REG + && GET_MODE (operands[1]) == DImode) + { + emit_v9_brxx_insn (GET_CODE (operands[0]), operands[1], operands[3]); + return; + } + + operands[1] = gen_compare_reg (operands[0]); + operands[2] = const0_rtx; + operands[0] = gen_rtx_fmt_ee (GET_CODE (operands[0]), VOIDmode, + operands[1], operands[2]); + emit_jump_insn (gen_cbranchcc4 (operands[0], operands[1], operands[2], + operands[3])); +} + + +/* Generate a DFmode part of a hard TFmode register. + REG is the TFmode hard register, LOW is 1 for the + low 64bit of the register and 0 otherwise. + */ +rtx +gen_df_reg (rtx reg, int low) +{ + int regno = REGNO (reg); + + if ((WORDS_BIG_ENDIAN == 0) ^ (low != 0)) + regno += (TARGET_ARCH64 && regno < 32) ? 1 : 2; + return gen_rtx_REG (DFmode, regno); +} + +/* Generate a call to FUNC with OPERANDS. Operand 0 is the return value. + Unlike normal calls, TFmode operands are passed by reference. It is + assumed that no more than 3 operands are required. */ + +static void +emit_soft_tfmode_libcall (const char *func_name, int nargs, rtx *operands) +{ + rtx ret_slot = NULL, arg[3], func_sym; + int i; + + /* We only expect to be called for conversions, unary, and binary ops. */ + gcc_assert (nargs == 2 || nargs == 3); + + for (i = 0; i < nargs; ++i) + { + rtx this_arg = operands[i]; + rtx this_slot; + + /* TFmode arguments and return values are passed by reference. */ + if (GET_MODE (this_arg) == TFmode) + { + int force_stack_temp; + + force_stack_temp = 0; + if (TARGET_BUGGY_QP_LIB && i == 0) + force_stack_temp = 1; + + if (GET_CODE (this_arg) == MEM + && ! force_stack_temp) + this_arg = XEXP (this_arg, 0); + else if (CONSTANT_P (this_arg) + && ! force_stack_temp) + { + this_slot = force_const_mem (TFmode, this_arg); + this_arg = XEXP (this_slot, 0); + } + else + { + this_slot = assign_stack_temp (TFmode, GET_MODE_SIZE (TFmode), 0); + + /* Operand 0 is the return value. We'll copy it out later. */ + if (i > 0) + emit_move_insn (this_slot, this_arg); + else + ret_slot = this_slot; + + this_arg = XEXP (this_slot, 0); + } + } + + arg[i] = this_arg; + } + + func_sym = gen_rtx_SYMBOL_REF (Pmode, func_name); + + if (GET_MODE (operands[0]) == TFmode) + { + if (nargs == 2) + emit_library_call (func_sym, LCT_NORMAL, VOIDmode, 2, + arg[0], GET_MODE (arg[0]), + arg[1], GET_MODE (arg[1])); + else + emit_library_call (func_sym, LCT_NORMAL, VOIDmode, 3, + arg[0], GET_MODE (arg[0]), + arg[1], GET_MODE (arg[1]), + arg[2], GET_MODE (arg[2])); + + if (ret_slot) + emit_move_insn (operands[0], ret_slot); + } + else + { + rtx ret; + + gcc_assert (nargs == 2); + + ret = emit_library_call_value (func_sym, operands[0], LCT_NORMAL, + GET_MODE (operands[0]), 1, + arg[1], GET_MODE (arg[1])); + + if (ret != operands[0]) + emit_move_insn (operands[0], ret); + } +} + +/* Expand soft-float TFmode calls to sparc abi routines. */ + +static void +emit_soft_tfmode_binop (enum rtx_code code, rtx *operands) +{ + const char *func; + + switch (code) + { + case PLUS: + func = "_Qp_add"; + break; + case MINUS: + func = "_Qp_sub"; + break; + case MULT: + func = "_Qp_mul"; + break; + case DIV: + func = "_Qp_div"; + break; + default: + gcc_unreachable (); + } + + emit_soft_tfmode_libcall (func, 3, operands); +} + +static void +emit_soft_tfmode_unop (enum rtx_code code, rtx *operands) +{ + const char *func; + + gcc_assert (code == SQRT); + func = "_Qp_sqrt"; + + emit_soft_tfmode_libcall (func, 2, operands); +} + +static void +emit_soft_tfmode_cvt (enum rtx_code code, rtx *operands) +{ + const char *func; + + switch (code) + { + case FLOAT_EXTEND: + switch (GET_MODE (operands[1])) + { + case SFmode: + func = "_Qp_stoq"; + break; + case DFmode: + func = "_Qp_dtoq"; + break; + default: + gcc_unreachable (); + } + break; + + case FLOAT_TRUNCATE: + switch (GET_MODE (operands[0])) + { + case SFmode: + func = "_Qp_qtos"; + break; + case DFmode: + func = "_Qp_qtod"; + break; + default: + gcc_unreachable (); + } + break; + + case FLOAT: + switch (GET_MODE (operands[1])) + { + case SImode: + func = "_Qp_itoq"; + if (TARGET_ARCH64) + operands[1] = gen_rtx_SIGN_EXTEND (DImode, operands[1]); + break; + case DImode: + func = "_Qp_xtoq"; + break; + default: + gcc_unreachable (); + } + break; + + case UNSIGNED_FLOAT: + switch (GET_MODE (operands[1])) + { + case SImode: + func = "_Qp_uitoq"; + if (TARGET_ARCH64) + operands[1] = gen_rtx_ZERO_EXTEND (DImode, operands[1]); + break; + case DImode: + func = "_Qp_uxtoq"; + break; + default: + gcc_unreachable (); + } + break; + + case FIX: + switch (GET_MODE (operands[0])) + { + case SImode: + func = "_Qp_qtoi"; + break; + case DImode: + func = "_Qp_qtox"; + break; + default: + gcc_unreachable (); + } + break; + + case UNSIGNED_FIX: + switch (GET_MODE (operands[0])) + { + case SImode: + func = "_Qp_qtoui"; + break; + case DImode: + func = "_Qp_qtoux"; + break; + default: + gcc_unreachable (); + } + break; + + default: + gcc_unreachable (); + } + + emit_soft_tfmode_libcall (func, 2, operands); +} + +/* Expand a hard-float tfmode operation. All arguments must be in + registers. */ + +static void +emit_hard_tfmode_operation (enum rtx_code code, rtx *operands) +{ + rtx op, dest; + + if (GET_RTX_CLASS (code) == RTX_UNARY) + { + operands[1] = force_reg (GET_MODE (operands[1]), operands[1]); + op = gen_rtx_fmt_e (code, GET_MODE (operands[0]), operands[1]); + } + else + { + operands[1] = force_reg (GET_MODE (operands[1]), operands[1]); + operands[2] = force_reg (GET_MODE (operands[2]), operands[2]); + op = gen_rtx_fmt_ee (code, GET_MODE (operands[0]), + operands[1], operands[2]); + } + + if (register_operand (operands[0], VOIDmode)) + dest = operands[0]; + else + dest = gen_reg_rtx (GET_MODE (operands[0])); + + emit_insn (gen_rtx_SET (VOIDmode, dest, op)); + + if (dest != operands[0]) + emit_move_insn (operands[0], dest); +} + +void +emit_tfmode_binop (enum rtx_code code, rtx *operands) +{ + if (TARGET_HARD_QUAD) + emit_hard_tfmode_operation (code, operands); + else + emit_soft_tfmode_binop (code, operands); +} + +void +emit_tfmode_unop (enum rtx_code code, rtx *operands) +{ + if (TARGET_HARD_QUAD) + emit_hard_tfmode_operation (code, operands); + else + emit_soft_tfmode_unop (code, operands); +} + +void +emit_tfmode_cvt (enum rtx_code code, rtx *operands) +{ + if (TARGET_HARD_QUAD) + emit_hard_tfmode_operation (code, operands); + else + emit_soft_tfmode_cvt (code, operands); +} + +/* Return nonzero if a branch/jump/call instruction will be emitting + nop into its delay slot. */ + +int +empty_delay_slot (rtx insn) +{ + rtx seq; + + /* If no previous instruction (should not happen), return true. */ + if (PREV_INSN (insn) == NULL) + return 1; + + seq = NEXT_INSN (PREV_INSN (insn)); + if (GET_CODE (PATTERN (seq)) == SEQUENCE) + return 0; + + return 1; +} + +/* Return nonzero if TRIAL can go into the call delay slot. */ + +int +tls_call_delay (rtx trial) +{ + rtx pat; + + /* Binutils allows + call __tls_get_addr, %tgd_call (foo) + add %l7, %o0, %o0, %tgd_add (foo) + while Sun as/ld does not. */ + if (TARGET_GNU_TLS || !TARGET_TLS) + return 1; + + pat = PATTERN (trial); + + /* We must reject tgd_add{32|64}, i.e. + (set (reg) (plus (reg) (unspec [(reg) (symbol_ref)] UNSPEC_TLSGD))) + and tldm_add{32|64}, i.e. + (set (reg) (plus (reg) (unspec [(reg) (symbol_ref)] UNSPEC_TLSLDM))) + for Sun as/ld. */ + if (GET_CODE (pat) == SET + && GET_CODE (SET_SRC (pat)) == PLUS) + { + rtx unspec = XEXP (SET_SRC (pat), 1); + + if (GET_CODE (unspec) == UNSPEC + && (XINT (unspec, 1) == UNSPEC_TLSGD + || XINT (unspec, 1) == UNSPEC_TLSLDM)) + return 0; + } + + return 1; +} + +/* Return nonzero if TRIAL, an insn, can be combined with a 'restore' + instruction. RETURN_P is true if the v9 variant 'return' is to be + considered in the test too. + + TRIAL must be a SET whose destination is a REG appropriate for the + 'restore' instruction or, if RETURN_P is true, for the 'return' + instruction. */ + +static int +eligible_for_restore_insn (rtx trial, bool return_p) +{ + rtx pat = PATTERN (trial); + rtx src = SET_SRC (pat); + + /* The 'restore src,%g0,dest' pattern for word mode and below. */ + if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT + && arith_operand (src, GET_MODE (src))) + { + if (TARGET_ARCH64) + return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode); + else + return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode); + } + + /* The 'restore src,%g0,dest' pattern for double-word mode. */ + else if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT + && arith_double_operand (src, GET_MODE (src))) + return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode); + + /* The 'restore src,%g0,dest' pattern for float if no FPU. */ + else if (! TARGET_FPU && register_operand (src, SFmode)) + return 1; + + /* The 'restore src,%g0,dest' pattern for double if no FPU. */ + else if (! TARGET_FPU && TARGET_ARCH64 && register_operand (src, DFmode)) + return 1; + + /* If we have the 'return' instruction, anything that does not use + local or output registers and can go into a delay slot wins. */ + else if (return_p && TARGET_V9 && ! epilogue_renumber (&pat, 1) + && (get_attr_in_uncond_branch_delay (trial) + == IN_UNCOND_BRANCH_DELAY_TRUE)) + return 1; + + /* The 'restore src1,src2,dest' pattern for SImode. */ + else if (GET_CODE (src) == PLUS + && register_operand (XEXP (src, 0), SImode) + && arith_operand (XEXP (src, 1), SImode)) + return 1; + + /* The 'restore src1,src2,dest' pattern for DImode. */ + else if (GET_CODE (src) == PLUS + && register_operand (XEXP (src, 0), DImode) + && arith_double_operand (XEXP (src, 1), DImode)) + return 1; + + /* The 'restore src1,%lo(src2),dest' pattern. */ + else if (GET_CODE (src) == LO_SUM + && ! TARGET_CM_MEDMID + && ((register_operand (XEXP (src, 0), SImode) + && immediate_operand (XEXP (src, 1), SImode)) + || (TARGET_ARCH64 + && register_operand (XEXP (src, 0), DImode) + && immediate_operand (XEXP (src, 1), DImode)))) + return 1; + + /* The 'restore src,src,dest' pattern. */ + else if (GET_CODE (src) == ASHIFT + && (register_operand (XEXP (src, 0), SImode) + || register_operand (XEXP (src, 0), DImode)) + && XEXP (src, 1) == const1_rtx) + return 1; + + return 0; +} + +/* Return nonzero if TRIAL can go into the function return's + delay slot. */ + +int +eligible_for_return_delay (rtx trial) +{ + rtx pat; + + if (GET_CODE (trial) != INSN || GET_CODE (PATTERN (trial)) != SET) + return 0; + + if (get_attr_length (trial) != 1) + return 0; + + /* If the function uses __builtin_eh_return, the eh_return machinery + occupies the delay slot. */ + if (crtl->calls_eh_return) + return 0; + + /* In the case of a true leaf function, anything can go into the slot. */ + if (sparc_leaf_function_p) + return get_attr_in_uncond_branch_delay (trial) + == IN_UNCOND_BRANCH_DELAY_TRUE; + + pat = PATTERN (trial); + + /* Otherwise, only operations which can be done in tandem with + a `restore' or `return' insn can go into the delay slot. */ + if (GET_CODE (SET_DEST (pat)) != REG + || (REGNO (SET_DEST (pat)) >= 8 && REGNO (SET_DEST (pat)) < 24)) + return 0; + + /* If this instruction sets up floating point register and we have a return + instruction, it can probably go in. But restore will not work + with FP_REGS. */ + if (REGNO (SET_DEST (pat)) >= 32) + return (TARGET_V9 + && ! epilogue_renumber (&pat, 1) + && (get_attr_in_uncond_branch_delay (trial) + == IN_UNCOND_BRANCH_DELAY_TRUE)); + + return eligible_for_restore_insn (trial, true); +} + +/* Return nonzero if TRIAL can go into the sibling call's + delay slot. */ + +int +eligible_for_sibcall_delay (rtx trial) +{ + rtx pat; + + if (GET_CODE (trial) != INSN || GET_CODE (PATTERN (trial)) != SET) + return 0; + + if (get_attr_length (trial) != 1) + return 0; + + pat = PATTERN (trial); + + if (sparc_leaf_function_p) + { + /* If the tail call is done using the call instruction, + we have to restore %o7 in the delay slot. */ + if (LEAF_SIBCALL_SLOT_RESERVED_P) + return 0; + + /* %g1 is used to build the function address */ + if (reg_mentioned_p (gen_rtx_REG (Pmode, 1), pat)) + return 0; + + return 1; + } + + /* Otherwise, only operations which can be done in tandem with + a `restore' insn can go into the delay slot. */ + if (GET_CODE (SET_DEST (pat)) != REG + || (REGNO (SET_DEST (pat)) >= 8 && REGNO (SET_DEST (pat)) < 24) + || REGNO (SET_DEST (pat)) >= 32) + return 0; + + /* If it mentions %o7, it can't go in, because sibcall will clobber it + in most cases. */ + if (reg_mentioned_p (gen_rtx_REG (Pmode, 15), pat)) + return 0; + + return eligible_for_restore_insn (trial, false); +} + +int +short_branch (int uid1, int uid2) +{ + int delta = INSN_ADDRESSES (uid1) - INSN_ADDRESSES (uid2); + + /* Leave a few words of "slop". */ + if (delta >= -1023 && delta <= 1022) + return 1; + + return 0; +} + +/* Return nonzero if REG is not used after INSN. + We assume REG is a reload reg, and therefore does + not live past labels or calls or jumps. */ +int +reg_unused_after (rtx reg, rtx insn) +{ + enum rtx_code code, prev_code = UNKNOWN; + + while ((insn = NEXT_INSN (insn))) + { + if (prev_code == CALL_INSN && call_used_regs[REGNO (reg)]) + return 1; + + code = GET_CODE (insn); + if (GET_CODE (insn) == CODE_LABEL) + return 1; + + if (INSN_P (insn)) + { + rtx set = single_set (insn); + int in_src = set && reg_overlap_mentioned_p (reg, SET_SRC (set)); + if (set && in_src) + return 0; + if (set && reg_overlap_mentioned_p (reg, SET_DEST (set))) + return 1; + if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (insn))) + return 0; + } + prev_code = code; + } + return 1; +} + +/* Determine if it's legal to put X into the constant pool. This + is not possible if X contains the address of a symbol that is + not constant (TLS) or not known at final link time (PIC). */ + +static bool +sparc_cannot_force_const_mem (rtx x) +{ + switch (GET_CODE (x)) + { + case CONST_INT: + case CONST_DOUBLE: + case CONST_VECTOR: + /* Accept all non-symbolic constants. */ + return false; + + case LABEL_REF: + /* Labels are OK iff we are non-PIC. */ + return flag_pic != 0; + + case SYMBOL_REF: + /* 'Naked' TLS symbol references are never OK, + non-TLS symbols are OK iff we are non-PIC. */ + if (SYMBOL_REF_TLS_MODEL (x)) + return true; + else + return flag_pic != 0; + + case CONST: + return sparc_cannot_force_const_mem (XEXP (x, 0)); + case PLUS: + case MINUS: + return sparc_cannot_force_const_mem (XEXP (x, 0)) + || sparc_cannot_force_const_mem (XEXP (x, 1)); + case UNSPEC: + return true; + default: + gcc_unreachable (); + } +} + +/* Global Offset Table support. */ +static GTY(()) rtx got_helper_rtx = NULL_RTX; +static GTY(()) rtx global_offset_table_rtx = NULL_RTX; + +/* Return the SYMBOL_REF for the Global Offset Table. */ + +static GTY(()) rtx sparc_got_symbol = NULL_RTX; + +static rtx +sparc_got (void) +{ + if (!sparc_got_symbol) + sparc_got_symbol = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); + + return sparc_got_symbol; +} + +/* Ensure that we are not using patterns that are not OK with PIC. */ + +int +check_pic (int i) +{ + rtx op; + + switch (flag_pic) + { + case 1: + op = recog_data.operand[i]; + gcc_assert (GET_CODE (op) != SYMBOL_REF + && (GET_CODE (op) != CONST + || (GET_CODE (XEXP (op, 0)) == MINUS + && XEXP (XEXP (op, 0), 0) == sparc_got () + && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST))); + case 2: + default: + return 1; + } +} + +/* Return true if X is an address which needs a temporary register when + reloaded while generating PIC code. */ + +int +pic_address_needs_scratch (rtx x) +{ + /* An address which is a symbolic plus a non SMALL_INT needs a temp reg. */ + if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS + && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF + && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT + && ! SMALL_INT (XEXP (XEXP (x, 0), 1))) + return 1; + + return 0; +} + +/* Determine if a given RTX is a valid constant. We already know this + satisfies CONSTANT_P. */ + +bool +legitimate_constant_p (rtx x) +{ + switch (GET_CODE (x)) + { + case CONST: + case SYMBOL_REF: + if (sparc_tls_referenced_p (x)) + return false; + break; + + case CONST_DOUBLE: + if (GET_MODE (x) == VOIDmode) + return true; + + /* Floating point constants are generally not ok. + The only exception is 0.0 in VIS. */ + if (TARGET_VIS + && SCALAR_FLOAT_MODE_P (GET_MODE (x)) + && const_zero_operand (x, GET_MODE (x))) + return true; + + return false; + + case CONST_VECTOR: + /* Vector constants are generally not ok. + The only exception is 0 in VIS. */ + if (TARGET_VIS + && const_zero_operand (x, GET_MODE (x))) + return true; + + return false; + + default: + break; + } + + return true; +} + +/* Determine if a given RTX is a valid constant address. */ + +bool +constant_address_p (rtx x) +{ + switch (GET_CODE (x)) + { + case LABEL_REF: + case CONST_INT: + case HIGH: + return true; + + case CONST: + if (flag_pic && pic_address_needs_scratch (x)) + return false; + return legitimate_constant_p (x); + + case SYMBOL_REF: + return !flag_pic && legitimate_constant_p (x); + + default: + return false; + } +} + +/* Nonzero if the constant value X is a legitimate general operand + when generating PIC code. It is given that flag_pic is on and + that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ + +bool +legitimate_pic_operand_p (rtx x) +{ + if (pic_address_needs_scratch (x)) + return false; + if (sparc_tls_referenced_p (x)) + return false; + return true; +} + +/* Return nonzero if ADDR is a valid memory address. + STRICT specifies whether strict register checking applies. */ + +static bool +sparc_legitimate_address_p (enum machine_mode mode, rtx addr, bool strict) +{ + rtx rs1 = NULL, rs2 = NULL, imm1 = NULL; + + if (REG_P (addr) || GET_CODE (addr) == SUBREG) + rs1 = addr; + else if (GET_CODE (addr) == PLUS) + { + rs1 = XEXP (addr, 0); + rs2 = XEXP (addr, 1); + + /* Canonicalize. REG comes first, if there are no regs, + LO_SUM comes first. */ + if (!REG_P (rs1) + && GET_CODE (rs1) != SUBREG + && (REG_P (rs2) + || GET_CODE (rs2) == SUBREG + || (GET_CODE (rs2) == LO_SUM && GET_CODE (rs1) != LO_SUM))) + { + rs1 = XEXP (addr, 1); + rs2 = XEXP (addr, 0); + } + + if ((flag_pic == 1 + && rs1 == pic_offset_table_rtx + && !REG_P (rs2) + && GET_CODE (rs2) != SUBREG + && GET_CODE (rs2) != LO_SUM + && GET_CODE (rs2) != MEM + && !(GET_CODE (rs2) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (rs2)) + && (! symbolic_operand (rs2, VOIDmode) || mode == Pmode) + && (GET_CODE (rs2) != CONST_INT || SMALL_INT (rs2))) + || ((REG_P (rs1) + || GET_CODE (rs1) == SUBREG) + && RTX_OK_FOR_OFFSET_P (rs2))) + { + imm1 = rs2; + rs2 = NULL; + } + else if ((REG_P (rs1) || GET_CODE (rs1) == SUBREG) + && (REG_P (rs2) || GET_CODE (rs2) == SUBREG)) + { + /* We prohibit REG + REG for TFmode when there are no quad move insns + and we consequently need to split. We do this because REG+REG + is not an offsettable address. If we get the situation in reload + where source and destination of a movtf pattern are both MEMs with + REG+REG address, then only one of them gets converted to an + offsettable address. */ + if (mode == TFmode + && ! (TARGET_FPU && TARGET_ARCH64 && TARGET_HARD_QUAD)) + return 0; + + /* We prohibit REG + REG on ARCH32 if not optimizing for + DFmode/DImode because then mem_min_alignment is likely to be zero + after reload and the forced split would lack a matching splitter + pattern. */ + if (TARGET_ARCH32 && !optimize + && (mode == DFmode || mode == DImode)) + return 0; + } + else if (USE_AS_OFFSETABLE_LO10 + && GET_CODE (rs1) == LO_SUM + && TARGET_ARCH64 + && ! TARGET_CM_MEDMID + && RTX_OK_FOR_OLO10_P (rs2)) + { + rs2 = NULL; + imm1 = XEXP (rs1, 1); + rs1 = XEXP (rs1, 0); + if (!CONSTANT_P (imm1) + || (GET_CODE (rs1) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (rs1))) + return 0; + } + } + else if (GET_CODE (addr) == LO_SUM) + { + rs1 = XEXP (addr, 0); + imm1 = XEXP (addr, 1); + + if (!CONSTANT_P (imm1) + || (GET_CODE (rs1) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (rs1))) + return 0; + + /* We can't allow TFmode in 32-bit mode, because an offset greater + than the alignment (8) may cause the LO_SUM to overflow. */ + if (mode == TFmode && TARGET_ARCH32) + return 0; + } + else if (GET_CODE (addr) == CONST_INT && SMALL_INT (addr)) + return 1; + else + return 0; + + if (GET_CODE (rs1) == SUBREG) + rs1 = SUBREG_REG (rs1); + if (!REG_P (rs1)) + return 0; + + if (rs2) + { + if (GET_CODE (rs2) == SUBREG) + rs2 = SUBREG_REG (rs2); + if (!REG_P (rs2)) + return 0; + } + + if (strict) + { + if (!REGNO_OK_FOR_BASE_P (REGNO (rs1)) + || (rs2 && !REGNO_OK_FOR_BASE_P (REGNO (rs2)))) + return 0; + } + else + { + if ((REGNO (rs1) >= 32 + && REGNO (rs1) != FRAME_POINTER_REGNUM + && REGNO (rs1) < FIRST_PSEUDO_REGISTER) + || (rs2 + && (REGNO (rs2) >= 32 + && REGNO (rs2) != FRAME_POINTER_REGNUM + && REGNO (rs2) < FIRST_PSEUDO_REGISTER))) + return 0; + } + return 1; +} + +/* Return the SYMBOL_REF for the tls_get_addr function. */ + +static GTY(()) rtx sparc_tls_symbol = NULL_RTX; + +static rtx +sparc_tls_get_addr (void) +{ + if (!sparc_tls_symbol) + sparc_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, "__tls_get_addr"); + + return sparc_tls_symbol; +} + +/* Return the Global Offset Table to be used in TLS mode. */ + +static rtx +sparc_tls_got (void) +{ + /* In PIC mode, this is just the PIC offset table. */ + if (flag_pic) + { + crtl->uses_pic_offset_table = 1; + return pic_offset_table_rtx; + } + + /* In non-PIC mode, Sun as (unlike GNU as) emits PC-relative relocations for + the GOT symbol with the 32-bit ABI, so we reload the GOT register. */ + if (TARGET_SUN_TLS && TARGET_ARCH32) + { + load_got_register (); + return global_offset_table_rtx; + } + + /* In all other cases, we load a new pseudo with the GOT symbol. */ + return copy_to_reg (sparc_got ()); +} + +/* Return true if X contains a thread-local symbol. */ + +static bool +sparc_tls_referenced_p (rtx x) +{ + if (!TARGET_HAVE_TLS) + return false; + + if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS) + x = XEXP (XEXP (x, 0), 0); + + if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x)) + return true; + + /* That's all we handle in sparc_legitimize_tls_address for now. */ + return false; +} + +/* ADDR contains a thread-local SYMBOL_REF. Generate code to compute + this (thread-local) address. */ + +static rtx +sparc_legitimize_tls_address (rtx addr) +{ + rtx temp1, temp2, temp3, ret, o0, got, insn; + + gcc_assert (can_create_pseudo_p ()); + + if (GET_CODE (addr) == SYMBOL_REF) + switch (SYMBOL_REF_TLS_MODEL (addr)) + { + case TLS_MODEL_GLOBAL_DYNAMIC: + start_sequence (); + temp1 = gen_reg_rtx (SImode); + temp2 = gen_reg_rtx (SImode); + ret = gen_reg_rtx (Pmode); + o0 = gen_rtx_REG (Pmode, 8); + got = sparc_tls_got (); + emit_insn (gen_tgd_hi22 (temp1, addr)); + emit_insn (gen_tgd_lo10 (temp2, temp1, addr)); + if (TARGET_ARCH32) + { + emit_insn (gen_tgd_add32 (o0, got, temp2, addr)); + insn = emit_call_insn (gen_tgd_call32 (o0, sparc_tls_get_addr (), + addr, const1_rtx)); + } + else + { + emit_insn (gen_tgd_add64 (o0, got, temp2, addr)); + insn = emit_call_insn (gen_tgd_call64 (o0, sparc_tls_get_addr (), + addr, const1_rtx)); + } + CALL_INSN_FUNCTION_USAGE (insn) + = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_USE (VOIDmode, o0), + CALL_INSN_FUNCTION_USAGE (insn)); + insn = get_insns (); + end_sequence (); + emit_libcall_block (insn, ret, o0, addr); + break; + + case TLS_MODEL_LOCAL_DYNAMIC: + start_sequence (); + temp1 = gen_reg_rtx (SImode); + temp2 = gen_reg_rtx (SImode); + temp3 = gen_reg_rtx (Pmode); + ret = gen_reg_rtx (Pmode); + o0 = gen_rtx_REG (Pmode, 8); + got = sparc_tls_got (); + emit_insn (gen_tldm_hi22 (temp1)); + emit_insn (gen_tldm_lo10 (temp2, temp1)); + if (TARGET_ARCH32) + { + emit_insn (gen_tldm_add32 (o0, got, temp2)); + insn = emit_call_insn (gen_tldm_call32 (o0, sparc_tls_get_addr (), + const1_rtx)); + } + else + { + emit_insn (gen_tldm_add64 (o0, got, temp2)); + insn = emit_call_insn (gen_tldm_call64 (o0, sparc_tls_get_addr (), + const1_rtx)); + } + CALL_INSN_FUNCTION_USAGE (insn) + = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_USE (VOIDmode, o0), + CALL_INSN_FUNCTION_USAGE (insn)); + insn = get_insns (); + end_sequence (); + emit_libcall_block (insn, temp3, o0, + gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), + UNSPEC_TLSLD_BASE)); + temp1 = gen_reg_rtx (SImode); + temp2 = gen_reg_rtx (SImode); + emit_insn (gen_tldo_hix22 (temp1, addr)); + emit_insn (gen_tldo_lox10 (temp2, temp1, addr)); + if (TARGET_ARCH32) + emit_insn (gen_tldo_add32 (ret, temp3, temp2, addr)); + else + emit_insn (gen_tldo_add64 (ret, temp3, temp2, addr)); + break; + + case TLS_MODEL_INITIAL_EXEC: + temp1 = gen_reg_rtx (SImode); + temp2 = gen_reg_rtx (SImode); + temp3 = gen_reg_rtx (Pmode); + got = sparc_tls_got (); + emit_insn (gen_tie_hi22 (temp1, addr)); + emit_insn (gen_tie_lo10 (temp2, temp1, addr)); + if (TARGET_ARCH32) + emit_insn (gen_tie_ld32 (temp3, got, temp2, addr)); + else + emit_insn (gen_tie_ld64 (temp3, got, temp2, addr)); + if (TARGET_SUN_TLS) + { + ret = gen_reg_rtx (Pmode); + if (TARGET_ARCH32) + emit_insn (gen_tie_add32 (ret, gen_rtx_REG (Pmode, 7), + temp3, addr)); + else + emit_insn (gen_tie_add64 (ret, gen_rtx_REG (Pmode, 7), + temp3, addr)); + } + else + ret = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, 7), temp3); + break; + + case TLS_MODEL_LOCAL_EXEC: + temp1 = gen_reg_rtx (Pmode); + temp2 = gen_reg_rtx (Pmode); + if (TARGET_ARCH32) + { + emit_insn (gen_tle_hix22_sp32 (temp1, addr)); + emit_insn (gen_tle_lox10_sp32 (temp2, temp1, addr)); + } + else + { + emit_insn (gen_tle_hix22_sp64 (temp1, addr)); + emit_insn (gen_tle_lox10_sp64 (temp2, temp1, addr)); + } + ret = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, 7), temp2); + break; + + default: + gcc_unreachable (); + } + + else if (GET_CODE (addr) == CONST) + { + rtx base, offset; + + gcc_assert (GET_CODE (XEXP (addr, 0)) == PLUS); + + base = sparc_legitimize_tls_address (XEXP (XEXP (addr, 0), 0)); + offset = XEXP (XEXP (addr, 0), 1); + + base = force_operand (base, NULL_RTX); + if (!(GET_CODE (offset) == CONST_INT && SMALL_INT (offset))) + offset = force_reg (Pmode, offset); + ret = gen_rtx_PLUS (Pmode, base, offset); + } + + else + gcc_unreachable (); /* for now ... */ + + return ret; +} + +/* Legitimize PIC addresses. If the address is already position-independent, + we return ORIG. Newly generated position-independent addresses go into a + reg. This is REG if nonzero, otherwise we allocate register(s) as + necessary. */ + +static rtx +sparc_legitimize_pic_address (rtx orig, rtx reg) +{ + bool gotdata_op = false; + + if (GET_CODE (orig) == SYMBOL_REF + /* See the comment in sparc_expand_move. */ + || (GET_CODE (orig) == LABEL_REF && !can_use_mov_pic_label_ref (orig))) + { + rtx pic_ref, address; + rtx insn; + + if (reg == 0) + { + gcc_assert (! reload_in_progress && ! reload_completed); + reg = gen_reg_rtx (Pmode); + } + + if (flag_pic == 2) + { + /* If not during reload, allocate another temp reg here for loading + in the address, so that these instructions can be optimized + properly. */ + rtx temp_reg = ((reload_in_progress || reload_completed) + ? reg : gen_reg_rtx (Pmode)); + + /* Must put the SYMBOL_REF inside an UNSPEC here so that cse + won't get confused into thinking that these two instructions + are loading in the true address of the symbol. If in the + future a PIC rtx exists, that should be used instead. */ + if (TARGET_ARCH64) + { + emit_insn (gen_movdi_high_pic (temp_reg, orig)); + emit_insn (gen_movdi_lo_sum_pic (temp_reg, temp_reg, orig)); + } + else + { + emit_insn (gen_movsi_high_pic (temp_reg, orig)); + emit_insn (gen_movsi_lo_sum_pic (temp_reg, temp_reg, orig)); + } + address = temp_reg; + gotdata_op = true; + } + else + address = orig; + + crtl->uses_pic_offset_table = 1; + if (gotdata_op) + { + if (TARGET_ARCH64) + insn = emit_insn (gen_movdi_pic_gotdata_op (reg, + pic_offset_table_rtx, + address, orig)); + else + insn = emit_insn (gen_movsi_pic_gotdata_op (reg, + pic_offset_table_rtx, + address, orig)); + } + else + { + pic_ref + = gen_const_mem (Pmode, + gen_rtx_PLUS (Pmode, + pic_offset_table_rtx, address)); + insn = emit_move_insn (reg, pic_ref); + } + + /* Put a REG_EQUAL note on this insn, so that it can be optimized + by loop. */ + set_unique_reg_note (insn, REG_EQUAL, orig); + return reg; + } + else if (GET_CODE (orig) == CONST) + { + rtx base, offset; + + if (GET_CODE (XEXP (orig, 0)) == PLUS + && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx) + return orig; + + if (reg == 0) + { + gcc_assert (! reload_in_progress && ! reload_completed); + reg = gen_reg_rtx (Pmode); + } + + gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS); + base = sparc_legitimize_pic_address (XEXP (XEXP (orig, 0), 0), reg); + offset = sparc_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), + base == reg ? NULL_RTX : reg); + + if (GET_CODE (offset) == CONST_INT) + { + if (SMALL_INT (offset)) + return plus_constant (base, INTVAL (offset)); + else if (! reload_in_progress && ! reload_completed) + offset = force_reg (Pmode, offset); + else + /* If we reach here, then something is seriously wrong. */ + gcc_unreachable (); + } + return gen_rtx_PLUS (Pmode, base, offset); + } + else if (GET_CODE (orig) == LABEL_REF) + /* ??? We ought to be checking that the register is live instead, in case + it is eliminated. */ + crtl->uses_pic_offset_table = 1; + + return orig; +} + +/* Try machine-dependent ways of modifying an illegitimate address X + to be legitimate. If we find one, return the new, valid address. + + OLDX is the address as it was before break_out_memory_refs was called. + In some cases it is useful to look at this to decide what needs to be done. + + MODE is the mode of the operand pointed to by X. + + On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */ + +static rtx +sparc_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, + enum machine_mode mode) +{ + rtx orig_x = x; + + if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == MULT) + x = gen_rtx_PLUS (Pmode, XEXP (x, 1), + force_operand (XEXP (x, 0), NULL_RTX)); + if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == MULT) + x = gen_rtx_PLUS (Pmode, XEXP (x, 0), + force_operand (XEXP (x, 1), NULL_RTX)); + if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS) + x = gen_rtx_PLUS (Pmode, force_operand (XEXP (x, 0), NULL_RTX), + XEXP (x, 1)); + if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == PLUS) + x = gen_rtx_PLUS (Pmode, XEXP (x, 0), + force_operand (XEXP (x, 1), NULL_RTX)); + + if (x != orig_x && sparc_legitimate_address_p (mode, x, FALSE)) + return x; + + if (sparc_tls_referenced_p (x)) + x = sparc_legitimize_tls_address (x); + else if (flag_pic) + x = sparc_legitimize_pic_address (x, NULL_RTX); + else if (GET_CODE (x) == PLUS && CONSTANT_ADDRESS_P (XEXP (x, 1))) + x = gen_rtx_PLUS (Pmode, XEXP (x, 0), + copy_to_mode_reg (Pmode, XEXP (x, 1))); + else if (GET_CODE (x) == PLUS && CONSTANT_ADDRESS_P (XEXP (x, 0))) + x = gen_rtx_PLUS (Pmode, XEXP (x, 1), + copy_to_mode_reg (Pmode, XEXP (x, 0))); + else if (GET_CODE (x) == SYMBOL_REF + || GET_CODE (x) == CONST + || GET_CODE (x) == LABEL_REF) + x = copy_to_suggested_reg (x, NULL_RTX, Pmode); + + return x; +} + +/* Delegitimize an address that was legitimized by the above function. */ + +static rtx +sparc_delegitimize_address (rtx x) +{ + x = delegitimize_mem_from_attrs (x); + + if (GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 1)) == UNSPEC) + switch (XINT (XEXP (x, 1), 1)) + { + case UNSPEC_MOVE_PIC: + case UNSPEC_TLSLE: + x = XVECEXP (XEXP (x, 1), 0, 0); + gcc_assert (GET_CODE (x) == SYMBOL_REF); + break; + default: + break; + } + + return x; +} + +/* SPARC implementation of LEGITIMIZE_RELOAD_ADDRESS. Returns a value to + replace the input X, or the original X if no replacement is called for. + The output parameter *WIN is 1 if the calling macro should goto WIN, + 0 if it should not. + + For SPARC, we wish to handle addresses by splitting them into + HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference. + This cuts the number of extra insns by one. + + Do nothing when generating PIC code and the address is a symbolic + operand or requires a scratch register. */ + +rtx +sparc_legitimize_reload_address (rtx x, enum machine_mode mode, + int opnum, int type, + int ind_levels ATTRIBUTE_UNUSED, int *win) +{ + /* Decompose SImode constants into HIGH+LO_SUM. */ + if (CONSTANT_P (x) + && (mode != TFmode || TARGET_ARCH64) + && GET_MODE (x) == SImode + && GET_CODE (x) != LO_SUM + && GET_CODE (x) != HIGH + && sparc_cmodel <= CM_MEDLOW + && !(flag_pic + && (symbolic_operand (x, Pmode) || pic_address_needs_scratch (x)))) + { + x = gen_rtx_LO_SUM (GET_MODE (x), gen_rtx_HIGH (GET_MODE (x), x), x); + push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL, + BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0, + opnum, (enum reload_type)type); + *win = 1; + return x; + } + + /* We have to recognize what we have already generated above. */ + if (GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 0)) == HIGH) + { + push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL, + BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0, + opnum, (enum reload_type)type); + *win = 1; + return x; + } + + *win = 0; + return x; +} + +/* Return true if ADDR (a legitimate address expression) + has an effect that depends on the machine mode it is used for. + + In PIC mode, + + (mem:HI [%l7+a]) + + is not equivalent to + + (mem:QI [%l7+a]) (mem:QI [%l7+a+1]) + + because [%l7+a+1] is interpreted as the address of (a+1). */ + + +static bool +sparc_mode_dependent_address_p (const_rtx addr) +{ + if (flag_pic && GET_CODE (addr) == PLUS) + { + rtx op0 = XEXP (addr, 0); + rtx op1 = XEXP (addr, 1); + if (op0 == pic_offset_table_rtx + && SYMBOLIC_CONST (op1)) + return true; + } + + return false; +} + +#ifdef HAVE_GAS_HIDDEN +# define USE_HIDDEN_LINKONCE 1 +#else +# define USE_HIDDEN_LINKONCE 0 +#endif + +static void +get_pc_thunk_name (char name[32], unsigned int regno) +{ + const char *reg_name = reg_names[regno]; + + /* Skip the leading '%' as that cannot be used in a + symbol name. */ + reg_name += 1; + + if (USE_HIDDEN_LINKONCE) + sprintf (name, "__sparc_get_pc_thunk.%s", reg_name); + else + ASM_GENERATE_INTERNAL_LABEL (name, "LADDPC", regno); +} + +/* Wrapper around the load_pcrel_sym{si,di} patterns. */ + +static rtx +gen_load_pcrel_sym (rtx op0, rtx op1, rtx op2, rtx op3) +{ + int orig_flag_pic = flag_pic; + rtx insn; + + /* The load_pcrel_sym{si,di} patterns require absolute addressing. */ + flag_pic = 0; + if (TARGET_ARCH64) + insn = gen_load_pcrel_symdi (op0, op1, op2, op3); + else + insn = gen_load_pcrel_symsi (op0, op1, op2, op3); + flag_pic = orig_flag_pic; + + return insn; +} + +/* Emit code to load the GOT register. */ + +static void +load_got_register (void) +{ + /* In PIC mode, this will retrieve pic_offset_table_rtx. */ + if (!global_offset_table_rtx) + global_offset_table_rtx = gen_rtx_REG (Pmode, GLOBAL_OFFSET_TABLE_REGNUM); + + if (TARGET_VXWORKS_RTP) + emit_insn (gen_vxworks_load_got ()); + else + { + /* The GOT symbol is subject to a PC-relative relocation so we need a + helper function to add the PC value and thus get the final value. */ + if (!got_helper_rtx) + { + char name[32]; + get_pc_thunk_name (name, GLOBAL_OFFSET_TABLE_REGNUM); + got_helper_rtx = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name)); + } + + emit_insn (gen_load_pcrel_sym (global_offset_table_rtx, sparc_got (), + got_helper_rtx, + GEN_INT (GLOBAL_OFFSET_TABLE_REGNUM))); + } + + /* Need to emit this whether or not we obey regdecls, + since setjmp/longjmp can cause life info to screw up. + ??? In the case where we don't obey regdecls, this is not sufficient + since we may not fall out the bottom. */ + emit_use (global_offset_table_rtx); +} + +/* Emit a call instruction with the pattern given by PAT. ADDR is the + address of the call target. */ + +void +sparc_emit_call_insn (rtx pat, rtx addr) +{ + rtx insn; + + insn = emit_call_insn (pat); + + /* The PIC register is live on entry to VxWorks PIC PLT entries. */ + if (TARGET_VXWORKS_RTP + && flag_pic + && GET_CODE (addr) == SYMBOL_REF + && (SYMBOL_REF_DECL (addr) + ? !targetm.binds_local_p (SYMBOL_REF_DECL (addr)) + : !SYMBOL_REF_LOCAL_P (addr))) + { + use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx); + crtl->uses_pic_offset_table = 1; + } +} + +/* Return 1 if RTX is a MEM which is known to be aligned to at + least a DESIRED byte boundary. */ + +int +mem_min_alignment (rtx mem, int desired) +{ + rtx addr, base, offset; + + /* If it's not a MEM we can't accept it. */ + if (GET_CODE (mem) != MEM) + return 0; + + /* Obviously... */ + if (!TARGET_UNALIGNED_DOUBLES + && MEM_ALIGN (mem) / BITS_PER_UNIT >= (unsigned)desired) + return 1; + + /* ??? The rest of the function predates MEM_ALIGN so + there is probably a bit of redundancy. */ + addr = XEXP (mem, 0); + base = offset = NULL_RTX; + if (GET_CODE (addr) == PLUS) + { + if (GET_CODE (XEXP (addr, 0)) == REG) + { + base = XEXP (addr, 0); + + /* What we are saying here is that if the base + REG is aligned properly, the compiler will make + sure any REG based index upon it will be so + as well. */ + if (GET_CODE (XEXP (addr, 1)) == CONST_INT) + offset = XEXP (addr, 1); + else + offset = const0_rtx; + } + } + else if (GET_CODE (addr) == REG) + { + base = addr; + offset = const0_rtx; + } + + if (base != NULL_RTX) + { + int regno = REGNO (base); + + if (regno != HARD_FRAME_POINTER_REGNUM && regno != STACK_POINTER_REGNUM) + { + /* Check if the compiler has recorded some information + about the alignment of the base REG. If reload has + completed, we already matched with proper alignments. + If not running global_alloc, reload might give us + unaligned pointer to local stack though. */ + if (((cfun != 0 + && REGNO_POINTER_ALIGN (regno) >= desired * BITS_PER_UNIT) + || (optimize && reload_completed)) + && (INTVAL (offset) & (desired - 1)) == 0) + return 1; + } + else + { + if (((INTVAL (offset) - SPARC_STACK_BIAS) & (desired - 1)) == 0) + return 1; + } + } + else if (! TARGET_UNALIGNED_DOUBLES + || CONSTANT_P (addr) + || GET_CODE (addr) == LO_SUM) + { + /* Anything else we know is properly aligned unless TARGET_UNALIGNED_DOUBLES + is true, in which case we can only assume that an access is aligned if + it is to a constant address, or the address involves a LO_SUM. */ + return 1; + } + + /* An obviously unaligned address. */ + return 0; +} + + +/* Vectors to keep interesting information about registers where it can easily + be got. We used to use the actual mode value as the bit number, but there + are more than 32 modes now. Instead we use two tables: one indexed by + hard register number, and one indexed by mode. */ + +/* The purpose of sparc_mode_class is to shrink the range of modes so that + they all fit (as bit numbers) in a 32-bit word (again). Each real mode is + mapped into one sparc_mode_class mode. */ + +enum sparc_mode_class { + S_MODE, D_MODE, T_MODE, O_MODE, + SF_MODE, DF_MODE, TF_MODE, OF_MODE, + CC_MODE, CCFP_MODE +}; + +/* Modes for single-word and smaller quantities. */ +#define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE)) + +/* Modes for double-word and smaller quantities. */ +#define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE)) + +/* Modes for quad-word and smaller quantities. */ +#define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE)) + +/* Modes for 8-word and smaller quantities. */ +#define O_MODES (T_MODES | (1 << (int) O_MODE) | (1 << (int) OF_MODE)) + +/* Modes for single-float quantities. We must allow any single word or + smaller quantity. This is because the fix/float conversion instructions + take integer inputs/outputs from the float registers. */ +#define SF_MODES (S_MODES) + +/* Modes for double-float and smaller quantities. */ +#define DF_MODES (D_MODES) + +/* Modes for quad-float and smaller quantities. */ +#define TF_MODES (DF_MODES | (1 << (int) TF_MODE)) + +/* Modes for quad-float pairs and smaller quantities. */ +#define OF_MODES (TF_MODES | (1 << (int) OF_MODE)) + +/* Modes for double-float only quantities. */ +#define DF_MODES_NO_S ((1 << (int) D_MODE) | (1 << (int) DF_MODE)) + +/* Modes for quad-float and double-float only quantities. */ +#define TF_MODES_NO_S (DF_MODES_NO_S | (1 << (int) TF_MODE)) + +/* Modes for quad-float pairs and double-float only quantities. */ +#define OF_MODES_NO_S (TF_MODES_NO_S | (1 << (int) OF_MODE)) + +/* Modes for condition codes. */ +#define CC_MODES (1 << (int) CC_MODE) +#define CCFP_MODES (1 << (int) CCFP_MODE) + +/* Value is 1 if register/mode pair is acceptable on sparc. + The funny mixture of D and T modes is because integer operations + do not specially operate on tetra quantities, so non-quad-aligned + registers can hold quadword quantities (except %o4 and %i4 because + they cross fixed registers). */ + +/* This points to either the 32 bit or the 64 bit version. */ +const int *hard_regno_mode_classes; + +static const int hard_32bit_mode_classes[] = { + S_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, + T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES, + T_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, + T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES, + + OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, + OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, + OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, + OF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, + + /* FP regs f32 to f63. Only the even numbered registers actually exist, + and none can hold SFmode/SImode values. */ + OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, + OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, + OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, + OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, TF_MODES_NO_S, 0, DF_MODES_NO_S, 0, + + /* %fcc[0123] */ + CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES, + + /* %icc */ + CC_MODES +}; + +static const int hard_64bit_mode_classes[] = { + D_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, + O_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, + T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, + O_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, + + OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, + OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, + OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, + OF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, + + /* FP regs f32 to f63. Only the even numbered registers actually exist, + and none can hold SFmode/SImode values. */ + OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, + OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, + OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, + OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, TF_MODES_NO_S, 0, DF_MODES_NO_S, 0, + + /* %fcc[0123] */ + CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES, + + /* %icc */ + CC_MODES +}; + +int sparc_mode_class [NUM_MACHINE_MODES]; + +enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER]; + +static void +sparc_init_modes (void) +{ + int i; + + for (i = 0; i < NUM_MACHINE_MODES; i++) + { + switch (GET_MODE_CLASS (i)) + { + case MODE_INT: + case MODE_PARTIAL_INT: + case MODE_COMPLEX_INT: + if (GET_MODE_SIZE (i) <= 4) + sparc_mode_class[i] = 1 << (int) S_MODE; + else if (GET_MODE_SIZE (i) == 8) + sparc_mode_class[i] = 1 << (int) D_MODE; + else if (GET_MODE_SIZE (i) == 16) + sparc_mode_class[i] = 1 << (int) T_MODE; + else if (GET_MODE_SIZE (i) == 32) + sparc_mode_class[i] = 1 << (int) O_MODE; + else + sparc_mode_class[i] = 0; + break; + case MODE_VECTOR_INT: + if (GET_MODE_SIZE (i) <= 4) + sparc_mode_class[i] = 1 << (int)SF_MODE; + else if (GET_MODE_SIZE (i) == 8) + sparc_mode_class[i] = 1 << (int)DF_MODE; + break; + case MODE_FLOAT: + case MODE_COMPLEX_FLOAT: + if (GET_MODE_SIZE (i) <= 4) + sparc_mode_class[i] = 1 << (int) SF_MODE; + else if (GET_MODE_SIZE (i) == 8) + sparc_mode_class[i] = 1 << (int) DF_MODE; + else if (GET_MODE_SIZE (i) == 16) + sparc_mode_class[i] = 1 << (int) TF_MODE; + else if (GET_MODE_SIZE (i) == 32) + sparc_mode_class[i] = 1 << (int) OF_MODE; + else + sparc_mode_class[i] = 0; + break; + case MODE_CC: + if (i == (int) CCFPmode || i == (int) CCFPEmode) + sparc_mode_class[i] = 1 << (int) CCFP_MODE; + else + sparc_mode_class[i] = 1 << (int) CC_MODE; + break; + default: + sparc_mode_class[i] = 0; + break; + } + } + + if (TARGET_ARCH64) + hard_regno_mode_classes = hard_64bit_mode_classes; + else + hard_regno_mode_classes = hard_32bit_mode_classes; + + /* Initialize the array used by REGNO_REG_CLASS. */ + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + { + if (i < 16 && TARGET_V8PLUS) + sparc_regno_reg_class[i] = I64_REGS; + else if (i < 32 || i == FRAME_POINTER_REGNUM) + sparc_regno_reg_class[i] = GENERAL_REGS; + else if (i < 64) + sparc_regno_reg_class[i] = FP_REGS; + else if (i < 96) + sparc_regno_reg_class[i] = EXTRA_FP_REGS; + else if (i < 100) + sparc_regno_reg_class[i] = FPCC_REGS; + else + sparc_regno_reg_class[i] = NO_REGS; + } +} + +/* Compute the frame size required by the function. This function is called + during the reload pass and also by sparc_expand_prologue. */ + +HOST_WIDE_INT +sparc_compute_frame_size (HOST_WIDE_INT size, int leaf_function_p) +{ + int outgoing_args_size = (crtl->outgoing_args_size + + REG_PARM_STACK_SPACE (current_function_decl)); + int n_regs = 0; /* N_REGS is the number of 4-byte regs saved thus far. */ + int i; + + if (TARGET_ARCH64) + { + for (i = 0; i < 8; i++) + if (df_regs_ever_live_p (i) && ! call_used_regs[i]) + n_regs += 2; + } + else + { + for (i = 0; i < 8; i += 2) + if ((df_regs_ever_live_p (i) && ! call_used_regs[i]) + || (df_regs_ever_live_p (i+1) && ! call_used_regs[i+1])) + n_regs += 2; + } + + for (i = 32; i < (TARGET_V9 ? 96 : 64); i += 2) + if ((df_regs_ever_live_p (i) && ! call_used_regs[i]) + || (df_regs_ever_live_p (i+1) && ! call_used_regs[i+1])) + n_regs += 2; + + /* Set up values for use in prologue and epilogue. */ + num_gfregs = n_regs; + + if (leaf_function_p + && n_regs == 0 + && size == 0 + && crtl->outgoing_args_size == 0) + actual_fsize = apparent_fsize = 0; + else + { + /* We subtract STARTING_FRAME_OFFSET, remember it's negative. */ + apparent_fsize = (size - STARTING_FRAME_OFFSET + 7) & -8; + apparent_fsize += n_regs * 4; + actual_fsize = apparent_fsize + ((outgoing_args_size + 7) & -8); + } + + /* Make sure nothing can clobber our register windows. + If a SAVE must be done, or there is a stack-local variable, + the register window area must be allocated. */ + if (! leaf_function_p || size > 0) + actual_fsize += FIRST_PARM_OFFSET (current_function_decl); + + return SPARC_STACK_ALIGN (actual_fsize); +} + +/* Output any necessary .register pseudo-ops. */ + +void +sparc_output_scratch_registers (FILE *file ATTRIBUTE_UNUSED) +{ +#ifdef HAVE_AS_REGISTER_PSEUDO_OP + int i; + + if (TARGET_ARCH32) + return; + + /* Check if %g[2367] were used without + .register being printed for them already. */ + for (i = 2; i < 8; i++) + { + if (df_regs_ever_live_p (i) + && ! sparc_hard_reg_printed [i]) + { + sparc_hard_reg_printed [i] = 1; + /* %g7 is used as TLS base register, use #ignore + for it instead of #scratch. */ + fprintf (file, "\t.register\t%%g%d, #%s\n", i, + i == 7 ? "ignore" : "scratch"); + } + if (i == 3) i = 5; + } +#endif +} + +#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP) + +#if PROBE_INTERVAL > 4096 +#error Cannot use indexed addressing mode for stack probing +#endif + +/* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE, + inclusive. These are offsets from the current stack pointer. + + Note that we don't use the REG+REG addressing mode for the probes because + of the stack bias in 64-bit mode. And it doesn't really buy us anything + so the advantages of having a single code win here. */ + +static void +sparc_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size) +{ + rtx g1 = gen_rtx_REG (Pmode, 1); + + /* See if we have a constant small number of probes to generate. If so, + that's the easy case. */ + if (size <= PROBE_INTERVAL) + { + emit_move_insn (g1, GEN_INT (first)); + emit_insn (gen_rtx_SET (VOIDmode, g1, + gen_rtx_MINUS (Pmode, stack_pointer_rtx, g1))); + emit_stack_probe (plus_constant (g1, -size)); + } + + /* The run-time loop is made up of 10 insns in the generic case while the + compile-time loop is made up of 4+2*(n-2) insns for n # of intervals. */ + else if (size <= 5 * PROBE_INTERVAL) + { + HOST_WIDE_INT i; + + emit_move_insn (g1, GEN_INT (first + PROBE_INTERVAL)); + emit_insn (gen_rtx_SET (VOIDmode, g1, + gen_rtx_MINUS (Pmode, stack_pointer_rtx, g1))); + emit_stack_probe (g1); + + /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 2 until + it exceeds SIZE. If only two probes are needed, this will not + generate any code. Then probe at FIRST + SIZE. */ + for (i = 2 * PROBE_INTERVAL; i < size; i += PROBE_INTERVAL) + { + emit_insn (gen_rtx_SET (VOIDmode, g1, + plus_constant (g1, -PROBE_INTERVAL))); + emit_stack_probe (g1); + } + + emit_stack_probe (plus_constant (g1, (i - PROBE_INTERVAL) - size)); + } + + /* Otherwise, do the same as above, but in a loop. Note that we must be + extra careful with variables wrapping around because we might be at + the very top (or the very bottom) of the address space and we have + to be able to handle this case properly; in particular, we use an + equality test for the loop condition. */ + else + { + HOST_WIDE_INT rounded_size; + rtx g4 = gen_rtx_REG (Pmode, 4); + + emit_move_insn (g1, GEN_INT (first)); + + + /* Step 1: round SIZE to the previous multiple of the interval. */ + + rounded_size = size & -PROBE_INTERVAL; + emit_move_insn (g4, GEN_INT (rounded_size)); + + + /* Step 2: compute initial and final value of the loop counter. */ + + /* TEST_ADDR = SP + FIRST. */ + emit_insn (gen_rtx_SET (VOIDmode, g1, + gen_rtx_MINUS (Pmode, stack_pointer_rtx, g1))); + + /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */ + emit_insn (gen_rtx_SET (VOIDmode, g4, gen_rtx_MINUS (Pmode, g1, g4))); + + + /* Step 3: the loop + + while (TEST_ADDR != LAST_ADDR) + { + TEST_ADDR = TEST_ADDR + PROBE_INTERVAL + probe at TEST_ADDR + } + + probes at FIRST + N * PROBE_INTERVAL for values of N from 1 + until it is equal to ROUNDED_SIZE. */ + + if (TARGET_64BIT) + emit_insn (gen_probe_stack_rangedi (g1, g1, g4)); + else + emit_insn (gen_probe_stack_rangesi (g1, g1, g4)); + + + /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time + that SIZE is equal to ROUNDED_SIZE. */ + + if (size != rounded_size) + emit_stack_probe (plus_constant (g4, rounded_size - size)); + } + + /* Make sure nothing is scheduled before we are done. */ + emit_insn (gen_blockage ()); +} + +/* Probe a range of stack addresses from REG1 to REG2 inclusive. These are + absolute addresses. */ + +const char * +output_probe_stack_range (rtx reg1, rtx reg2) +{ + static int labelno = 0; + char loop_lab[32], end_lab[32]; + rtx xops[2]; + + ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno); + ASM_GENERATE_INTERNAL_LABEL (end_lab, "LPSRE", labelno++); + + ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab); + + /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */ + xops[0] = reg1; + xops[1] = reg2; + output_asm_insn ("cmp\t%0, %1", xops); + if (TARGET_ARCH64) + fputs ("\tbe,pn\t%xcc,", asm_out_file); + else + fputs ("\tbe\t", asm_out_file); + assemble_name_raw (asm_out_file, end_lab); + fputc ('\n', asm_out_file); + + /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */ + xops[1] = GEN_INT (-PROBE_INTERVAL); + output_asm_insn (" add\t%0, %1, %0", xops); + + /* Probe at TEST_ADDR and branch. */ + if (TARGET_ARCH64) + fputs ("\tba,pt\t%xcc,", asm_out_file); + else + fputs ("\tba\t", asm_out_file); + assemble_name_raw (asm_out_file, loop_lab); + fputc ('\n', asm_out_file); + xops[1] = GEN_INT (SPARC_STACK_BIAS); + output_asm_insn (" st\t%%g0, [%0+%1]", xops); + + ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, end_lab); + + return ""; +} + +/* Save/restore call-saved registers from LOW to HIGH at BASE+OFFSET + as needed. LOW should be double-word aligned for 32-bit registers. + Return the new OFFSET. */ + +#define SORR_SAVE 0 +#define SORR_RESTORE 1 + +static int +save_or_restore_regs (int low, int high, rtx base, int offset, int action) +{ + rtx mem, insn; + int i; + + if (TARGET_ARCH64 && high <= 32) + { + for (i = low; i < high; i++) + { + if (df_regs_ever_live_p (i) && ! call_used_regs[i]) + { + mem = gen_frame_mem (DImode, plus_constant (base, offset)); + if (action == SORR_SAVE) + { + insn = emit_move_insn (mem, gen_rtx_REG (DImode, i)); + RTX_FRAME_RELATED_P (insn) = 1; + } + else /* action == SORR_RESTORE */ + emit_move_insn (gen_rtx_REG (DImode, i), mem); + offset += 8; + } + } + } + else + { + for (i = low; i < high; i += 2) + { + bool reg0 = df_regs_ever_live_p (i) && ! call_used_regs[i]; + bool reg1 = df_regs_ever_live_p (i+1) && ! call_used_regs[i+1]; + enum machine_mode mode; + int regno; + + if (reg0 && reg1) + { + mode = i < 32 ? DImode : DFmode; + regno = i; + } + else if (reg0) + { + mode = i < 32 ? SImode : SFmode; + regno = i; + } + else if (reg1) + { + mode = i < 32 ? SImode : SFmode; + regno = i + 1; + offset += 4; + } + else + continue; + + mem = gen_frame_mem (mode, plus_constant (base, offset)); + if (action == SORR_SAVE) + { + insn = emit_move_insn (mem, gen_rtx_REG (mode, regno)); + RTX_FRAME_RELATED_P (insn) = 1; + } + else /* action == SORR_RESTORE */ + emit_move_insn (gen_rtx_REG (mode, regno), mem); + + /* Always preserve double-word alignment. */ + offset = (offset + 8) & -8; + } + } + + return offset; +} + +/* Emit code to save call-saved registers. */ + +static void +emit_save_or_restore_regs (int action) +{ + HOST_WIDE_INT offset; + rtx base; + + offset = frame_base_offset - apparent_fsize; + + if (offset < -4096 || offset + num_gfregs * 4 > 4095) + { + /* ??? This might be optimized a little as %g1 might already have a + value close enough that a single add insn will do. */ + /* ??? Although, all of this is probably only a temporary fix + because if %g1 can hold a function result, then + sparc_expand_epilogue will lose (the result will be + clobbered). */ + base = gen_rtx_REG (Pmode, 1); + emit_move_insn (base, GEN_INT (offset)); + emit_insn (gen_rtx_SET (VOIDmode, + base, + gen_rtx_PLUS (Pmode, frame_base_reg, base))); + offset = 0; + } + else + base = frame_base_reg; + + offset = save_or_restore_regs (0, 8, base, offset, action); + save_or_restore_regs (32, TARGET_V9 ? 96 : 64, base, offset, action); +} + +/* Generate a save_register_window insn. */ + +static rtx +gen_save_register_window (rtx increment) +{ + if (TARGET_ARCH64) + return gen_save_register_windowdi (increment); + else + return gen_save_register_windowsi (increment); +} + +/* Generate an increment for the stack pointer. */ + +static rtx +gen_stack_pointer_inc (rtx increment) +{ + return gen_rtx_SET (VOIDmode, + stack_pointer_rtx, + gen_rtx_PLUS (Pmode, + stack_pointer_rtx, + increment)); +} + +/* Generate a decrement for the stack pointer. */ + +static rtx +gen_stack_pointer_dec (rtx decrement) +{ + return gen_rtx_SET (VOIDmode, + stack_pointer_rtx, + gen_rtx_MINUS (Pmode, + stack_pointer_rtx, + decrement)); +} + +/* Expand the function prologue. The prologue is responsible for reserving + storage for the frame, saving the call-saved registers and loading the + GOT register if needed. */ + +void +sparc_expand_prologue (void) +{ + rtx insn; + int i; + + /* Compute a snapshot of current_function_uses_only_leaf_regs. Relying + on the final value of the flag means deferring the prologue/epilogue + expansion until just before the second scheduling pass, which is too + late to emit multiple epilogues or return insns. + + Of course we are making the assumption that the value of the flag + will not change between now and its final value. Of the three parts + of the formula, only the last one can reasonably vary. Let's take a + closer look, after assuming that the first two ones are set to true + (otherwise the last value is effectively silenced). + + If only_leaf_regs_used returns false, the global predicate will also + be false so the actual frame size calculated below will be positive. + As a consequence, the save_register_window insn will be emitted in + the instruction stream; now this insn explicitly references %fp + which is not a leaf register so only_leaf_regs_used will always + return false subsequently. + + If only_leaf_regs_used returns true, we hope that the subsequent + optimization passes won't cause non-leaf registers to pop up. For + example, the regrename pass has special provisions to not rename to + non-leaf registers in a leaf function. */ + sparc_leaf_function_p + = optimize > 0 && current_function_is_leaf && only_leaf_regs_used (); + + /* Need to use actual_fsize, since we are also allocating + space for our callee (and our own register save area). */ + actual_fsize + = sparc_compute_frame_size (get_frame_size(), sparc_leaf_function_p); + + /* Advertise that the data calculated just above are now valid. */ + sparc_prologue_data_valid_p = true; + + if (flag_stack_usage) + current_function_static_stack_size = actual_fsize; + + if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK && actual_fsize) + sparc_emit_probe_stack_range (STACK_CHECK_PROTECT, actual_fsize); + + if (sparc_leaf_function_p) + { + frame_base_reg = stack_pointer_rtx; + frame_base_offset = actual_fsize + SPARC_STACK_BIAS; + } + else + { + frame_base_reg = hard_frame_pointer_rtx; + frame_base_offset = SPARC_STACK_BIAS; + } + + if (actual_fsize == 0) + /* do nothing. */ ; + else if (sparc_leaf_function_p) + { + if (actual_fsize <= 4096) + insn = emit_insn (gen_stack_pointer_inc (GEN_INT (-actual_fsize))); + else if (actual_fsize <= 8192) + { + insn = emit_insn (gen_stack_pointer_inc (GEN_INT (-4096))); + RTX_FRAME_RELATED_P (insn) = 1; + + /* %sp is still the CFA register. */ + insn + = emit_insn (gen_stack_pointer_inc (GEN_INT (4096-actual_fsize))); + } + else + { + rtx reg = gen_rtx_REG (Pmode, 1); + emit_move_insn (reg, GEN_INT (-actual_fsize)); + insn = emit_insn (gen_stack_pointer_inc (reg)); + add_reg_note (insn, REG_FRAME_RELATED_EXPR, + gen_stack_pointer_inc (GEN_INT (-actual_fsize))); + } + + RTX_FRAME_RELATED_P (insn) = 1; + } + else + { + if (actual_fsize <= 4096) + insn = emit_insn (gen_save_register_window (GEN_INT (-actual_fsize))); + else if (actual_fsize <= 8192) + { + insn = emit_insn (gen_save_register_window (GEN_INT (-4096))); + + /* %sp is not the CFA register anymore. */ + emit_insn (gen_stack_pointer_inc (GEN_INT (4096-actual_fsize))); + + /* Make sure no %fp-based store is issued until after the frame is + established. The offset between the frame pointer and the stack + pointer is calculated relative to the value of the stack pointer + at the end of the function prologue, and moving instructions that + access the stack via the frame pointer between the instructions + that decrement the stack pointer could result in accessing the + register window save area, which is volatile. */ + emit_insn (gen_frame_blockage ()); + } + else + { + rtx reg = gen_rtx_REG (Pmode, 1); + emit_move_insn (reg, GEN_INT (-actual_fsize)); + insn = emit_insn (gen_save_register_window (reg)); + } + + RTX_FRAME_RELATED_P (insn) = 1; + for (i=0; i < XVECLEN (PATTERN (insn), 0); i++) + RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, i)) = 1; + } + + if (num_gfregs) + emit_save_or_restore_regs (SORR_SAVE); + + /* Load the GOT register if needed. */ + if (crtl->uses_pic_offset_table) + load_got_register (); +} + +/* This function generates the assembly code for function entry, which boils + down to emitting the necessary .register directives. */ + +static void +sparc_asm_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED) +{ + /* Check that the assumption we made in sparc_expand_prologue is valid. */ + gcc_assert (sparc_leaf_function_p == current_function_uses_only_leaf_regs); + + sparc_output_scratch_registers (file); +} + +/* Expand the function epilogue, either normal or part of a sibcall. + We emit all the instructions except the return or the call. */ + +void +sparc_expand_epilogue (void) +{ + if (num_gfregs) + emit_save_or_restore_regs (SORR_RESTORE); + + if (actual_fsize == 0) + /* do nothing. */ ; + else if (sparc_leaf_function_p) + { + if (actual_fsize <= 4096) + emit_insn (gen_stack_pointer_dec (GEN_INT (- actual_fsize))); + else if (actual_fsize <= 8192) + { + emit_insn (gen_stack_pointer_dec (GEN_INT (-4096))); + emit_insn (gen_stack_pointer_dec (GEN_INT (4096 - actual_fsize))); + } + else + { + rtx reg = gen_rtx_REG (Pmode, 1); + emit_move_insn (reg, GEN_INT (-actual_fsize)); + emit_insn (gen_stack_pointer_dec (reg)); + } + } +} + +/* Return true if it is appropriate to emit `return' instructions in the + body of a function. */ + +bool +sparc_can_use_return_insn_p (void) +{ + return sparc_prologue_data_valid_p + && num_gfregs == 0 + && (actual_fsize == 0 || !sparc_leaf_function_p); +} + +/* This function generates the assembly code for function exit. */ + +static void +sparc_asm_function_epilogue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED) +{ + /* If the last two instructions of a function are "call foo; dslot;" + the return address might point to the first instruction in the next + function and we have to output a dummy nop for the sake of sane + backtraces in such cases. This is pointless for sibling calls since + the return address is explicitly adjusted. */ + + rtx insn, last_real_insn; + + insn = get_last_insn (); + + last_real_insn = prev_real_insn (insn); + if (last_real_insn + && GET_CODE (last_real_insn) == INSN + && GET_CODE (PATTERN (last_real_insn)) == SEQUENCE) + last_real_insn = XVECEXP (PATTERN (last_real_insn), 0, 0); + + if (last_real_insn + && CALL_P (last_real_insn) + && !SIBLING_CALL_P (last_real_insn)) + fputs("\tnop\n", file); + + sparc_output_deferred_case_vectors (); +} + +/* Output a 'restore' instruction. */ + +static void +output_restore (rtx pat) +{ + rtx operands[3]; + + if (! pat) + { + fputs ("\t restore\n", asm_out_file); + return; + } + + gcc_assert (GET_CODE (pat) == SET); + + operands[0] = SET_DEST (pat); + pat = SET_SRC (pat); + + switch (GET_CODE (pat)) + { + case PLUS: + operands[1] = XEXP (pat, 0); + operands[2] = XEXP (pat, 1); + output_asm_insn (" restore %r1, %2, %Y0", operands); + break; + case LO_SUM: + operands[1] = XEXP (pat, 0); + operands[2] = XEXP (pat, 1); + output_asm_insn (" restore %r1, %%lo(%a2), %Y0", operands); + break; + case ASHIFT: + operands[1] = XEXP (pat, 0); + gcc_assert (XEXP (pat, 1) == const1_rtx); + output_asm_insn (" restore %r1, %r1, %Y0", operands); + break; + default: + operands[1] = pat; + output_asm_insn (" restore %%g0, %1, %Y0", operands); + break; + } +} + +/* Output a return. */ + +const char * +output_return (rtx insn) +{ + if (sparc_leaf_function_p) + { + /* This is a leaf function so we don't have to bother restoring the + register window, which frees us from dealing with the convoluted + semantics of restore/return. We simply output the jump to the + return address and the insn in the delay slot (if any). */ + + gcc_assert (! crtl->calls_eh_return); + + return "jmp\t%%o7+%)%#"; + } + else + { + /* This is a regular function so we have to restore the register window. + We may have a pending insn for the delay slot, which will be either + combined with the 'restore' instruction or put in the delay slot of + the 'return' instruction. */ + + if (crtl->calls_eh_return) + { + /* If the function uses __builtin_eh_return, the eh_return + machinery occupies the delay slot. */ + gcc_assert (! final_sequence); + + if (flag_delayed_branch) + { + if (TARGET_V9) + fputs ("\treturn\t%i7+8\n", asm_out_file); + else + fputs ("\trestore\n\tjmp\t%o7+8\n", asm_out_file); + + fputs ("\t add\t%sp, %g1, %sp\n", asm_out_file); + } + else + { + fputs ("\trestore\n\tadd\t%sp, %g1, %sp\n", asm_out_file); + fputs ("\tjmp\t%o7+8\n\t nop\n", asm_out_file); + } + } + else if (final_sequence) + { + rtx delay, pat; + + delay = NEXT_INSN (insn); + gcc_assert (delay); + + pat = PATTERN (delay); + + if (TARGET_V9 && ! epilogue_renumber (&pat, 1)) + { + epilogue_renumber (&pat, 0); + return "return\t%%i7+%)%#"; + } + else + { + output_asm_insn ("jmp\t%%i7+%)", NULL); + output_restore (pat); + PATTERN (delay) = gen_blockage (); + INSN_CODE (delay) = -1; + } + } + else + { + /* The delay slot is empty. */ + if (TARGET_V9) + return "return\t%%i7+%)\n\t nop"; + else if (flag_delayed_branch) + return "jmp\t%%i7+%)\n\t restore"; + else + return "restore\n\tjmp\t%%o7+%)\n\t nop"; + } + } + + return ""; +} + +/* Output a sibling call. */ + +const char * +output_sibcall (rtx insn, rtx call_operand) +{ + rtx operands[1]; + + gcc_assert (flag_delayed_branch); + + operands[0] = call_operand; + + if (sparc_leaf_function_p) + { + /* This is a leaf function so we don't have to bother restoring the + register window. We simply output the jump to the function and + the insn in the delay slot (if any). */ + + gcc_assert (!(LEAF_SIBCALL_SLOT_RESERVED_P && final_sequence)); + + if (final_sequence) + output_asm_insn ("sethi\t%%hi(%a0), %%g1\n\tjmp\t%%g1 + %%lo(%a0)%#", + operands); + else + /* Use or with rs2 %%g0 instead of mov, so that as/ld can optimize + it into branch if possible. */ + output_asm_insn ("or\t%%o7, %%g0, %%g1\n\tcall\t%a0, 0\n\t or\t%%g1, %%g0, %%o7", + operands); + } + else + { + /* This is a regular function so we have to restore the register window. + We may have a pending insn for the delay slot, which will be combined + with the 'restore' instruction. */ + + output_asm_insn ("call\t%a0, 0", operands); + + if (final_sequence) + { + rtx delay = NEXT_INSN (insn); + gcc_assert (delay); + + output_restore (PATTERN (delay)); + + PATTERN (delay) = gen_blockage (); + INSN_CODE (delay) = -1; + } + else + output_restore (NULL_RTX); + } + + return ""; +} + +/* Functions for handling argument passing. + + For 32-bit, the first 6 args are normally in registers and the rest are + pushed. Any arg that starts within the first 6 words is at least + partially passed in a register unless its data type forbids. + + For 64-bit, the argument registers are laid out as an array of 16 elements + and arguments are added sequentially. The first 6 int args and up to the + first 16 fp args (depending on size) are passed in regs. + + Slot Stack Integral Float Float in structure Double Long Double + ---- ----- -------- ----- ------------------ ------ ----------- + 15 [SP+248] %f31 %f30,%f31 %d30 + 14 [SP+240] %f29 %f28,%f29 %d28 %q28 + 13 [SP+232] %f27 %f26,%f27 %d26 + 12 [SP+224] %f25 %f24,%f25 %d24 %q24 + 11 [SP+216] %f23 %f22,%f23 %d22 + 10 [SP+208] %f21 %f20,%f21 %d20 %q20 + 9 [SP+200] %f19 %f18,%f19 %d18 + 8 [SP+192] %f17 %f16,%f17 %d16 %q16 + 7 [SP+184] %f15 %f14,%f15 %d14 + 6 [SP+176] %f13 %f12,%f13 %d12 %q12 + 5 [SP+168] %o5 %f11 %f10,%f11 %d10 + 4 [SP+160] %o4 %f9 %f8,%f9 %d8 %q8 + 3 [SP+152] %o3 %f7 %f6,%f7 %d6 + 2 [SP+144] %o2 %f5 %f4,%f5 %d4 %q4 + 1 [SP+136] %o1 %f3 %f2,%f3 %d2 + 0 [SP+128] %o0 %f1 %f0,%f1 %d0 %q0 + + Here SP = %sp if -mno-stack-bias or %sp+stack_bias otherwise. + + Integral arguments are always passed as 64-bit quantities appropriately + extended. + + Passing of floating point values is handled as follows. + If a prototype is in scope: + If the value is in a named argument (i.e. not a stdarg function or a + value not part of the `...') then the value is passed in the appropriate + fp reg. + If the value is part of the `...' and is passed in one of the first 6 + slots then the value is passed in the appropriate int reg. + If the value is part of the `...' and is not passed in one of the first 6 + slots then the value is passed in memory. + If a prototype is not in scope: + If the value is one of the first 6 arguments the value is passed in the + appropriate integer reg and the appropriate fp reg. + If the value is not one of the first 6 arguments the value is passed in + the appropriate fp reg and in memory. + + + Summary of the calling conventions implemented by GCC on the SPARC: + + 32-bit ABI: + size argument return value + + small integer <4 int. reg. int. reg. + word 4 int. reg. int. reg. + double word 8 int. reg. int. reg. + + _Complex small integer <8 int. reg. int. reg. + _Complex word 8 int. reg. int. reg. + _Complex double word 16 memory int. reg. + + vector integer <=8 int. reg. FP reg. + vector integer >8 memory memory + + float 4 int. reg. FP reg. + double 8 int. reg. FP reg. + long double 16 memory memory + + _Complex float 8 memory FP reg. + _Complex double 16 memory FP reg. + _Complex long double 32 memory FP reg. + + vector float any memory memory + + aggregate any memory memory + + + + 64-bit ABI: + size argument return value + + small integer <8 int. reg. int. reg. + word 8 int. reg. int. reg. + double word 16 int. reg. int. reg. + + _Complex small integer <16 int. reg. int. reg. + _Complex word 16 int. reg. int. reg. + _Complex double word 32 memory int. reg. + + vector integer <=16 FP reg. FP reg. + vector integer 16<s<=32 memory FP reg. + vector integer >32 memory memory + + float 4 FP reg. FP reg. + double 8 FP reg. FP reg. + long double 16 FP reg. FP reg. + + _Complex float 8 FP reg. FP reg. + _Complex double 16 FP reg. FP reg. + _Complex long double 32 memory FP reg. + + vector float <=16 FP reg. FP reg. + vector float 16<s<=32 memory FP reg. + vector float >32 memory memory + + aggregate <=16 reg. reg. + aggregate 16<s<=32 memory reg. + aggregate >32 memory memory + + + +Note #1: complex floating-point types follow the extended SPARC ABIs as +implemented by the Sun compiler. + +Note #2: integral vector types follow the scalar floating-point types +conventions to match what is implemented by the Sun VIS SDK. + +Note #3: floating-point vector types follow the aggregate types +conventions. */ + + +/* Maximum number of int regs for args. */ +#define SPARC_INT_ARG_MAX 6 +/* Maximum number of fp regs for args. */ +#define SPARC_FP_ARG_MAX 16 + +#define ROUND_ADVANCE(SIZE) (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) + +/* Handle the INIT_CUMULATIVE_ARGS macro. + Initialize a variable CUM of type CUMULATIVE_ARGS + for a call to a function whose data type is FNTYPE. + For a library call, FNTYPE is 0. */ + +void +init_cumulative_args (struct sparc_args *cum, tree fntype, + rtx libname ATTRIBUTE_UNUSED, + tree fndecl ATTRIBUTE_UNUSED) +{ + cum->words = 0; + cum->prototype_p = fntype && prototype_p (fntype); + cum->libcall_p = fntype == 0; +} + +/* Handle promotion of pointer and integer arguments. */ + +static enum machine_mode +sparc_promote_function_mode (const_tree type ATTRIBUTE_UNUSED, + enum machine_mode mode, + int *punsignedp ATTRIBUTE_UNUSED, + const_tree fntype ATTRIBUTE_UNUSED, + int for_return ATTRIBUTE_UNUSED) +{ + if (POINTER_TYPE_P (type)) + { + *punsignedp = POINTERS_EXTEND_UNSIGNED; + return Pmode; + } + + /* Integral arguments are passed as full words, as per the ABI. */ + if (GET_MODE_CLASS (mode) == MODE_INT + && GET_MODE_SIZE (mode) < UNITS_PER_WORD) + return word_mode; + + return mode; +} + +/* Handle the TARGET_STRICT_ARGUMENT_NAMING target hook. */ + +static bool +sparc_strict_argument_naming (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED) +{ + return TARGET_ARCH64 ? true : false; +} + +/* Scan the record type TYPE and return the following predicates: + - INTREGS_P: the record contains at least one field or sub-field + that is eligible for promotion in integer registers. + - FP_REGS_P: the record contains at least one field or sub-field + that is eligible for promotion in floating-point registers. + - PACKED_P: the record contains at least one field that is packed. + + Sub-fields are not taken into account for the PACKED_P predicate. */ + +static void +scan_record_type (const_tree type, int *intregs_p, int *fpregs_p, + int *packed_p) +{ + tree field; + + for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + { + if (TREE_CODE (field) == FIELD_DECL) + { + if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE) + scan_record_type (TREE_TYPE (field), intregs_p, fpregs_p, 0); + else if ((FLOAT_TYPE_P (TREE_TYPE (field)) + || TREE_CODE (TREE_TYPE (field)) == VECTOR_TYPE) + && TARGET_FPU) + *fpregs_p = 1; + else + *intregs_p = 1; + + if (packed_p && DECL_PACKED (field)) + *packed_p = 1; + } + } +} + +/* Compute the slot number to pass an argument in. + Return the slot number or -1 if passing on the stack. + + CUM is a variable of type CUMULATIVE_ARGS which gives info about + the preceding args and about the function being called. + MODE is the argument's machine mode. + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + NAMED is nonzero if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). + INCOMING_P is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG. + *PREGNO records the register number to use if scalar type. + *PPADDING records the amount of padding needed in words. */ + +static int +function_arg_slotno (const struct sparc_args *cum, enum machine_mode mode, + const_tree type, bool named, bool incoming_p, + int *pregno, int *ppadding) +{ + int regbase = (incoming_p + ? SPARC_INCOMING_INT_ARG_FIRST + : SPARC_OUTGOING_INT_ARG_FIRST); + int slotno = cum->words; + enum mode_class mclass; + int regno; + + *ppadding = 0; + + if (type && TREE_ADDRESSABLE (type)) + return -1; + + if (TARGET_ARCH32 + && mode == BLKmode + && type + && TYPE_ALIGN (type) % PARM_BOUNDARY != 0) + return -1; + + /* For SPARC64, objects requiring 16-byte alignment get it. */ + if (TARGET_ARCH64 + && (type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode)) >= 128 + && (slotno & 1) != 0) + slotno++, *ppadding = 1; + + mclass = GET_MODE_CLASS (mode); + if (type && TREE_CODE (type) == VECTOR_TYPE) + { + /* Vector types deserve special treatment because they are + polymorphic wrt their mode, depending upon whether VIS + instructions are enabled. */ + if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE) + { + /* The SPARC port defines no floating-point vector modes. */ + gcc_assert (mode == BLKmode); + } + else + { + /* Integral vector types should either have a vector + mode or an integral mode, because we are guaranteed + by pass_by_reference that their size is not greater + than 16 bytes and TImode is 16-byte wide. */ + gcc_assert (mode != BLKmode); + + /* Vector integers are handled like floats according to + the Sun VIS SDK. */ + mclass = MODE_FLOAT; + } + } + + switch (mclass) + { + case MODE_FLOAT: + case MODE_COMPLEX_FLOAT: + case MODE_VECTOR_INT: + if (TARGET_ARCH64 && TARGET_FPU && named) + { + if (slotno >= SPARC_FP_ARG_MAX) + return -1; + regno = SPARC_FP_ARG_FIRST + slotno * 2; + /* Arguments filling only one single FP register are + right-justified in the outer double FP register. */ + if (GET_MODE_SIZE (mode) <= 4) + regno++; + break; + } + /* fallthrough */ + + case MODE_INT: + case MODE_COMPLEX_INT: + if (slotno >= SPARC_INT_ARG_MAX) + return -1; + regno = regbase + slotno; + break; + + case MODE_RANDOM: + if (mode == VOIDmode) + /* MODE is VOIDmode when generating the actual call. */ + return -1; + + gcc_assert (mode == BLKmode); + + if (TARGET_ARCH32 + || !type + || (TREE_CODE (type) != VECTOR_TYPE + && TREE_CODE (type) != RECORD_TYPE)) + { + if (slotno >= SPARC_INT_ARG_MAX) + return -1; + regno = regbase + slotno; + } + else /* TARGET_ARCH64 && type */ + { + int intregs_p = 0, fpregs_p = 0, packed_p = 0; + + /* First see what kinds of registers we would need. */ + if (TREE_CODE (type) == VECTOR_TYPE) + fpregs_p = 1; + else + scan_record_type (type, &intregs_p, &fpregs_p, &packed_p); + + /* The ABI obviously doesn't specify how packed structures + are passed. These are defined to be passed in int regs + if possible, otherwise memory. */ + if (packed_p || !named) + fpregs_p = 0, intregs_p = 1; + + /* If all arg slots are filled, then must pass on stack. */ + if (fpregs_p && slotno >= SPARC_FP_ARG_MAX) + return -1; + + /* If there are only int args and all int arg slots are filled, + then must pass on stack. */ + if (!fpregs_p && intregs_p && slotno >= SPARC_INT_ARG_MAX) + return -1; + + /* Note that even if all int arg slots are filled, fp members may + still be passed in regs if such regs are available. + *PREGNO isn't set because there may be more than one, it's up + to the caller to compute them. */ + return slotno; + } + break; + + default : + gcc_unreachable (); + } + + *pregno = regno; + return slotno; +} + +/* Handle recursive register counting for structure field layout. */ + +struct function_arg_record_value_parms +{ + rtx ret; /* return expression being built. */ + int slotno; /* slot number of the argument. */ + int named; /* whether the argument is named. */ + int regbase; /* regno of the base register. */ + int stack; /* 1 if part of the argument is on the stack. */ + int intoffset; /* offset of the first pending integer field. */ + unsigned int nregs; /* number of words passed in registers. */ +}; + +static void function_arg_record_value_3 + (HOST_WIDE_INT, struct function_arg_record_value_parms *); +static void function_arg_record_value_2 + (const_tree, HOST_WIDE_INT, struct function_arg_record_value_parms *, bool); +static void function_arg_record_value_1 + (const_tree, HOST_WIDE_INT, struct function_arg_record_value_parms *, bool); +static rtx function_arg_record_value (const_tree, enum machine_mode, int, int, int); +static rtx function_arg_union_value (int, enum machine_mode, int, int); + +/* A subroutine of function_arg_record_value. Traverse the structure + recursively and determine how many registers will be required. */ + +static void +function_arg_record_value_1 (const_tree type, HOST_WIDE_INT startbitpos, + struct function_arg_record_value_parms *parms, + bool packed_p) +{ + tree field; + + /* We need to compute how many registers are needed so we can + allocate the PARALLEL but before we can do that we need to know + whether there are any packed fields. The ABI obviously doesn't + specify how structures are passed in this case, so they are + defined to be passed in int regs if possible, otherwise memory, + regardless of whether there are fp values present. */ + + if (! packed_p) + for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) + { + if (TREE_CODE (field) == FIELD_DECL && DECL_PACKED (field)) + { + packed_p = true; + break; + } + } + + /* Compute how many registers we need. */ + for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + { + if (TREE_CODE (field) == FIELD_DECL) + { + HOST_WIDE_INT bitpos = startbitpos; + + if (DECL_SIZE (field) != 0) + { + if (integer_zerop (DECL_SIZE (field))) + continue; + + if (host_integerp (bit_position (field), 1)) + bitpos += int_bit_position (field); + } + + /* ??? FIXME: else assume zero offset. */ + + if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE) + function_arg_record_value_1 (TREE_TYPE (field), + bitpos, + parms, + packed_p); + else if ((FLOAT_TYPE_P (TREE_TYPE (field)) + || TREE_CODE (TREE_TYPE (field)) == VECTOR_TYPE) + && TARGET_FPU + && parms->named + && ! packed_p) + { + if (parms->intoffset != -1) + { + unsigned int startbit, endbit; + int intslots, this_slotno; + + startbit = parms->intoffset & -BITS_PER_WORD; + endbit = (bitpos + BITS_PER_WORD - 1) & -BITS_PER_WORD; + + intslots = (endbit - startbit) / BITS_PER_WORD; + this_slotno = parms->slotno + parms->intoffset + / BITS_PER_WORD; + + if (intslots > 0 && intslots > SPARC_INT_ARG_MAX - this_slotno) + { + intslots = MAX (0, SPARC_INT_ARG_MAX - this_slotno); + /* We need to pass this field on the stack. */ + parms->stack = 1; + } + + parms->nregs += intslots; + parms->intoffset = -1; + } + + /* There's no need to check this_slotno < SPARC_FP_ARG MAX. + If it wasn't true we wouldn't be here. */ + if (TREE_CODE (TREE_TYPE (field)) == VECTOR_TYPE + && DECL_MODE (field) == BLKmode) + parms->nregs += TYPE_VECTOR_SUBPARTS (TREE_TYPE (field)); + else if (TREE_CODE (TREE_TYPE (field)) == COMPLEX_TYPE) + parms->nregs += 2; + else + parms->nregs += 1; + } + else + { + if (parms->intoffset == -1) + parms->intoffset = bitpos; + } + } + } +} + +/* A subroutine of function_arg_record_value. Assign the bits of the + structure between parms->intoffset and bitpos to integer registers. */ + +static void +function_arg_record_value_3 (HOST_WIDE_INT bitpos, + struct function_arg_record_value_parms *parms) +{ + enum machine_mode mode; + unsigned int regno; + unsigned int startbit, endbit; + int this_slotno, intslots, intoffset; + rtx reg; + + if (parms->intoffset == -1) + return; + + intoffset = parms->intoffset; + parms->intoffset = -1; + + startbit = intoffset & -BITS_PER_WORD; + endbit = (bitpos + BITS_PER_WORD - 1) & -BITS_PER_WORD; + intslots = (endbit - startbit) / BITS_PER_WORD; + this_slotno = parms->slotno + intoffset / BITS_PER_WORD; + + intslots = MIN (intslots, SPARC_INT_ARG_MAX - this_slotno); + if (intslots <= 0) + return; + + /* If this is the trailing part of a word, only load that much into + the register. Otherwise load the whole register. Note that in + the latter case we may pick up unwanted bits. It's not a problem + at the moment but may wish to revisit. */ + + if (intoffset % BITS_PER_WORD != 0) + mode = smallest_mode_for_size (BITS_PER_WORD - intoffset % BITS_PER_WORD, + MODE_INT); + else + mode = word_mode; + + intoffset /= BITS_PER_UNIT; + do + { + regno = parms->regbase + this_slotno; + reg = gen_rtx_REG (mode, regno); + XVECEXP (parms->ret, 0, parms->stack + parms->nregs) + = gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (intoffset)); + + this_slotno += 1; + intoffset = (intoffset | (UNITS_PER_WORD-1)) + 1; + mode = word_mode; + parms->nregs += 1; + intslots -= 1; + } + while (intslots > 0); +} + +/* A subroutine of function_arg_record_value. Traverse the structure + recursively and assign bits to floating point registers. Track which + bits in between need integer registers; invoke function_arg_record_value_3 + to make that happen. */ + +static void +function_arg_record_value_2 (const_tree type, HOST_WIDE_INT startbitpos, + struct function_arg_record_value_parms *parms, + bool packed_p) +{ + tree field; + + if (! packed_p) + for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + { + if (TREE_CODE (field) == FIELD_DECL && DECL_PACKED (field)) + { + packed_p = true; + break; + } + } + + for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + { + if (TREE_CODE (field) == FIELD_DECL) + { + HOST_WIDE_INT bitpos = startbitpos; + + if (DECL_SIZE (field) != 0) + { + if (integer_zerop (DECL_SIZE (field))) + continue; + + if (host_integerp (bit_position (field), 1)) + bitpos += int_bit_position (field); + } + + /* ??? FIXME: else assume zero offset. */ + + if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE) + function_arg_record_value_2 (TREE_TYPE (field), + bitpos, + parms, + packed_p); + else if ((FLOAT_TYPE_P (TREE_TYPE (field)) + || TREE_CODE (TREE_TYPE (field)) == VECTOR_TYPE) + && TARGET_FPU + && parms->named + && ! packed_p) + { + int this_slotno = parms->slotno + bitpos / BITS_PER_WORD; + int regno, nregs, pos; + enum machine_mode mode = DECL_MODE (field); + rtx reg; + + function_arg_record_value_3 (bitpos, parms); + + if (TREE_CODE (TREE_TYPE (field)) == VECTOR_TYPE + && mode == BLKmode) + { + mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (field))); + nregs = TYPE_VECTOR_SUBPARTS (TREE_TYPE (field)); + } + else if (TREE_CODE (TREE_TYPE (field)) == COMPLEX_TYPE) + { + mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (field))); + nregs = 2; + } + else + nregs = 1; + + regno = SPARC_FP_ARG_FIRST + this_slotno * 2; + if (GET_MODE_SIZE (mode) <= 4 && (bitpos & 32) != 0) + regno++; + reg = gen_rtx_REG (mode, regno); + pos = bitpos / BITS_PER_UNIT; + XVECEXP (parms->ret, 0, parms->stack + parms->nregs) + = gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (pos)); + parms->nregs += 1; + while (--nregs > 0) + { + regno += GET_MODE_SIZE (mode) / 4; + reg = gen_rtx_REG (mode, regno); + pos += GET_MODE_SIZE (mode); + XVECEXP (parms->ret, 0, parms->stack + parms->nregs) + = gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (pos)); + parms->nregs += 1; + } + } + else + { + if (parms->intoffset == -1) + parms->intoffset = bitpos; + } + } + } +} + +/* Used by function_arg and sparc_function_value_1 to implement the complex + conventions of the 64-bit ABI for passing and returning structures. + Return an expression valid as a return value for the FUNCTION_ARG + and TARGET_FUNCTION_VALUE. + + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + MODE is the argument's machine mode. + SLOTNO is the index number of the argument's slot in the parameter array. + NAMED is nonzero if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). + REGBASE is the regno of the base register for the parameter array. */ + +static rtx +function_arg_record_value (const_tree type, enum machine_mode mode, + int slotno, int named, int regbase) +{ + HOST_WIDE_INT typesize = int_size_in_bytes (type); + struct function_arg_record_value_parms parms; + unsigned int nregs; + + parms.ret = NULL_RTX; + parms.slotno = slotno; + parms.named = named; + parms.regbase = regbase; + parms.stack = 0; + + /* Compute how many registers we need. */ + parms.nregs = 0; + parms.intoffset = 0; + function_arg_record_value_1 (type, 0, &parms, false); + + /* Take into account pending integer fields. */ + if (parms.intoffset != -1) + { + unsigned int startbit, endbit; + int intslots, this_slotno; + + startbit = parms.intoffset & -BITS_PER_WORD; + endbit = (typesize*BITS_PER_UNIT + BITS_PER_WORD - 1) & -BITS_PER_WORD; + intslots = (endbit - startbit) / BITS_PER_WORD; + this_slotno = slotno + parms.intoffset / BITS_PER_WORD; + + if (intslots > 0 && intslots > SPARC_INT_ARG_MAX - this_slotno) + { + intslots = MAX (0, SPARC_INT_ARG_MAX - this_slotno); + /* We need to pass this field on the stack. */ + parms.stack = 1; + } + + parms.nregs += intslots; + } + nregs = parms.nregs; + + /* Allocate the vector and handle some annoying special cases. */ + if (nregs == 0) + { + /* ??? Empty structure has no value? Duh? */ + if (typesize <= 0) + { + /* Though there's nothing really to store, return a word register + anyway so the rest of gcc doesn't go nuts. Returning a PARALLEL + leads to breakage due to the fact that there are zero bytes to + load. */ + return gen_rtx_REG (mode, regbase); + } + else + { + /* ??? C++ has structures with no fields, and yet a size. Give up + for now and pass everything back in integer registers. */ + nregs = (typesize + UNITS_PER_WORD - 1) / UNITS_PER_WORD; + } + if (nregs + slotno > SPARC_INT_ARG_MAX) + nregs = SPARC_INT_ARG_MAX - slotno; + } + gcc_assert (nregs != 0); + + parms.ret = gen_rtx_PARALLEL (mode, rtvec_alloc (parms.stack + nregs)); + + /* If at least one field must be passed on the stack, generate + (parallel [(expr_list (nil) ...) ...]) so that all fields will + also be passed on the stack. We can't do much better because the + semantics of TARGET_ARG_PARTIAL_BYTES doesn't handle the case + of structures for which the fields passed exclusively in registers + are not at the beginning of the structure. */ + if (parms.stack) + XVECEXP (parms.ret, 0, 0) + = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx); + + /* Fill in the entries. */ + parms.nregs = 0; + parms.intoffset = 0; + function_arg_record_value_2 (type, 0, &parms, false); + function_arg_record_value_3 (typesize * BITS_PER_UNIT, &parms); + + gcc_assert (parms.nregs == nregs); + + return parms.ret; +} + +/* Used by function_arg and sparc_function_value_1 to implement the conventions + of the 64-bit ABI for passing and returning unions. + Return an expression valid as a return value for the FUNCTION_ARG + and TARGET_FUNCTION_VALUE. + + SIZE is the size in bytes of the union. + MODE is the argument's machine mode. + REGNO is the hard register the union will be passed in. */ + +static rtx +function_arg_union_value (int size, enum machine_mode mode, int slotno, + int regno) +{ + int nwords = ROUND_ADVANCE (size), i; + rtx regs; + + /* See comment in previous function for empty structures. */ + if (nwords == 0) + return gen_rtx_REG (mode, regno); + + if (slotno == SPARC_INT_ARG_MAX - 1) + nwords = 1; + + regs = gen_rtx_PARALLEL (mode, rtvec_alloc (nwords)); + + for (i = 0; i < nwords; i++) + { + /* Unions are passed left-justified. */ + XVECEXP (regs, 0, i) + = gen_rtx_EXPR_LIST (VOIDmode, + gen_rtx_REG (word_mode, regno), + GEN_INT (UNITS_PER_WORD * i)); + regno++; + } + + return regs; +} + +/* Used by function_arg and sparc_function_value_1 to implement the conventions + for passing and returning large (BLKmode) vectors. + Return an expression valid as a return value for the FUNCTION_ARG + and TARGET_FUNCTION_VALUE. + + SIZE is the size in bytes of the vector (at least 8 bytes). + REGNO is the FP hard register the vector will be passed in. */ + +static rtx +function_arg_vector_value (int size, int regno) +{ + int i, nregs = size / 8; + rtx regs; + + regs = gen_rtx_PARALLEL (BLKmode, rtvec_alloc (nregs)); + + for (i = 0; i < nregs; i++) + { + XVECEXP (regs, 0, i) + = gen_rtx_EXPR_LIST (VOIDmode, + gen_rtx_REG (DImode, regno + 2*i), + GEN_INT (i*8)); + } + + return regs; +} + +/* Determine where to put an argument to a function. + Value is zero to push the argument on the stack, + or a hard register in which to store the argument. + + CUM is a variable of type CUMULATIVE_ARGS which gives info about + the preceding args and about the function being called. + MODE is the argument's machine mode. + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + NAMED is true if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). + INCOMING_P is false for TARGET_FUNCTION_ARG, true for + TARGET_FUNCTION_INCOMING_ARG. */ + +static rtx +sparc_function_arg_1 (const CUMULATIVE_ARGS *cum, enum machine_mode mode, + const_tree type, bool named, bool incoming_p) +{ + int regbase = (incoming_p + ? SPARC_INCOMING_INT_ARG_FIRST + : SPARC_OUTGOING_INT_ARG_FIRST); + int slotno, regno, padding; + enum mode_class mclass = GET_MODE_CLASS (mode); + + slotno = function_arg_slotno (cum, mode, type, named, incoming_p, + ®no, &padding); + if (slotno == -1) + return 0; + + /* Vector types deserve special treatment because they are polymorphic wrt + their mode, depending upon whether VIS instructions are enabled. */ + if (type && TREE_CODE (type) == VECTOR_TYPE) + { + HOST_WIDE_INT size = int_size_in_bytes (type); + gcc_assert ((TARGET_ARCH32 && size <= 8) + || (TARGET_ARCH64 && size <= 16)); + + if (mode == BLKmode) + return function_arg_vector_value (size, + SPARC_FP_ARG_FIRST + 2*slotno); + else + mclass = MODE_FLOAT; + } + + if (TARGET_ARCH32) + return gen_rtx_REG (mode, regno); + + /* Structures up to 16 bytes in size are passed in arg slots on the stack + and are promoted to registers if possible. */ + if (type && TREE_CODE (type) == RECORD_TYPE) + { + HOST_WIDE_INT size = int_size_in_bytes (type); + gcc_assert (size <= 16); + + return function_arg_record_value (type, mode, slotno, named, regbase); + } + + /* Unions up to 16 bytes in size are passed in integer registers. */ + else if (type && TREE_CODE (type) == UNION_TYPE) + { + HOST_WIDE_INT size = int_size_in_bytes (type); + gcc_assert (size <= 16); + + return function_arg_union_value (size, mode, slotno, regno); + } + + /* v9 fp args in reg slots beyond the int reg slots get passed in regs + but also have the slot allocated for them. + If no prototype is in scope fp values in register slots get passed + in two places, either fp regs and int regs or fp regs and memory. */ + else if ((mclass == MODE_FLOAT || mclass == MODE_COMPLEX_FLOAT) + && SPARC_FP_REG_P (regno)) + { + rtx reg = gen_rtx_REG (mode, regno); + if (cum->prototype_p || cum->libcall_p) + { + /* "* 2" because fp reg numbers are recorded in 4 byte + quantities. */ +#if 0 + /* ??? This will cause the value to be passed in the fp reg and + in the stack. When a prototype exists we want to pass the + value in the reg but reserve space on the stack. That's an + optimization, and is deferred [for a bit]. */ + if ((regno - SPARC_FP_ARG_FIRST) >= SPARC_INT_ARG_MAX * 2) + return gen_rtx_PARALLEL (mode, + gen_rtvec (2, + gen_rtx_EXPR_LIST (VOIDmode, + NULL_RTX, const0_rtx), + gen_rtx_EXPR_LIST (VOIDmode, + reg, const0_rtx))); + else +#else + /* ??? It seems that passing back a register even when past + the area declared by REG_PARM_STACK_SPACE will allocate + space appropriately, and will not copy the data onto the + stack, exactly as we desire. + + This is due to locate_and_pad_parm being called in + expand_call whenever reg_parm_stack_space > 0, which + while beneficial to our example here, would seem to be + in error from what had been intended. Ho hum... -- r~ */ +#endif + return reg; + } + else + { + rtx v0, v1; + + if ((regno - SPARC_FP_ARG_FIRST) < SPARC_INT_ARG_MAX * 2) + { + int intreg; + + /* On incoming, we don't need to know that the value + is passed in %f0 and %i0, and it confuses other parts + causing needless spillage even on the simplest cases. */ + if (incoming_p) + return reg; + + intreg = (SPARC_OUTGOING_INT_ARG_FIRST + + (regno - SPARC_FP_ARG_FIRST) / 2); + + v0 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx); + v1 = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode, intreg), + const0_rtx); + return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1)); + } + else + { + v0 = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx); + v1 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx); + return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1)); + } + } + } + + /* All other aggregate types are passed in an integer register in a mode + corresponding to the size of the type. */ + else if (type && AGGREGATE_TYPE_P (type)) + { + HOST_WIDE_INT size = int_size_in_bytes (type); + gcc_assert (size <= 16); + + mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0); + } + + return gen_rtx_REG (mode, regno); +} + +/* Handle the TARGET_FUNCTION_ARG target hook. */ + +static rtx +sparc_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, + const_tree type, bool named) +{ + return sparc_function_arg_1 (cum, mode, type, named, false); +} + +/* Handle the TARGET_FUNCTION_INCOMING_ARG target hook. */ + +static rtx +sparc_function_incoming_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, + const_tree type, bool named) +{ + return sparc_function_arg_1 (cum, mode, type, named, true); +} + +/* For sparc64, objects requiring 16 byte alignment are passed that way. */ + +static unsigned int +sparc_function_arg_boundary (enum machine_mode mode, const_tree type) +{ + return ((TARGET_ARCH64 + && (GET_MODE_ALIGNMENT (mode) == 128 + || (type && TYPE_ALIGN (type) == 128))) + ? 128 + : PARM_BOUNDARY); +} + +/* For an arg passed partly in registers and partly in memory, + this is the number of bytes of registers used. + For args passed entirely in registers or entirely in memory, zero. + + Any arg that starts in the first 6 regs but won't entirely fit in them + needs partial registers on v8. On v9, structures with integer + values in arg slots 5,6 will be passed in %o5 and SP+176, and complex fp + values that begin in the last fp reg [where "last fp reg" varies with the + mode] will be split between that reg and memory. */ + +static int +sparc_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode, + tree type, bool named) +{ + int slotno, regno, padding; + + /* We pass false for incoming_p here, it doesn't matter. */ + slotno = function_arg_slotno (cum, mode, type, named, false, + ®no, &padding); + + if (slotno == -1) + return 0; + + if (TARGET_ARCH32) + { + if ((slotno + (mode == BLKmode + ? ROUND_ADVANCE (int_size_in_bytes (type)) + : ROUND_ADVANCE (GET_MODE_SIZE (mode)))) + > SPARC_INT_ARG_MAX) + return (SPARC_INT_ARG_MAX - slotno) * UNITS_PER_WORD; + } + else + { + /* We are guaranteed by pass_by_reference that the size of the + argument is not greater than 16 bytes, so we only need to return + one word if the argument is partially passed in registers. */ + + if (type && AGGREGATE_TYPE_P (type)) + { + int size = int_size_in_bytes (type); + + if (size > UNITS_PER_WORD + && slotno == SPARC_INT_ARG_MAX - 1) + return UNITS_PER_WORD; + } + else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT + || (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT + && ! (TARGET_FPU && named))) + { + /* The complex types are passed as packed types. */ + if (GET_MODE_SIZE (mode) > UNITS_PER_WORD + && slotno == SPARC_INT_ARG_MAX - 1) + return UNITS_PER_WORD; + } + else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) + { + if ((slotno + GET_MODE_SIZE (mode) / UNITS_PER_WORD) + > SPARC_FP_ARG_MAX) + return UNITS_PER_WORD; + } + } + + return 0; +} + +/* Handle the TARGET_PASS_BY_REFERENCE target hook. + Specify whether to pass the argument by reference. */ + +static bool +sparc_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED, + enum machine_mode mode, const_tree type, + bool named ATTRIBUTE_UNUSED) +{ + if (TARGET_ARCH32) + /* Original SPARC 32-bit ABI says that structures and unions, + and quad-precision floats are passed by reference. For Pascal, + also pass arrays by reference. All other base types are passed + in registers. + + Extended ABI (as implemented by the Sun compiler) says that all + complex floats are passed by reference. Pass complex integers + in registers up to 8 bytes. More generally, enforce the 2-word + cap for passing arguments in registers. + + Vector ABI (as implemented by the Sun VIS SDK) says that vector + integers are passed like floats of the same size, that is in + registers up to 8 bytes. Pass all vector floats by reference + like structure and unions. */ + return ((type && (AGGREGATE_TYPE_P (type) || VECTOR_FLOAT_TYPE_P (type))) + || mode == SCmode + /* Catch CDImode, TFmode, DCmode and TCmode. */ + || GET_MODE_SIZE (mode) > 8 + || (type + && TREE_CODE (type) == VECTOR_TYPE + && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 8)); + else + /* Original SPARC 64-bit ABI says that structures and unions + smaller than 16 bytes are passed in registers, as well as + all other base types. + + Extended ABI (as implemented by the Sun compiler) says that + complex floats are passed in registers up to 16 bytes. Pass + all complex integers in registers up to 16 bytes. More generally, + enforce the 2-word cap for passing arguments in registers. + + Vector ABI (as implemented by the Sun VIS SDK) says that vector + integers are passed like floats of the same size, that is in + registers (up to 16 bytes). Pass all vector floats like structure + and unions. */ + return ((type + && (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == VECTOR_TYPE) + && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 16) + /* Catch CTImode and TCmode. */ + || GET_MODE_SIZE (mode) > 16); +} + +/* Handle the TARGET_FUNCTION_ARG_ADVANCE hook. + Update the data in CUM to advance over an argument + of mode MODE and data type TYPE. + TYPE is null for libcalls where that information may not be available. */ + +static void +sparc_function_arg_advance (struct sparc_args *cum, enum machine_mode mode, + const_tree type, bool named) +{ + int regno, padding; + + /* We pass false for incoming_p here, it doesn't matter. */ + function_arg_slotno (cum, mode, type, named, false, ®no, &padding); + + /* If argument requires leading padding, add it. */ + cum->words += padding; + + if (TARGET_ARCH32) + { + cum->words += (mode != BLKmode + ? ROUND_ADVANCE (GET_MODE_SIZE (mode)) + : ROUND_ADVANCE (int_size_in_bytes (type))); + } + else + { + if (type && AGGREGATE_TYPE_P (type)) + { + int size = int_size_in_bytes (type); + + if (size <= 8) + ++cum->words; + else if (size <= 16) + cum->words += 2; + else /* passed by reference */ + ++cum->words; + } + else + { + cum->words += (mode != BLKmode + ? ROUND_ADVANCE (GET_MODE_SIZE (mode)) + : ROUND_ADVANCE (int_size_in_bytes (type))); + } + } +} + +/* Handle the FUNCTION_ARG_PADDING macro. + For the 64 bit ABI structs are always stored left shifted in their + argument slot. */ + +enum direction +function_arg_padding (enum machine_mode mode, const_tree type) +{ + if (TARGET_ARCH64 && type != 0 && AGGREGATE_TYPE_P (type)) + return upward; + + /* Fall back to the default. */ + return DEFAULT_FUNCTION_ARG_PADDING (mode, type); +} + +/* Handle the TARGET_RETURN_IN_MEMORY target hook. + Specify whether to return the return value in memory. */ + +static bool +sparc_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED) +{ + if (TARGET_ARCH32) + /* Original SPARC 32-bit ABI says that structures and unions, + and quad-precision floats are returned in memory. All other + base types are returned in registers. + + Extended ABI (as implemented by the Sun compiler) says that + all complex floats are returned in registers (8 FP registers + at most for '_Complex long double'). Return all complex integers + in registers (4 at most for '_Complex long long'). + + Vector ABI (as implemented by the Sun VIS SDK) says that vector + integers are returned like floats of the same size, that is in + registers up to 8 bytes and in memory otherwise. Return all + vector floats in memory like structure and unions; note that + they always have BLKmode like the latter. */ + return (TYPE_MODE (type) == BLKmode + || TYPE_MODE (type) == TFmode + || (TREE_CODE (type) == VECTOR_TYPE + && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 8)); + else + /* Original SPARC 64-bit ABI says that structures and unions + smaller than 32 bytes are returned in registers, as well as + all other base types. + + Extended ABI (as implemented by the Sun compiler) says that all + complex floats are returned in registers (8 FP registers at most + for '_Complex long double'). Return all complex integers in + registers (4 at most for '_Complex TItype'). + + Vector ABI (as implemented by the Sun VIS SDK) says that vector + integers are returned like floats of the same size, that is in + registers. Return all vector floats like structure and unions; + note that they always have BLKmode like the latter. */ + return (TYPE_MODE (type) == BLKmode + && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 32); +} + +/* Handle the TARGET_STRUCT_VALUE target hook. + Return where to find the structure return value address. */ + +static rtx +sparc_struct_value_rtx (tree fndecl, int incoming) +{ + if (TARGET_ARCH64) + return 0; + else + { + rtx mem; + + if (incoming) + mem = gen_frame_mem (Pmode, plus_constant (frame_pointer_rtx, + STRUCT_VALUE_OFFSET)); + else + mem = gen_frame_mem (Pmode, plus_constant (stack_pointer_rtx, + STRUCT_VALUE_OFFSET)); + + /* Only follow the SPARC ABI for fixed-size structure returns. + Variable size structure returns are handled per the normal + procedures in GCC. This is enabled by -mstd-struct-return */ + if (incoming == 2 + && sparc_std_struct_return + && TYPE_SIZE_UNIT (TREE_TYPE (fndecl)) + && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (fndecl))) == INTEGER_CST) + { + /* We must check and adjust the return address, as it is + optional as to whether the return object is really + provided. */ + rtx ret_rtx = gen_rtx_REG (Pmode, 31); + rtx scratch = gen_reg_rtx (SImode); + rtx endlab = gen_label_rtx (); + + /* Calculate the return object size */ + tree size = TYPE_SIZE_UNIT (TREE_TYPE (fndecl)); + rtx size_rtx = GEN_INT (TREE_INT_CST_LOW (size) & 0xfff); + /* Construct a temporary return value */ + rtx temp_val + = assign_stack_local (Pmode, TREE_INT_CST_LOW (size), 0); + + /* Implement SPARC 32-bit psABI callee return struct checking: + + Fetch the instruction where we will return to and see if + it's an unimp instruction (the most significant 10 bits + will be zero). */ + emit_move_insn (scratch, gen_rtx_MEM (SImode, + plus_constant (ret_rtx, 8))); + /* Assume the size is valid and pre-adjust */ + emit_insn (gen_add3_insn (ret_rtx, ret_rtx, GEN_INT (4))); + emit_cmp_and_jump_insns (scratch, size_rtx, EQ, const0_rtx, SImode, + 0, endlab); + emit_insn (gen_sub3_insn (ret_rtx, ret_rtx, GEN_INT (4))); + /* Write the address of the memory pointed to by temp_val into + the memory pointed to by mem */ + emit_move_insn (mem, XEXP (temp_val, 0)); + emit_label (endlab); + } + + return mem; + } +} + +/* Handle TARGET_FUNCTION_VALUE, and TARGET_LIBCALL_VALUE target hook. + For v9, function return values are subject to the same rules as arguments, + except that up to 32 bytes may be returned in registers. */ + +static rtx +sparc_function_value_1 (const_tree type, enum machine_mode mode, + bool outgoing) +{ + /* Beware that the two values are swapped here wrt function_arg. */ + int regbase = (outgoing + ? SPARC_INCOMING_INT_ARG_FIRST + : SPARC_OUTGOING_INT_ARG_FIRST); + enum mode_class mclass = GET_MODE_CLASS (mode); + int regno; + + /* Vector types deserve special treatment because they are polymorphic wrt + their mode, depending upon whether VIS instructions are enabled. */ + if (type && TREE_CODE (type) == VECTOR_TYPE) + { + HOST_WIDE_INT size = int_size_in_bytes (type); + gcc_assert ((TARGET_ARCH32 && size <= 8) + || (TARGET_ARCH64 && size <= 32)); + + if (mode == BLKmode) + return function_arg_vector_value (size, + SPARC_FP_ARG_FIRST); + else + mclass = MODE_FLOAT; + } + + if (TARGET_ARCH64 && type) + { + /* Structures up to 32 bytes in size are returned in registers. */ + if (TREE_CODE (type) == RECORD_TYPE) + { + HOST_WIDE_INT size = int_size_in_bytes (type); + gcc_assert (size <= 32); + + return function_arg_record_value (type, mode, 0, 1, regbase); + } + + /* Unions up to 32 bytes in size are returned in integer registers. */ + else if (TREE_CODE (type) == UNION_TYPE) + { + HOST_WIDE_INT size = int_size_in_bytes (type); + gcc_assert (size <= 32); + + return function_arg_union_value (size, mode, 0, regbase); + } + + /* Objects that require it are returned in FP registers. */ + else if (mclass == MODE_FLOAT || mclass == MODE_COMPLEX_FLOAT) + ; + + /* All other aggregate types are returned in an integer register in a + mode corresponding to the size of the type. */ + else if (AGGREGATE_TYPE_P (type)) + { + /* All other aggregate types are passed in an integer register + in a mode corresponding to the size of the type. */ + HOST_WIDE_INT size = int_size_in_bytes (type); + gcc_assert (size <= 32); + + mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0); + + /* ??? We probably should have made the same ABI change in + 3.4.0 as the one we made for unions. The latter was + required by the SCD though, while the former is not + specified, so we favored compatibility and efficiency. + + Now we're stuck for aggregates larger than 16 bytes, + because OImode vanished in the meantime. Let's not + try to be unduly clever, and simply follow the ABI + for unions in that case. */ + if (mode == BLKmode) + return function_arg_union_value (size, mode, 0, regbase); + else + mclass = MODE_INT; + } + + /* We should only have pointer and integer types at this point. This + must match sparc_promote_function_mode. */ + else if (mclass == MODE_INT && GET_MODE_SIZE (mode) < UNITS_PER_WORD) + mode = word_mode; + } + + /* We should only have pointer and integer types at this point. This must + match sparc_promote_function_mode. */ + else if (TARGET_ARCH32 + && mclass == MODE_INT + && GET_MODE_SIZE (mode) < UNITS_PER_WORD) + mode = word_mode; + + if ((mclass == MODE_FLOAT || mclass == MODE_COMPLEX_FLOAT) && TARGET_FPU) + regno = SPARC_FP_ARG_FIRST; + else + regno = regbase; + + return gen_rtx_REG (mode, regno); +} + +/* Handle TARGET_FUNCTION_VALUE. + On the SPARC, the value is found in the first "output" register, but the + called function leaves it in the first "input" register. */ + +static rtx +sparc_function_value (const_tree valtype, + const_tree fn_decl_or_type ATTRIBUTE_UNUSED, + bool outgoing) +{ + return sparc_function_value_1 (valtype, TYPE_MODE (valtype), outgoing); +} + +/* Handle TARGET_LIBCALL_VALUE. */ + +static rtx +sparc_libcall_value (enum machine_mode mode, + const_rtx fun ATTRIBUTE_UNUSED) +{ + return sparc_function_value_1 (NULL_TREE, mode, false); +} + +/* Handle FUNCTION_VALUE_REGNO_P. + On the SPARC, the first "output" reg is used for integer values, and the + first floating point register is used for floating point values. */ + +static bool +sparc_function_value_regno_p (const unsigned int regno) +{ + return (regno == 8 || regno == 32); +} + +/* Do what is necessary for `va_start'. We look at the current function + to determine if stdarg or varargs is used and return the address of + the first unnamed parameter. */ + +static rtx +sparc_builtin_saveregs (void) +{ + int first_reg = crtl->args.info.words; + rtx address; + int regno; + + for (regno = first_reg; regno < SPARC_INT_ARG_MAX; regno++) + emit_move_insn (gen_rtx_MEM (word_mode, + gen_rtx_PLUS (Pmode, + frame_pointer_rtx, + GEN_INT (FIRST_PARM_OFFSET (0) + + (UNITS_PER_WORD + * regno)))), + gen_rtx_REG (word_mode, + SPARC_INCOMING_INT_ARG_FIRST + regno)); + + address = gen_rtx_PLUS (Pmode, + frame_pointer_rtx, + GEN_INT (FIRST_PARM_OFFSET (0) + + UNITS_PER_WORD * first_reg)); + + return address; +} + +/* Implement `va_start' for stdarg. */ + +static void +sparc_va_start (tree valist, rtx nextarg) +{ + nextarg = expand_builtin_saveregs (); + std_expand_builtin_va_start (valist, nextarg); +} + +/* Implement `va_arg' for stdarg. */ + +static tree +sparc_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p, + gimple_seq *post_p) +{ + HOST_WIDE_INT size, rsize, align; + tree addr, incr; + bool indirect; + tree ptrtype = build_pointer_type (type); + + if (pass_by_reference (NULL, TYPE_MODE (type), type, false)) + { + indirect = true; + size = rsize = UNITS_PER_WORD; + align = 0; + } + else + { + indirect = false; + size = int_size_in_bytes (type); + rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD; + align = 0; + + if (TARGET_ARCH64) + { + /* For SPARC64, objects requiring 16-byte alignment get it. */ + if (TYPE_ALIGN (type) >= 2 * (unsigned) BITS_PER_WORD) + align = 2 * UNITS_PER_WORD; + + /* SPARC-V9 ABI states that structures up to 16 bytes in size + are left-justified in their slots. */ + if (AGGREGATE_TYPE_P (type)) + { + if (size == 0) + size = rsize = UNITS_PER_WORD; + else + size = rsize; + } + } + } + + incr = valist; + if (align) + { + incr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node, incr, + size_int (align - 1)); + incr = fold_convert (sizetype, incr); + incr = fold_build2 (BIT_AND_EXPR, sizetype, incr, + size_int (-align)); + incr = fold_convert (ptr_type_node, incr); + } + + gimplify_expr (&incr, pre_p, post_p, is_gimple_val, fb_rvalue); + addr = incr; + + if (BYTES_BIG_ENDIAN && size < rsize) + addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node, incr, + size_int (rsize - size)); + + if (indirect) + { + addr = fold_convert (build_pointer_type (ptrtype), addr); + addr = build_va_arg_indirect_ref (addr); + } + + /* If the address isn't aligned properly for the type, we need a temporary. + FIXME: This is inefficient, usually we can do this in registers. */ + else if (align == 0 && TYPE_ALIGN (type) > BITS_PER_WORD) + { + tree tmp = create_tmp_var (type, "va_arg_tmp"); + tree dest_addr = build_fold_addr_expr (tmp); + tree copy = build_call_expr (implicit_built_in_decls[BUILT_IN_MEMCPY], + 3, dest_addr, addr, size_int (rsize)); + TREE_ADDRESSABLE (tmp) = 1; + gimplify_and_add (copy, pre_p); + addr = dest_addr; + } + + else + addr = fold_convert (ptrtype, addr); + + incr + = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node, incr, size_int (rsize)); + gimplify_assign (valist, incr, post_p); + + return build_va_arg_indirect_ref (addr); +} + +/* Implement the TARGET_VECTOR_MODE_SUPPORTED_P target hook. + Specify whether the vector mode is supported by the hardware. */ + +static bool +sparc_vector_mode_supported_p (enum machine_mode mode) +{ + return TARGET_VIS && VECTOR_MODE_P (mode) ? true : false; +} + +/* Implement the TARGET_VECTORIZE_PREFERRED_SIMD_MODE target hook. */ + +static enum machine_mode +sparc_preferred_simd_mode (enum machine_mode mode) +{ + if (TARGET_VIS) + switch (mode) + { + case SImode: + return V2SImode; + case HImode: + return V4HImode; + case QImode: + return V8QImode; + + default:; + } + + return word_mode; +} + +/* Return the string to output an unconditional branch to LABEL, which is + the operand number of the label. + + DEST is the destination insn (i.e. the label), INSN is the source. */ + +const char * +output_ubranch (rtx dest, int label, rtx insn) +{ + static char string[64]; + bool v9_form = false; + char *p; + + if (TARGET_V9 && INSN_ADDRESSES_SET_P ()) + { + int delta = (INSN_ADDRESSES (INSN_UID (dest)) + - INSN_ADDRESSES (INSN_UID (insn))); + /* Leave some instructions for "slop". */ + if (delta >= -260000 && delta < 260000) + v9_form = true; + } + + if (v9_form) + strcpy (string, "ba%*,pt\t%%xcc, "); + else + strcpy (string, "b%*\t"); + + p = strchr (string, '\0'); + *p++ = '%'; + *p++ = 'l'; + *p++ = '0' + label; + *p++ = '%'; + *p++ = '('; + *p = '\0'; + + return string; +} + +/* Return the string to output a conditional branch to LABEL, which is + the operand number of the label. OP is the conditional expression. + XEXP (OP, 0) is assumed to be a condition code register (integer or + floating point) and its mode specifies what kind of comparison we made. + + DEST is the destination insn (i.e. the label), INSN is the source. + + REVERSED is nonzero if we should reverse the sense of the comparison. + + ANNUL is nonzero if we should generate an annulling branch. */ + +const char * +output_cbranch (rtx op, rtx dest, int label, int reversed, int annul, + rtx insn) +{ + static char string[64]; + enum rtx_code code = GET_CODE (op); + rtx cc_reg = XEXP (op, 0); + enum machine_mode mode = GET_MODE (cc_reg); + const char *labelno, *branch; + int spaces = 8, far; + char *p; + + /* v9 branches are limited to +-1MB. If it is too far away, + change + + bne,pt %xcc, .LC30 + + to + + be,pn %xcc, .+12 + nop + ba .LC30 + + and + + fbne,a,pn %fcc2, .LC29 + + to + + fbe,pt %fcc2, .+16 + nop + ba .LC29 */ + + far = TARGET_V9 && (get_attr_length (insn) >= 3); + if (reversed ^ far) + { + /* Reversal of FP compares takes care -- an ordered compare + becomes an unordered compare and vice versa. */ + if (mode == CCFPmode || mode == CCFPEmode) + code = reverse_condition_maybe_unordered (code); + else + code = reverse_condition (code); + } + + /* Start by writing the branch condition. */ + if (mode == CCFPmode || mode == CCFPEmode) + { + switch (code) + { + case NE: + branch = "fbne"; + break; + case EQ: + branch = "fbe"; + break; + case GE: + branch = "fbge"; + break; + case GT: + branch = "fbg"; + break; + case LE: + branch = "fble"; + break; + case LT: + branch = "fbl"; + break; + case UNORDERED: + branch = "fbu"; + break; + case ORDERED: + branch = "fbo"; + break; + case UNGT: + branch = "fbug"; + break; + case UNLT: + branch = "fbul"; + break; + case UNEQ: + branch = "fbue"; + break; + case UNGE: + branch = "fbuge"; + break; + case UNLE: + branch = "fbule"; + break; + case LTGT: + branch = "fblg"; + break; + + default: + gcc_unreachable (); + } + + /* ??? !v9: FP branches cannot be preceded by another floating point + insn. Because there is currently no concept of pre-delay slots, + we can fix this only by always emitting a nop before a floating + point branch. */ + + string[0] = '\0'; + if (! TARGET_V9) + strcpy (string, "nop\n\t"); + strcat (string, branch); + } + else + { + switch (code) + { + case NE: + branch = "bne"; + break; + case EQ: + branch = "be"; + break; + case GE: + if (mode == CC_NOOVmode || mode == CCX_NOOVmode) + branch = "bpos"; + else + branch = "bge"; + break; + case GT: + branch = "bg"; + break; + case LE: + branch = "ble"; + break; + case LT: + if (mode == CC_NOOVmode || mode == CCX_NOOVmode) + branch = "bneg"; + else + branch = "bl"; + break; + case GEU: + branch = "bgeu"; + break; + case GTU: + branch = "bgu"; + break; + case LEU: + branch = "bleu"; + break; + case LTU: + branch = "blu"; + break; + + default: + gcc_unreachable (); + } + strcpy (string, branch); + } + spaces -= strlen (branch); + p = strchr (string, '\0'); + + /* Now add the annulling, the label, and a possible noop. */ + if (annul && ! far) + { + strcpy (p, ",a"); + p += 2; + spaces -= 2; + } + + if (TARGET_V9) + { + rtx note; + int v8 = 0; + + if (! far && insn && INSN_ADDRESSES_SET_P ()) + { + int delta = (INSN_ADDRESSES (INSN_UID (dest)) + - INSN_ADDRESSES (INSN_UID (insn))); + /* Leave some instructions for "slop". */ + if (delta < -260000 || delta >= 260000) + v8 = 1; + } + + if (mode == CCFPmode || mode == CCFPEmode) + { + static char v9_fcc_labelno[] = "%%fccX, "; + /* Set the char indicating the number of the fcc reg to use. */ + v9_fcc_labelno[5] = REGNO (cc_reg) - SPARC_FIRST_V9_FCC_REG + '0'; + labelno = v9_fcc_labelno; + if (v8) + { + gcc_assert (REGNO (cc_reg) == SPARC_FCC_REG); + labelno = ""; + } + } + else if (mode == CCXmode || mode == CCX_NOOVmode) + { + labelno = "%%xcc, "; + gcc_assert (! v8); + } + else + { + labelno = "%%icc, "; + if (v8) + labelno = ""; + } + + if (*labelno && insn && (note = find_reg_note (insn, REG_BR_PROB, NULL_RTX))) + { + strcpy (p, + ((INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2) ^ far) + ? ",pt" : ",pn"); + p += 3; + spaces -= 3; + } + } + else + labelno = ""; + + if (spaces > 0) + *p++ = '\t'; + else + *p++ = ' '; + strcpy (p, labelno); + p = strchr (p, '\0'); + if (far) + { + strcpy (p, ".+12\n\t nop\n\tb\t"); + /* Skip the next insn if requested or + if we know that it will be a nop. */ + if (annul || ! final_sequence) + p[3] = '6'; + p += 14; + } + *p++ = '%'; + *p++ = 'l'; + *p++ = label + '0'; + *p++ = '%'; + *p++ = '#'; + *p = '\0'; + + return string; +} + +/* Emit a library call comparison between floating point X and Y. + COMPARISON is the operator to compare with (EQ, NE, GT, etc). + Return the new operator to be used in the comparison sequence. + + TARGET_ARCH64 uses _Qp_* functions, which use pointers to TFmode + values as arguments instead of the TFmode registers themselves, + that's why we cannot call emit_float_lib_cmp. */ + +rtx +sparc_emit_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison) +{ + const char *qpfunc; + rtx slot0, slot1, result, tem, tem2, libfunc; + enum machine_mode mode; + enum rtx_code new_comparison; + + switch (comparison) + { + case EQ: + qpfunc = (TARGET_ARCH64 ? "_Qp_feq" : "_Q_feq"); + break; + + case NE: + qpfunc = (TARGET_ARCH64 ? "_Qp_fne" : "_Q_fne"); + break; + + case GT: + qpfunc = (TARGET_ARCH64 ? "_Qp_fgt" : "_Q_fgt"); + break; + + case GE: + qpfunc = (TARGET_ARCH64 ? "_Qp_fge" : "_Q_fge"); + break; + + case LT: + qpfunc = (TARGET_ARCH64 ? "_Qp_flt" : "_Q_flt"); + break; + + case LE: + qpfunc = (TARGET_ARCH64 ? "_Qp_fle" : "_Q_fle"); + break; + + case ORDERED: + case UNORDERED: + case UNGT: + case UNLT: + case UNEQ: + case UNGE: + case UNLE: + case LTGT: + qpfunc = (TARGET_ARCH64 ? "_Qp_cmp" : "_Q_cmp"); + break; + + default: + gcc_unreachable (); + } + + if (TARGET_ARCH64) + { + if (MEM_P (x)) + slot0 = x; + else + { + slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0); + emit_move_insn (slot0, x); + } + + if (MEM_P (y)) + slot1 = y; + else + { + slot1 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0); + emit_move_insn (slot1, y); + } + + libfunc = gen_rtx_SYMBOL_REF (Pmode, qpfunc); + emit_library_call (libfunc, LCT_NORMAL, + DImode, 2, + XEXP (slot0, 0), Pmode, + XEXP (slot1, 0), Pmode); + mode = DImode; + } + else + { + libfunc = gen_rtx_SYMBOL_REF (Pmode, qpfunc); + emit_library_call (libfunc, LCT_NORMAL, + SImode, 2, + x, TFmode, y, TFmode); + mode = SImode; + } + + + /* Immediately move the result of the libcall into a pseudo + register so reload doesn't clobber the value if it needs + the return register for a spill reg. */ + result = gen_reg_rtx (mode); + emit_move_insn (result, hard_libcall_value (mode, libfunc)); + + switch (comparison) + { + default: + return gen_rtx_NE (VOIDmode, result, const0_rtx); + case ORDERED: + case UNORDERED: + new_comparison = (comparison == UNORDERED ? EQ : NE); + return gen_rtx_fmt_ee (new_comparison, VOIDmode, result, GEN_INT(3)); + case UNGT: + case UNGE: + new_comparison = (comparison == UNGT ? GT : NE); + return gen_rtx_fmt_ee (new_comparison, VOIDmode, result, const1_rtx); + case UNLE: + return gen_rtx_NE (VOIDmode, result, const2_rtx); + case UNLT: + tem = gen_reg_rtx (mode); + if (TARGET_ARCH32) + emit_insn (gen_andsi3 (tem, result, const1_rtx)); + else + emit_insn (gen_anddi3 (tem, result, const1_rtx)); + return gen_rtx_NE (VOIDmode, tem, const0_rtx); + case UNEQ: + case LTGT: + tem = gen_reg_rtx (mode); + if (TARGET_ARCH32) + emit_insn (gen_addsi3 (tem, result, const1_rtx)); + else + emit_insn (gen_adddi3 (tem, result, const1_rtx)); + tem2 = gen_reg_rtx (mode); + if (TARGET_ARCH32) + emit_insn (gen_andsi3 (tem2, tem, const2_rtx)); + else + emit_insn (gen_anddi3 (tem2, tem, const2_rtx)); + new_comparison = (comparison == UNEQ ? EQ : NE); + return gen_rtx_fmt_ee (new_comparison, VOIDmode, tem2, const0_rtx); + } + + gcc_unreachable (); +} + +/* Generate an unsigned DImode to FP conversion. This is the same code + optabs would emit if we didn't have TFmode patterns. */ + +void +sparc_emit_floatunsdi (rtx *operands, enum machine_mode mode) +{ + rtx neglab, donelab, i0, i1, f0, in, out; + + out = operands[0]; + in = force_reg (DImode, operands[1]); + neglab = gen_label_rtx (); + donelab = gen_label_rtx (); + i0 = gen_reg_rtx (DImode); + i1 = gen_reg_rtx (DImode); + f0 = gen_reg_rtx (mode); + + emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, DImode, 0, neglab); + + emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_FLOAT (mode, in))); + emit_jump_insn (gen_jump (donelab)); + emit_barrier (); + + emit_label (neglab); + + emit_insn (gen_lshrdi3 (i0, in, const1_rtx)); + emit_insn (gen_anddi3 (i1, in, const1_rtx)); + emit_insn (gen_iordi3 (i0, i0, i1)); + emit_insn (gen_rtx_SET (VOIDmode, f0, gen_rtx_FLOAT (mode, i0))); + emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_PLUS (mode, f0, f0))); + + emit_label (donelab); +} + +/* Generate an FP to unsigned DImode conversion. This is the same code + optabs would emit if we didn't have TFmode patterns. */ + +void +sparc_emit_fixunsdi (rtx *operands, enum machine_mode mode) +{ + rtx neglab, donelab, i0, i1, f0, in, out, limit; + + out = operands[0]; + in = force_reg (mode, operands[1]); + neglab = gen_label_rtx (); + donelab = gen_label_rtx (); + i0 = gen_reg_rtx (DImode); + i1 = gen_reg_rtx (DImode); + limit = gen_reg_rtx (mode); + f0 = gen_reg_rtx (mode); + + emit_move_insn (limit, + CONST_DOUBLE_FROM_REAL_VALUE ( + REAL_VALUE_ATOF ("9223372036854775808.0", mode), mode)); + emit_cmp_and_jump_insns (in, limit, GE, NULL_RTX, mode, 0, neglab); + + emit_insn (gen_rtx_SET (VOIDmode, + out, + gen_rtx_FIX (DImode, gen_rtx_FIX (mode, in)))); + emit_jump_insn (gen_jump (donelab)); + emit_barrier (); + + emit_label (neglab); + + emit_insn (gen_rtx_SET (VOIDmode, f0, gen_rtx_MINUS (mode, in, limit))); + emit_insn (gen_rtx_SET (VOIDmode, + i0, + gen_rtx_FIX (DImode, gen_rtx_FIX (mode, f0)))); + emit_insn (gen_movdi (i1, const1_rtx)); + emit_insn (gen_ashldi3 (i1, i1, GEN_INT (63))); + emit_insn (gen_xordi3 (out, i0, i1)); + + emit_label (donelab); +} + +/* Return the string to output a conditional branch to LABEL, testing + register REG. LABEL is the operand number of the label; REG is the + operand number of the reg. OP is the conditional expression. The mode + of REG says what kind of comparison we made. + + DEST is the destination insn (i.e. the label), INSN is the source. + + REVERSED is nonzero if we should reverse the sense of the comparison. + + ANNUL is nonzero if we should generate an annulling branch. */ + +const char * +output_v9branch (rtx op, rtx dest, int reg, int label, int reversed, + int annul, rtx insn) +{ + static char string[64]; + enum rtx_code code = GET_CODE (op); + enum machine_mode mode = GET_MODE (XEXP (op, 0)); + rtx note; + int far; + char *p; + + /* branch on register are limited to +-128KB. If it is too far away, + change + + brnz,pt %g1, .LC30 + + to + + brz,pn %g1, .+12 + nop + ba,pt %xcc, .LC30 + + and + + brgez,a,pn %o1, .LC29 + + to + + brlz,pt %o1, .+16 + nop + ba,pt %xcc, .LC29 */ + + far = get_attr_length (insn) >= 3; + + /* If not floating-point or if EQ or NE, we can just reverse the code. */ + if (reversed ^ far) + code = reverse_condition (code); + + /* Only 64 bit versions of these instructions exist. */ + gcc_assert (mode == DImode); + + /* Start by writing the branch condition. */ + + switch (code) + { + case NE: + strcpy (string, "brnz"); + break; + + case EQ: + strcpy (string, "brz"); + break; + + case GE: + strcpy (string, "brgez"); + break; + + case LT: + strcpy (string, "brlz"); + break; + + case LE: + strcpy (string, "brlez"); + break; + + case GT: + strcpy (string, "brgz"); + break; + + default: + gcc_unreachable (); + } + + p = strchr (string, '\0'); + + /* Now add the annulling, reg, label, and nop. */ + if (annul && ! far) + { + strcpy (p, ",a"); + p += 2; + } + + if (insn && (note = find_reg_note (insn, REG_BR_PROB, NULL_RTX))) + { + strcpy (p, + ((INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2) ^ far) + ? ",pt" : ",pn"); + p += 3; + } + + *p = p < string + 8 ? '\t' : ' '; + p++; + *p++ = '%'; + *p++ = '0' + reg; + *p++ = ','; + *p++ = ' '; + if (far) + { + int veryfar = 1, delta; + + if (INSN_ADDRESSES_SET_P ()) + { + delta = (INSN_ADDRESSES (INSN_UID (dest)) + - INSN_ADDRESSES (INSN_UID (insn))); + /* Leave some instructions for "slop". */ + if (delta >= -260000 && delta < 260000) + veryfar = 0; + } + + strcpy (p, ".+12\n\t nop\n\t"); + /* Skip the next insn if requested or + if we know that it will be a nop. */ + if (annul || ! final_sequence) + p[3] = '6'; + p += 12; + if (veryfar) + { + strcpy (p, "b\t"); + p += 2; + } + else + { + strcpy (p, "ba,pt\t%%xcc, "); + p += 13; + } + } + *p++ = '%'; + *p++ = 'l'; + *p++ = '0' + label; + *p++ = '%'; + *p++ = '#'; + *p = '\0'; + + return string; +} + +/* Return 1, if any of the registers of the instruction are %l[0-7] or %o[0-7]. + Such instructions cannot be used in the delay slot of return insn on v9. + If TEST is 0, also rename all %i[0-7] registers to their %o[0-7] counterparts. + */ + +static int +epilogue_renumber (register rtx *where, int test) +{ + register const char *fmt; + register int i; + register enum rtx_code code; + + if (*where == 0) + return 0; + + code = GET_CODE (*where); + + switch (code) + { + case REG: + if (REGNO (*where) >= 8 && REGNO (*where) < 24) /* oX or lX */ + return 1; + if (! test && REGNO (*where) >= 24 && REGNO (*where) < 32) + *where = gen_rtx_REG (GET_MODE (*where), OUTGOING_REGNO (REGNO(*where))); + case SCRATCH: + case CC0: + case PC: + case CONST_INT: + case CONST_DOUBLE: + return 0; + + /* Do not replace the frame pointer with the stack pointer because + it can cause the delayed instruction to load below the stack. + This occurs when instructions like: + + (set (reg/i:SI 24 %i0) + (mem/f:SI (plus:SI (reg/f:SI 30 %fp) + (const_int -20 [0xffffffec])) 0)) + + are in the return delayed slot. */ + case PLUS: + if (GET_CODE (XEXP (*where, 0)) == REG + && REGNO (XEXP (*where, 0)) == HARD_FRAME_POINTER_REGNUM + && (GET_CODE (XEXP (*where, 1)) != CONST_INT + || INTVAL (XEXP (*where, 1)) < SPARC_STACK_BIAS)) + return 1; + break; + + case MEM: + if (SPARC_STACK_BIAS + && GET_CODE (XEXP (*where, 0)) == REG + && REGNO (XEXP (*where, 0)) == HARD_FRAME_POINTER_REGNUM) + return 1; + break; + + default: + break; + } + + fmt = GET_RTX_FORMAT (code); + + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'E') + { + register int j; + for (j = XVECLEN (*where, i) - 1; j >= 0; j--) + if (epilogue_renumber (&(XVECEXP (*where, i, j)), test)) + return 1; + } + else if (fmt[i] == 'e' + && epilogue_renumber (&(XEXP (*where, i)), test)) + return 1; + } + return 0; +} + +/* Leaf functions and non-leaf functions have different needs. */ + +static const int +reg_leaf_alloc_order[] = REG_LEAF_ALLOC_ORDER; + +static const int +reg_nonleaf_alloc_order[] = REG_ALLOC_ORDER; + +static const int *const reg_alloc_orders[] = { + reg_leaf_alloc_order, + reg_nonleaf_alloc_order}; + +void +order_regs_for_local_alloc (void) +{ + static int last_order_nonleaf = 1; + + if (df_regs_ever_live_p (15) != last_order_nonleaf) + { + last_order_nonleaf = !last_order_nonleaf; + memcpy ((char *) reg_alloc_order, + (const char *) reg_alloc_orders[last_order_nonleaf], + FIRST_PSEUDO_REGISTER * sizeof (int)); + } +} + +/* Return 1 if REG and MEM are legitimate enough to allow the various + mem<-->reg splits to be run. */ + +int +sparc_splitdi_legitimate (rtx reg, rtx mem) +{ + /* Punt if we are here by mistake. */ + gcc_assert (reload_completed); + + /* We must have an offsettable memory reference. */ + if (! offsettable_memref_p (mem)) + return 0; + + /* If we have legitimate args for ldd/std, we do not want + the split to happen. */ + if ((REGNO (reg) % 2) == 0 + && mem_min_alignment (mem, 8)) + return 0; + + /* Success. */ + return 1; +} + +/* Return 1 if x and y are some kind of REG and they refer to + different hard registers. This test is guaranteed to be + run after reload. */ + +int +sparc_absnegfloat_split_legitimate (rtx x, rtx y) +{ + if (GET_CODE (x) != REG) + return 0; + if (GET_CODE (y) != REG) + return 0; + if (REGNO (x) == REGNO (y)) + return 0; + return 1; +} + +/* Return 1 if REGNO (reg1) is even and REGNO (reg1) == REGNO (reg2) - 1. + This makes them candidates for using ldd and std insns. + + Note reg1 and reg2 *must* be hard registers. */ + +int +registers_ok_for_ldd_peep (rtx reg1, rtx reg2) +{ + /* We might have been passed a SUBREG. */ + if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG) + return 0; + + if (REGNO (reg1) % 2 != 0) + return 0; + + /* Integer ldd is deprecated in SPARC V9 */ + if (TARGET_V9 && REGNO (reg1) < 32) + return 0; + + return (REGNO (reg1) == REGNO (reg2) - 1); +} + +/* Return 1 if the addresses in mem1 and mem2 are suitable for use in + an ldd or std insn. + + This can only happen when addr1 and addr2, the addresses in mem1 + and mem2, are consecutive memory locations (addr1 + 4 == addr2). + addr1 must also be aligned on a 64-bit boundary. + + Also iff dependent_reg_rtx is not null it should not be used to + compute the address for mem1, i.e. we cannot optimize a sequence + like: + ld [%o0], %o0 + ld [%o0 + 4], %o1 + to + ldd [%o0], %o0 + nor: + ld [%g3 + 4], %g3 + ld [%g3], %g2 + to + ldd [%g3], %g2 + + But, note that the transformation from: + ld [%g2 + 4], %g3 + ld [%g2], %g2 + to + ldd [%g2], %g2 + is perfectly fine. Thus, the peephole2 patterns always pass us + the destination register of the first load, never the second one. + + For stores we don't have a similar problem, so dependent_reg_rtx is + NULL_RTX. */ + +int +mems_ok_for_ldd_peep (rtx mem1, rtx mem2, rtx dependent_reg_rtx) +{ + rtx addr1, addr2; + unsigned int reg1; + HOST_WIDE_INT offset1; + + /* The mems cannot be volatile. */ + if (MEM_VOLATILE_P (mem1) || MEM_VOLATILE_P (mem2)) + return 0; + + /* MEM1 should be aligned on a 64-bit boundary. */ + if (MEM_ALIGN (mem1) < 64) + return 0; + + addr1 = XEXP (mem1, 0); + addr2 = XEXP (mem2, 0); + + /* Extract a register number and offset (if used) from the first addr. */ + if (GET_CODE (addr1) == PLUS) + { + /* If not a REG, return zero. */ + if (GET_CODE (XEXP (addr1, 0)) != REG) + return 0; + else + { + reg1 = REGNO (XEXP (addr1, 0)); + /* The offset must be constant! */ + if (GET_CODE (XEXP (addr1, 1)) != CONST_INT) + return 0; + offset1 = INTVAL (XEXP (addr1, 1)); + } + } + else if (GET_CODE (addr1) != REG) + return 0; + else + { + reg1 = REGNO (addr1); + /* This was a simple (mem (reg)) expression. Offset is 0. */ + offset1 = 0; + } + + /* Make sure the second address is a (mem (plus (reg) (const_int). */ + if (GET_CODE (addr2) != PLUS) + return 0; + + if (GET_CODE (XEXP (addr2, 0)) != REG + || GET_CODE (XEXP (addr2, 1)) != CONST_INT) + return 0; + + if (reg1 != REGNO (XEXP (addr2, 0))) + return 0; + + if (dependent_reg_rtx != NULL_RTX && reg1 == REGNO (dependent_reg_rtx)) + return 0; + + /* The first offset must be evenly divisible by 8 to ensure the + address is 64 bit aligned. */ + if (offset1 % 8 != 0) + return 0; + + /* The offset for the second addr must be 4 more than the first addr. */ + if (INTVAL (XEXP (addr2, 1)) != offset1 + 4) + return 0; + + /* All the tests passed. addr1 and addr2 are valid for ldd and std + instructions. */ + return 1; +} + +/* Return 1 if reg is a pseudo, or is the first register in + a hard register pair. This makes it suitable for use in + ldd and std insns. */ + +int +register_ok_for_ldd (rtx reg) +{ + /* We might have been passed a SUBREG. */ + if (!REG_P (reg)) + return 0; + + if (REGNO (reg) < FIRST_PSEUDO_REGISTER) + return (REGNO (reg) % 2 == 0); + + return 1; +} + +/* Return 1 if OP is a memory whose address is known to be + aligned to 8-byte boundary, or a pseudo during reload. + This makes it suitable for use in ldd and std insns. */ + +int +memory_ok_for_ldd (rtx op) +{ + if (MEM_P (op)) + { + /* In 64-bit mode, we assume that the address is word-aligned. */ + if (TARGET_ARCH32 && !mem_min_alignment (op, 8)) + return 0; + + if ((reload_in_progress || reload_completed) + && !strict_memory_address_p (Pmode, XEXP (op, 0))) + return 0; + } + else if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER) + { + if (!(reload_in_progress && reg_renumber [REGNO (op)] < 0)) + return 0; + } + else + return 0; + + return 1; +} + +/* Print operand X (an rtx) in assembler syntax to file FILE. + CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. + For `%' followed by punctuation, CODE is the punctuation and X is null. */ + +void +print_operand (FILE *file, rtx x, int code) +{ + switch (code) + { + case '#': + /* Output an insn in a delay slot. */ + if (final_sequence) + sparc_indent_opcode = 1; + else + fputs ("\n\t nop", file); + return; + case '*': + /* Output an annul flag if there's nothing for the delay slot and we + are optimizing. This is always used with '(' below. + Sun OS 4.1.1 dbx can't handle an annulled unconditional branch; + this is a dbx bug. So, we only do this when optimizing. + On UltraSPARC, a branch in a delay slot causes a pipeline flush. + Always emit a nop in case the next instruction is a branch. */ + if (! final_sequence && (optimize && (int)sparc_cpu < PROCESSOR_V9)) + fputs (",a", file); + return; + case '(': + /* Output a 'nop' if there's nothing for the delay slot and we are + not optimizing. This is always used with '*' above. */ + if (! final_sequence && ! (optimize && (int)sparc_cpu < PROCESSOR_V9)) + fputs ("\n\t nop", file); + else if (final_sequence) + sparc_indent_opcode = 1; + return; + case ')': + /* Output the right displacement from the saved PC on function return. + The caller may have placed an "unimp" insn immediately after the call + so we have to account for it. This insn is used in the 32-bit ABI + when calling a function that returns a non zero-sized structure. The + 64-bit ABI doesn't have it. Be careful to have this test be the same + as that for the call. The exception is when sparc_std_struct_return + is enabled, the psABI is followed exactly and the adjustment is made + by the code in sparc_struct_value_rtx. The call emitted is the same + when sparc_std_struct_return is enabled. */ + if (!TARGET_ARCH64 + && cfun->returns_struct + && !sparc_std_struct_return + && DECL_SIZE (DECL_RESULT (current_function_decl)) + && TREE_CODE (DECL_SIZE (DECL_RESULT (current_function_decl))) + == INTEGER_CST + && !integer_zerop (DECL_SIZE (DECL_RESULT (current_function_decl)))) + fputs ("12", file); + else + fputc ('8', file); + return; + case '_': + /* Output the Embedded Medium/Anywhere code model base register. */ + fputs (EMBMEDANY_BASE_REG, file); + return; + case '&': + /* Print some local dynamic TLS name. */ + assemble_name (file, get_some_local_dynamic_name ()); + return; + + case 'Y': + /* Adjust the operand to take into account a RESTORE operation. */ + if (GET_CODE (x) == CONST_INT) + break; + else if (GET_CODE (x) != REG) + output_operand_lossage ("invalid %%Y operand"); + else if (REGNO (x) < 8) + fputs (reg_names[REGNO (x)], file); + else if (REGNO (x) >= 24 && REGNO (x) < 32) + fputs (reg_names[REGNO (x)-16], file); + else + output_operand_lossage ("invalid %%Y operand"); + return; + case 'L': + /* Print out the low order register name of a register pair. */ + if (WORDS_BIG_ENDIAN) + fputs (reg_names[REGNO (x)+1], file); + else + fputs (reg_names[REGNO (x)], file); + return; + case 'H': + /* Print out the high order register name of a register pair. */ + if (WORDS_BIG_ENDIAN) + fputs (reg_names[REGNO (x)], file); + else + fputs (reg_names[REGNO (x)+1], file); + return; + case 'R': + /* Print out the second register name of a register pair or quad. + I.e., R (%o0) => %o1. */ + fputs (reg_names[REGNO (x)+1], file); + return; + case 'S': + /* Print out the third register name of a register quad. + I.e., S (%o0) => %o2. */ + fputs (reg_names[REGNO (x)+2], file); + return; + case 'T': + /* Print out the fourth register name of a register quad. + I.e., T (%o0) => %o3. */ + fputs (reg_names[REGNO (x)+3], file); + return; + case 'x': + /* Print a condition code register. */ + if (REGNO (x) == SPARC_ICC_REG) + { + /* We don't handle CC[X]_NOOVmode because they're not supposed + to occur here. */ + if (GET_MODE (x) == CCmode) + fputs ("%icc", file); + else if (GET_MODE (x) == CCXmode) + fputs ("%xcc", file); + else + gcc_unreachable (); + } + else + /* %fccN register */ + fputs (reg_names[REGNO (x)], file); + return; + case 'm': + /* Print the operand's address only. */ + output_address (XEXP (x, 0)); + return; + case 'r': + /* In this case we need a register. Use %g0 if the + operand is const0_rtx. */ + if (x == const0_rtx + || (GET_MODE (x) != VOIDmode && x == CONST0_RTX (GET_MODE (x)))) + { + fputs ("%g0", file); + return; + } + else + break; + + case 'A': + switch (GET_CODE (x)) + { + case IOR: fputs ("or", file); break; + case AND: fputs ("and", file); break; + case XOR: fputs ("xor", file); break; + default: output_operand_lossage ("invalid %%A operand"); + } + return; + + case 'B': + switch (GET_CODE (x)) + { + case IOR: fputs ("orn", file); break; + case AND: fputs ("andn", file); break; + case XOR: fputs ("xnor", file); break; + default: output_operand_lossage ("invalid %%B operand"); + } + return; + + /* These are used by the conditional move instructions. */ + case 'c' : + case 'C': + { + enum rtx_code rc = GET_CODE (x); + + if (code == 'c') + { + enum machine_mode mode = GET_MODE (XEXP (x, 0)); + if (mode == CCFPmode || mode == CCFPEmode) + rc = reverse_condition_maybe_unordered (GET_CODE (x)); + else + rc = reverse_condition (GET_CODE (x)); + } + switch (rc) + { + case NE: fputs ("ne", file); break; + case EQ: fputs ("e", file); break; + case GE: fputs ("ge", file); break; + case GT: fputs ("g", file); break; + case LE: fputs ("le", file); break; + case LT: fputs ("l", file); break; + case GEU: fputs ("geu", file); break; + case GTU: fputs ("gu", file); break; + case LEU: fputs ("leu", file); break; + case LTU: fputs ("lu", file); break; + case LTGT: fputs ("lg", file); break; + case UNORDERED: fputs ("u", file); break; + case ORDERED: fputs ("o", file); break; + case UNLT: fputs ("ul", file); break; + case UNLE: fputs ("ule", file); break; + case UNGT: fputs ("ug", file); break; + case UNGE: fputs ("uge", file); break; + case UNEQ: fputs ("ue", file); break; + default: output_operand_lossage (code == 'c' + ? "invalid %%c operand" + : "invalid %%C operand"); + } + return; + } + + /* These are used by the movr instruction pattern. */ + case 'd': + case 'D': + { + enum rtx_code rc = (code == 'd' + ? reverse_condition (GET_CODE (x)) + : GET_CODE (x)); + switch (rc) + { + case NE: fputs ("ne", file); break; + case EQ: fputs ("e", file); break; + case GE: fputs ("gez", file); break; + case LT: fputs ("lz", file); break; + case LE: fputs ("lez", file); break; + case GT: fputs ("gz", file); break; + default: output_operand_lossage (code == 'd' + ? "invalid %%d operand" + : "invalid %%D operand"); + } + return; + } + + case 'b': + { + /* Print a sign-extended character. */ + int i = trunc_int_for_mode (INTVAL (x), QImode); + fprintf (file, "%d", i); + return; + } + + case 'f': + /* Operand must be a MEM; write its address. */ + if (GET_CODE (x) != MEM) + output_operand_lossage ("invalid %%f operand"); + output_address (XEXP (x, 0)); + return; + + case 's': + { + /* Print a sign-extended 32-bit value. */ + HOST_WIDE_INT i; + if (GET_CODE(x) == CONST_INT) + i = INTVAL (x); + else if (GET_CODE(x) == CONST_DOUBLE) + i = CONST_DOUBLE_LOW (x); + else + { + output_operand_lossage ("invalid %%s operand"); + return; + } + i = trunc_int_for_mode (i, SImode); + fprintf (file, HOST_WIDE_INT_PRINT_DEC, i); + return; + } + + case 0: + /* Do nothing special. */ + break; + + default: + /* Undocumented flag. */ + output_operand_lossage ("invalid operand output code"); + } + + if (GET_CODE (x) == REG) + fputs (reg_names[REGNO (x)], file); + else if (GET_CODE (x) == MEM) + { + fputc ('[', file); + /* Poor Sun assembler doesn't understand absolute addressing. */ + if (CONSTANT_P (XEXP (x, 0))) + fputs ("%g0+", file); + output_address (XEXP (x, 0)); + fputc (']', file); + } + else if (GET_CODE (x) == HIGH) + { + fputs ("%hi(", file); + output_addr_const (file, XEXP (x, 0)); + fputc (')', file); + } + else if (GET_CODE (x) == LO_SUM) + { + print_operand (file, XEXP (x, 0), 0); + if (TARGET_CM_MEDMID) + fputs ("+%l44(", file); + else + fputs ("+%lo(", file); + output_addr_const (file, XEXP (x, 1)); + fputc (')', file); + } + else if (GET_CODE (x) == CONST_DOUBLE + && (GET_MODE (x) == VOIDmode + || GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)) + { + if (CONST_DOUBLE_HIGH (x) == 0) + fprintf (file, "%u", (unsigned int) CONST_DOUBLE_LOW (x)); + else if (CONST_DOUBLE_HIGH (x) == -1 + && CONST_DOUBLE_LOW (x) < 0) + fprintf (file, "%d", (int) CONST_DOUBLE_LOW (x)); + else + output_operand_lossage ("long long constant not a valid immediate operand"); + } + else if (GET_CODE (x) == CONST_DOUBLE) + output_operand_lossage ("floating point constant not a valid immediate operand"); + else { output_addr_const (file, x); } +} + +/* Target hook for assembling integer objects. The sparc version has + special handling for aligned DI-mode objects. */ + +static bool +sparc_assemble_integer (rtx x, unsigned int size, int aligned_p) +{ + /* ??? We only output .xword's for symbols and only then in environments + where the assembler can handle them. */ + if (aligned_p && size == 8 + && (GET_CODE (x) != CONST_INT && GET_CODE (x) != CONST_DOUBLE)) + { + if (TARGET_V9) + { + assemble_integer_with_op ("\t.xword\t", x); + return true; + } + else + { + assemble_aligned_integer (4, const0_rtx); + assemble_aligned_integer (4, x); + return true; + } + } + return default_assemble_integer (x, size, aligned_p); +} + +/* Return the value of a code used in the .proc pseudo-op that says + what kind of result this function returns. For non-C types, we pick + the closest C type. */ + +#ifndef SHORT_TYPE_SIZE +#define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2) +#endif + +#ifndef INT_TYPE_SIZE +#define INT_TYPE_SIZE BITS_PER_WORD +#endif + +#ifndef LONG_TYPE_SIZE +#define LONG_TYPE_SIZE BITS_PER_WORD +#endif + +#ifndef LONG_LONG_TYPE_SIZE +#define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2) +#endif + +#ifndef FLOAT_TYPE_SIZE +#define FLOAT_TYPE_SIZE BITS_PER_WORD +#endif + +#ifndef DOUBLE_TYPE_SIZE +#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2) +#endif + +#ifndef LONG_DOUBLE_TYPE_SIZE +#define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2) +#endif + +unsigned long +sparc_type_code (register tree type) +{ + register unsigned long qualifiers = 0; + register unsigned shift; + + /* Only the first 30 bits of the qualifier are valid. We must refrain from + setting more, since some assemblers will give an error for this. Also, + we must be careful to avoid shifts of 32 bits or more to avoid getting + unpredictable results. */ + + for (shift = 6; shift < 30; shift += 2, type = TREE_TYPE (type)) + { + switch (TREE_CODE (type)) + { + case ERROR_MARK: + return qualifiers; + + case ARRAY_TYPE: + qualifiers |= (3 << shift); + break; + + case FUNCTION_TYPE: + case METHOD_TYPE: + qualifiers |= (2 << shift); + break; + + case POINTER_TYPE: + case REFERENCE_TYPE: + case OFFSET_TYPE: + qualifiers |= (1 << shift); + break; + + case RECORD_TYPE: + return (qualifiers | 8); + + case UNION_TYPE: + case QUAL_UNION_TYPE: + return (qualifiers | 9); + + case ENUMERAL_TYPE: + return (qualifiers | 10); + + case VOID_TYPE: + return (qualifiers | 16); + + case INTEGER_TYPE: + /* If this is a range type, consider it to be the underlying + type. */ + if (TREE_TYPE (type) != 0) + break; + + /* Carefully distinguish all the standard types of C, + without messing up if the language is not C. We do this by + testing TYPE_PRECISION and TYPE_UNSIGNED. The old code used to + look at both the names and the above fields, but that's redundant. + Any type whose size is between two C types will be considered + to be the wider of the two types. Also, we do not have a + special code to use for "long long", so anything wider than + long is treated the same. Note that we can't distinguish + between "int" and "long" in this code if they are the same + size, but that's fine, since neither can the assembler. */ + + if (TYPE_PRECISION (type) <= CHAR_TYPE_SIZE) + return (qualifiers | (TYPE_UNSIGNED (type) ? 12 : 2)); + + else if (TYPE_PRECISION (type) <= SHORT_TYPE_SIZE) + return (qualifiers | (TYPE_UNSIGNED (type) ? 13 : 3)); + + else if (TYPE_PRECISION (type) <= INT_TYPE_SIZE) + return (qualifiers | (TYPE_UNSIGNED (type) ? 14 : 4)); + + else + return (qualifiers | (TYPE_UNSIGNED (type) ? 15 : 5)); + + case REAL_TYPE: + /* If this is a range type, consider it to be the underlying + type. */ + if (TREE_TYPE (type) != 0) + break; + + /* Carefully distinguish all the standard types of C, + without messing up if the language is not C. */ + + if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE) + return (qualifiers | 6); + + else + return (qualifiers | 7); + + case COMPLEX_TYPE: /* GNU Fortran COMPLEX type. */ + /* ??? We need to distinguish between double and float complex types, + but I don't know how yet because I can't reach this code from + existing front-ends. */ + return (qualifiers | 7); /* Who knows? */ + + case VECTOR_TYPE: + case BOOLEAN_TYPE: /* Boolean truth value type. */ + case LANG_TYPE: + case NULLPTR_TYPE: + return qualifiers; + + default: + gcc_unreachable (); /* Not a type! */ + } + } + + return qualifiers; +} + +/* Nested function support. */ + +/* Emit RTL insns to initialize the variable parts of a trampoline. + FNADDR is an RTX for the address of the function's pure code. + CXT is an RTX for the static chain value for the function. + + This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi + (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes + (to store insns). This is a bit excessive. Perhaps a different + mechanism would be better here. + + Emit enough FLUSH insns to synchronize the data and instruction caches. */ + +static void +sparc32_initialize_trampoline (rtx m_tramp, rtx fnaddr, rtx cxt) +{ + /* SPARC 32-bit trampoline: + + sethi %hi(fn), %g1 + sethi %hi(static), %g2 + jmp %g1+%lo(fn) + or %g2, %lo(static), %g2 + + SETHI i,r = 00rr rrr1 00ii iiii iiii iiii iiii iiii + JMPL r+i,d = 10dd ddd1 1100 0rrr rr1i iiii iiii iiii + */ + + emit_move_insn + (adjust_address (m_tramp, SImode, 0), + expand_binop (SImode, ior_optab, + expand_shift (RSHIFT_EXPR, SImode, fnaddr, + size_int (10), 0, 1), + GEN_INT (trunc_int_for_mode (0x03000000, SImode)), + NULL_RTX, 1, OPTAB_DIRECT)); + + emit_move_insn + (adjust_address (m_tramp, SImode, 4), + expand_binop (SImode, ior_optab, + expand_shift (RSHIFT_EXPR, SImode, cxt, + size_int (10), 0, 1), + GEN_INT (trunc_int_for_mode (0x05000000, SImode)), + NULL_RTX, 1, OPTAB_DIRECT)); + + emit_move_insn + (adjust_address (m_tramp, SImode, 8), + expand_binop (SImode, ior_optab, + expand_and (SImode, fnaddr, GEN_INT (0x3ff), NULL_RTX), + GEN_INT (trunc_int_for_mode (0x81c06000, SImode)), + NULL_RTX, 1, OPTAB_DIRECT)); + + emit_move_insn + (adjust_address (m_tramp, SImode, 12), + expand_binop (SImode, ior_optab, + expand_and (SImode, cxt, GEN_INT (0x3ff), NULL_RTX), + GEN_INT (trunc_int_for_mode (0x8410a000, SImode)), + NULL_RTX, 1, OPTAB_DIRECT)); + + /* On UltraSPARC a flush flushes an entire cache line. The trampoline is + aligned on a 16 byte boundary so one flush clears it all. */ + emit_insn (gen_flush (validize_mem (adjust_address (m_tramp, SImode, 0)))); + if (sparc_cpu != PROCESSOR_ULTRASPARC + && sparc_cpu != PROCESSOR_ULTRASPARC3 + && sparc_cpu != PROCESSOR_NIAGARA + && sparc_cpu != PROCESSOR_NIAGARA2) + emit_insn (gen_flush (validize_mem (adjust_address (m_tramp, SImode, 8)))); + + /* Call __enable_execute_stack after writing onto the stack to make sure + the stack address is accessible. */ +#ifdef ENABLE_EXECUTE_STACK + emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"), + LCT_NORMAL, VOIDmode, 1, XEXP (m_tramp, 0), Pmode); +#endif + +} + +/* The 64-bit version is simpler because it makes more sense to load the + values as "immediate" data out of the trampoline. It's also easier since + we can read the PC without clobbering a register. */ + +static void +sparc64_initialize_trampoline (rtx m_tramp, rtx fnaddr, rtx cxt) +{ + /* SPARC 64-bit trampoline: + + rd %pc, %g1 + ldx [%g1+24], %g5 + jmp %g5 + ldx [%g1+16], %g5 + +16 bytes data + */ + + emit_move_insn (adjust_address (m_tramp, SImode, 0), + GEN_INT (trunc_int_for_mode (0x83414000, SImode))); + emit_move_insn (adjust_address (m_tramp, SImode, 4), + GEN_INT (trunc_int_for_mode (0xca586018, SImode))); + emit_move_insn (adjust_address (m_tramp, SImode, 8), + GEN_INT (trunc_int_for_mode (0x81c14000, SImode))); + emit_move_insn (adjust_address (m_tramp, SImode, 12), + GEN_INT (trunc_int_for_mode (0xca586010, SImode))); + emit_move_insn (adjust_address (m_tramp, DImode, 16), cxt); + emit_move_insn (adjust_address (m_tramp, DImode, 24), fnaddr); + emit_insn (gen_flushdi (validize_mem (adjust_address (m_tramp, DImode, 0)))); + + if (sparc_cpu != PROCESSOR_ULTRASPARC + && sparc_cpu != PROCESSOR_ULTRASPARC3 + && sparc_cpu != PROCESSOR_NIAGARA + && sparc_cpu != PROCESSOR_NIAGARA2) + emit_insn (gen_flushdi (validize_mem (adjust_address (m_tramp, DImode, 8)))); + + /* Call __enable_execute_stack after writing onto the stack to make sure + the stack address is accessible. */ +#ifdef ENABLE_EXECUTE_STACK + emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"), + LCT_NORMAL, VOIDmode, 1, XEXP (m_tramp, 0), Pmode); +#endif +} + +/* Worker for TARGET_TRAMPOLINE_INIT. */ + +static void +sparc_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt) +{ + rtx fnaddr = force_reg (Pmode, XEXP (DECL_RTL (fndecl), 0)); + cxt = force_reg (Pmode, cxt); + if (TARGET_ARCH64) + sparc64_initialize_trampoline (m_tramp, fnaddr, cxt); + else + sparc32_initialize_trampoline (m_tramp, fnaddr, cxt); +} + +/* Adjust the cost of a scheduling dependency. Return the new cost of + a dependency LINK or INSN on DEP_INSN. COST is the current cost. */ + +static int +supersparc_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost) +{ + enum attr_type insn_type; + + if (! recog_memoized (insn)) + return 0; + + insn_type = get_attr_type (insn); + + if (REG_NOTE_KIND (link) == 0) + { + /* Data dependency; DEP_INSN writes a register that INSN reads some + cycles later. */ + + /* if a load, then the dependence must be on the memory address; + add an extra "cycle". Note that the cost could be two cycles + if the reg was written late in an instruction group; we ca not tell + here. */ + if (insn_type == TYPE_LOAD || insn_type == TYPE_FPLOAD) + return cost + 3; + + /* Get the delay only if the address of the store is the dependence. */ + if (insn_type == TYPE_STORE || insn_type == TYPE_FPSTORE) + { + rtx pat = PATTERN(insn); + rtx dep_pat = PATTERN (dep_insn); + + if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) + return cost; /* This should not happen! */ + + /* The dependency between the two instructions was on the data that + is being stored. Assume that this implies that the address of the + store is not dependent. */ + if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat))) + return cost; + + return cost + 3; /* An approximation. */ + } + + /* A shift instruction cannot receive its data from an instruction + in the same cycle; add a one cycle penalty. */ + if (insn_type == TYPE_SHIFT) + return cost + 3; /* Split before cascade into shift. */ + } + else + { + /* Anti- or output- dependency; DEP_INSN reads/writes a register that + INSN writes some cycles later. */ + + /* These are only significant for the fpu unit; writing a fp reg before + the fpu has finished with it stalls the processor. */ + + /* Reusing an integer register causes no problems. */ + if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT) + return 0; + } + + return cost; +} + +static int +hypersparc_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost) +{ + enum attr_type insn_type, dep_type; + rtx pat = PATTERN(insn); + rtx dep_pat = PATTERN (dep_insn); + + if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0) + return cost; + + insn_type = get_attr_type (insn); + dep_type = get_attr_type (dep_insn); + + switch (REG_NOTE_KIND (link)) + { + case 0: + /* Data dependency; DEP_INSN writes a register that INSN reads some + cycles later. */ + + switch (insn_type) + { + case TYPE_STORE: + case TYPE_FPSTORE: + /* Get the delay iff the address of the store is the dependence. */ + if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) + return cost; + + if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat))) + return cost; + return cost + 3; + + case TYPE_LOAD: + case TYPE_SLOAD: + case TYPE_FPLOAD: + /* If a load, then the dependence must be on the memory address. If + the addresses aren't equal, then it might be a false dependency */ + if (dep_type == TYPE_STORE || dep_type == TYPE_FPSTORE) + { + if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET + || GET_CODE (SET_DEST (dep_pat)) != MEM + || GET_CODE (SET_SRC (pat)) != MEM + || ! rtx_equal_p (XEXP (SET_DEST (dep_pat), 0), + XEXP (SET_SRC (pat), 0))) + return cost + 2; + + return cost + 8; + } + break; + + case TYPE_BRANCH: + /* Compare to branch latency is 0. There is no benefit from + separating compare and branch. */ + if (dep_type == TYPE_COMPARE) + return 0; + /* Floating point compare to branch latency is less than + compare to conditional move. */ + if (dep_type == TYPE_FPCMP) + return cost - 1; + break; + default: + break; + } + break; + + case REG_DEP_ANTI: + /* Anti-dependencies only penalize the fpu unit. */ + if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT) + return 0; + break; + + default: + break; + } + + return cost; +} + +static int +sparc_adjust_cost(rtx insn, rtx link, rtx dep, int cost) +{ + switch (sparc_cpu) + { + case PROCESSOR_SUPERSPARC: + cost = supersparc_adjust_cost (insn, link, dep, cost); + break; + case PROCESSOR_HYPERSPARC: + case PROCESSOR_SPARCLITE86X: + cost = hypersparc_adjust_cost (insn, link, dep, cost); + break; + default: + break; + } + return cost; +} + +static void +sparc_sched_init (FILE *dump ATTRIBUTE_UNUSED, + int sched_verbose ATTRIBUTE_UNUSED, + int max_ready ATTRIBUTE_UNUSED) +{} + +static int +sparc_use_sched_lookahead (void) +{ + if (sparc_cpu == PROCESSOR_NIAGARA + || sparc_cpu == PROCESSOR_NIAGARA2) + return 0; + if (sparc_cpu == PROCESSOR_ULTRASPARC + || sparc_cpu == PROCESSOR_ULTRASPARC3) + return 4; + if ((1 << sparc_cpu) & + ((1 << PROCESSOR_SUPERSPARC) | (1 << PROCESSOR_HYPERSPARC) | + (1 << PROCESSOR_SPARCLITE86X))) + return 3; + return 0; +} + +static int +sparc_issue_rate (void) +{ + switch (sparc_cpu) + { + case PROCESSOR_NIAGARA: + case PROCESSOR_NIAGARA2: + default: + return 1; + case PROCESSOR_V9: + /* Assume V9 processors are capable of at least dual-issue. */ + return 2; + case PROCESSOR_SUPERSPARC: + return 3; + case PROCESSOR_HYPERSPARC: + case PROCESSOR_SPARCLITE86X: + return 2; + case PROCESSOR_ULTRASPARC: + case PROCESSOR_ULTRASPARC3: + return 4; + } +} + +static int +set_extends (rtx insn) +{ + register rtx pat = PATTERN (insn); + + switch (GET_CODE (SET_SRC (pat))) + { + /* Load and some shift instructions zero extend. */ + case MEM: + case ZERO_EXTEND: + /* sethi clears the high bits */ + case HIGH: + /* LO_SUM is used with sethi. sethi cleared the high + bits and the values used with lo_sum are positive */ + case LO_SUM: + /* Store flag stores 0 or 1 */ + case LT: case LTU: + case GT: case GTU: + case LE: case LEU: + case GE: case GEU: + case EQ: + case NE: + return 1; + case AND: + { + rtx op0 = XEXP (SET_SRC (pat), 0); + rtx op1 = XEXP (SET_SRC (pat), 1); + if (GET_CODE (op1) == CONST_INT) + return INTVAL (op1) >= 0; + if (GET_CODE (op0) != REG) + return 0; + if (sparc_check_64 (op0, insn) == 1) + return 1; + return (GET_CODE (op1) == REG && sparc_check_64 (op1, insn) == 1); + } + case IOR: + case XOR: + { + rtx op0 = XEXP (SET_SRC (pat), 0); + rtx op1 = XEXP (SET_SRC (pat), 1); + if (GET_CODE (op0) != REG || sparc_check_64 (op0, insn) <= 0) + return 0; + if (GET_CODE (op1) == CONST_INT) + return INTVAL (op1) >= 0; + return (GET_CODE (op1) == REG && sparc_check_64 (op1, insn) == 1); + } + case LSHIFTRT: + return GET_MODE (SET_SRC (pat)) == SImode; + /* Positive integers leave the high bits zero. */ + case CONST_DOUBLE: + return ! (CONST_DOUBLE_LOW (SET_SRC (pat)) & 0x80000000); + case CONST_INT: + return ! (INTVAL (SET_SRC (pat)) & 0x80000000); + case ASHIFTRT: + case SIGN_EXTEND: + return - (GET_MODE (SET_SRC (pat)) == SImode); + case REG: + return sparc_check_64 (SET_SRC (pat), insn); + default: + return 0; + } +} + +/* We _ought_ to have only one kind per function, but... */ +static GTY(()) rtx sparc_addr_diff_list; +static GTY(()) rtx sparc_addr_list; + +void +sparc_defer_case_vector (rtx lab, rtx vec, int diff) +{ + vec = gen_rtx_EXPR_LIST (VOIDmode, lab, vec); + if (diff) + sparc_addr_diff_list + = gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_diff_list); + else + sparc_addr_list = gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_list); +} + +static void +sparc_output_addr_vec (rtx vec) +{ + rtx lab = XEXP (vec, 0), body = XEXP (vec, 1); + int idx, vlen = XVECLEN (body, 0); + +#ifdef ASM_OUTPUT_ADDR_VEC_START + ASM_OUTPUT_ADDR_VEC_START (asm_out_file); +#endif + +#ifdef ASM_OUTPUT_CASE_LABEL + ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab), + NEXT_INSN (lab)); +#else + (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (lab)); +#endif + + for (idx = 0; idx < vlen; idx++) + { + ASM_OUTPUT_ADDR_VEC_ELT + (asm_out_file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0))); + } + +#ifdef ASM_OUTPUT_ADDR_VEC_END + ASM_OUTPUT_ADDR_VEC_END (asm_out_file); +#endif +} + +static void +sparc_output_addr_diff_vec (rtx vec) +{ + rtx lab = XEXP (vec, 0), body = XEXP (vec, 1); + rtx base = XEXP (XEXP (body, 0), 0); + int idx, vlen = XVECLEN (body, 1); + +#ifdef ASM_OUTPUT_ADDR_VEC_START + ASM_OUTPUT_ADDR_VEC_START (asm_out_file); +#endif + +#ifdef ASM_OUTPUT_CASE_LABEL + ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab), + NEXT_INSN (lab)); +#else + (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (lab)); +#endif + + for (idx = 0; idx < vlen; idx++) + { + ASM_OUTPUT_ADDR_DIFF_ELT + (asm_out_file, + body, + CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)), + CODE_LABEL_NUMBER (base)); + } + +#ifdef ASM_OUTPUT_ADDR_VEC_END + ASM_OUTPUT_ADDR_VEC_END (asm_out_file); +#endif +} + +static void +sparc_output_deferred_case_vectors (void) +{ + rtx t; + int align; + + if (sparc_addr_list == NULL_RTX + && sparc_addr_diff_list == NULL_RTX) + return; + + /* Align to cache line in the function's code section. */ + switch_to_section (current_function_section ()); + + align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT); + if (align > 0) + ASM_OUTPUT_ALIGN (asm_out_file, align); + + for (t = sparc_addr_list; t ; t = XEXP (t, 1)) + sparc_output_addr_vec (XEXP (t, 0)); + for (t = sparc_addr_diff_list; t ; t = XEXP (t, 1)) + sparc_output_addr_diff_vec (XEXP (t, 0)); + + sparc_addr_list = sparc_addr_diff_list = NULL_RTX; +} + +/* Return 0 if the high 32 bits of X (the low word of X, if DImode) are + unknown. Return 1 if the high bits are zero, -1 if the register is + sign extended. */ +int +sparc_check_64 (rtx x, rtx insn) +{ + /* If a register is set only once it is safe to ignore insns this + code does not know how to handle. The loop will either recognize + the single set and return the correct value or fail to recognize + it and return 0. */ + int set_once = 0; + rtx y = x; + + gcc_assert (GET_CODE (x) == REG); + + if (GET_MODE (x) == DImode) + y = gen_rtx_REG (SImode, REGNO (x) + WORDS_BIG_ENDIAN); + + if (flag_expensive_optimizations + && df && DF_REG_DEF_COUNT (REGNO (y)) == 1) + set_once = 1; + + if (insn == 0) + { + if (set_once) + insn = get_last_insn_anywhere (); + else + return 0; + } + + while ((insn = PREV_INSN (insn))) + { + switch (GET_CODE (insn)) + { + case JUMP_INSN: + case NOTE: + break; + case CODE_LABEL: + case CALL_INSN: + default: + if (! set_once) + return 0; + break; + case INSN: + { + rtx pat = PATTERN (insn); + if (GET_CODE (pat) != SET) + return 0; + if (rtx_equal_p (x, SET_DEST (pat))) + return set_extends (insn); + if (y && rtx_equal_p (y, SET_DEST (pat))) + return set_extends (insn); + if (reg_overlap_mentioned_p (SET_DEST (pat), y)) + return 0; + } + } + } + return 0; +} + +/* Returns assembly code to perform a DImode shift using + a 64-bit global or out register on SPARC-V8+. */ +const char * +output_v8plus_shift (rtx *operands, rtx insn, const char *opcode) +{ + static char asm_code[60]; + + /* The scratch register is only required when the destination + register is not a 64-bit global or out register. */ + if (which_alternative != 2) + operands[3] = operands[0]; + + /* We can only shift by constants <= 63. */ + if (GET_CODE (operands[2]) == CONST_INT) + operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f); + + if (GET_CODE (operands[1]) == CONST_INT) + { + output_asm_insn ("mov\t%1, %3", operands); + } + else + { + output_asm_insn ("sllx\t%H1, 32, %3", operands); + if (sparc_check_64 (operands[1], insn) <= 0) + output_asm_insn ("srl\t%L1, 0, %L1", operands); + output_asm_insn ("or\t%L1, %3, %3", operands); + } + + strcpy(asm_code, opcode); + + if (which_alternative != 2) + return strcat (asm_code, "\t%0, %2, %L0\n\tsrlx\t%L0, 32, %H0"); + else + return strcat (asm_code, "\t%3, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0"); +} + +/* Output rtl to increment the profiler label LABELNO + for profiling a function entry. */ + +void +sparc_profile_hook (int labelno) +{ + char buf[32]; + rtx lab, fun; + + fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_FUNCTION); + if (NO_PROFILE_COUNTERS) + { + emit_library_call (fun, LCT_NORMAL, VOIDmode, 0); + } + else + { + ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno); + lab = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf)); + emit_library_call (fun, LCT_NORMAL, VOIDmode, 1, lab, Pmode); + } +} + +/* Solaris implementation of TARGET_ASM_NAMED_SECTION. */ + +static void +sparc_solaris_elf_asm_named_section (const char *name, unsigned int flags, + tree decl ATTRIBUTE_UNUSED) +{ + fprintf (asm_out_file, "\t.section\t\"%s\"", name); + + if (!(flags & SECTION_DEBUG)) + fputs (",#alloc", asm_out_file); + if (flags & SECTION_WRITE) + fputs (",#write", asm_out_file); + if (flags & SECTION_TLS) + fputs (",#tls", asm_out_file); + if (flags & SECTION_CODE) + fputs (",#execinstr", asm_out_file); + + /* ??? Handle SECTION_BSS. */ + + fputc ('\n', asm_out_file); +} + +/* We do not allow indirect calls to be optimized into sibling calls. + + We cannot use sibling calls when delayed branches are disabled + because they will likely require the call delay slot to be filled. + + Also, on SPARC 32-bit we cannot emit a sibling call when the + current function returns a structure. This is because the "unimp + after call" convention would cause the callee to return to the + wrong place. The generic code already disallows cases where the + function being called returns a structure. + + It may seem strange how this last case could occur. Usually there + is code after the call which jumps to epilogue code which dumps the + return value into the struct return area. That ought to invalidate + the sibling call right? Well, in the C++ case we can end up passing + the pointer to the struct return area to a constructor (which returns + void) and then nothing else happens. Such a sibling call would look + valid without the added check here. + + VxWorks PIC PLT entries require the global pointer to be initialized + on entry. We therefore can't emit sibling calls to them. */ +static bool +sparc_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED) +{ + return (decl + && flag_delayed_branch + && (TARGET_ARCH64 || ! cfun->returns_struct) + && !(TARGET_VXWORKS_RTP + && flag_pic + && !targetm.binds_local_p (decl))); +} + +/* libfunc renaming. */ + +static void +sparc_init_libfuncs (void) +{ + if (TARGET_ARCH32) + { + /* Use the subroutines that Sun's library provides for integer + multiply and divide. The `*' prevents an underscore from + being prepended by the compiler. .umul is a little faster + than .mul. */ + set_optab_libfunc (smul_optab, SImode, "*.umul"); + set_optab_libfunc (sdiv_optab, SImode, "*.div"); + set_optab_libfunc (udiv_optab, SImode, "*.udiv"); + set_optab_libfunc (smod_optab, SImode, "*.rem"); + set_optab_libfunc (umod_optab, SImode, "*.urem"); + + /* TFmode arithmetic. These names are part of the SPARC 32bit ABI. */ + set_optab_libfunc (add_optab, TFmode, "_Q_add"); + set_optab_libfunc (sub_optab, TFmode, "_Q_sub"); + set_optab_libfunc (neg_optab, TFmode, "_Q_neg"); + set_optab_libfunc (smul_optab, TFmode, "_Q_mul"); + set_optab_libfunc (sdiv_optab, TFmode, "_Q_div"); + + /* We can define the TFmode sqrt optab only if TARGET_FPU. This + is because with soft-float, the SFmode and DFmode sqrt + instructions will be absent, and the compiler will notice and + try to use the TFmode sqrt instruction for calls to the + builtin function sqrt, but this fails. */ + if (TARGET_FPU) + set_optab_libfunc (sqrt_optab, TFmode, "_Q_sqrt"); + + set_optab_libfunc (eq_optab, TFmode, "_Q_feq"); + set_optab_libfunc (ne_optab, TFmode, "_Q_fne"); + set_optab_libfunc (gt_optab, TFmode, "_Q_fgt"); + set_optab_libfunc (ge_optab, TFmode, "_Q_fge"); + set_optab_libfunc (lt_optab, TFmode, "_Q_flt"); + set_optab_libfunc (le_optab, TFmode, "_Q_fle"); + + set_conv_libfunc (sext_optab, TFmode, SFmode, "_Q_stoq"); + set_conv_libfunc (sext_optab, TFmode, DFmode, "_Q_dtoq"); + set_conv_libfunc (trunc_optab, SFmode, TFmode, "_Q_qtos"); + set_conv_libfunc (trunc_optab, DFmode, TFmode, "_Q_qtod"); + + set_conv_libfunc (sfix_optab, SImode, TFmode, "_Q_qtoi"); + set_conv_libfunc (ufix_optab, SImode, TFmode, "_Q_qtou"); + set_conv_libfunc (sfloat_optab, TFmode, SImode, "_Q_itoq"); + set_conv_libfunc (ufloat_optab, TFmode, SImode, "_Q_utoq"); + + if (DITF_CONVERSION_LIBFUNCS) + { + set_conv_libfunc (sfix_optab, DImode, TFmode, "_Q_qtoll"); + set_conv_libfunc (ufix_optab, DImode, TFmode, "_Q_qtoull"); + set_conv_libfunc (sfloat_optab, TFmode, DImode, "_Q_lltoq"); + set_conv_libfunc (ufloat_optab, TFmode, DImode, "_Q_ulltoq"); + } + + if (SUN_CONVERSION_LIBFUNCS) + { + set_conv_libfunc (sfix_optab, DImode, SFmode, "__ftoll"); + set_conv_libfunc (ufix_optab, DImode, SFmode, "__ftoull"); + set_conv_libfunc (sfix_optab, DImode, DFmode, "__dtoll"); + set_conv_libfunc (ufix_optab, DImode, DFmode, "__dtoull"); + } + } + if (TARGET_ARCH64) + { + /* In the SPARC 64bit ABI, SImode multiply and divide functions + do not exist in the library. Make sure the compiler does not + emit calls to them by accident. (It should always use the + hardware instructions.) */ + set_optab_libfunc (smul_optab, SImode, 0); + set_optab_libfunc (sdiv_optab, SImode, 0); + set_optab_libfunc (udiv_optab, SImode, 0); + set_optab_libfunc (smod_optab, SImode, 0); + set_optab_libfunc (umod_optab, SImode, 0); + + if (SUN_INTEGER_MULTIPLY_64) + { + set_optab_libfunc (smul_optab, DImode, "__mul64"); + set_optab_libfunc (sdiv_optab, DImode, "__div64"); + set_optab_libfunc (udiv_optab, DImode, "__udiv64"); + set_optab_libfunc (smod_optab, DImode, "__rem64"); + set_optab_libfunc (umod_optab, DImode, "__urem64"); + } + + if (SUN_CONVERSION_LIBFUNCS) + { + set_conv_libfunc (sfix_optab, DImode, SFmode, "__ftol"); + set_conv_libfunc (ufix_optab, DImode, SFmode, "__ftoul"); + set_conv_libfunc (sfix_optab, DImode, DFmode, "__dtol"); + set_conv_libfunc (ufix_optab, DImode, DFmode, "__dtoul"); + } + } +} + +#define def_builtin(NAME, CODE, TYPE) \ + add_builtin_function((NAME), (TYPE), (CODE), BUILT_IN_MD, NULL, \ + NULL_TREE) + +/* Implement the TARGET_INIT_BUILTINS target hook. + Create builtin functions for special SPARC instructions. */ + +static void +sparc_init_builtins (void) +{ + if (TARGET_VIS) + sparc_vis_init_builtins (); +} + +/* Create builtin functions for VIS 1.0 instructions. */ + +static void +sparc_vis_init_builtins (void) +{ + tree v4qi = build_vector_type (unsigned_intQI_type_node, 4); + tree v8qi = build_vector_type (unsigned_intQI_type_node, 8); + tree v4hi = build_vector_type (intHI_type_node, 4); + tree v2hi = build_vector_type (intHI_type_node, 2); + tree v2si = build_vector_type (intSI_type_node, 2); + + tree v4qi_ftype_v4hi = build_function_type_list (v4qi, v4hi, 0); + tree v8qi_ftype_v2si_v8qi = build_function_type_list (v8qi, v2si, v8qi, 0); + tree v2hi_ftype_v2si = build_function_type_list (v2hi, v2si, 0); + tree v4hi_ftype_v4qi = build_function_type_list (v4hi, v4qi, 0); + tree v8qi_ftype_v4qi_v4qi = build_function_type_list (v8qi, v4qi, v4qi, 0); + tree v4hi_ftype_v4qi_v4hi = build_function_type_list (v4hi, v4qi, v4hi, 0); + tree v4hi_ftype_v4qi_v2hi = build_function_type_list (v4hi, v4qi, v2hi, 0); + tree v2si_ftype_v4qi_v2hi = build_function_type_list (v2si, v4qi, v2hi, 0); + tree v4hi_ftype_v8qi_v4hi = build_function_type_list (v4hi, v8qi, v4hi, 0); + tree v4hi_ftype_v4hi_v4hi = build_function_type_list (v4hi, v4hi, v4hi, 0); + tree v2si_ftype_v2si_v2si = build_function_type_list (v2si, v2si, v2si, 0); + tree v8qi_ftype_v8qi_v8qi = build_function_type_list (v8qi, v8qi, v8qi, 0); + tree di_ftype_v8qi_v8qi_di = build_function_type_list (intDI_type_node, + v8qi, v8qi, + intDI_type_node, 0); + tree di_ftype_di_di = build_function_type_list (intDI_type_node, + intDI_type_node, + intDI_type_node, 0); + tree ptr_ftype_ptr_si = build_function_type_list (ptr_type_node, + ptr_type_node, + intSI_type_node, 0); + tree ptr_ftype_ptr_di = build_function_type_list (ptr_type_node, + ptr_type_node, + intDI_type_node, 0); + + /* Packing and expanding vectors. */ + def_builtin ("__builtin_vis_fpack16", CODE_FOR_fpack16_vis, v4qi_ftype_v4hi); + def_builtin ("__builtin_vis_fpack32", CODE_FOR_fpack32_vis, + v8qi_ftype_v2si_v8qi); + def_builtin ("__builtin_vis_fpackfix", CODE_FOR_fpackfix_vis, + v2hi_ftype_v2si); + def_builtin ("__builtin_vis_fexpand", CODE_FOR_fexpand_vis, v4hi_ftype_v4qi); + def_builtin ("__builtin_vis_fpmerge", CODE_FOR_fpmerge_vis, + v8qi_ftype_v4qi_v4qi); + + /* Multiplications. */ + def_builtin ("__builtin_vis_fmul8x16", CODE_FOR_fmul8x16_vis, + v4hi_ftype_v4qi_v4hi); + def_builtin ("__builtin_vis_fmul8x16au", CODE_FOR_fmul8x16au_vis, + v4hi_ftype_v4qi_v2hi); + def_builtin ("__builtin_vis_fmul8x16al", CODE_FOR_fmul8x16al_vis, + v4hi_ftype_v4qi_v2hi); + def_builtin ("__builtin_vis_fmul8sux16", CODE_FOR_fmul8sux16_vis, + v4hi_ftype_v8qi_v4hi); + def_builtin ("__builtin_vis_fmul8ulx16", CODE_FOR_fmul8ulx16_vis, + v4hi_ftype_v8qi_v4hi); + def_builtin ("__builtin_vis_fmuld8sux16", CODE_FOR_fmuld8sux16_vis, + v2si_ftype_v4qi_v2hi); + def_builtin ("__builtin_vis_fmuld8ulx16", CODE_FOR_fmuld8ulx16_vis, + v2si_ftype_v4qi_v2hi); + + /* Data aligning. */ + def_builtin ("__builtin_vis_faligndatav4hi", CODE_FOR_faligndatav4hi_vis, + v4hi_ftype_v4hi_v4hi); + def_builtin ("__builtin_vis_faligndatav8qi", CODE_FOR_faligndatav8qi_vis, + v8qi_ftype_v8qi_v8qi); + def_builtin ("__builtin_vis_faligndatav2si", CODE_FOR_faligndatav2si_vis, + v2si_ftype_v2si_v2si); + def_builtin ("__builtin_vis_faligndatadi", CODE_FOR_faligndatadi_vis, + di_ftype_di_di); + if (TARGET_ARCH64) + def_builtin ("__builtin_vis_alignaddr", CODE_FOR_alignaddrdi_vis, + ptr_ftype_ptr_di); + else + def_builtin ("__builtin_vis_alignaddr", CODE_FOR_alignaddrsi_vis, + ptr_ftype_ptr_si); + + /* Pixel distance. */ + def_builtin ("__builtin_vis_pdist", CODE_FOR_pdist_vis, + di_ftype_v8qi_v8qi_di); +} + +/* Handle TARGET_EXPAND_BUILTIN target hook. + Expand builtin functions for sparc intrinsics. */ + +static rtx +sparc_expand_builtin (tree exp, rtx target, + rtx subtarget ATTRIBUTE_UNUSED, + enum machine_mode tmode ATTRIBUTE_UNUSED, + int ignore ATTRIBUTE_UNUSED) +{ + tree arg; + call_expr_arg_iterator iter; + tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); + unsigned int icode = DECL_FUNCTION_CODE (fndecl); + rtx pat, op[4]; + enum machine_mode mode[4]; + int arg_count = 0; + + mode[0] = insn_data[icode].operand[0].mode; + if (!target + || GET_MODE (target) != mode[0] + || ! (*insn_data[icode].operand[0].predicate) (target, mode[0])) + op[0] = gen_reg_rtx (mode[0]); + else + op[0] = target; + + FOR_EACH_CALL_EXPR_ARG (arg, iter, exp) + { + arg_count++; + mode[arg_count] = insn_data[icode].operand[arg_count].mode; + op[arg_count] = expand_normal (arg); + + if (! (*insn_data[icode].operand[arg_count].predicate) (op[arg_count], + mode[arg_count])) + op[arg_count] = copy_to_mode_reg (mode[arg_count], op[arg_count]); + } + + switch (arg_count) + { + case 1: + pat = GEN_FCN (icode) (op[0], op[1]); + break; + case 2: + pat = GEN_FCN (icode) (op[0], op[1], op[2]); + break; + case 3: + pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3]); + break; + default: + gcc_unreachable (); + } + + if (!pat) + return NULL_RTX; + + emit_insn (pat); + + return op[0]; +} + +static int +sparc_vis_mul8x16 (int e8, int e16) +{ + return (e8 * e16 + 128) / 256; +} + +/* Multiply the vector elements in ELTS0 to the elements in ELTS1 as specified + by FNCODE. All of the elements in ELTS0 and ELTS1 lists must be integer + constants. A tree list with the results of the multiplications is returned, + and each element in the list is of INNER_TYPE. */ + +static tree +sparc_handle_vis_mul8x16 (int fncode, tree inner_type, tree elts0, tree elts1) +{ + tree n_elts = NULL_TREE; + int scale; + + switch (fncode) + { + case CODE_FOR_fmul8x16_vis: + for (; elts0 && elts1; + elts0 = TREE_CHAIN (elts0), elts1 = TREE_CHAIN (elts1)) + { + int val + = sparc_vis_mul8x16 (TREE_INT_CST_LOW (TREE_VALUE (elts0)), + TREE_INT_CST_LOW (TREE_VALUE (elts1))); + n_elts = tree_cons (NULL_TREE, + build_int_cst (inner_type, val), + n_elts); + } + break; + + case CODE_FOR_fmul8x16au_vis: + scale = TREE_INT_CST_LOW (TREE_VALUE (elts1)); + + for (; elts0; elts0 = TREE_CHAIN (elts0)) + { + int val + = sparc_vis_mul8x16 (TREE_INT_CST_LOW (TREE_VALUE (elts0)), + scale); + n_elts = tree_cons (NULL_TREE, + build_int_cst (inner_type, val), + n_elts); + } + break; + + case CODE_FOR_fmul8x16al_vis: + scale = TREE_INT_CST_LOW (TREE_VALUE (TREE_CHAIN (elts1))); + + for (; elts0; elts0 = TREE_CHAIN (elts0)) + { + int val + = sparc_vis_mul8x16 (TREE_INT_CST_LOW (TREE_VALUE (elts0)), + scale); + n_elts = tree_cons (NULL_TREE, + build_int_cst (inner_type, val), + n_elts); + } + break; + + default: + gcc_unreachable (); + } + + return nreverse (n_elts); + +} +/* Handle TARGET_FOLD_BUILTIN target hook. + Fold builtin functions for SPARC intrinsics. If IGNORE is true the + result of the function call is ignored. NULL_TREE is returned if the + function could not be folded. */ + +static tree +sparc_fold_builtin (tree fndecl, int n_args ATTRIBUTE_UNUSED, + tree *args, bool ignore) +{ + tree arg0, arg1, arg2; + tree rtype = TREE_TYPE (TREE_TYPE (fndecl)); + enum insn_code icode = (enum insn_code) DECL_FUNCTION_CODE (fndecl); + + if (ignore + && icode != CODE_FOR_alignaddrsi_vis + && icode != CODE_FOR_alignaddrdi_vis) + return build_zero_cst (rtype); + + switch (icode) + { + case CODE_FOR_fexpand_vis: + arg0 = args[0]; + STRIP_NOPS (arg0); + + if (TREE_CODE (arg0) == VECTOR_CST) + { + tree inner_type = TREE_TYPE (rtype); + tree elts = TREE_VECTOR_CST_ELTS (arg0); + tree n_elts = NULL_TREE; + + for (; elts; elts = TREE_CHAIN (elts)) + { + unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (elts)) << 4; + n_elts = tree_cons (NULL_TREE, + build_int_cst (inner_type, val), + n_elts); + } + return build_vector (rtype, nreverse (n_elts)); + } + break; + + case CODE_FOR_fmul8x16_vis: + case CODE_FOR_fmul8x16au_vis: + case CODE_FOR_fmul8x16al_vis: + arg0 = args[0]; + arg1 = args[1]; + STRIP_NOPS (arg0); + STRIP_NOPS (arg1); + + if (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST) + { + tree inner_type = TREE_TYPE (rtype); + tree elts0 = TREE_VECTOR_CST_ELTS (arg0); + tree elts1 = TREE_VECTOR_CST_ELTS (arg1); + tree n_elts = sparc_handle_vis_mul8x16 (icode, inner_type, elts0, + elts1); + + return build_vector (rtype, n_elts); + } + break; + + case CODE_FOR_fpmerge_vis: + arg0 = args[0]; + arg1 = args[1]; + STRIP_NOPS (arg0); + STRIP_NOPS (arg1); + + if (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST) + { + tree elts0 = TREE_VECTOR_CST_ELTS (arg0); + tree elts1 = TREE_VECTOR_CST_ELTS (arg1); + tree n_elts = NULL_TREE; + + for (; elts0 && elts1; + elts0 = TREE_CHAIN (elts0), elts1 = TREE_CHAIN (elts1)) + { + n_elts = tree_cons (NULL_TREE, TREE_VALUE (elts0), n_elts); + n_elts = tree_cons (NULL_TREE, TREE_VALUE (elts1), n_elts); + } + + return build_vector (rtype, nreverse (n_elts)); + } + break; + + case CODE_FOR_pdist_vis: + arg0 = args[0]; + arg1 = args[1]; + arg2 = args[2]; + STRIP_NOPS (arg0); + STRIP_NOPS (arg1); + STRIP_NOPS (arg2); + + if (TREE_CODE (arg0) == VECTOR_CST + && TREE_CODE (arg1) == VECTOR_CST + && TREE_CODE (arg2) == INTEGER_CST) + { + int overflow = 0; + unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (arg2); + HOST_WIDE_INT high = TREE_INT_CST_HIGH (arg2); + tree elts0 = TREE_VECTOR_CST_ELTS (arg0); + tree elts1 = TREE_VECTOR_CST_ELTS (arg1); + + for (; elts0 && elts1; + elts0 = TREE_CHAIN (elts0), elts1 = TREE_CHAIN (elts1)) + { + unsigned HOST_WIDE_INT + low0 = TREE_INT_CST_LOW (TREE_VALUE (elts0)), + low1 = TREE_INT_CST_LOW (TREE_VALUE (elts1)); + HOST_WIDE_INT high0 = TREE_INT_CST_HIGH (TREE_VALUE (elts0)); + HOST_WIDE_INT high1 = TREE_INT_CST_HIGH (TREE_VALUE (elts1)); + + unsigned HOST_WIDE_INT l; + HOST_WIDE_INT h; + + overflow |= neg_double (low1, high1, &l, &h); + overflow |= add_double (low0, high0, l, h, &l, &h); + if (h < 0) + overflow |= neg_double (l, h, &l, &h); + + overflow |= add_double (low, high, l, h, &low, &high); + } + + gcc_assert (overflow == 0); + + return build_int_cst_wide (rtype, low, high); + } + + default: + break; + } + + return NULL_TREE; +} + +/* ??? This duplicates information provided to the compiler by the + ??? scheduler description. Some day, teach genautomata to output + ??? the latencies and then CSE will just use that. */ + +static bool +sparc_rtx_costs (rtx x, int code, int outer_code, int *total, + bool speed ATTRIBUTE_UNUSED) +{ + enum machine_mode mode = GET_MODE (x); + bool float_mode_p = FLOAT_MODE_P (mode); + + switch (code) + { + case CONST_INT: + if (INTVAL (x) < 0x1000 && INTVAL (x) >= -0x1000) + { + *total = 0; + return true; + } + /* FALLTHRU */ + + case HIGH: + *total = 2; + return true; + + case CONST: + case LABEL_REF: + case SYMBOL_REF: + *total = 4; + return true; + + case CONST_DOUBLE: + if (GET_MODE (x) == VOIDmode + && ((CONST_DOUBLE_HIGH (x) == 0 + && CONST_DOUBLE_LOW (x) < 0x1000) + || (CONST_DOUBLE_HIGH (x) == -1 + && CONST_DOUBLE_LOW (x) < 0 + && CONST_DOUBLE_LOW (x) >= -0x1000))) + *total = 0; + else + *total = 8; + return true; + + case MEM: + /* If outer-code was a sign or zero extension, a cost + of COSTS_N_INSNS (1) was already added in. This is + why we are subtracting it back out. */ + if (outer_code == ZERO_EXTEND) + { + *total = sparc_costs->int_zload - COSTS_N_INSNS (1); + } + else if (outer_code == SIGN_EXTEND) + { + *total = sparc_costs->int_sload - COSTS_N_INSNS (1); + } + else if (float_mode_p) + { + *total = sparc_costs->float_load; + } + else + { + *total = sparc_costs->int_load; + } + + return true; + + case PLUS: + case MINUS: + if (float_mode_p) + *total = sparc_costs->float_plusminus; + else + *total = COSTS_N_INSNS (1); + return false; + + case MULT: + if (float_mode_p) + *total = sparc_costs->float_mul; + else if (! TARGET_HARD_MUL) + *total = COSTS_N_INSNS (25); + else + { + int bit_cost; + + bit_cost = 0; + if (sparc_costs->int_mul_bit_factor) + { + int nbits; + + if (GET_CODE (XEXP (x, 1)) == CONST_INT) + { + unsigned HOST_WIDE_INT value = INTVAL (XEXP (x, 1)); + for (nbits = 0; value != 0; value &= value - 1) + nbits++; + } + else if (GET_CODE (XEXP (x, 1)) == CONST_DOUBLE + && GET_MODE (XEXP (x, 1)) == VOIDmode) + { + rtx x1 = XEXP (x, 1); + unsigned HOST_WIDE_INT value1 = CONST_DOUBLE_LOW (x1); + unsigned HOST_WIDE_INT value2 = CONST_DOUBLE_HIGH (x1); + + for (nbits = 0; value1 != 0; value1 &= value1 - 1) + nbits++; + for (; value2 != 0; value2 &= value2 - 1) + nbits++; + } + else + nbits = 7; + + if (nbits < 3) + nbits = 3; + bit_cost = (nbits - 3) / sparc_costs->int_mul_bit_factor; + bit_cost = COSTS_N_INSNS (bit_cost); + } + + if (mode == DImode) + *total = sparc_costs->int_mulX + bit_cost; + else + *total = sparc_costs->int_mul + bit_cost; + } + return false; + + case ASHIFT: + case ASHIFTRT: + case LSHIFTRT: + *total = COSTS_N_INSNS (1) + sparc_costs->shift_penalty; + return false; + + case DIV: + case UDIV: + case MOD: + case UMOD: + if (float_mode_p) + { + if (mode == DFmode) + *total = sparc_costs->float_div_df; + else + *total = sparc_costs->float_div_sf; + } + else + { + if (mode == DImode) + *total = sparc_costs->int_divX; + else + *total = sparc_costs->int_div; + } + return false; + + case NEG: + if (! float_mode_p) + { + *total = COSTS_N_INSNS (1); + return false; + } + /* FALLTHRU */ + + case ABS: + case FLOAT: + case UNSIGNED_FLOAT: + case FIX: + case UNSIGNED_FIX: + case FLOAT_EXTEND: + case FLOAT_TRUNCATE: + *total = sparc_costs->float_move; + return false; + + case SQRT: + if (mode == DFmode) + *total = sparc_costs->float_sqrt_df; + else + *total = sparc_costs->float_sqrt_sf; + return false; + + case COMPARE: + if (float_mode_p) + *total = sparc_costs->float_cmp; + else + *total = COSTS_N_INSNS (1); + return false; + + case IF_THEN_ELSE: + if (float_mode_p) + *total = sparc_costs->float_cmove; + else + *total = sparc_costs->int_cmove; + return false; + + case IOR: + /* Handle the NAND vector patterns. */ + if (sparc_vector_mode_supported_p (GET_MODE (x)) + && GET_CODE (XEXP (x, 0)) == NOT + && GET_CODE (XEXP (x, 1)) == NOT) + { + *total = COSTS_N_INSNS (1); + return true; + } + else + return false; + + default: + return false; + } +} + +/* Emit the sequence of insns SEQ while preserving the registers REG and REG2. + This is achieved by means of a manual dynamic stack space allocation in + the current frame. We make the assumption that SEQ doesn't contain any + function calls, with the possible exception of calls to the GOT helper. */ + +static void +emit_and_preserve (rtx seq, rtx reg, rtx reg2) +{ + /* We must preserve the lowest 16 words for the register save area. */ + HOST_WIDE_INT offset = 16*UNITS_PER_WORD; + /* We really need only 2 words of fresh stack space. */ + HOST_WIDE_INT size = SPARC_STACK_ALIGN (offset + 2*UNITS_PER_WORD); + + rtx slot + = gen_rtx_MEM (word_mode, plus_constant (stack_pointer_rtx, + SPARC_STACK_BIAS + offset)); + + emit_insn (gen_stack_pointer_dec (GEN_INT (size))); + emit_insn (gen_rtx_SET (VOIDmode, slot, reg)); + if (reg2) + emit_insn (gen_rtx_SET (VOIDmode, + adjust_address (slot, word_mode, UNITS_PER_WORD), + reg2)); + emit_insn (seq); + if (reg2) + emit_insn (gen_rtx_SET (VOIDmode, + reg2, + adjust_address (slot, word_mode, UNITS_PER_WORD))); + emit_insn (gen_rtx_SET (VOIDmode, reg, slot)); + emit_insn (gen_stack_pointer_inc (GEN_INT (size))); +} + +/* Output the assembler code for a thunk function. THUNK_DECL is the + declaration for the thunk function itself, FUNCTION is the decl for + the target function. DELTA is an immediate constant offset to be + added to THIS. If VCALL_OFFSET is nonzero, the word at address + (*THIS + VCALL_OFFSET) should be additionally added to THIS. */ + +static void +sparc_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED, + HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, + tree function) +{ + rtx this_rtx, insn, funexp; + unsigned int int_arg_first; + + reload_completed = 1; + epilogue_completed = 1; + + emit_note (NOTE_INSN_PROLOGUE_END); + + if (flag_delayed_branch) + { + /* We will emit a regular sibcall below, so we need to instruct + output_sibcall that we are in a leaf function. */ + sparc_leaf_function_p = current_function_uses_only_leaf_regs = 1; + + /* This will cause final.c to invoke leaf_renumber_regs so we + must behave as if we were in a not-yet-leafified function. */ + int_arg_first = SPARC_INCOMING_INT_ARG_FIRST; + } + else + { + /* We will emit the sibcall manually below, so we will need to + manually spill non-leaf registers. */ + sparc_leaf_function_p = current_function_uses_only_leaf_regs = 0; + + /* We really are in a leaf function. */ + int_arg_first = SPARC_OUTGOING_INT_ARG_FIRST; + } + + /* Find the "this" pointer. Normally in %o0, but in ARCH64 if the function + returns a structure, the structure return pointer is there instead. */ + if (TARGET_ARCH64 + && aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)) + this_rtx = gen_rtx_REG (Pmode, int_arg_first + 1); + else + this_rtx = gen_rtx_REG (Pmode, int_arg_first); + + /* Add DELTA. When possible use a plain add, otherwise load it into + a register first. */ + if (delta) + { + rtx delta_rtx = GEN_INT (delta); + + if (! SPARC_SIMM13_P (delta)) + { + rtx scratch = gen_rtx_REG (Pmode, 1); + emit_move_insn (scratch, delta_rtx); + delta_rtx = scratch; + } + + /* THIS_RTX += DELTA. */ + emit_insn (gen_add2_insn (this_rtx, delta_rtx)); + } + + /* Add the word at address (*THIS_RTX + VCALL_OFFSET). */ + if (vcall_offset) + { + rtx vcall_offset_rtx = GEN_INT (vcall_offset); + rtx scratch = gen_rtx_REG (Pmode, 1); + + gcc_assert (vcall_offset < 0); + + /* SCRATCH = *THIS_RTX. */ + emit_move_insn (scratch, gen_rtx_MEM (Pmode, this_rtx)); + + /* Prepare for adding VCALL_OFFSET. The difficulty is that we + may not have any available scratch register at this point. */ + if (SPARC_SIMM13_P (vcall_offset)) + ; + /* This is the case if ARCH64 (unless -ffixed-g5 is passed). */ + else if (! fixed_regs[5] + /* The below sequence is made up of at least 2 insns, + while the default method may need only one. */ + && vcall_offset < -8192) + { + rtx scratch2 = gen_rtx_REG (Pmode, 5); + emit_move_insn (scratch2, vcall_offset_rtx); + vcall_offset_rtx = scratch2; + } + else + { + rtx increment = GEN_INT (-4096); + + /* VCALL_OFFSET is a negative number whose typical range can be + estimated as -32768..0 in 32-bit mode. In almost all cases + it is therefore cheaper to emit multiple add insns than + spilling and loading the constant into a register (at least + 6 insns). */ + while (! SPARC_SIMM13_P (vcall_offset)) + { + emit_insn (gen_add2_insn (scratch, increment)); + vcall_offset += 4096; + } + vcall_offset_rtx = GEN_INT (vcall_offset); /* cannot be 0 */ + } + + /* SCRATCH = *(*THIS_RTX + VCALL_OFFSET). */ + emit_move_insn (scratch, gen_rtx_MEM (Pmode, + gen_rtx_PLUS (Pmode, + scratch, + vcall_offset_rtx))); + + /* THIS_RTX += *(*THIS_RTX + VCALL_OFFSET). */ + emit_insn (gen_add2_insn (this_rtx, scratch)); + } + + /* Generate a tail call to the target function. */ + if (! TREE_USED (function)) + { + assemble_external (function); + TREE_USED (function) = 1; + } + funexp = XEXP (DECL_RTL (function), 0); + + if (flag_delayed_branch) + { + funexp = gen_rtx_MEM (FUNCTION_MODE, funexp); + insn = emit_call_insn (gen_sibcall (funexp)); + SIBLING_CALL_P (insn) = 1; + } + else + { + /* The hoops we have to jump through in order to generate a sibcall + without using delay slots... */ + rtx spill_reg, seq, scratch = gen_rtx_REG (Pmode, 1); + + if (flag_pic) + { + spill_reg = gen_rtx_REG (word_mode, 15); /* %o7 */ + start_sequence (); + /* Delay emitting the GOT helper function because it needs to + change the section and we are emitting assembly code. */ + load_got_register (); /* clobbers %o7 */ + scratch = sparc_legitimize_pic_address (funexp, scratch); + seq = get_insns (); + end_sequence (); + emit_and_preserve (seq, spill_reg, pic_offset_table_rtx); + } + else if (TARGET_ARCH32) + { + emit_insn (gen_rtx_SET (VOIDmode, + scratch, + gen_rtx_HIGH (SImode, funexp))); + emit_insn (gen_rtx_SET (VOIDmode, + scratch, + gen_rtx_LO_SUM (SImode, scratch, funexp))); + } + else /* TARGET_ARCH64 */ + { + switch (sparc_cmodel) + { + case CM_MEDLOW: + case CM_MEDMID: + /* The destination can serve as a temporary. */ + sparc_emit_set_symbolic_const64 (scratch, funexp, scratch); + break; + + case CM_MEDANY: + case CM_EMBMEDANY: + /* The destination cannot serve as a temporary. */ + spill_reg = gen_rtx_REG (DImode, 15); /* %o7 */ + start_sequence (); + sparc_emit_set_symbolic_const64 (scratch, funexp, spill_reg); + seq = get_insns (); + end_sequence (); + emit_and_preserve (seq, spill_reg, 0); + break; + + default: + gcc_unreachable (); + } + } + + emit_jump_insn (gen_indirect_jump (scratch)); + } + + emit_barrier (); + + /* Run just enough of rest_of_compilation to get the insns emitted. + There's not really enough bulk here to make other passes such as + instruction scheduling worth while. Note that use_thunk calls + assemble_start_function and assemble_end_function. */ + insn = get_insns (); + insn_locators_alloc (); + shorten_branches (insn); + final_start_function (insn, file, 1); + final (insn, file, 1); + final_end_function (); + + reload_completed = 0; + epilogue_completed = 0; +} + +/* Return true if sparc_output_mi_thunk would be able to output the + assembler code for the thunk function specified by the arguments + it is passed, and false otherwise. */ +static bool +sparc_can_output_mi_thunk (const_tree thunk_fndecl ATTRIBUTE_UNUSED, + HOST_WIDE_INT delta ATTRIBUTE_UNUSED, + HOST_WIDE_INT vcall_offset, + const_tree function ATTRIBUTE_UNUSED) +{ + /* Bound the loop used in the default method above. */ + return (vcall_offset >= -32768 || ! fixed_regs[5]); +} + +/* We use the machine specific reorg pass to enable workarounds for errata. */ + +static void +sparc_reorg (void) +{ + rtx insn, next; + + /* The only erratum we handle for now is that of the AT697F processor. */ + if (!sparc_fix_at697f) + return; + + /* We need to have the (essentially) final form of the insn stream in order + to properly detect the various hazards. Run delay slot scheduling. */ + if (optimize > 0 && flag_delayed_branch) + { + cleanup_barriers (); + dbr_schedule (get_insns ()); + } + + /* Now look for specific patterns in the insn stream. */ + for (insn = get_insns (); insn; insn = next) + { + bool insert_nop = false; + rtx set; + + /* Look for a single-word load into an odd-numbered FP register. */ + if (NONJUMP_INSN_P (insn) + && (set = single_set (insn)) != NULL_RTX + && GET_MODE_SIZE (GET_MODE (SET_SRC (set))) == 4 + && MEM_P (SET_SRC (set)) + && REG_P (SET_DEST (set)) + && REGNO (SET_DEST (set)) > 31 + && REGNO (SET_DEST (set)) % 2 != 0) + { + /* The wrong dependency is on the enclosing double register. */ + unsigned int x = REGNO (SET_DEST (set)) - 1; + unsigned int src1, src2, dest; + int code; + + /* If the insn has a delay slot, then it cannot be problematic. */ + next = next_active_insn (insn); + if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE) + code = -1; + else + { + extract_insn (next); + code = INSN_CODE (next); + } + + switch (code) + { + case CODE_FOR_adddf3: + case CODE_FOR_subdf3: + case CODE_FOR_muldf3: + case CODE_FOR_divdf3: + dest = REGNO (recog_data.operand[0]); + src1 = REGNO (recog_data.operand[1]); + src2 = REGNO (recog_data.operand[2]); + if (src1 != src2) + { + /* Case [1-4]: + ld [address], %fx+1 + FPOPd %f{x,y}, %f{y,x}, %f{x,y} */ + if ((src1 == x || src2 == x) + && (dest == src1 || dest == src2)) + insert_nop = true; + } + else + { + /* Case 5: + ld [address], %fx+1 + FPOPd %fx, %fx, %fx */ + if (src1 == x + && dest == src1 + && (code == CODE_FOR_adddf3 || code == CODE_FOR_muldf3)) + insert_nop = true; + } + break; + + case CODE_FOR_sqrtdf2: + dest = REGNO (recog_data.operand[0]); + src1 = REGNO (recog_data.operand[1]); + /* Case 6: + ld [address], %fx+1 + fsqrtd %fx, %fx */ + if (src1 == x && dest == src1) + insert_nop = true; + break; + + default: + break; + } + } + else + next = NEXT_INSN (insn); + + if (insert_nop) + emit_insn_after (gen_nop (), insn); + } +} + +/* How to allocate a 'struct machine_function'. */ + +static struct machine_function * +sparc_init_machine_status (void) +{ + return ggc_alloc_cleared_machine_function (); +} + +/* Locate some local-dynamic symbol still in use by this function + so that we can print its name in local-dynamic base patterns. */ + +static const char * +get_some_local_dynamic_name (void) +{ + rtx insn; + + if (cfun->machine->some_ld_name) + return cfun->machine->some_ld_name; + + for (insn = get_insns (); insn ; insn = NEXT_INSN (insn)) + if (INSN_P (insn) + && for_each_rtx (&PATTERN (insn), get_some_local_dynamic_name_1, 0)) + return cfun->machine->some_ld_name; + + gcc_unreachable (); +} + +static int +get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED) +{ + rtx x = *px; + + if (x + && GET_CODE (x) == SYMBOL_REF + && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC) + { + cfun->machine->some_ld_name = XSTR (x, 0); + return 1; + } + + return 0; +} + +/* Handle the TARGET_DWARF_HANDLE_FRAME_UNSPEC hook. + This is called from dwarf2out.c to emit call frame instructions + for frame-related insns containing UNSPECs and UNSPEC_VOLATILEs. */ +static void +sparc_dwarf_handle_frame_unspec (const char *label, + rtx pattern ATTRIBUTE_UNUSED, + int index ATTRIBUTE_UNUSED) +{ + gcc_assert (index == UNSPECV_SAVEW); + dwarf2out_window_save (label); +} + +/* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL. + We need to emit DTP-relative relocations. */ + +static void +sparc_output_dwarf_dtprel (FILE *file, int size, rtx x) +{ + switch (size) + { + case 4: + fputs ("\t.word\t%r_tls_dtpoff32(", file); + break; + case 8: + fputs ("\t.xword\t%r_tls_dtpoff64(", file); + break; + default: + gcc_unreachable (); + } + output_addr_const (file, x); + fputs (")", file); +} + +/* Do whatever processing is required at the end of a file. */ + +static void +sparc_file_end (void) +{ + /* If we need to emit the special GOT helper function, do so now. */ + if (got_helper_rtx) + { + const char *name = XSTR (got_helper_rtx, 0); + const char *reg_name = reg_names[GLOBAL_OFFSET_TABLE_REGNUM]; +#ifdef DWARF2_UNWIND_INFO + bool do_cfi; +#endif + + if (USE_HIDDEN_LINKONCE) + { + tree decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, + get_identifier (name), + build_function_type (void_type_node, + void_list_node)); + DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL, + NULL_TREE, void_type_node); + TREE_PUBLIC (decl) = 1; + TREE_STATIC (decl) = 1; + make_decl_one_only (decl, DECL_ASSEMBLER_NAME (decl)); + DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN; + DECL_VISIBILITY_SPECIFIED (decl) = 1; + resolve_unique_section (decl, 0, flag_function_sections); + allocate_struct_function (decl, true); + cfun->is_thunk = 1; + current_function_decl = decl; + init_varasm_status (); + assemble_start_function (decl, name); + } + else + { + const int align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT); + switch_to_section (text_section); + if (align > 0) + ASM_OUTPUT_ALIGN (asm_out_file, align); + ASM_OUTPUT_LABEL (asm_out_file, name); + } + +#ifdef DWARF2_UNWIND_INFO + do_cfi = dwarf2out_do_cfi_asm (); + if (do_cfi) + fprintf (asm_out_file, "\t.cfi_startproc\n"); +#endif + if (flag_delayed_branch) + fprintf (asm_out_file, "\tjmp\t%%o7+8\n\t add\t%%o7, %s, %s\n", + reg_name, reg_name); + else + fprintf (asm_out_file, "\tadd\t%%o7, %s, %s\n\tjmp\t%%o7+8\n\t nop\n", + reg_name, reg_name); +#ifdef DWARF2_UNWIND_INFO + if (do_cfi) + fprintf (asm_out_file, "\t.cfi_endproc\n"); +#endif + } + + if (NEED_INDICATE_EXEC_STACK) + file_end_indicate_exec_stack (); +} + +#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING +/* Implement TARGET_MANGLE_TYPE. */ + +static const char * +sparc_mangle_type (const_tree type) +{ + if (!TARGET_64BIT + && TYPE_MAIN_VARIANT (type) == long_double_type_node + && TARGET_LONG_DOUBLE_128) + return "g"; + + /* For all other types, use normal C++ mangling. */ + return NULL; +} +#endif + +/* Expand code to perform a 8 or 16-bit compare and swap by doing 32-bit + compare and swap on the word containing the byte or half-word. */ + +void +sparc_expand_compare_and_swap_12 (rtx result, rtx mem, rtx oldval, rtx newval) +{ + rtx addr1 = force_reg (Pmode, XEXP (mem, 0)); + rtx addr = gen_reg_rtx (Pmode); + rtx off = gen_reg_rtx (SImode); + rtx oldv = gen_reg_rtx (SImode); + rtx newv = gen_reg_rtx (SImode); + rtx oldvalue = gen_reg_rtx (SImode); + rtx newvalue = gen_reg_rtx (SImode); + rtx res = gen_reg_rtx (SImode); + rtx resv = gen_reg_rtx (SImode); + rtx memsi, val, mask, end_label, loop_label, cc; + + emit_insn (gen_rtx_SET (VOIDmode, addr, + gen_rtx_AND (Pmode, addr1, GEN_INT (-4)))); + + if (Pmode != SImode) + addr1 = gen_lowpart (SImode, addr1); + emit_insn (gen_rtx_SET (VOIDmode, off, + gen_rtx_AND (SImode, addr1, GEN_INT (3)))); + + memsi = gen_rtx_MEM (SImode, addr); + set_mem_alias_set (memsi, ALIAS_SET_MEMORY_BARRIER); + MEM_VOLATILE_P (memsi) = MEM_VOLATILE_P (mem); + + val = force_reg (SImode, memsi); + + emit_insn (gen_rtx_SET (VOIDmode, off, + gen_rtx_XOR (SImode, off, + GEN_INT (GET_MODE (mem) == QImode + ? 3 : 2)))); + + emit_insn (gen_rtx_SET (VOIDmode, off, + gen_rtx_ASHIFT (SImode, off, GEN_INT (3)))); + + if (GET_MODE (mem) == QImode) + mask = force_reg (SImode, GEN_INT (0xff)); + else + mask = force_reg (SImode, GEN_INT (0xffff)); + + emit_insn (gen_rtx_SET (VOIDmode, mask, + gen_rtx_ASHIFT (SImode, mask, off))); + + emit_insn (gen_rtx_SET (VOIDmode, val, + gen_rtx_AND (SImode, gen_rtx_NOT (SImode, mask), + val))); + + oldval = gen_lowpart (SImode, oldval); + emit_insn (gen_rtx_SET (VOIDmode, oldv, + gen_rtx_ASHIFT (SImode, oldval, off))); + + newval = gen_lowpart_common (SImode, newval); + emit_insn (gen_rtx_SET (VOIDmode, newv, + gen_rtx_ASHIFT (SImode, newval, off))); + + emit_insn (gen_rtx_SET (VOIDmode, oldv, + gen_rtx_AND (SImode, oldv, mask))); + + emit_insn (gen_rtx_SET (VOIDmode, newv, + gen_rtx_AND (SImode, newv, mask))); + + end_label = gen_label_rtx (); + loop_label = gen_label_rtx (); + emit_label (loop_label); + + emit_insn (gen_rtx_SET (VOIDmode, oldvalue, + gen_rtx_IOR (SImode, oldv, val))); + + emit_insn (gen_rtx_SET (VOIDmode, newvalue, + gen_rtx_IOR (SImode, newv, val))); + + emit_insn (gen_sync_compare_and_swapsi (res, memsi, oldvalue, newvalue)); + + emit_cmp_and_jump_insns (res, oldvalue, EQ, NULL, SImode, 0, end_label); + + emit_insn (gen_rtx_SET (VOIDmode, resv, + gen_rtx_AND (SImode, gen_rtx_NOT (SImode, mask), + res))); + + cc = gen_compare_reg_1 (NE, resv, val); + emit_insn (gen_rtx_SET (VOIDmode, val, resv)); + + /* Use cbranchcc4 to separate the compare and branch! */ + emit_jump_insn (gen_cbranchcc4 (gen_rtx_NE (VOIDmode, cc, const0_rtx), + cc, const0_rtx, loop_label)); + + emit_label (end_label); + + emit_insn (gen_rtx_SET (VOIDmode, res, + gen_rtx_AND (SImode, res, mask))); + + emit_insn (gen_rtx_SET (VOIDmode, res, + gen_rtx_LSHIFTRT (SImode, res, off))); + + emit_move_insn (result, gen_lowpart (GET_MODE (result), res)); +} + +/* Implement TARGET_FRAME_POINTER_REQUIRED. */ + +bool +sparc_frame_pointer_required (void) +{ + return !(current_function_is_leaf && only_leaf_regs_used ()); +} + +/* The way this is structured, we can't eliminate SFP in favor of SP + if the frame pointer is required: we want to use the SFP->HFP elimination + in that case. But the test in update_eliminables doesn't know we are + assuming below that we only do the former elimination. */ + +bool +sparc_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to) +{ + return (to == HARD_FRAME_POINTER_REGNUM + || !targetm.frame_pointer_required ()); +} + +/* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that + they won't be allocated. */ + +static void +sparc_conditional_register_usage (void) +{ + if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) + { + fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; + call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; + } + /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ + /* then honor it. */ + if (TARGET_ARCH32 && fixed_regs[5]) + fixed_regs[5] = 1; + else if (TARGET_ARCH64 && fixed_regs[5] == 2) + fixed_regs[5] = 0; + if (! TARGET_V9) + { + int regno; + for (regno = SPARC_FIRST_V9_FP_REG; + regno <= SPARC_LAST_V9_FP_REG; + regno++) + fixed_regs[regno] = 1; + /* %fcc0 is used by v8 and v9. */ + for (regno = SPARC_FIRST_V9_FCC_REG + 1; + regno <= SPARC_LAST_V9_FCC_REG; + regno++) + fixed_regs[regno] = 1; + } + if (! TARGET_FPU) + { + int regno; + for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) + fixed_regs[regno] = 1; + } + /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ + /* then honor it. Likewise with g3 and g4. */ + if (fixed_regs[2] == 2) + fixed_regs[2] = ! TARGET_APP_REGS; + if (fixed_regs[3] == 2) + fixed_regs[3] = ! TARGET_APP_REGS; + if (TARGET_ARCH32 && fixed_regs[4] == 2) + fixed_regs[4] = ! TARGET_APP_REGS; + else if (TARGET_CM_EMBMEDANY) + fixed_regs[4] = 1; + else if (fixed_regs[4] == 2) + fixed_regs[4] = 0; +} + +#include "gt-sparc.h" |