summaryrefslogtreecommitdiff
path: root/gcc/fortran/arith.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/fortran/arith.c')
-rw-r--r--gcc/fortran/arith.c2364
1 files changed, 2364 insertions, 0 deletions
diff --git a/gcc/fortran/arith.c b/gcc/fortran/arith.c
new file mode 100644
index 000000000..2a9ea7501
--- /dev/null
+++ b/gcc/fortran/arith.c
@@ -0,0 +1,2364 @@
+/* Compiler arithmetic
+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+ 2009, 2010
+ Free Software Foundation, Inc.
+ Contributed by Andy Vaught
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* Since target arithmetic must be done on the host, there has to
+ be some way of evaluating arithmetic expressions as the host
+ would evaluate them. We use the GNU MP library and the MPFR
+ library to do arithmetic, and this file provides the interface. */
+
+#include "config.h"
+#include "system.h"
+#include "flags.h"
+#include "gfortran.h"
+#include "arith.h"
+#include "target-memory.h"
+#include "constructor.h"
+
+/* MPFR does not have a direct replacement for mpz_set_f() from GMP.
+ It's easily implemented with a few calls though. */
+
+void
+gfc_mpfr_to_mpz (mpz_t z, mpfr_t x, locus *where)
+{
+ mp_exp_t e;
+
+ if (mpfr_inf_p (x) || mpfr_nan_p (x))
+ {
+ gfc_error ("Conversion of an Infinity or Not-a-Number at %L "
+ "to INTEGER", where);
+ mpz_set_ui (z, 0);
+ return;
+ }
+
+ e = mpfr_get_z_exp (z, x);
+
+ if (e > 0)
+ mpz_mul_2exp (z, z, e);
+ else
+ mpz_tdiv_q_2exp (z, z, -e);
+}
+
+
+/* Set the model number precision by the requested KIND. */
+
+void
+gfc_set_model_kind (int kind)
+{
+ int index = gfc_validate_kind (BT_REAL, kind, false);
+ int base2prec;
+
+ base2prec = gfc_real_kinds[index].digits;
+ if (gfc_real_kinds[index].radix != 2)
+ base2prec *= gfc_real_kinds[index].radix / 2;
+ mpfr_set_default_prec (base2prec);
+}
+
+
+/* Set the model number precision from mpfr_t x. */
+
+void
+gfc_set_model (mpfr_t x)
+{
+ mpfr_set_default_prec (mpfr_get_prec (x));
+}
+
+
+/* Given an arithmetic error code, return a pointer to a string that
+ explains the error. */
+
+static const char *
+gfc_arith_error (arith code)
+{
+ const char *p;
+
+ switch (code)
+ {
+ case ARITH_OK:
+ p = _("Arithmetic OK at %L");
+ break;
+ case ARITH_OVERFLOW:
+ p = _("Arithmetic overflow at %L");
+ break;
+ case ARITH_UNDERFLOW:
+ p = _("Arithmetic underflow at %L");
+ break;
+ case ARITH_NAN:
+ p = _("Arithmetic NaN at %L");
+ break;
+ case ARITH_DIV0:
+ p = _("Division by zero at %L");
+ break;
+ case ARITH_INCOMMENSURATE:
+ p = _("Array operands are incommensurate at %L");
+ break;
+ case ARITH_ASYMMETRIC:
+ p =
+ _("Integer outside symmetric range implied by Standard Fortran at %L");
+ break;
+ default:
+ gfc_internal_error ("gfc_arith_error(): Bad error code");
+ }
+
+ return p;
+}
+
+
+/* Get things ready to do math. */
+
+void
+gfc_arith_init_1 (void)
+{
+ gfc_integer_info *int_info;
+ gfc_real_info *real_info;
+ mpfr_t a, b;
+ int i;
+
+ mpfr_set_default_prec (128);
+ mpfr_init (a);
+
+ /* Convert the minimum and maximum values for each kind into their
+ GNU MP representation. */
+ for (int_info = gfc_integer_kinds; int_info->kind != 0; int_info++)
+ {
+ /* Huge */
+ mpz_init (int_info->huge);
+ mpz_set_ui (int_info->huge, int_info->radix);
+ mpz_pow_ui (int_info->huge, int_info->huge, int_info->digits);
+ mpz_sub_ui (int_info->huge, int_info->huge, 1);
+
+ /* These are the numbers that are actually representable by the
+ target. For bases other than two, this needs to be changed. */
+ if (int_info->radix != 2)
+ gfc_internal_error ("Fix min_int calculation");
+
+ /* See PRs 13490 and 17912, related to integer ranges.
+ The pedantic_min_int exists for range checking when a program
+ is compiled with -pedantic, and reflects the belief that
+ Standard Fortran requires integers to be symmetrical, i.e.
+ every negative integer must have a representable positive
+ absolute value, and vice versa. */
+
+ mpz_init (int_info->pedantic_min_int);
+ mpz_neg (int_info->pedantic_min_int, int_info->huge);
+
+ mpz_init (int_info->min_int);
+ mpz_sub_ui (int_info->min_int, int_info->pedantic_min_int, 1);
+
+ /* Range */
+ mpfr_set_z (a, int_info->huge, GFC_RND_MODE);
+ mpfr_log10 (a, a, GFC_RND_MODE);
+ mpfr_trunc (a, a);
+ int_info->range = (int) mpfr_get_si (a, GFC_RND_MODE);
+ }
+
+ mpfr_clear (a);
+
+ for (real_info = gfc_real_kinds; real_info->kind != 0; real_info++)
+ {
+ gfc_set_model_kind (real_info->kind);
+
+ mpfr_init (a);
+ mpfr_init (b);
+
+ /* huge(x) = (1 - b**(-p)) * b**(emax-1) * b */
+ /* 1 - b**(-p) */
+ mpfr_init (real_info->huge);
+ mpfr_set_ui (real_info->huge, 1, GFC_RND_MODE);
+ mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
+ mpfr_pow_si (a, a, -real_info->digits, GFC_RND_MODE);
+ mpfr_sub (real_info->huge, real_info->huge, a, GFC_RND_MODE);
+
+ /* b**(emax-1) */
+ mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
+ mpfr_pow_ui (a, a, real_info->max_exponent - 1, GFC_RND_MODE);
+
+ /* (1 - b**(-p)) * b**(emax-1) */
+ mpfr_mul (real_info->huge, real_info->huge, a, GFC_RND_MODE);
+
+ /* (1 - b**(-p)) * b**(emax-1) * b */
+ mpfr_mul_ui (real_info->huge, real_info->huge, real_info->radix,
+ GFC_RND_MODE);
+
+ /* tiny(x) = b**(emin-1) */
+ mpfr_init (real_info->tiny);
+ mpfr_set_ui (real_info->tiny, real_info->radix, GFC_RND_MODE);
+ mpfr_pow_si (real_info->tiny, real_info->tiny,
+ real_info->min_exponent - 1, GFC_RND_MODE);
+
+ /* subnormal (x) = b**(emin - digit) */
+ mpfr_init (real_info->subnormal);
+ mpfr_set_ui (real_info->subnormal, real_info->radix, GFC_RND_MODE);
+ mpfr_pow_si (real_info->subnormal, real_info->subnormal,
+ real_info->min_exponent - real_info->digits, GFC_RND_MODE);
+
+ /* epsilon(x) = b**(1-p) */
+ mpfr_init (real_info->epsilon);
+ mpfr_set_ui (real_info->epsilon, real_info->radix, GFC_RND_MODE);
+ mpfr_pow_si (real_info->epsilon, real_info->epsilon,
+ 1 - real_info->digits, GFC_RND_MODE);
+
+ /* range(x) = int(min(log10(huge(x)), -log10(tiny)) */
+ mpfr_log10 (a, real_info->huge, GFC_RND_MODE);
+ mpfr_log10 (b, real_info->tiny, GFC_RND_MODE);
+ mpfr_neg (b, b, GFC_RND_MODE);
+
+ /* a = min(a, b) */
+ mpfr_min (a, a, b, GFC_RND_MODE);
+ mpfr_trunc (a, a);
+ real_info->range = (int) mpfr_get_si (a, GFC_RND_MODE);
+
+ /* precision(x) = int((p - 1) * log10(b)) + k */
+ mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
+ mpfr_log10 (a, a, GFC_RND_MODE);
+ mpfr_mul_ui (a, a, real_info->digits - 1, GFC_RND_MODE);
+ mpfr_trunc (a, a);
+ real_info->precision = (int) mpfr_get_si (a, GFC_RND_MODE);
+
+ /* If the radix is an integral power of 10, add one to the precision. */
+ for (i = 10; i <= real_info->radix; i *= 10)
+ if (i == real_info->radix)
+ real_info->precision++;
+
+ mpfr_clears (a, b, NULL);
+ }
+}
+
+
+/* Clean up, get rid of numeric constants. */
+
+void
+gfc_arith_done_1 (void)
+{
+ gfc_integer_info *ip;
+ gfc_real_info *rp;
+
+ for (ip = gfc_integer_kinds; ip->kind; ip++)
+ {
+ mpz_clear (ip->min_int);
+ mpz_clear (ip->pedantic_min_int);
+ mpz_clear (ip->huge);
+ }
+
+ for (rp = gfc_real_kinds; rp->kind; rp++)
+ mpfr_clears (rp->epsilon, rp->huge, rp->tiny, rp->subnormal, NULL);
+
+ mpfr_free_cache ();
+}
+
+
+/* Given a wide character value and a character kind, determine whether
+ the character is representable for that kind. */
+bool
+gfc_check_character_range (gfc_char_t c, int kind)
+{
+ /* As wide characters are stored as 32-bit values, they're all
+ representable in UCS=4. */
+ if (kind == 4)
+ return true;
+
+ if (kind == 1)
+ return c <= 255 ? true : false;
+
+ gcc_unreachable ();
+}
+
+
+/* Given an integer and a kind, make sure that the integer lies within
+ the range of the kind. Returns ARITH_OK, ARITH_ASYMMETRIC or
+ ARITH_OVERFLOW. */
+
+arith
+gfc_check_integer_range (mpz_t p, int kind)
+{
+ arith result;
+ int i;
+
+ i = gfc_validate_kind (BT_INTEGER, kind, false);
+ result = ARITH_OK;
+
+ if (pedantic)
+ {
+ if (mpz_cmp (p, gfc_integer_kinds[i].pedantic_min_int) < 0)
+ result = ARITH_ASYMMETRIC;
+ }
+
+
+ if (gfc_option.flag_range_check == 0)
+ return result;
+
+ if (mpz_cmp (p, gfc_integer_kinds[i].min_int) < 0
+ || mpz_cmp (p, gfc_integer_kinds[i].huge) > 0)
+ result = ARITH_OVERFLOW;
+
+ return result;
+}
+
+
+/* Given a real and a kind, make sure that the real lies within the
+ range of the kind. Returns ARITH_OK, ARITH_OVERFLOW or
+ ARITH_UNDERFLOW. */
+
+static arith
+gfc_check_real_range (mpfr_t p, int kind)
+{
+ arith retval;
+ mpfr_t q;
+ int i;
+
+ i = gfc_validate_kind (BT_REAL, kind, false);
+
+ gfc_set_model (p);
+ mpfr_init (q);
+ mpfr_abs (q, p, GFC_RND_MODE);
+
+ retval = ARITH_OK;
+
+ if (mpfr_inf_p (p))
+ {
+ if (gfc_option.flag_range_check != 0)
+ retval = ARITH_OVERFLOW;
+ }
+ else if (mpfr_nan_p (p))
+ {
+ if (gfc_option.flag_range_check != 0)
+ retval = ARITH_NAN;
+ }
+ else if (mpfr_sgn (q) == 0)
+ {
+ mpfr_clear (q);
+ return retval;
+ }
+ else if (mpfr_cmp (q, gfc_real_kinds[i].huge) > 0)
+ {
+ if (gfc_option.flag_range_check == 0)
+ mpfr_set_inf (p, mpfr_sgn (p));
+ else
+ retval = ARITH_OVERFLOW;
+ }
+ else if (mpfr_cmp (q, gfc_real_kinds[i].subnormal) < 0)
+ {
+ if (gfc_option.flag_range_check == 0)
+ {
+ if (mpfr_sgn (p) < 0)
+ {
+ mpfr_set_ui (p, 0, GFC_RND_MODE);
+ mpfr_set_si (q, -1, GFC_RND_MODE);
+ mpfr_copysign (p, p, q, GFC_RND_MODE);
+ }
+ else
+ mpfr_set_ui (p, 0, GFC_RND_MODE);
+ }
+ else
+ retval = ARITH_UNDERFLOW;
+ }
+ else if (mpfr_cmp (q, gfc_real_kinds[i].tiny) < 0)
+ {
+ mp_exp_t emin, emax;
+ int en;
+
+ /* Save current values of emin and emax. */
+ emin = mpfr_get_emin ();
+ emax = mpfr_get_emax ();
+
+ /* Set emin and emax for the current model number. */
+ en = gfc_real_kinds[i].min_exponent - gfc_real_kinds[i].digits + 1;
+ mpfr_set_emin ((mp_exp_t) en);
+ mpfr_set_emax ((mp_exp_t) gfc_real_kinds[i].max_exponent);
+ mpfr_check_range (q, 0, GFC_RND_MODE);
+ mpfr_subnormalize (q, 0, GFC_RND_MODE);
+
+ /* Reset emin and emax. */
+ mpfr_set_emin (emin);
+ mpfr_set_emax (emax);
+
+ /* Copy sign if needed. */
+ if (mpfr_sgn (p) < 0)
+ mpfr_neg (p, q, GMP_RNDN);
+ else
+ mpfr_set (p, q, GMP_RNDN);
+ }
+
+ mpfr_clear (q);
+
+ return retval;
+}
+
+
+/* Low-level arithmetic functions. All of these subroutines assume
+ that all operands are of the same type and return an operand of the
+ same type. The other thing about these subroutines is that they
+ can fail in various ways -- overflow, underflow, division by zero,
+ zero raised to the zero, etc. */
+
+static arith
+gfc_arith_not (gfc_expr *op1, gfc_expr **resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_get_constant_expr (BT_LOGICAL, op1->ts.kind, &op1->where);
+ result->value.logical = !op1->value.logical;
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_and (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
+ &op1->where);
+ result->value.logical = op1->value.logical && op2->value.logical;
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_or (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
+ &op1->where);
+ result->value.logical = op1->value.logical || op2->value.logical;
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_eqv (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
+ &op1->where);
+ result->value.logical = op1->value.logical == op2->value.logical;
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_neqv (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
+ &op1->where);
+ result->value.logical = op1->value.logical != op2->value.logical;
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+/* Make sure a constant numeric expression is within the range for
+ its type and kind. Note that there's also a gfc_check_range(),
+ but that one deals with the intrinsic RANGE function. */
+
+arith
+gfc_range_check (gfc_expr *e)
+{
+ arith rc;
+ arith rc2;
+
+ switch (e->ts.type)
+ {
+ case BT_INTEGER:
+ rc = gfc_check_integer_range (e->value.integer, e->ts.kind);
+ break;
+
+ case BT_REAL:
+ rc = gfc_check_real_range (e->value.real, e->ts.kind);
+ if (rc == ARITH_UNDERFLOW)
+ mpfr_set_ui (e->value.real, 0, GFC_RND_MODE);
+ if (rc == ARITH_OVERFLOW)
+ mpfr_set_inf (e->value.real, mpfr_sgn (e->value.real));
+ if (rc == ARITH_NAN)
+ mpfr_set_nan (e->value.real);
+ break;
+
+ case BT_COMPLEX:
+ rc = gfc_check_real_range (mpc_realref (e->value.complex), e->ts.kind);
+ if (rc == ARITH_UNDERFLOW)
+ mpfr_set_ui (mpc_realref (e->value.complex), 0, GFC_RND_MODE);
+ if (rc == ARITH_OVERFLOW)
+ mpfr_set_inf (mpc_realref (e->value.complex),
+ mpfr_sgn (mpc_realref (e->value.complex)));
+ if (rc == ARITH_NAN)
+ mpfr_set_nan (mpc_realref (e->value.complex));
+
+ rc2 = gfc_check_real_range (mpc_imagref (e->value.complex), e->ts.kind);
+ if (rc == ARITH_UNDERFLOW)
+ mpfr_set_ui (mpc_imagref (e->value.complex), 0, GFC_RND_MODE);
+ if (rc == ARITH_OVERFLOW)
+ mpfr_set_inf (mpc_imagref (e->value.complex),
+ mpfr_sgn (mpc_imagref (e->value.complex)));
+ if (rc == ARITH_NAN)
+ mpfr_set_nan (mpc_imagref (e->value.complex));
+
+ if (rc == ARITH_OK)
+ rc = rc2;
+ break;
+
+ default:
+ gfc_internal_error ("gfc_range_check(): Bad type");
+ }
+
+ return rc;
+}
+
+
+/* Several of the following routines use the same set of statements to
+ check the validity of the result. Encapsulate the checking here. */
+
+static arith
+check_result (arith rc, gfc_expr *x, gfc_expr *r, gfc_expr **rp)
+{
+ arith val = rc;
+
+ if (val == ARITH_UNDERFLOW)
+ {
+ if (gfc_option.warn_underflow)
+ gfc_warning (gfc_arith_error (val), &x->where);
+ val = ARITH_OK;
+ }
+
+ if (val == ARITH_ASYMMETRIC)
+ {
+ gfc_warning (gfc_arith_error (val), &x->where);
+ val = ARITH_OK;
+ }
+
+ if (val != ARITH_OK)
+ gfc_free_expr (r);
+ else
+ *rp = r;
+
+ return val;
+}
+
+
+/* It may seem silly to have a subroutine that actually computes the
+ unary plus of a constant, but it prevents us from making exceptions
+ in the code elsewhere. Used for unary plus and parenthesized
+ expressions. */
+
+static arith
+gfc_arith_identity (gfc_expr *op1, gfc_expr **resultp)
+{
+ *resultp = gfc_copy_expr (op1);
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_uminus (gfc_expr *op1, gfc_expr **resultp)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
+
+ switch (op1->ts.type)
+ {
+ case BT_INTEGER:
+ mpz_neg (result->value.integer, op1->value.integer);
+ break;
+
+ case BT_REAL:
+ mpfr_neg (result->value.real, op1->value.real, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ mpc_neg (result->value.complex, op1->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("gfc_arith_uminus(): Bad basic type");
+ }
+
+ rc = gfc_range_check (result);
+
+ return check_result (rc, op1, result, resultp);
+}
+
+
+static arith
+gfc_arith_plus (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
+
+ switch (op1->ts.type)
+ {
+ case BT_INTEGER:
+ mpz_add (result->value.integer, op1->value.integer, op2->value.integer);
+ break;
+
+ case BT_REAL:
+ mpfr_add (result->value.real, op1->value.real, op2->value.real,
+ GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ mpc_add (result->value.complex, op1->value.complex, op2->value.complex,
+ GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("gfc_arith_plus(): Bad basic type");
+ }
+
+ rc = gfc_range_check (result);
+
+ return check_result (rc, op1, result, resultp);
+}
+
+
+static arith
+gfc_arith_minus (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
+
+ switch (op1->ts.type)
+ {
+ case BT_INTEGER:
+ mpz_sub (result->value.integer, op1->value.integer, op2->value.integer);
+ break;
+
+ case BT_REAL:
+ mpfr_sub (result->value.real, op1->value.real, op2->value.real,
+ GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ mpc_sub (result->value.complex, op1->value.complex,
+ op2->value.complex, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("gfc_arith_minus(): Bad basic type");
+ }
+
+ rc = gfc_range_check (result);
+
+ return check_result (rc, op1, result, resultp);
+}
+
+
+static arith
+gfc_arith_times (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
+
+ switch (op1->ts.type)
+ {
+ case BT_INTEGER:
+ mpz_mul (result->value.integer, op1->value.integer, op2->value.integer);
+ break;
+
+ case BT_REAL:
+ mpfr_mul (result->value.real, op1->value.real, op2->value.real,
+ GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ gfc_set_model (mpc_realref (op1->value.complex));
+ mpc_mul (result->value.complex, op1->value.complex, op2->value.complex,
+ GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("gfc_arith_times(): Bad basic type");
+ }
+
+ rc = gfc_range_check (result);
+
+ return check_result (rc, op1, result, resultp);
+}
+
+
+static arith
+gfc_arith_divide (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
+{
+ gfc_expr *result;
+ arith rc;
+
+ rc = ARITH_OK;
+
+ result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
+
+ switch (op1->ts.type)
+ {
+ case BT_INTEGER:
+ if (mpz_sgn (op2->value.integer) == 0)
+ {
+ rc = ARITH_DIV0;
+ break;
+ }
+
+ mpz_tdiv_q (result->value.integer, op1->value.integer,
+ op2->value.integer);
+ break;
+
+ case BT_REAL:
+ if (mpfr_sgn (op2->value.real) == 0 && gfc_option.flag_range_check == 1)
+ {
+ rc = ARITH_DIV0;
+ break;
+ }
+
+ mpfr_div (result->value.real, op1->value.real, op2->value.real,
+ GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0
+ && gfc_option.flag_range_check == 1)
+ {
+ rc = ARITH_DIV0;
+ break;
+ }
+
+ gfc_set_model (mpc_realref (op1->value.complex));
+ if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0)
+ {
+ /* In Fortran, return (NaN + NaN I) for any zero divisor. See
+ PR 40318. */
+ mpfr_set_nan (mpc_realref (result->value.complex));
+ mpfr_set_nan (mpc_imagref (result->value.complex));
+ }
+ else
+ mpc_div (result->value.complex, op1->value.complex, op2->value.complex,
+ GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("gfc_arith_divide(): Bad basic type");
+ }
+
+ if (rc == ARITH_OK)
+ rc = gfc_range_check (result);
+
+ return check_result (rc, op1, result, resultp);
+}
+
+/* Raise a number to a power. */
+
+static arith
+arith_power (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
+{
+ int power_sign;
+ gfc_expr *result;
+ arith rc;
+
+ rc = ARITH_OK;
+ result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
+
+ switch (op2->ts.type)
+ {
+ case BT_INTEGER:
+ power_sign = mpz_sgn (op2->value.integer);
+
+ if (power_sign == 0)
+ {
+ /* Handle something to the zeroth power. Since we're dealing
+ with integral exponents, there is no ambiguity in the
+ limiting procedure used to determine the value of 0**0. */
+ switch (op1->ts.type)
+ {
+ case BT_INTEGER:
+ mpz_set_ui (result->value.integer, 1);
+ break;
+
+ case BT_REAL:
+ mpfr_set_ui (result->value.real, 1, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ mpc_set_ui (result->value.complex, 1, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ gfc_internal_error ("arith_power(): Bad base");
+ }
+ }
+ else
+ {
+ switch (op1->ts.type)
+ {
+ case BT_INTEGER:
+ {
+ int power;
+
+ /* First, we simplify the cases of op1 == 1, 0 or -1. */
+ if (mpz_cmp_si (op1->value.integer, 1) == 0)
+ {
+ /* 1**op2 == 1 */
+ mpz_set_si (result->value.integer, 1);
+ }
+ else if (mpz_cmp_si (op1->value.integer, 0) == 0)
+ {
+ /* 0**op2 == 0, if op2 > 0
+ 0**op2 overflow, if op2 < 0 ; in that case, we
+ set the result to 0 and return ARITH_DIV0. */
+ mpz_set_si (result->value.integer, 0);
+ if (mpz_cmp_si (op2->value.integer, 0) < 0)
+ rc = ARITH_DIV0;
+ }
+ else if (mpz_cmp_si (op1->value.integer, -1) == 0)
+ {
+ /* (-1)**op2 == (-1)**(mod(op2,2)) */
+ unsigned int odd = mpz_fdiv_ui (op2->value.integer, 2);
+ if (odd)
+ mpz_set_si (result->value.integer, -1);
+ else
+ mpz_set_si (result->value.integer, 1);
+ }
+ /* Then, we take care of op2 < 0. */
+ else if (mpz_cmp_si (op2->value.integer, 0) < 0)
+ {
+ /* if op2 < 0, op1**op2 == 0 because abs(op1) > 1. */
+ mpz_set_si (result->value.integer, 0);
+ }
+ else if (gfc_extract_int (op2, &power) != NULL)
+ {
+ /* If op2 doesn't fit in an int, the exponentiation will
+ overflow, because op2 > 0 and abs(op1) > 1. */
+ mpz_t max;
+ int i;
+ i = gfc_validate_kind (BT_INTEGER, result->ts.kind, false);
+
+ if (gfc_option.flag_range_check)
+ rc = ARITH_OVERFLOW;
+
+ /* Still, we want to give the same value as the
+ processor. */
+ mpz_init (max);
+ mpz_add_ui (max, gfc_integer_kinds[i].huge, 1);
+ mpz_mul_ui (max, max, 2);
+ mpz_powm (result->value.integer, op1->value.integer,
+ op2->value.integer, max);
+ mpz_clear (max);
+ }
+ else
+ mpz_pow_ui (result->value.integer, op1->value.integer,
+ power);
+ }
+ break;
+
+ case BT_REAL:
+ mpfr_pow_z (result->value.real, op1->value.real,
+ op2->value.integer, GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ mpc_pow_z (result->value.complex, op1->value.complex,
+ op2->value.integer, GFC_MPC_RND_MODE);
+ break;
+
+ default:
+ break;
+ }
+ }
+ break;
+
+ case BT_REAL:
+
+ if (gfc_init_expr_flag)
+ {
+ if (gfc_notify_std (GFC_STD_F2003,"Fortran 2003: Noninteger "
+ "exponent in an initialization "
+ "expression at %L", &op2->where) == FAILURE)
+ return ARITH_PROHIBIT;
+ }
+
+ if (mpfr_cmp_si (op1->value.real, 0) < 0)
+ {
+ gfc_error ("Raising a negative REAL at %L to "
+ "a REAL power is prohibited", &op1->where);
+ gfc_free (result);
+ return ARITH_PROHIBIT;
+ }
+
+ mpfr_pow (result->value.real, op1->value.real, op2->value.real,
+ GFC_RND_MODE);
+ break;
+
+ case BT_COMPLEX:
+ {
+ if (gfc_init_expr_flag)
+ {
+ if (gfc_notify_std (GFC_STD_F2003,"Fortran 2003: Noninteger "
+ "exponent in an initialization "
+ "expression at %L", &op2->where) == FAILURE)
+ return ARITH_PROHIBIT;
+ }
+
+ mpc_pow (result->value.complex, op1->value.complex,
+ op2->value.complex, GFC_MPC_RND_MODE);
+ }
+ break;
+ default:
+ gfc_internal_error ("arith_power(): unknown type");
+ }
+
+ if (rc == ARITH_OK)
+ rc = gfc_range_check (result);
+
+ return check_result (rc, op1, result, resultp);
+}
+
+
+/* Concatenate two string constants. */
+
+static arith
+gfc_arith_concat (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
+{
+ gfc_expr *result;
+ int len;
+
+ gcc_assert (op1->ts.kind == op2->ts.kind);
+ result = gfc_get_constant_expr (BT_CHARACTER, op1->ts.kind,
+ &op1->where);
+
+ len = op1->value.character.length + op2->value.character.length;
+
+ result->value.character.string = gfc_get_wide_string (len + 1);
+ result->value.character.length = len;
+
+ memcpy (result->value.character.string, op1->value.character.string,
+ op1->value.character.length * sizeof (gfc_char_t));
+
+ memcpy (&result->value.character.string[op1->value.character.length],
+ op2->value.character.string,
+ op2->value.character.length * sizeof (gfc_char_t));
+
+ result->value.character.string[len] = '\0';
+
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+/* Comparison between real values; returns 0 if (op1 .op. op2) is true.
+ This function mimics mpfr_cmp but takes NaN into account. */
+
+static int
+compare_real (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
+{
+ int rc;
+ switch (op)
+ {
+ case INTRINSIC_EQ:
+ rc = mpfr_equal_p (op1->value.real, op2->value.real) ? 0 : 1;
+ break;
+ case INTRINSIC_GT:
+ rc = mpfr_greater_p (op1->value.real, op2->value.real) ? 1 : -1;
+ break;
+ case INTRINSIC_GE:
+ rc = mpfr_greaterequal_p (op1->value.real, op2->value.real) ? 1 : -1;
+ break;
+ case INTRINSIC_LT:
+ rc = mpfr_less_p (op1->value.real, op2->value.real) ? -1 : 1;
+ break;
+ case INTRINSIC_LE:
+ rc = mpfr_lessequal_p (op1->value.real, op2->value.real) ? -1 : 1;
+ break;
+ default:
+ gfc_internal_error ("compare_real(): Bad operator");
+ }
+
+ return rc;
+}
+
+/* Comparison operators. Assumes that the two expression nodes
+ contain two constants of the same type. The op argument is
+ needed to handle NaN correctly. */
+
+int
+gfc_compare_expr (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
+{
+ int rc;
+
+ switch (op1->ts.type)
+ {
+ case BT_INTEGER:
+ rc = mpz_cmp (op1->value.integer, op2->value.integer);
+ break;
+
+ case BT_REAL:
+ rc = compare_real (op1, op2, op);
+ break;
+
+ case BT_CHARACTER:
+ rc = gfc_compare_string (op1, op2);
+ break;
+
+ case BT_LOGICAL:
+ rc = ((!op1->value.logical && op2->value.logical)
+ || (op1->value.logical && !op2->value.logical));
+ break;
+
+ default:
+ gfc_internal_error ("gfc_compare_expr(): Bad basic type");
+ }
+
+ return rc;
+}
+
+
+/* Compare a pair of complex numbers. Naturally, this is only for
+ equality and inequality. */
+
+static int
+compare_complex (gfc_expr *op1, gfc_expr *op2)
+{
+ return mpc_cmp (op1->value.complex, op2->value.complex) == 0;
+}
+
+
+/* Given two constant strings and the inverse collating sequence, compare the
+ strings. We return -1 for a < b, 0 for a == b and 1 for a > b.
+ We use the processor's default collating sequence. */
+
+int
+gfc_compare_string (gfc_expr *a, gfc_expr *b)
+{
+ int len, alen, blen, i;
+ gfc_char_t ac, bc;
+
+ alen = a->value.character.length;
+ blen = b->value.character.length;
+
+ len = MAX(alen, blen);
+
+ for (i = 0; i < len; i++)
+ {
+ ac = ((i < alen) ? a->value.character.string[i] : ' ');
+ bc = ((i < blen) ? b->value.character.string[i] : ' ');
+
+ if (ac < bc)
+ return -1;
+ if (ac > bc)
+ return 1;
+ }
+
+ /* Strings are equal */
+ return 0;
+}
+
+
+int
+gfc_compare_with_Cstring (gfc_expr *a, const char *b, bool case_sensitive)
+{
+ int len, alen, blen, i;
+ gfc_char_t ac, bc;
+
+ alen = a->value.character.length;
+ blen = strlen (b);
+
+ len = MAX(alen, blen);
+
+ for (i = 0; i < len; i++)
+ {
+ ac = ((i < alen) ? a->value.character.string[i] : ' ');
+ bc = ((i < blen) ? b[i] : ' ');
+
+ if (!case_sensitive)
+ {
+ ac = TOLOWER (ac);
+ bc = TOLOWER (bc);
+ }
+
+ if (ac < bc)
+ return -1;
+ if (ac > bc)
+ return 1;
+ }
+
+ /* Strings are equal */
+ return 0;
+}
+
+
+/* Specific comparison subroutines. */
+
+static arith
+gfc_arith_eq (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
+ &op1->where);
+ result->value.logical = (op1->ts.type == BT_COMPLEX)
+ ? compare_complex (op1, op2)
+ : (gfc_compare_expr (op1, op2, INTRINSIC_EQ) == 0);
+
+ *resultp = result;
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_ne (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
+ &op1->where);
+ result->value.logical = (op1->ts.type == BT_COMPLEX)
+ ? !compare_complex (op1, op2)
+ : (gfc_compare_expr (op1, op2, INTRINSIC_EQ) != 0);
+
+ *resultp = result;
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_gt (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
+ &op1->where);
+ result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_GT) > 0);
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_ge (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
+ &op1->where);
+ result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_GE) >= 0);
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_lt (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
+ &op1->where);
+ result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_LT) < 0);
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+static arith
+gfc_arith_le (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
+{
+ gfc_expr *result;
+
+ result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
+ &op1->where);
+ result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_LE) <= 0);
+ *resultp = result;
+
+ return ARITH_OK;
+}
+
+
+static arith
+reduce_unary (arith (*eval) (gfc_expr *, gfc_expr **), gfc_expr *op,
+ gfc_expr **result)
+{
+ gfc_constructor_base head;
+ gfc_constructor *c;
+ gfc_expr *r;
+ arith rc;
+
+ if (op->expr_type == EXPR_CONSTANT)
+ return eval (op, result);
+
+ rc = ARITH_OK;
+ head = gfc_constructor_copy (op->value.constructor);
+ for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
+ {
+ rc = reduce_unary (eval, c->expr, &r);
+
+ if (rc != ARITH_OK)
+ break;
+
+ gfc_replace_expr (c->expr, r);
+ }
+
+ if (rc != ARITH_OK)
+ gfc_constructor_free (head);
+ else
+ {
+ gfc_constructor *c = gfc_constructor_first (head);
+ r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
+ &op->where);
+ r->shape = gfc_copy_shape (op->shape, op->rank);
+ r->rank = op->rank;
+ r->value.constructor = head;
+ *result = r;
+ }
+
+ return rc;
+}
+
+
+static arith
+reduce_binary_ac (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
+ gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
+{
+ gfc_constructor_base head;
+ gfc_constructor *c;
+ gfc_expr *r;
+ arith rc = ARITH_OK;
+
+ head = gfc_constructor_copy (op1->value.constructor);
+ for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
+ {
+ if (c->expr->expr_type == EXPR_CONSTANT)
+ rc = eval (c->expr, op2, &r);
+ else
+ rc = reduce_binary_ac (eval, c->expr, op2, &r);
+
+ if (rc != ARITH_OK)
+ break;
+
+ gfc_replace_expr (c->expr, r);
+ }
+
+ if (rc != ARITH_OK)
+ gfc_constructor_free (head);
+ else
+ {
+ gfc_constructor *c = gfc_constructor_first (head);
+ r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
+ &op1->where);
+ r->shape = gfc_copy_shape (op1->shape, op1->rank);
+ r->rank = op1->rank;
+ r->value.constructor = head;
+ *result = r;
+ }
+
+ return rc;
+}
+
+
+static arith
+reduce_binary_ca (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
+ gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
+{
+ gfc_constructor_base head;
+ gfc_constructor *c;
+ gfc_expr *r;
+ arith rc = ARITH_OK;
+
+ head = gfc_constructor_copy (op2->value.constructor);
+ for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
+ {
+ if (c->expr->expr_type == EXPR_CONSTANT)
+ rc = eval (op1, c->expr, &r);
+ else
+ rc = reduce_binary_ca (eval, op1, c->expr, &r);
+
+ if (rc != ARITH_OK)
+ break;
+
+ gfc_replace_expr (c->expr, r);
+ }
+
+ if (rc != ARITH_OK)
+ gfc_constructor_free (head);
+ else
+ {
+ gfc_constructor *c = gfc_constructor_first (head);
+ r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
+ &op2->where);
+ r->shape = gfc_copy_shape (op2->shape, op2->rank);
+ r->rank = op2->rank;
+ r->value.constructor = head;
+ *result = r;
+ }
+
+ return rc;
+}
+
+
+/* We need a forward declaration of reduce_binary. */
+static arith reduce_binary (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
+ gfc_expr *op1, gfc_expr *op2, gfc_expr **result);
+
+
+static arith
+reduce_binary_aa (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
+ gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
+{
+ gfc_constructor_base head;
+ gfc_constructor *c, *d;
+ gfc_expr *r;
+ arith rc = ARITH_OK;
+
+ if (gfc_check_conformance (op1, op2,
+ "elemental binary operation") != SUCCESS)
+ return ARITH_INCOMMENSURATE;
+
+ head = gfc_constructor_copy (op1->value.constructor);
+ for (c = gfc_constructor_first (head),
+ d = gfc_constructor_first (op2->value.constructor);
+ c && d;
+ c = gfc_constructor_next (c), d = gfc_constructor_next (d))
+ {
+ rc = reduce_binary (eval, c->expr, d->expr, &r);
+ if (rc != ARITH_OK)
+ break;
+
+ gfc_replace_expr (c->expr, r);
+ }
+
+ if (c || d)
+ rc = ARITH_INCOMMENSURATE;
+
+ if (rc != ARITH_OK)
+ gfc_constructor_free (head);
+ else
+ {
+ gfc_constructor *c = gfc_constructor_first (head);
+ r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
+ &op1->where);
+ r->shape = gfc_copy_shape (op1->shape, op1->rank);
+ r->rank = op1->rank;
+ r->value.constructor = head;
+ *result = r;
+ }
+
+ return rc;
+}
+
+
+static arith
+reduce_binary (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
+ gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
+{
+ if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_CONSTANT)
+ return eval (op1, op2, result);
+
+ if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_ARRAY)
+ return reduce_binary_ca (eval, op1, op2, result);
+
+ if (op1->expr_type == EXPR_ARRAY && op2->expr_type == EXPR_CONSTANT)
+ return reduce_binary_ac (eval, op1, op2, result);
+
+ return reduce_binary_aa (eval, op1, op2, result);
+}
+
+
+typedef union
+{
+ arith (*f2)(gfc_expr *, gfc_expr **);
+ arith (*f3)(gfc_expr *, gfc_expr *, gfc_expr **);
+}
+eval_f;
+
+/* High level arithmetic subroutines. These subroutines go into
+ eval_intrinsic(), which can do one of several things to its
+ operands. If the operands are incompatible with the intrinsic
+ operation, we return a node pointing to the operands and hope that
+ an operator interface is found during resolution.
+
+ If the operands are compatible and are constants, then we try doing
+ the arithmetic. We also handle the cases where either or both
+ operands are array constructors. */
+
+static gfc_expr *
+eval_intrinsic (gfc_intrinsic_op op,
+ eval_f eval, gfc_expr *op1, gfc_expr *op2)
+{
+ gfc_expr temp, *result;
+ int unary;
+ arith rc;
+
+ gfc_clear_ts (&temp.ts);
+
+ switch (op)
+ {
+ /* Logical unary */
+ case INTRINSIC_NOT:
+ if (op1->ts.type != BT_LOGICAL)
+ goto runtime;
+
+ temp.ts.type = BT_LOGICAL;
+ temp.ts.kind = gfc_default_logical_kind;
+ unary = 1;
+ break;
+
+ /* Logical binary operators */
+ case INTRINSIC_OR:
+ case INTRINSIC_AND:
+ case INTRINSIC_NEQV:
+ case INTRINSIC_EQV:
+ if (op1->ts.type != BT_LOGICAL || op2->ts.type != BT_LOGICAL)
+ goto runtime;
+
+ temp.ts.type = BT_LOGICAL;
+ temp.ts.kind = gfc_default_logical_kind;
+ unary = 0;
+ break;
+
+ /* Numeric unary */
+ case INTRINSIC_UPLUS:
+ case INTRINSIC_UMINUS:
+ if (!gfc_numeric_ts (&op1->ts))
+ goto runtime;
+
+ temp.ts = op1->ts;
+ unary = 1;
+ break;
+
+ case INTRINSIC_PARENTHESES:
+ temp.ts = op1->ts;
+ unary = 1;
+ break;
+
+ /* Additional restrictions for ordering relations. */
+ case INTRINSIC_GE:
+ case INTRINSIC_GE_OS:
+ case INTRINSIC_LT:
+ case INTRINSIC_LT_OS:
+ case INTRINSIC_LE:
+ case INTRINSIC_LE_OS:
+ case INTRINSIC_GT:
+ case INTRINSIC_GT_OS:
+ if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
+ {
+ temp.ts.type = BT_LOGICAL;
+ temp.ts.kind = gfc_default_logical_kind;
+ goto runtime;
+ }
+
+ /* Fall through */
+ case INTRINSIC_EQ:
+ case INTRINSIC_EQ_OS:
+ case INTRINSIC_NE:
+ case INTRINSIC_NE_OS:
+ if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER)
+ {
+ unary = 0;
+ temp.ts.type = BT_LOGICAL;
+ temp.ts.kind = gfc_default_logical_kind;
+
+ /* If kind mismatch, exit and we'll error out later. */
+ if (op1->ts.kind != op2->ts.kind)
+ goto runtime;
+
+ break;
+ }
+
+ /* Fall through */
+ /* Numeric binary */
+ case INTRINSIC_PLUS:
+ case INTRINSIC_MINUS:
+ case INTRINSIC_TIMES:
+ case INTRINSIC_DIVIDE:
+ case INTRINSIC_POWER:
+ if (!gfc_numeric_ts (&op1->ts) || !gfc_numeric_ts (&op2->ts))
+ goto runtime;
+
+ /* Insert any necessary type conversions to make the operands
+ compatible. */
+
+ temp.expr_type = EXPR_OP;
+ gfc_clear_ts (&temp.ts);
+ temp.value.op.op = op;
+
+ temp.value.op.op1 = op1;
+ temp.value.op.op2 = op2;
+
+ gfc_type_convert_binary (&temp, 0);
+
+ if (op == INTRINSIC_EQ || op == INTRINSIC_NE
+ || op == INTRINSIC_GE || op == INTRINSIC_GT
+ || op == INTRINSIC_LE || op == INTRINSIC_LT
+ || op == INTRINSIC_EQ_OS || op == INTRINSIC_NE_OS
+ || op == INTRINSIC_GE_OS || op == INTRINSIC_GT_OS
+ || op == INTRINSIC_LE_OS || op == INTRINSIC_LT_OS)
+ {
+ temp.ts.type = BT_LOGICAL;
+ temp.ts.kind = gfc_default_logical_kind;
+ }
+
+ unary = 0;
+ break;
+
+ /* Character binary */
+ case INTRINSIC_CONCAT:
+ if (op1->ts.type != BT_CHARACTER || op2->ts.type != BT_CHARACTER
+ || op1->ts.kind != op2->ts.kind)
+ goto runtime;
+
+ temp.ts.type = BT_CHARACTER;
+ temp.ts.kind = op1->ts.kind;
+ unary = 0;
+ break;
+
+ case INTRINSIC_USER:
+ goto runtime;
+
+ default:
+ gfc_internal_error ("eval_intrinsic(): Bad operator");
+ }
+
+ if (op1->expr_type != EXPR_CONSTANT
+ && (op1->expr_type != EXPR_ARRAY
+ || !gfc_is_constant_expr (op1) || !gfc_expanded_ac (op1)))
+ goto runtime;
+
+ if (op2 != NULL
+ && op2->expr_type != EXPR_CONSTANT
+ && (op2->expr_type != EXPR_ARRAY
+ || !gfc_is_constant_expr (op2) || !gfc_expanded_ac (op2)))
+ goto runtime;
+
+ if (unary)
+ rc = reduce_unary (eval.f2, op1, &result);
+ else
+ rc = reduce_binary (eval.f3, op1, op2, &result);
+
+
+ /* Something went wrong. */
+ if (op == INTRINSIC_POWER && rc == ARITH_PROHIBIT)
+ return NULL;
+
+ if (rc != ARITH_OK)
+ {
+ gfc_error (gfc_arith_error (rc), &op1->where);
+ return NULL;
+ }
+
+ gfc_free_expr (op1);
+ gfc_free_expr (op2);
+ return result;
+
+runtime:
+ /* Create a run-time expression. */
+ result = gfc_get_operator_expr (&op1->where, op, op1, op2);
+ result->ts = temp.ts;
+
+ return result;
+}
+
+
+/* Modify type of expression for zero size array. */
+
+static gfc_expr *
+eval_type_intrinsic0 (gfc_intrinsic_op iop, gfc_expr *op)
+{
+ if (op == NULL)
+ gfc_internal_error ("eval_type_intrinsic0(): op NULL");
+
+ switch (iop)
+ {
+ case INTRINSIC_GE:
+ case INTRINSIC_GE_OS:
+ case INTRINSIC_LT:
+ case INTRINSIC_LT_OS:
+ case INTRINSIC_LE:
+ case INTRINSIC_LE_OS:
+ case INTRINSIC_GT:
+ case INTRINSIC_GT_OS:
+ case INTRINSIC_EQ:
+ case INTRINSIC_EQ_OS:
+ case INTRINSIC_NE:
+ case INTRINSIC_NE_OS:
+ op->ts.type = BT_LOGICAL;
+ op->ts.kind = gfc_default_logical_kind;
+ break;
+
+ default:
+ break;
+ }
+
+ return op;
+}
+
+
+/* Return nonzero if the expression is a zero size array. */
+
+static int
+gfc_zero_size_array (gfc_expr *e)
+{
+ if (e->expr_type != EXPR_ARRAY)
+ return 0;
+
+ return e->value.constructor == NULL;
+}
+
+
+/* Reduce a binary expression where at least one of the operands
+ involves a zero-length array. Returns NULL if neither of the
+ operands is a zero-length array. */
+
+static gfc_expr *
+reduce_binary0 (gfc_expr *op1, gfc_expr *op2)
+{
+ if (gfc_zero_size_array (op1))
+ {
+ gfc_free_expr (op2);
+ return op1;
+ }
+
+ if (gfc_zero_size_array (op2))
+ {
+ gfc_free_expr (op1);
+ return op2;
+ }
+
+ return NULL;
+}
+
+
+static gfc_expr *
+eval_intrinsic_f2 (gfc_intrinsic_op op,
+ arith (*eval) (gfc_expr *, gfc_expr **),
+ gfc_expr *op1, gfc_expr *op2)
+{
+ gfc_expr *result;
+ eval_f f;
+
+ if (op2 == NULL)
+ {
+ if (gfc_zero_size_array (op1))
+ return eval_type_intrinsic0 (op, op1);
+ }
+ else
+ {
+ result = reduce_binary0 (op1, op2);
+ if (result != NULL)
+ return eval_type_intrinsic0 (op, result);
+ }
+
+ f.f2 = eval;
+ return eval_intrinsic (op, f, op1, op2);
+}
+
+
+static gfc_expr *
+eval_intrinsic_f3 (gfc_intrinsic_op op,
+ arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
+ gfc_expr *op1, gfc_expr *op2)
+{
+ gfc_expr *result;
+ eval_f f;
+
+ result = reduce_binary0 (op1, op2);
+ if (result != NULL)
+ return eval_type_intrinsic0(op, result);
+
+ f.f3 = eval;
+ return eval_intrinsic (op, f, op1, op2);
+}
+
+
+gfc_expr *
+gfc_parentheses (gfc_expr *op)
+{
+ if (gfc_is_constant_expr (op))
+ return op;
+
+ return eval_intrinsic_f2 (INTRINSIC_PARENTHESES, gfc_arith_identity,
+ op, NULL);
+}
+
+gfc_expr *
+gfc_uplus (gfc_expr *op)
+{
+ return eval_intrinsic_f2 (INTRINSIC_UPLUS, gfc_arith_identity, op, NULL);
+}
+
+
+gfc_expr *
+gfc_uminus (gfc_expr *op)
+{
+ return eval_intrinsic_f2 (INTRINSIC_UMINUS, gfc_arith_uminus, op, NULL);
+}
+
+
+gfc_expr *
+gfc_add (gfc_expr *op1, gfc_expr *op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_PLUS, gfc_arith_plus, op1, op2);
+}
+
+
+gfc_expr *
+gfc_subtract (gfc_expr *op1, gfc_expr *op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_MINUS, gfc_arith_minus, op1, op2);
+}
+
+
+gfc_expr *
+gfc_multiply (gfc_expr *op1, gfc_expr *op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_TIMES, gfc_arith_times, op1, op2);
+}
+
+
+gfc_expr *
+gfc_divide (gfc_expr *op1, gfc_expr *op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_DIVIDE, gfc_arith_divide, op1, op2);
+}
+
+
+gfc_expr *
+gfc_power (gfc_expr *op1, gfc_expr *op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_POWER, arith_power, op1, op2);
+}
+
+
+gfc_expr *
+gfc_concat (gfc_expr *op1, gfc_expr *op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_CONCAT, gfc_arith_concat, op1, op2);
+}
+
+
+gfc_expr *
+gfc_and (gfc_expr *op1, gfc_expr *op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_AND, gfc_arith_and, op1, op2);
+}
+
+
+gfc_expr *
+gfc_or (gfc_expr *op1, gfc_expr *op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_OR, gfc_arith_or, op1, op2);
+}
+
+
+gfc_expr *
+gfc_not (gfc_expr *op1)
+{
+ return eval_intrinsic_f2 (INTRINSIC_NOT, gfc_arith_not, op1, NULL);
+}
+
+
+gfc_expr *
+gfc_eqv (gfc_expr *op1, gfc_expr *op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_EQV, gfc_arith_eqv, op1, op2);
+}
+
+
+gfc_expr *
+gfc_neqv (gfc_expr *op1, gfc_expr *op2)
+{
+ return eval_intrinsic_f3 (INTRINSIC_NEQV, gfc_arith_neqv, op1, op2);
+}
+
+
+gfc_expr *
+gfc_eq (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
+{
+ return eval_intrinsic_f3 (op, gfc_arith_eq, op1, op2);
+}
+
+
+gfc_expr *
+gfc_ne (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
+{
+ return eval_intrinsic_f3 (op, gfc_arith_ne, op1, op2);
+}
+
+
+gfc_expr *
+gfc_gt (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
+{
+ return eval_intrinsic_f3 (op, gfc_arith_gt, op1, op2);
+}
+
+
+gfc_expr *
+gfc_ge (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
+{
+ return eval_intrinsic_f3 (op, gfc_arith_ge, op1, op2);
+}
+
+
+gfc_expr *
+gfc_lt (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
+{
+ return eval_intrinsic_f3 (op, gfc_arith_lt, op1, op2);
+}
+
+
+gfc_expr *
+gfc_le (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
+{
+ return eval_intrinsic_f3 (op, gfc_arith_le, op1, op2);
+}
+
+
+/* Convert an integer string to an expression node. */
+
+gfc_expr *
+gfc_convert_integer (const char *buffer, int kind, int radix, locus *where)
+{
+ gfc_expr *e;
+ const char *t;
+
+ e = gfc_get_constant_expr (BT_INTEGER, kind, where);
+ /* A leading plus is allowed, but not by mpz_set_str. */
+ if (buffer[0] == '+')
+ t = buffer + 1;
+ else
+ t = buffer;
+ mpz_set_str (e->value.integer, t, radix);
+
+ return e;
+}
+
+
+/* Convert a real string to an expression node. */
+
+gfc_expr *
+gfc_convert_real (const char *buffer, int kind, locus *where)
+{
+ gfc_expr *e;
+
+ e = gfc_get_constant_expr (BT_REAL, kind, where);
+ mpfr_set_str (e->value.real, buffer, 10, GFC_RND_MODE);
+
+ return e;
+}
+
+
+/* Convert a pair of real, constant expression nodes to a single
+ complex expression node. */
+
+gfc_expr *
+gfc_convert_complex (gfc_expr *real, gfc_expr *imag, int kind)
+{
+ gfc_expr *e;
+
+ e = gfc_get_constant_expr (BT_COMPLEX, kind, &real->where);
+ mpc_set_fr_fr (e->value.complex, real->value.real, imag->value.real,
+ GFC_MPC_RND_MODE);
+
+ return e;
+}
+
+
+/******* Simplification of intrinsic functions with constant arguments *****/
+
+
+/* Deal with an arithmetic error. */
+
+static void
+arith_error (arith rc, gfc_typespec *from, gfc_typespec *to, locus *where)
+{
+ switch (rc)
+ {
+ case ARITH_OK:
+ gfc_error ("Arithmetic OK converting %s to %s at %L",
+ gfc_typename (from), gfc_typename (to), where);
+ break;
+ case ARITH_OVERFLOW:
+ gfc_error ("Arithmetic overflow converting %s to %s at %L. This check "
+ "can be disabled with the option -fno-range-check",
+ gfc_typename (from), gfc_typename (to), where);
+ break;
+ case ARITH_UNDERFLOW:
+ gfc_error ("Arithmetic underflow converting %s to %s at %L. This check "
+ "can be disabled with the option -fno-range-check",
+ gfc_typename (from), gfc_typename (to), where);
+ break;
+ case ARITH_NAN:
+ gfc_error ("Arithmetic NaN converting %s to %s at %L. This check "
+ "can be disabled with the option -fno-range-check",
+ gfc_typename (from), gfc_typename (to), where);
+ break;
+ case ARITH_DIV0:
+ gfc_error ("Division by zero converting %s to %s at %L",
+ gfc_typename (from), gfc_typename (to), where);
+ break;
+ case ARITH_INCOMMENSURATE:
+ gfc_error ("Array operands are incommensurate converting %s to %s at %L",
+ gfc_typename (from), gfc_typename (to), where);
+ break;
+ case ARITH_ASYMMETRIC:
+ gfc_error ("Integer outside symmetric range implied by Standard Fortran"
+ " converting %s to %s at %L",
+ gfc_typename (from), gfc_typename (to), where);
+ break;
+ default:
+ gfc_internal_error ("gfc_arith_error(): Bad error code");
+ }
+
+ /* TODO: Do something about the error, i.e., throw exception, return
+ NaN, etc. */
+}
+
+
+/* Convert integers to integers. */
+
+gfc_expr *
+gfc_int2int (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
+
+ mpz_set (result->value.integer, src->value.integer);
+
+ if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK)
+ {
+ if (rc == ARITH_ASYMMETRIC)
+ {
+ gfc_warning (gfc_arith_error (rc), &src->where);
+ }
+ else
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+ }
+
+ return result;
+}
+
+
+/* Convert integers to reals. */
+
+gfc_expr *
+gfc_int2real (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
+
+ mpfr_set_z (result->value.real, src->value.integer, GFC_RND_MODE);
+
+ if ((rc = gfc_check_real_range (result->value.real, kind)) != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ return result;
+}
+
+
+/* Convert default integer to default complex. */
+
+gfc_expr *
+gfc_int2complex (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
+
+ mpc_set_z (result->value.complex, src->value.integer, GFC_MPC_RND_MODE);
+
+ if ((rc = gfc_check_real_range (mpc_realref (result->value.complex), kind))
+ != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ return result;
+}
+
+
+/* Convert default real to default integer. */
+
+gfc_expr *
+gfc_real2int (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
+
+ gfc_mpfr_to_mpz (result->value.integer, src->value.real, &src->where);
+
+ if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ return result;
+}
+
+
+/* Convert real to real. */
+
+gfc_expr *
+gfc_real2real (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
+
+ mpfr_set (result->value.real, src->value.real, GFC_RND_MODE);
+
+ rc = gfc_check_real_range (result->value.real, kind);
+
+ if (rc == ARITH_UNDERFLOW)
+ {
+ if (gfc_option.warn_underflow)
+ gfc_warning (gfc_arith_error (rc), &src->where);
+ mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
+ }
+ else if (rc != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ return result;
+}
+
+
+/* Convert real to complex. */
+
+gfc_expr *
+gfc_real2complex (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
+
+ mpc_set_fr (result->value.complex, src->value.real, GFC_MPC_RND_MODE);
+
+ rc = gfc_check_real_range (mpc_realref (result->value.complex), kind);
+
+ if (rc == ARITH_UNDERFLOW)
+ {
+ if (gfc_option.warn_underflow)
+ gfc_warning (gfc_arith_error (rc), &src->where);
+ mpfr_set_ui (mpc_realref (result->value.complex), 0, GFC_RND_MODE);
+ }
+ else if (rc != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ return result;
+}
+
+
+/* Convert complex to integer. */
+
+gfc_expr *
+gfc_complex2int (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
+
+ gfc_mpfr_to_mpz (result->value.integer, mpc_realref (src->value.complex),
+ &src->where);
+
+ if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ return result;
+}
+
+
+/* Convert complex to real. */
+
+gfc_expr *
+gfc_complex2real (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
+
+ mpc_real (result->value.real, src->value.complex, GFC_RND_MODE);
+
+ rc = gfc_check_real_range (result->value.real, kind);
+
+ if (rc == ARITH_UNDERFLOW)
+ {
+ if (gfc_option.warn_underflow)
+ gfc_warning (gfc_arith_error (rc), &src->where);
+ mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
+ }
+ if (rc != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ return result;
+}
+
+
+/* Convert complex to complex. */
+
+gfc_expr *
+gfc_complex2complex (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+ arith rc;
+
+ result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
+
+ mpc_set (result->value.complex, src->value.complex, GFC_MPC_RND_MODE);
+
+ rc = gfc_check_real_range (mpc_realref (result->value.complex), kind);
+
+ if (rc == ARITH_UNDERFLOW)
+ {
+ if (gfc_option.warn_underflow)
+ gfc_warning (gfc_arith_error (rc), &src->where);
+ mpfr_set_ui (mpc_realref (result->value.complex), 0, GFC_RND_MODE);
+ }
+ else if (rc != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ rc = gfc_check_real_range (mpc_imagref (result->value.complex), kind);
+
+ if (rc == ARITH_UNDERFLOW)
+ {
+ if (gfc_option.warn_underflow)
+ gfc_warning (gfc_arith_error (rc), &src->where);
+ mpfr_set_ui (mpc_imagref (result->value.complex), 0, GFC_RND_MODE);
+ }
+ else if (rc != ARITH_OK)
+ {
+ arith_error (rc, &src->ts, &result->ts, &src->where);
+ gfc_free_expr (result);
+ return NULL;
+ }
+
+ return result;
+}
+
+
+/* Logical kind conversion. */
+
+gfc_expr *
+gfc_log2log (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+
+ result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where);
+ result->value.logical = src->value.logical;
+
+ return result;
+}
+
+
+/* Convert logical to integer. */
+
+gfc_expr *
+gfc_log2int (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+
+ result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
+ mpz_set_si (result->value.integer, src->value.logical);
+
+ return result;
+}
+
+
+/* Convert integer to logical. */
+
+gfc_expr *
+gfc_int2log (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+
+ result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where);
+ result->value.logical = (mpz_cmp_si (src->value.integer, 0) != 0);
+
+ return result;
+}
+
+
+/* Helper function to set the representation in a Hollerith conversion.
+ This assumes that the ts.type and ts.kind of the result have already
+ been set. */
+
+static void
+hollerith2representation (gfc_expr *result, gfc_expr *src)
+{
+ int src_len, result_len;
+
+ src_len = src->representation.length - src->ts.u.pad;
+ result_len = gfc_target_expr_size (result);
+
+ if (src_len > result_len)
+ {
+ gfc_warning ("The Hollerith constant at %L is too long to convert to %s",
+ &src->where, gfc_typename(&result->ts));
+ }
+
+ result->representation.string = XCNEWVEC (char, result_len + 1);
+ memcpy (result->representation.string, src->representation.string,
+ MIN (result_len, src_len));
+
+ if (src_len < result_len)
+ memset (&result->representation.string[src_len], ' ', result_len - src_len);
+
+ result->representation.string[result_len] = '\0'; /* For debugger */
+ result->representation.length = result_len;
+}
+
+
+/* Convert Hollerith to integer. The constant will be padded or truncated. */
+
+gfc_expr *
+gfc_hollerith2int (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+ result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
+
+ hollerith2representation (result, src);
+ gfc_interpret_integer (kind, (unsigned char *) result->representation.string,
+ result->representation.length, result->value.integer);
+
+ return result;
+}
+
+
+/* Convert Hollerith to real. The constant will be padded or truncated. */
+
+gfc_expr *
+gfc_hollerith2real (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+ result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
+
+ hollerith2representation (result, src);
+ gfc_interpret_float (kind, (unsigned char *) result->representation.string,
+ result->representation.length, result->value.real);
+
+ return result;
+}
+
+
+/* Convert Hollerith to complex. The constant will be padded or truncated. */
+
+gfc_expr *
+gfc_hollerith2complex (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+ result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
+
+ hollerith2representation (result, src);
+ gfc_interpret_complex (kind, (unsigned char *) result->representation.string,
+ result->representation.length, result->value.complex);
+
+ return result;
+}
+
+
+/* Convert Hollerith to character. */
+
+gfc_expr *
+gfc_hollerith2character (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+
+ result = gfc_copy_expr (src);
+ result->ts.type = BT_CHARACTER;
+ result->ts.kind = kind;
+
+ result->value.character.length = result->representation.length;
+ result->value.character.string
+ = gfc_char_to_widechar (result->representation.string);
+
+ return result;
+}
+
+
+/* Convert Hollerith to logical. The constant will be padded or truncated. */
+
+gfc_expr *
+gfc_hollerith2logical (gfc_expr *src, int kind)
+{
+ gfc_expr *result;
+ result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where);
+
+ hollerith2representation (result, src);
+ gfc_interpret_logical (kind, (unsigned char *) result->representation.string,
+ result->representation.length, &result->value.logical);
+
+ return result;
+}