summaryrefslogtreecommitdiff
path: root/gcc/go/gofrontend/expressions.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/go/gofrontend/expressions.cc')
-rw-r--r--gcc/go/gofrontend/expressions.cc12782
1 files changed, 12782 insertions, 0 deletions
diff --git a/gcc/go/gofrontend/expressions.cc b/gcc/go/gofrontend/expressions.cc
new file mode 100644
index 000000000..8660c755a
--- /dev/null
+++ b/gcc/go/gofrontend/expressions.cc
@@ -0,0 +1,12782 @@
+// expressions.cc -- Go frontend expression handling.
+
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+#include "go-system.h"
+
+#include <gmp.h>
+
+#ifndef ENABLE_BUILD_WITH_CXX
+extern "C"
+{
+#endif
+
+#include "toplev.h"
+#include "intl.h"
+#include "tree.h"
+#include "gimple.h"
+#include "tree-iterator.h"
+#include "convert.h"
+#include "real.h"
+#include "realmpfr.h"
+
+#ifndef ENABLE_BUILD_WITH_CXX
+}
+#endif
+
+#include "go-c.h"
+#include "gogo.h"
+#include "types.h"
+#include "export.h"
+#include "import.h"
+#include "statements.h"
+#include "lex.h"
+#include "expressions.h"
+
+// Class Expression.
+
+Expression::Expression(Expression_classification classification,
+ source_location location)
+ : classification_(classification), location_(location)
+{
+}
+
+Expression::~Expression()
+{
+}
+
+// If this expression has a constant integer value, return it.
+
+bool
+Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
+ Type** ptype) const
+{
+ *ptype = NULL;
+ return this->do_integer_constant_value(iota_is_constant, val, ptype);
+}
+
+// If this expression has a constant floating point value, return it.
+
+bool
+Expression::float_constant_value(mpfr_t val, Type** ptype) const
+{
+ *ptype = NULL;
+ if (this->do_float_constant_value(val, ptype))
+ return true;
+ mpz_t ival;
+ mpz_init(ival);
+ Type* t;
+ bool ret;
+ if (!this->do_integer_constant_value(false, ival, &t))
+ ret = false;
+ else
+ {
+ mpfr_set_z(val, ival, GMP_RNDN);
+ ret = true;
+ }
+ mpz_clear(ival);
+ return ret;
+}
+
+// If this expression has a constant complex value, return it.
+
+bool
+Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
+ Type** ptype) const
+{
+ *ptype = NULL;
+ if (this->do_complex_constant_value(real, imag, ptype))
+ return true;
+ Type *t;
+ if (this->float_constant_value(real, &t))
+ {
+ mpfr_set_ui(imag, 0, GMP_RNDN);
+ return true;
+ }
+ return false;
+}
+
+// Traverse the expressions.
+
+int
+Expression::traverse(Expression** pexpr, Traverse* traverse)
+{
+ Expression* expr = *pexpr;
+ if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
+ {
+ int t = traverse->expression(pexpr);
+ if (t == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ else if (t == TRAVERSE_SKIP_COMPONENTS)
+ return TRAVERSE_CONTINUE;
+ }
+ return expr->do_traverse(traverse);
+}
+
+// Traverse subexpressions of this expression.
+
+int
+Expression::traverse_subexpressions(Traverse* traverse)
+{
+ return this->do_traverse(traverse);
+}
+
+// Default implementation for do_traverse for child classes.
+
+int
+Expression::do_traverse(Traverse*)
+{
+ return TRAVERSE_CONTINUE;
+}
+
+// This virtual function is called by the parser if the value of this
+// expression is being discarded. By default, we warn. Expressions
+// with side effects override.
+
+void
+Expression::do_discarding_value()
+{
+ this->warn_about_unused_value();
+}
+
+// This virtual function is called to export expressions. This will
+// only be used by expressions which may be constant.
+
+void
+Expression::do_export(Export*) const
+{
+ gcc_unreachable();
+}
+
+// Warn that the value of the expression is not used.
+
+void
+Expression::warn_about_unused_value()
+{
+ warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
+}
+
+// Note that this expression is an error. This is called by children
+// when they discover an error.
+
+void
+Expression::set_is_error()
+{
+ this->classification_ = EXPRESSION_ERROR;
+}
+
+// For children to call to report an error conveniently.
+
+void
+Expression::report_error(const char* msg)
+{
+ error_at(this->location_, "%s", msg);
+ this->set_is_error();
+}
+
+// Set types of variables and constants. This is implemented by the
+// child class.
+
+void
+Expression::determine_type(const Type_context* context)
+{
+ this->do_determine_type(context);
+}
+
+// Set types when there is no context.
+
+void
+Expression::determine_type_no_context()
+{
+ Type_context context;
+ this->do_determine_type(&context);
+}
+
+// Return a tree handling any conversions which must be done during
+// assignment.
+
+tree
+Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
+ Type* rhs_type, tree rhs_tree,
+ source_location location)
+{
+ if (lhs_type == rhs_type)
+ return rhs_tree;
+
+ if (lhs_type->is_error_type() || rhs_type->is_error_type())
+ return error_mark_node;
+
+ if (lhs_type->is_undefined() || rhs_type->is_undefined())
+ {
+ // Make sure we report the error.
+ lhs_type->base();
+ rhs_type->base();
+ return error_mark_node;
+ }
+
+ if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
+ return error_mark_node;
+
+ Gogo* gogo = context->gogo();
+
+ tree lhs_type_tree = lhs_type->get_tree(gogo);
+ if (lhs_type_tree == error_mark_node)
+ return error_mark_node;
+
+ if (lhs_type->interface_type() != NULL)
+ {
+ if (rhs_type->interface_type() == NULL)
+ return Expression::convert_type_to_interface(context, lhs_type,
+ rhs_type, rhs_tree,
+ location);
+ else
+ return Expression::convert_interface_to_interface(context, lhs_type,
+ rhs_type, rhs_tree,
+ false, location);
+ }
+ else if (rhs_type->interface_type() != NULL)
+ return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
+ rhs_tree, location);
+ else if (lhs_type->is_open_array_type()
+ && rhs_type->is_nil_type())
+ {
+ // Assigning nil to an open array.
+ gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
+
+ VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
+
+ constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
+ tree field = TYPE_FIELDS(lhs_type_tree);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
+ "__values") == 0);
+ elt->index = field;
+ elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
+
+ elt = VEC_quick_push(constructor_elt, init, NULL);
+ field = DECL_CHAIN(field);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
+ "__count") == 0);
+ elt->index = field;
+ elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
+
+ elt = VEC_quick_push(constructor_elt, init, NULL);
+ field = DECL_CHAIN(field);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
+ "__capacity") == 0);
+ elt->index = field;
+ elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
+
+ tree val = build_constructor(lhs_type_tree, init);
+ TREE_CONSTANT(val) = 1;
+
+ return val;
+ }
+ else if (rhs_type->is_nil_type())
+ {
+ // The left hand side should be a pointer type at the tree
+ // level.
+ gcc_assert(POINTER_TYPE_P(lhs_type_tree));
+ return fold_convert(lhs_type_tree, null_pointer_node);
+ }
+ else if (lhs_type_tree == TREE_TYPE(rhs_tree))
+ {
+ // No conversion is needed.
+ return rhs_tree;
+ }
+ else if (POINTER_TYPE_P(lhs_type_tree)
+ || INTEGRAL_TYPE_P(lhs_type_tree)
+ || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
+ || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
+ return fold_convert_loc(location, lhs_type_tree, rhs_tree);
+ else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
+ && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
+ {
+ // This conversion must be permitted by Go, or we wouldn't have
+ // gotten here.
+ gcc_assert(int_size_in_bytes(lhs_type_tree)
+ == int_size_in_bytes(TREE_TYPE(rhs_tree)));
+ return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
+ rhs_tree);
+ }
+ else
+ {
+ gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
+ return rhs_tree;
+ }
+}
+
+// Return a tree for a conversion from a non-interface type to an
+// interface type.
+
+tree
+Expression::convert_type_to_interface(Translate_context* context,
+ Type* lhs_type, Type* rhs_type,
+ tree rhs_tree, source_location location)
+{
+ Gogo* gogo = context->gogo();
+ Interface_type* lhs_interface_type = lhs_type->interface_type();
+ bool lhs_is_empty = lhs_interface_type->is_empty();
+
+ // Since RHS_TYPE is a static type, we can create the interface
+ // method table at compile time.
+
+ // When setting an interface to nil, we just set both fields to
+ // NULL.
+ if (rhs_type->is_nil_type())
+ return lhs_type->get_init_tree(gogo, false);
+
+ // This should have been checked already.
+ gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
+
+ tree lhs_type_tree = lhs_type->get_tree(gogo);
+ if (lhs_type_tree == error_mark_node)
+ return error_mark_node;
+
+ // An interface is a tuple. If LHS_TYPE is an empty interface type,
+ // then the first field is the type descriptor for RHS_TYPE.
+ // Otherwise it is the interface method table for RHS_TYPE.
+ tree first_field_value;
+ if (lhs_is_empty)
+ first_field_value = rhs_type->type_descriptor_pointer(gogo);
+ else
+ {
+ // Build the interface method table for this interface and this
+ // object type: a list of function pointers for each interface
+ // method.
+ Named_type* rhs_named_type = rhs_type->named_type();
+ bool is_pointer = false;
+ if (rhs_named_type == NULL)
+ {
+ rhs_named_type = rhs_type->deref()->named_type();
+ is_pointer = true;
+ }
+ tree method_table;
+ if (rhs_named_type == NULL)
+ method_table = null_pointer_node;
+ else
+ method_table =
+ rhs_named_type->interface_method_table(gogo, lhs_interface_type,
+ is_pointer);
+ first_field_value = fold_convert_loc(location, const_ptr_type_node,
+ method_table);
+ }
+ if (first_field_value == error_mark_node)
+ return error_mark_node;
+
+ // Start building a constructor for the value we will return.
+
+ VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
+
+ constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
+ tree field = TYPE_FIELDS(lhs_type_tree);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
+ (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
+ elt->index = field;
+ elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
+
+ elt = VEC_quick_push(constructor_elt, init, NULL);
+ field = DECL_CHAIN(field);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
+ elt->index = field;
+
+ if (rhs_type->points_to() != NULL)
+ {
+ // We are assigning a pointer to the interface; the interface
+ // holds the pointer itself.
+ elt->value = rhs_tree;
+ return build_constructor(lhs_type_tree, init);
+ }
+
+ // We are assigning a non-pointer value to the interface; the
+ // interface gets a copy of the value in the heap.
+
+ tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
+
+ tree space = gogo->allocate_memory(rhs_type, object_size, location);
+ space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
+ space);
+ space = save_expr(space);
+
+ tree ref = build_fold_indirect_ref_loc(location, space);
+ TREE_THIS_NOTRAP(ref) = 1;
+ tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
+ ref, rhs_tree);
+
+ elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
+
+ return build2(COMPOUND_EXPR, lhs_type_tree, set,
+ build_constructor(lhs_type_tree, init));
+}
+
+// Return a tree for the type descriptor of RHS_TREE, which has
+// interface type RHS_TYPE. If RHS_TREE is nil the result will be
+// NULL.
+
+tree
+Expression::get_interface_type_descriptor(Translate_context*,
+ Type* rhs_type, tree rhs_tree,
+ source_location location)
+{
+ tree rhs_type_tree = TREE_TYPE(rhs_tree);
+ gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
+ tree rhs_field = TYPE_FIELDS(rhs_type_tree);
+ tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
+ NULL_TREE);
+ if (rhs_type->interface_type()->is_empty())
+ {
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
+ "__type_descriptor") == 0);
+ return v;
+ }
+
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
+ == 0);
+ gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
+ v = save_expr(v);
+ tree v1 = build_fold_indirect_ref_loc(location, v);
+ gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
+ tree f = TYPE_FIELDS(TREE_TYPE(v1));
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
+ == 0);
+ v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
+
+ tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
+ fold_convert_loc(location, TREE_TYPE(v),
+ null_pointer_node));
+ tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
+ return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
+ eq, n, v1);
+}
+
+// Return a tree for the conversion of an interface type to an
+// interface type.
+
+tree
+Expression::convert_interface_to_interface(Translate_context* context,
+ Type *lhs_type, Type *rhs_type,
+ tree rhs_tree, bool for_type_guard,
+ source_location location)
+{
+ Gogo* gogo = context->gogo();
+ Interface_type* lhs_interface_type = lhs_type->interface_type();
+ bool lhs_is_empty = lhs_interface_type->is_empty();
+
+ tree lhs_type_tree = lhs_type->get_tree(gogo);
+ if (lhs_type_tree == error_mark_node)
+ return error_mark_node;
+
+ // In the general case this requires runtime examination of the type
+ // method table to match it up with the interface methods.
+
+ // FIXME: If all of the methods in the right hand side interface
+ // also appear in the left hand side interface, then we don't need
+ // to do a runtime check, although we still need to build a new
+ // method table.
+
+ // Get the type descriptor for the right hand side. This will be
+ // NULL for a nil interface.
+
+ if (!DECL_P(rhs_tree))
+ rhs_tree = save_expr(rhs_tree);
+
+ tree rhs_type_descriptor =
+ Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
+ location);
+
+ // The result is going to be a two element constructor.
+
+ VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
+
+ constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
+ tree field = TYPE_FIELDS(lhs_type_tree);
+ elt->index = field;
+
+ if (for_type_guard)
+ {
+ // A type assertion fails when converting a nil interface.
+ tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
+ static tree assert_interface_decl;
+ tree call = Gogo::call_builtin(&assert_interface_decl,
+ location,
+ "__go_assert_interface",
+ 2,
+ ptr_type_node,
+ TREE_TYPE(lhs_type_descriptor),
+ lhs_type_descriptor,
+ TREE_TYPE(rhs_type_descriptor),
+ rhs_type_descriptor);
+ if (call == error_mark_node)
+ return error_mark_node;
+ // This will panic if the interface conversion fails.
+ TREE_NOTHROW(assert_interface_decl) = 0;
+ elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
+ }
+ else if (lhs_is_empty)
+ {
+ // A convertion to an empty interface always succeeds, and the
+ // first field is just the type descriptor of the object.
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
+ "__type_descriptor") == 0);
+ gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
+ elt->value = rhs_type_descriptor;
+ }
+ else
+ {
+ // A conversion to a non-empty interface may fail, but unlike a
+ // type assertion converting nil will always succeed.
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
+ == 0);
+ tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
+ static tree convert_interface_decl;
+ tree call = Gogo::call_builtin(&convert_interface_decl,
+ location,
+ "__go_convert_interface",
+ 2,
+ ptr_type_node,
+ TREE_TYPE(lhs_type_descriptor),
+ lhs_type_descriptor,
+ TREE_TYPE(rhs_type_descriptor),
+ rhs_type_descriptor);
+ if (call == error_mark_node)
+ return error_mark_node;
+ // This will panic if the interface conversion fails.
+ TREE_NOTHROW(convert_interface_decl) = 0;
+ elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
+ }
+
+ // The second field is simply the object pointer.
+
+ elt = VEC_quick_push(constructor_elt, init, NULL);
+ field = DECL_CHAIN(field);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
+ elt->index = field;
+
+ tree rhs_type_tree = TREE_TYPE(rhs_tree);
+ gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
+ tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
+ elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
+ NULL_TREE);
+
+ return build_constructor(lhs_type_tree, init);
+}
+
+// Return a tree for the conversion of an interface type to a
+// non-interface type.
+
+tree
+Expression::convert_interface_to_type(Translate_context* context,
+ Type *lhs_type, Type* rhs_type,
+ tree rhs_tree, source_location location)
+{
+ Gogo* gogo = context->gogo();
+ tree rhs_type_tree = TREE_TYPE(rhs_tree);
+
+ tree lhs_type_tree = lhs_type->get_tree(gogo);
+ if (lhs_type_tree == error_mark_node)
+ return error_mark_node;
+
+ // Call a function to check that the type is valid. The function
+ // will panic with an appropriate runtime type error if the type is
+ // not valid.
+
+ tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
+
+ if (!DECL_P(rhs_tree))
+ rhs_tree = save_expr(rhs_tree);
+
+ tree rhs_type_descriptor =
+ Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
+ location);
+
+ tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
+
+ static tree check_interface_type_decl;
+ tree call = Gogo::call_builtin(&check_interface_type_decl,
+ location,
+ "__go_check_interface_type",
+ 3,
+ void_type_node,
+ TREE_TYPE(lhs_type_descriptor),
+ lhs_type_descriptor,
+ TREE_TYPE(rhs_type_descriptor),
+ rhs_type_descriptor,
+ TREE_TYPE(rhs_inter_descriptor),
+ rhs_inter_descriptor);
+ if (call == error_mark_node)
+ return error_mark_node;
+ // This call will panic if the conversion is invalid.
+ TREE_NOTHROW(check_interface_type_decl) = 0;
+
+ // If the call succeeds, pull out the value.
+ gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
+ tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
+ tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
+ NULL_TREE);
+
+ // If the value is a pointer, then it is the value we want.
+ // Otherwise it points to the value.
+ if (lhs_type->points_to() == NULL)
+ {
+ val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
+ val = build_fold_indirect_ref_loc(location, val);
+ }
+
+ return build2(COMPOUND_EXPR, lhs_type_tree, call,
+ fold_convert_loc(location, lhs_type_tree, val));
+}
+
+// Convert an expression to a tree. This is implemented by the child
+// class. Not that it is not in general safe to call this multiple
+// times for a single expression, but that we don't catch such errors.
+
+tree
+Expression::get_tree(Translate_context* context)
+{
+ // The child may have marked this expression as having an error.
+ if (this->classification_ == EXPRESSION_ERROR)
+ return error_mark_node;
+
+ return this->do_get_tree(context);
+}
+
+// Return a tree for VAL in TYPE.
+
+tree
+Expression::integer_constant_tree(mpz_t val, tree type)
+{
+ if (type == error_mark_node)
+ return error_mark_node;
+ else if (TREE_CODE(type) == INTEGER_TYPE)
+ return double_int_to_tree(type,
+ mpz_get_double_int(type, val, true));
+ else if (TREE_CODE(type) == REAL_TYPE)
+ {
+ mpfr_t fval;
+ mpfr_init_set_z(fval, val, GMP_RNDN);
+ tree ret = Expression::float_constant_tree(fval, type);
+ mpfr_clear(fval);
+ return ret;
+ }
+ else if (TREE_CODE(type) == COMPLEX_TYPE)
+ {
+ mpfr_t fval;
+ mpfr_init_set_z(fval, val, GMP_RNDN);
+ tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
+ mpfr_clear(fval);
+ tree imag = build_real_from_int_cst(TREE_TYPE(type),
+ integer_zero_node);
+ return build_complex(type, real, imag);
+ }
+ else
+ gcc_unreachable();
+}
+
+// Return a tree for VAL in TYPE.
+
+tree
+Expression::float_constant_tree(mpfr_t val, tree type)
+{
+ if (type == error_mark_node)
+ return error_mark_node;
+ else if (TREE_CODE(type) == INTEGER_TYPE)
+ {
+ mpz_t ival;
+ mpz_init(ival);
+ mpfr_get_z(ival, val, GMP_RNDN);
+ tree ret = Expression::integer_constant_tree(ival, type);
+ mpz_clear(ival);
+ return ret;
+ }
+ else if (TREE_CODE(type) == REAL_TYPE)
+ {
+ REAL_VALUE_TYPE r1;
+ real_from_mpfr(&r1, val, type, GMP_RNDN);
+ REAL_VALUE_TYPE r2;
+ real_convert(&r2, TYPE_MODE(type), &r1);
+ return build_real(type, r2);
+ }
+ else if (TREE_CODE(type) == COMPLEX_TYPE)
+ {
+ REAL_VALUE_TYPE r1;
+ real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
+ REAL_VALUE_TYPE r2;
+ real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
+ tree imag = build_real_from_int_cst(TREE_TYPE(type),
+ integer_zero_node);
+ return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
+ }
+ else
+ gcc_unreachable();
+}
+
+// Return a tree for REAL/IMAG in TYPE.
+
+tree
+Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
+{
+ if (type == error_mark_node)
+ return error_mark_node;
+ else if (TREE_CODE(type) == INTEGER_TYPE || TREE_CODE(type) == REAL_TYPE)
+ return Expression::float_constant_tree(real, type);
+ else if (TREE_CODE(type) == COMPLEX_TYPE)
+ {
+ REAL_VALUE_TYPE r1;
+ real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
+ REAL_VALUE_TYPE r2;
+ real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
+
+ REAL_VALUE_TYPE r3;
+ real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
+ REAL_VALUE_TYPE r4;
+ real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
+
+ return build_complex(type, build_real(TREE_TYPE(type), r2),
+ build_real(TREE_TYPE(type), r4));
+ }
+ else
+ gcc_unreachable();
+}
+
+// Return a tree which evaluates to true if VAL, of arbitrary integer
+// type, is negative or is more than the maximum value of BOUND_TYPE.
+// If SOFAR is not NULL, it is or'red into the result. The return
+// value may be NULL if SOFAR is NULL.
+
+tree
+Expression::check_bounds(tree val, tree bound_type, tree sofar,
+ source_location loc)
+{
+ tree val_type = TREE_TYPE(val);
+ tree ret = NULL_TREE;
+
+ if (!TYPE_UNSIGNED(val_type))
+ {
+ ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
+ build_int_cst(val_type, 0));
+ if (ret == boolean_false_node)
+ ret = NULL_TREE;
+ }
+
+ if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
+ || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
+ {
+ tree max = TYPE_MAX_VALUE(bound_type);
+ tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
+ fold_convert_loc(loc, val_type, max));
+ if (big == boolean_false_node)
+ ;
+ else if (ret == NULL_TREE)
+ ret = big;
+ else
+ ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
+ ret, big);
+ }
+
+ if (ret == NULL_TREE)
+ return sofar;
+ else if (sofar == NULL_TREE)
+ return ret;
+ else
+ return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
+ sofar, ret);
+}
+
+// Error expressions. This are used to avoid cascading errors.
+
+class Error_expression : public Expression
+{
+ public:
+ Error_expression(source_location location)
+ : Expression(EXPRESSION_ERROR, location)
+ { }
+
+ protected:
+ bool
+ do_is_constant() const
+ { return true; }
+
+ bool
+ do_integer_constant_value(bool, mpz_t val, Type**) const
+ {
+ mpz_set_ui(val, 0);
+ return true;
+ }
+
+ bool
+ do_float_constant_value(mpfr_t val, Type**) const
+ {
+ mpfr_set_ui(val, 0, GMP_RNDN);
+ return true;
+ }
+
+ bool
+ do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
+ {
+ mpfr_set_ui(real, 0, GMP_RNDN);
+ mpfr_set_ui(imag, 0, GMP_RNDN);
+ return true;
+ }
+
+ void
+ do_discarding_value()
+ { }
+
+ Type*
+ do_type()
+ { return Type::make_error_type(); }
+
+ void
+ do_determine_type(const Type_context*)
+ { }
+
+ Expression*
+ do_copy()
+ { return this; }
+
+ bool
+ do_is_addressable() const
+ { return true; }
+
+ tree
+ do_get_tree(Translate_context*)
+ { return error_mark_node; }
+};
+
+Expression*
+Expression::make_error(source_location location)
+{
+ return new Error_expression(location);
+}
+
+// An expression which is really a type. This is used during parsing.
+// It is an error if these survive after lowering.
+
+class
+Type_expression : public Expression
+{
+ public:
+ Type_expression(Type* type, source_location location)
+ : Expression(EXPRESSION_TYPE, location),
+ type_(type)
+ { }
+
+ protected:
+ int
+ do_traverse(Traverse* traverse)
+ { return Type::traverse(this->type_, traverse); }
+
+ Type*
+ do_type()
+ { return this->type_; }
+
+ void
+ do_determine_type(const Type_context*)
+ { }
+
+ void
+ do_check_types(Gogo*)
+ { this->report_error(_("invalid use of type")); }
+
+ Expression*
+ do_copy()
+ { return this; }
+
+ tree
+ do_get_tree(Translate_context*)
+ { gcc_unreachable(); }
+
+ private:
+ // The type which we are representing as an expression.
+ Type* type_;
+};
+
+Expression*
+Expression::make_type(Type* type, source_location location)
+{
+ return new Type_expression(type, location);
+}
+
+// Class Parser_expression.
+
+Type*
+Parser_expression::do_type()
+{
+ // We should never really ask for the type of a Parser_expression.
+ // However, it can happen, at least when we have an invalid const
+ // whose initializer refers to the const itself. In that case we
+ // may ask for the type when lowering the const itself.
+ gcc_assert(saw_errors());
+ return Type::make_error_type();
+}
+
+// Class Var_expression.
+
+// Lower a variable expression. Here we just make sure that the
+// initialization expression of the variable has been lowered. This
+// ensures that we will be able to determine the type of the variable
+// if necessary.
+
+Expression*
+Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
+{
+ if (this->variable_->is_variable())
+ {
+ Variable* var = this->variable_->var_value();
+ // This is either a local variable or a global variable. A
+ // reference to a variable which is local to an enclosing
+ // function will be a reference to a field in a closure.
+ if (var->is_global())
+ function = NULL;
+ var->lower_init_expression(gogo, function);
+ }
+ return this;
+}
+
+// Return the type of a reference to a variable.
+
+Type*
+Var_expression::do_type()
+{
+ if (this->variable_->is_variable())
+ return this->variable_->var_value()->type();
+ else if (this->variable_->is_result_variable())
+ return this->variable_->result_var_value()->type();
+ else
+ gcc_unreachable();
+}
+
+// Determine the type of a reference to a variable.
+
+void
+Var_expression::do_determine_type(const Type_context*)
+{
+ if (this->variable_->is_variable())
+ this->variable_->var_value()->determine_type();
+}
+
+// Something takes the address of this variable. This means that we
+// may want to move the variable onto the heap.
+
+void
+Var_expression::do_address_taken(bool escapes)
+{
+ if (!escapes)
+ ;
+ else if (this->variable_->is_variable())
+ this->variable_->var_value()->set_address_taken();
+ else if (this->variable_->is_result_variable())
+ this->variable_->result_var_value()->set_address_taken();
+ else
+ gcc_unreachable();
+}
+
+// Get the tree for a reference to a variable.
+
+tree
+Var_expression::do_get_tree(Translate_context* context)
+{
+ return this->variable_->get_tree(context->gogo(), context->function());
+}
+
+// Make a reference to a variable in an expression.
+
+Expression*
+Expression::make_var_reference(Named_object* var, source_location location)
+{
+ if (var->is_sink())
+ return Expression::make_sink(location);
+
+ // FIXME: Creating a new object for each reference to a variable is
+ // wasteful.
+ return new Var_expression(var, location);
+}
+
+// Class Temporary_reference_expression.
+
+// The type.
+
+Type*
+Temporary_reference_expression::do_type()
+{
+ return this->statement_->type();
+}
+
+// Called if something takes the address of this temporary variable.
+// We never have to move temporary variables to the heap, but we do
+// need to know that they must live in the stack rather than in a
+// register.
+
+void
+Temporary_reference_expression::do_address_taken(bool)
+{
+ this->statement_->set_is_address_taken();
+}
+
+// Get a tree referring to the variable.
+
+tree
+Temporary_reference_expression::do_get_tree(Translate_context*)
+{
+ return this->statement_->get_decl();
+}
+
+// Make a reference to a temporary variable.
+
+Expression*
+Expression::make_temporary_reference(Temporary_statement* statement,
+ source_location location)
+{
+ return new Temporary_reference_expression(statement, location);
+}
+
+// A sink expression--a use of the blank identifier _.
+
+class Sink_expression : public Expression
+{
+ public:
+ Sink_expression(source_location location)
+ : Expression(EXPRESSION_SINK, location),
+ type_(NULL), var_(NULL_TREE)
+ { }
+
+ protected:
+ void
+ do_discarding_value()
+ { }
+
+ Type*
+ do_type();
+
+ void
+ do_determine_type(const Type_context*);
+
+ Expression*
+ do_copy()
+ { return new Sink_expression(this->location()); }
+
+ tree
+ do_get_tree(Translate_context*);
+
+ private:
+ // The type of this sink variable.
+ Type* type_;
+ // The temporary variable we generate.
+ tree var_;
+};
+
+// Return the type of a sink expression.
+
+Type*
+Sink_expression::do_type()
+{
+ if (this->type_ == NULL)
+ return Type::make_sink_type();
+ return this->type_;
+}
+
+// Determine the type of a sink expression.
+
+void
+Sink_expression::do_determine_type(const Type_context* context)
+{
+ if (context->type != NULL)
+ this->type_ = context->type;
+}
+
+// Return a temporary variable for a sink expression. This will
+// presumably be a write-only variable which the middle-end will drop.
+
+tree
+Sink_expression::do_get_tree(Translate_context* context)
+{
+ if (this->var_ == NULL_TREE)
+ {
+ gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
+ this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
+ "blank");
+ }
+ return this->var_;
+}
+
+// Make a sink expression.
+
+Expression*
+Expression::make_sink(source_location location)
+{
+ return new Sink_expression(location);
+}
+
+// Class Func_expression.
+
+// FIXME: Can a function expression appear in a constant expression?
+// The value is unchanging. Initializing a constant to the address of
+// a function seems like it could work, though there might be little
+// point to it.
+
+// Traversal.
+
+int
+Func_expression::do_traverse(Traverse* traverse)
+{
+ return (this->closure_ == NULL
+ ? TRAVERSE_CONTINUE
+ : Expression::traverse(&this->closure_, traverse));
+}
+
+// Return the type of a function expression.
+
+Type*
+Func_expression::do_type()
+{
+ if (this->function_->is_function())
+ return this->function_->func_value()->type();
+ else if (this->function_->is_function_declaration())
+ return this->function_->func_declaration_value()->type();
+ else
+ gcc_unreachable();
+}
+
+// Get the tree for a function expression without evaluating the
+// closure.
+
+tree
+Func_expression::get_tree_without_closure(Gogo* gogo)
+{
+ Function_type* fntype;
+ if (this->function_->is_function())
+ fntype = this->function_->func_value()->type();
+ else if (this->function_->is_function_declaration())
+ fntype = this->function_->func_declaration_value()->type();
+ else
+ gcc_unreachable();
+
+ // Builtin functions are handled specially by Call_expression. We
+ // can't take their address.
+ if (fntype->is_builtin())
+ {
+ error_at(this->location(), "invalid use of special builtin function %qs",
+ this->function_->name().c_str());
+ return error_mark_node;
+ }
+
+ Named_object* no = this->function_;
+
+ tree id = no->get_id(gogo);
+ if (id == error_mark_node)
+ return error_mark_node;
+
+ tree fndecl;
+ if (no->is_function())
+ fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
+ else if (no->is_function_declaration())
+ fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
+ else
+ gcc_unreachable();
+
+ if (fndecl == error_mark_node)
+ return error_mark_node;
+
+ return build_fold_addr_expr_loc(this->location(), fndecl);
+}
+
+// Get the tree for a function expression. This is used when we take
+// the address of a function rather than simply calling it. If the
+// function has a closure, we must use a trampoline.
+
+tree
+Func_expression::do_get_tree(Translate_context* context)
+{
+ Gogo* gogo = context->gogo();
+
+ tree fnaddr = this->get_tree_without_closure(gogo);
+ if (fnaddr == error_mark_node)
+ return error_mark_node;
+
+ gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
+ && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
+ TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
+
+ // For a normal non-nested function call, that is all we have to do.
+ if (!this->function_->is_function()
+ || this->function_->func_value()->enclosing() == NULL)
+ {
+ gcc_assert(this->closure_ == NULL);
+ return fnaddr;
+ }
+
+ // For a nested function call, we have to always allocate a
+ // trampoline. If we don't always allocate, then closures will not
+ // be reliably distinct.
+ Expression* closure = this->closure_;
+ tree closure_tree;
+ if (closure == NULL)
+ closure_tree = null_pointer_node;
+ else
+ {
+ // Get the value of the closure. This will be a pointer to
+ // space allocated on the heap.
+ closure_tree = closure->get_tree(context);
+ if (closure_tree == error_mark_node)
+ return error_mark_node;
+ gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
+ }
+
+ // Now we need to build some code on the heap. This code will load
+ // the static chain pointer with the closure and then jump to the
+ // body of the function. The normal gcc approach is to build the
+ // code on the stack. Unfortunately we can not do that, as Go
+ // permits us to return the function pointer.
+
+ return gogo->make_trampoline(fnaddr, closure_tree, this->location());
+}
+
+// Make a reference to a function in an expression.
+
+Expression*
+Expression::make_func_reference(Named_object* function, Expression* closure,
+ source_location location)
+{
+ return new Func_expression(function, closure, location);
+}
+
+// Class Unknown_expression.
+
+// Return the name of an unknown expression.
+
+const std::string&
+Unknown_expression::name() const
+{
+ return this->named_object_->name();
+}
+
+// Lower a reference to an unknown name.
+
+Expression*
+Unknown_expression::do_lower(Gogo*, Named_object*, int)
+{
+ source_location location = this->location();
+ Named_object* no = this->named_object_;
+ Named_object* real;
+ if (!no->is_unknown())
+ real = no;
+ else
+ {
+ real = no->unknown_value()->real_named_object();
+ if (real == NULL)
+ {
+ if (this->is_composite_literal_key_)
+ return this;
+ error_at(location, "reference to undefined name %qs",
+ this->named_object_->message_name().c_str());
+ return Expression::make_error(location);
+ }
+ }
+ switch (real->classification())
+ {
+ case Named_object::NAMED_OBJECT_CONST:
+ return Expression::make_const_reference(real, location);
+ case Named_object::NAMED_OBJECT_TYPE:
+ return Expression::make_type(real->type_value(), location);
+ case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
+ if (this->is_composite_literal_key_)
+ return this;
+ error_at(location, "reference to undefined type %qs",
+ real->message_name().c_str());
+ return Expression::make_error(location);
+ case Named_object::NAMED_OBJECT_VAR:
+ return Expression::make_var_reference(real, location);
+ case Named_object::NAMED_OBJECT_FUNC:
+ case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
+ return Expression::make_func_reference(real, NULL, location);
+ case Named_object::NAMED_OBJECT_PACKAGE:
+ if (this->is_composite_literal_key_)
+ return this;
+ error_at(location, "unexpected reference to package");
+ return Expression::make_error(location);
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Make a reference to an unknown name.
+
+Expression*
+Expression::make_unknown_reference(Named_object* no, source_location location)
+{
+ gcc_assert(no->resolve()->is_unknown());
+ return new Unknown_expression(no, location);
+}
+
+// A boolean expression.
+
+class Boolean_expression : public Expression
+{
+ public:
+ Boolean_expression(bool val, source_location location)
+ : Expression(EXPRESSION_BOOLEAN, location),
+ val_(val), type_(NULL)
+ { }
+
+ static Expression*
+ do_import(Import*);
+
+ protected:
+ bool
+ do_is_constant() const
+ { return true; }
+
+ Type*
+ do_type();
+
+ void
+ do_determine_type(const Type_context*);
+
+ Expression*
+ do_copy()
+ { return this; }
+
+ tree
+ do_get_tree(Translate_context*)
+ { return this->val_ ? boolean_true_node : boolean_false_node; }
+
+ void
+ do_export(Export* exp) const
+ { exp->write_c_string(this->val_ ? "true" : "false"); }
+
+ private:
+ // The constant.
+ bool val_;
+ // The type as determined by context.
+ Type* type_;
+};
+
+// Get the type.
+
+Type*
+Boolean_expression::do_type()
+{
+ if (this->type_ == NULL)
+ this->type_ = Type::make_boolean_type();
+ return this->type_;
+}
+
+// Set the type from the context.
+
+void
+Boolean_expression::do_determine_type(const Type_context* context)
+{
+ if (this->type_ != NULL && !this->type_->is_abstract())
+ ;
+ else if (context->type != NULL && context->type->is_boolean_type())
+ this->type_ = context->type;
+ else if (!context->may_be_abstract)
+ this->type_ = Type::lookup_bool_type();
+}
+
+// Import a boolean constant.
+
+Expression*
+Boolean_expression::do_import(Import* imp)
+{
+ if (imp->peek_char() == 't')
+ {
+ imp->require_c_string("true");
+ return Expression::make_boolean(true, imp->location());
+ }
+ else
+ {
+ imp->require_c_string("false");
+ return Expression::make_boolean(false, imp->location());
+ }
+}
+
+// Make a boolean expression.
+
+Expression*
+Expression::make_boolean(bool val, source_location location)
+{
+ return new Boolean_expression(val, location);
+}
+
+// Class String_expression.
+
+// Get the type.
+
+Type*
+String_expression::do_type()
+{
+ if (this->type_ == NULL)
+ this->type_ = Type::make_string_type();
+ return this->type_;
+}
+
+// Set the type from the context.
+
+void
+String_expression::do_determine_type(const Type_context* context)
+{
+ if (this->type_ != NULL && !this->type_->is_abstract())
+ ;
+ else if (context->type != NULL && context->type->is_string_type())
+ this->type_ = context->type;
+ else if (!context->may_be_abstract)
+ this->type_ = Type::lookup_string_type();
+}
+
+// Build a string constant.
+
+tree
+String_expression::do_get_tree(Translate_context* context)
+{
+ return context->gogo()->go_string_constant_tree(this->val_);
+}
+
+// Export a string expression.
+
+void
+String_expression::do_export(Export* exp) const
+{
+ std::string s;
+ s.reserve(this->val_.length() * 4 + 2);
+ s += '"';
+ for (std::string::const_iterator p = this->val_.begin();
+ p != this->val_.end();
+ ++p)
+ {
+ if (*p == '\\' || *p == '"')
+ {
+ s += '\\';
+ s += *p;
+ }
+ else if (*p >= 0x20 && *p < 0x7f)
+ s += *p;
+ else if (*p == '\n')
+ s += "\\n";
+ else if (*p == '\t')
+ s += "\\t";
+ else
+ {
+ s += "\\x";
+ unsigned char c = *p;
+ unsigned int dig = c >> 4;
+ s += dig < 10 ? '0' + dig : 'A' + dig - 10;
+ dig = c & 0xf;
+ s += dig < 10 ? '0' + dig : 'A' + dig - 10;
+ }
+ }
+ s += '"';
+ exp->write_string(s);
+}
+
+// Import a string expression.
+
+Expression*
+String_expression::do_import(Import* imp)
+{
+ imp->require_c_string("\"");
+ std::string val;
+ while (true)
+ {
+ int c = imp->get_char();
+ if (c == '"' || c == -1)
+ break;
+ if (c != '\\')
+ val += static_cast<char>(c);
+ else
+ {
+ c = imp->get_char();
+ if (c == '\\' || c == '"')
+ val += static_cast<char>(c);
+ else if (c == 'n')
+ val += '\n';
+ else if (c == 't')
+ val += '\t';
+ else if (c == 'x')
+ {
+ c = imp->get_char();
+ unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
+ c = imp->get_char();
+ unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
+ char v = (vh << 4) | vl;
+ val += v;
+ }
+ else
+ {
+ error_at(imp->location(), "bad string constant");
+ return Expression::make_error(imp->location());
+ }
+ }
+ }
+ return Expression::make_string(val, imp->location());
+}
+
+// Make a string expression.
+
+Expression*
+Expression::make_string(const std::string& val, source_location location)
+{
+ return new String_expression(val, location);
+}
+
+// Make an integer expression.
+
+class Integer_expression : public Expression
+{
+ public:
+ Integer_expression(const mpz_t* val, Type* type, source_location location)
+ : Expression(EXPRESSION_INTEGER, location),
+ type_(type)
+ { mpz_init_set(this->val_, *val); }
+
+ static Expression*
+ do_import(Import*);
+
+ // Return whether VAL fits in the type.
+ static bool
+ check_constant(mpz_t val, Type*, source_location);
+
+ // Write VAL to export data.
+ static void
+ export_integer(Export* exp, const mpz_t val);
+
+ protected:
+ bool
+ do_is_constant() const
+ { return true; }
+
+ bool
+ do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
+
+ Type*
+ do_type();
+
+ void
+ do_determine_type(const Type_context* context);
+
+ void
+ do_check_types(Gogo*);
+
+ tree
+ do_get_tree(Translate_context*);
+
+ Expression*
+ do_copy()
+ { return Expression::make_integer(&this->val_, this->type_,
+ this->location()); }
+
+ void
+ do_export(Export*) const;
+
+ private:
+ // The integer value.
+ mpz_t val_;
+ // The type so far.
+ Type* type_;
+};
+
+// Return an integer constant value.
+
+bool
+Integer_expression::do_integer_constant_value(bool, mpz_t val,
+ Type** ptype) const
+{
+ if (this->type_ != NULL)
+ *ptype = this->type_;
+ mpz_set(val, this->val_);
+ return true;
+}
+
+// Return the current type. If we haven't set the type yet, we return
+// an abstract integer type.
+
+Type*
+Integer_expression::do_type()
+{
+ if (this->type_ == NULL)
+ this->type_ = Type::make_abstract_integer_type();
+ return this->type_;
+}
+
+// Set the type of the integer value. Here we may switch from an
+// abstract type to a real type.
+
+void
+Integer_expression::do_determine_type(const Type_context* context)
+{
+ if (this->type_ != NULL && !this->type_->is_abstract())
+ ;
+ else if (context->type != NULL
+ && (context->type->integer_type() != NULL
+ || context->type->float_type() != NULL
+ || context->type->complex_type() != NULL))
+ this->type_ = context->type;
+ else if (!context->may_be_abstract)
+ this->type_ = Type::lookup_integer_type("int");
+}
+
+// Return true if the integer VAL fits in the range of the type TYPE.
+// Otherwise give an error and return false. TYPE may be NULL.
+
+bool
+Integer_expression::check_constant(mpz_t val, Type* type,
+ source_location location)
+{
+ if (type == NULL)
+ return true;
+ Integer_type* itype = type->integer_type();
+ if (itype == NULL || itype->is_abstract())
+ return true;
+
+ int bits = mpz_sizeinbase(val, 2);
+
+ if (itype->is_unsigned())
+ {
+ // For an unsigned type we can only accept a nonnegative number,
+ // and we must be able to represent at least BITS.
+ if (mpz_sgn(val) >= 0
+ && bits <= itype->bits())
+ return true;
+ }
+ else
+ {
+ // For a signed type we need an extra bit to indicate the sign.
+ // We have to handle the most negative integer specially.
+ if (bits + 1 <= itype->bits()
+ || (bits <= itype->bits()
+ && mpz_sgn(val) < 0
+ && (mpz_scan1(val, 0)
+ == static_cast<unsigned long>(itype->bits() - 1))
+ && mpz_scan0(val, itype->bits()) == ULONG_MAX))
+ return true;
+ }
+
+ error_at(location, "integer constant overflow");
+ return false;
+}
+
+// Check the type of an integer constant.
+
+void
+Integer_expression::do_check_types(Gogo*)
+{
+ if (this->type_ == NULL)
+ return;
+ if (!Integer_expression::check_constant(this->val_, this->type_,
+ this->location()))
+ this->set_is_error();
+}
+
+// Get a tree for an integer constant.
+
+tree
+Integer_expression::do_get_tree(Translate_context* context)
+{
+ Gogo* gogo = context->gogo();
+ tree type;
+ if (this->type_ != NULL && !this->type_->is_abstract())
+ type = this->type_->get_tree(gogo);
+ else if (this->type_ != NULL && this->type_->float_type() != NULL)
+ {
+ // We are converting to an abstract floating point type.
+ type = Type::lookup_float_type("float64")->get_tree(gogo);
+ }
+ else if (this->type_ != NULL && this->type_->complex_type() != NULL)
+ {
+ // We are converting to an abstract complex type.
+ type = Type::lookup_complex_type("complex128")->get_tree(gogo);
+ }
+ else
+ {
+ // If we still have an abstract type here, then this is being
+ // used in a constant expression which didn't get reduced for
+ // some reason. Use a type which will fit the value. We use <,
+ // not <=, because we need an extra bit for the sign bit.
+ int bits = mpz_sizeinbase(this->val_, 2);
+ if (bits < INT_TYPE_SIZE)
+ type = Type::lookup_integer_type("int")->get_tree(gogo);
+ else if (bits < 64)
+ type = Type::lookup_integer_type("int64")->get_tree(gogo);
+ else
+ type = long_long_integer_type_node;
+ }
+ return Expression::integer_constant_tree(this->val_, type);
+}
+
+// Write VAL to export data.
+
+void
+Integer_expression::export_integer(Export* exp, const mpz_t val)
+{
+ char* s = mpz_get_str(NULL, 10, val);
+ exp->write_c_string(s);
+ free(s);
+}
+
+// Export an integer in a constant expression.
+
+void
+Integer_expression::do_export(Export* exp) const
+{
+ Integer_expression::export_integer(exp, this->val_);
+ // A trailing space lets us reliably identify the end of the number.
+ exp->write_c_string(" ");
+}
+
+// Import an integer, floating point, or complex value. This handles
+// all these types because they all start with digits.
+
+Expression*
+Integer_expression::do_import(Import* imp)
+{
+ std::string num = imp->read_identifier();
+ imp->require_c_string(" ");
+ if (!num.empty() && num[num.length() - 1] == 'i')
+ {
+ mpfr_t real;
+ size_t plus_pos = num.find('+', 1);
+ size_t minus_pos = num.find('-', 1);
+ size_t pos;
+ if (plus_pos == std::string::npos)
+ pos = minus_pos;
+ else if (minus_pos == std::string::npos)
+ pos = plus_pos;
+ else
+ {
+ error_at(imp->location(), "bad number in import data: %qs",
+ num.c_str());
+ return Expression::make_error(imp->location());
+ }
+ if (pos == std::string::npos)
+ mpfr_set_ui(real, 0, GMP_RNDN);
+ else
+ {
+ std::string real_str = num.substr(0, pos);
+ if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
+ {
+ error_at(imp->location(), "bad number in import data: %qs",
+ real_str.c_str());
+ return Expression::make_error(imp->location());
+ }
+ }
+
+ std::string imag_str;
+ if (pos == std::string::npos)
+ imag_str = num;
+ else
+ imag_str = num.substr(pos);
+ imag_str = imag_str.substr(0, imag_str.size() - 1);
+ mpfr_t imag;
+ if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
+ {
+ error_at(imp->location(), "bad number in import data: %qs",
+ imag_str.c_str());
+ return Expression::make_error(imp->location());
+ }
+ Expression* ret = Expression::make_complex(&real, &imag, NULL,
+ imp->location());
+ mpfr_clear(real);
+ mpfr_clear(imag);
+ return ret;
+ }
+ else if (num.find('.') == std::string::npos
+ && num.find('E') == std::string::npos)
+ {
+ mpz_t val;
+ if (mpz_init_set_str(val, num.c_str(), 10) != 0)
+ {
+ error_at(imp->location(), "bad number in import data: %qs",
+ num.c_str());
+ return Expression::make_error(imp->location());
+ }
+ Expression* ret = Expression::make_integer(&val, NULL, imp->location());
+ mpz_clear(val);
+ return ret;
+ }
+ else
+ {
+ mpfr_t val;
+ if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
+ {
+ error_at(imp->location(), "bad number in import data: %qs",
+ num.c_str());
+ return Expression::make_error(imp->location());
+ }
+ Expression* ret = Expression::make_float(&val, NULL, imp->location());
+ mpfr_clear(val);
+ return ret;
+ }
+}
+
+// Build a new integer value.
+
+Expression*
+Expression::make_integer(const mpz_t* val, Type* type,
+ source_location location)
+{
+ return new Integer_expression(val, type, location);
+}
+
+// Floats.
+
+class Float_expression : public Expression
+{
+ public:
+ Float_expression(const mpfr_t* val, Type* type, source_location location)
+ : Expression(EXPRESSION_FLOAT, location),
+ type_(type)
+ {
+ mpfr_init_set(this->val_, *val, GMP_RNDN);
+ }
+
+ // Constrain VAL to fit into TYPE.
+ static void
+ constrain_float(mpfr_t val, Type* type);
+
+ // Return whether VAL fits in the type.
+ static bool
+ check_constant(mpfr_t val, Type*, source_location);
+
+ // Write VAL to export data.
+ static void
+ export_float(Export* exp, const mpfr_t val);
+
+ protected:
+ bool
+ do_is_constant() const
+ { return true; }
+
+ bool
+ do_float_constant_value(mpfr_t val, Type**) const;
+
+ Type*
+ do_type();
+
+ void
+ do_determine_type(const Type_context*);
+
+ void
+ do_check_types(Gogo*);
+
+ Expression*
+ do_copy()
+ { return Expression::make_float(&this->val_, this->type_,
+ this->location()); }
+
+ tree
+ do_get_tree(Translate_context*);
+
+ void
+ do_export(Export*) const;
+
+ private:
+ // The floating point value.
+ mpfr_t val_;
+ // The type so far.
+ Type* type_;
+};
+
+// Constrain VAL to fit into TYPE.
+
+void
+Float_expression::constrain_float(mpfr_t val, Type* type)
+{
+ Float_type* ftype = type->float_type();
+ if (ftype != NULL && !ftype->is_abstract())
+ {
+ tree type_tree = ftype->type_tree();
+ REAL_VALUE_TYPE rvt;
+ real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
+ real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
+ mpfr_from_real(val, &rvt, GMP_RNDN);
+ }
+}
+
+// Return a floating point constant value.
+
+bool
+Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
+{
+ if (this->type_ != NULL)
+ *ptype = this->type_;
+ mpfr_set(val, this->val_, GMP_RNDN);
+ return true;
+}
+
+// Return the current type. If we haven't set the type yet, we return
+// an abstract float type.
+
+Type*
+Float_expression::do_type()
+{
+ if (this->type_ == NULL)
+ this->type_ = Type::make_abstract_float_type();
+ return this->type_;
+}
+
+// Set the type of the float value. Here we may switch from an
+// abstract type to a real type.
+
+void
+Float_expression::do_determine_type(const Type_context* context)
+{
+ if (this->type_ != NULL && !this->type_->is_abstract())
+ ;
+ else if (context->type != NULL
+ && (context->type->integer_type() != NULL
+ || context->type->float_type() != NULL
+ || context->type->complex_type() != NULL))
+ this->type_ = context->type;
+ else if (!context->may_be_abstract)
+ this->type_ = Type::lookup_float_type("float64");
+}
+
+// Return true if the floating point value VAL fits in the range of
+// the type TYPE. Otherwise give an error and return false. TYPE may
+// be NULL.
+
+bool
+Float_expression::check_constant(mpfr_t val, Type* type,
+ source_location location)
+{
+ if (type == NULL)
+ return true;
+ Float_type* ftype = type->float_type();
+ if (ftype == NULL || ftype->is_abstract())
+ return true;
+
+ // A NaN or Infinity always fits in the range of the type.
+ if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
+ return true;
+
+ mp_exp_t exp = mpfr_get_exp(val);
+ mp_exp_t max_exp;
+ switch (ftype->bits())
+ {
+ case 32:
+ max_exp = 128;
+ break;
+ case 64:
+ max_exp = 1024;
+ break;
+ default:
+ gcc_unreachable();
+ }
+ if (exp > max_exp)
+ {
+ error_at(location, "floating point constant overflow");
+ return false;
+ }
+ return true;
+}
+
+// Check the type of a float value.
+
+void
+Float_expression::do_check_types(Gogo*)
+{
+ if (this->type_ == NULL)
+ return;
+
+ if (!Float_expression::check_constant(this->val_, this->type_,
+ this->location()))
+ this->set_is_error();
+
+ Integer_type* integer_type = this->type_->integer_type();
+ if (integer_type != NULL)
+ {
+ if (!mpfr_integer_p(this->val_))
+ this->report_error(_("floating point constant truncated to integer"));
+ else
+ {
+ gcc_assert(!integer_type->is_abstract());
+ mpz_t ival;
+ mpz_init(ival);
+ mpfr_get_z(ival, this->val_, GMP_RNDN);
+ Integer_expression::check_constant(ival, integer_type,
+ this->location());
+ mpz_clear(ival);
+ }
+ }
+}
+
+// Get a tree for a float constant.
+
+tree
+Float_expression::do_get_tree(Translate_context* context)
+{
+ Gogo* gogo = context->gogo();
+ tree type;
+ if (this->type_ != NULL && !this->type_->is_abstract())
+ type = this->type_->get_tree(gogo);
+ else if (this->type_ != NULL && this->type_->integer_type() != NULL)
+ {
+ // We have an abstract integer type. We just hope for the best.
+ type = Type::lookup_integer_type("int")->get_tree(gogo);
+ }
+ else
+ {
+ // If we still have an abstract type here, then this is being
+ // used in a constant expression which didn't get reduced. We
+ // just use float64 and hope for the best.
+ type = Type::lookup_float_type("float64")->get_tree(gogo);
+ }
+ return Expression::float_constant_tree(this->val_, type);
+}
+
+// Write a floating point number to export data.
+
+void
+Float_expression::export_float(Export *exp, const mpfr_t val)
+{
+ mp_exp_t exponent;
+ char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
+ if (*s == '-')
+ exp->write_c_string("-");
+ exp->write_c_string("0.");
+ exp->write_c_string(*s == '-' ? s + 1 : s);
+ mpfr_free_str(s);
+ char buf[30];
+ snprintf(buf, sizeof buf, "E%ld", exponent);
+ exp->write_c_string(buf);
+}
+
+// Export a floating point number in a constant expression.
+
+void
+Float_expression::do_export(Export* exp) const
+{
+ Float_expression::export_float(exp, this->val_);
+ // A trailing space lets us reliably identify the end of the number.
+ exp->write_c_string(" ");
+}
+
+// Make a float expression.
+
+Expression*
+Expression::make_float(const mpfr_t* val, Type* type, source_location location)
+{
+ return new Float_expression(val, type, location);
+}
+
+// Complex numbers.
+
+class Complex_expression : public Expression
+{
+ public:
+ Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
+ source_location location)
+ : Expression(EXPRESSION_COMPLEX, location),
+ type_(type)
+ {
+ mpfr_init_set(this->real_, *real, GMP_RNDN);
+ mpfr_init_set(this->imag_, *imag, GMP_RNDN);
+ }
+
+ // Constrain REAL/IMAG to fit into TYPE.
+ static void
+ constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
+
+ // Return whether REAL/IMAG fits in the type.
+ static bool
+ check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
+
+ // Write REAL/IMAG to export data.
+ static void
+ export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
+
+ protected:
+ bool
+ do_is_constant() const
+ { return true; }
+
+ bool
+ do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
+
+ Type*
+ do_type();
+
+ void
+ do_determine_type(const Type_context*);
+
+ void
+ do_check_types(Gogo*);
+
+ Expression*
+ do_copy()
+ {
+ return Expression::make_complex(&this->real_, &this->imag_, this->type_,
+ this->location());
+ }
+
+ tree
+ do_get_tree(Translate_context*);
+
+ void
+ do_export(Export*) const;
+
+ private:
+ // The real part.
+ mpfr_t real_;
+ // The imaginary part;
+ mpfr_t imag_;
+ // The type if known.
+ Type* type_;
+};
+
+// Constrain REAL/IMAG to fit into TYPE.
+
+void
+Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
+{
+ Complex_type* ctype = type->complex_type();
+ if (ctype != NULL && !ctype->is_abstract())
+ {
+ tree type_tree = ctype->type_tree();
+
+ REAL_VALUE_TYPE rvt;
+ real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
+ real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
+ mpfr_from_real(real, &rvt, GMP_RNDN);
+
+ real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
+ real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
+ mpfr_from_real(imag, &rvt, GMP_RNDN);
+ }
+}
+
+// Return a complex constant value.
+
+bool
+Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
+ Type** ptype) const
+{
+ if (this->type_ != NULL)
+ *ptype = this->type_;
+ mpfr_set(real, this->real_, GMP_RNDN);
+ mpfr_set(imag, this->imag_, GMP_RNDN);
+ return true;
+}
+
+// Return the current type. If we haven't set the type yet, we return
+// an abstract complex type.
+
+Type*
+Complex_expression::do_type()
+{
+ if (this->type_ == NULL)
+ this->type_ = Type::make_abstract_complex_type();
+ return this->type_;
+}
+
+// Set the type of the complex value. Here we may switch from an
+// abstract type to a real type.
+
+void
+Complex_expression::do_determine_type(const Type_context* context)
+{
+ if (this->type_ != NULL && !this->type_->is_abstract())
+ ;
+ else if (context->type != NULL
+ && context->type->complex_type() != NULL)
+ this->type_ = context->type;
+ else if (!context->may_be_abstract)
+ this->type_ = Type::lookup_complex_type("complex128");
+}
+
+// Return true if the complex value REAL/IMAG fits in the range of the
+// type TYPE. Otherwise give an error and return false. TYPE may be
+// NULL.
+
+bool
+Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
+ source_location location)
+{
+ if (type == NULL)
+ return true;
+ Complex_type* ctype = type->complex_type();
+ if (ctype == NULL || ctype->is_abstract())
+ return true;
+
+ mp_exp_t max_exp;
+ switch (ctype->bits())
+ {
+ case 64:
+ max_exp = 128;
+ break;
+ case 128:
+ max_exp = 1024;
+ break;
+ default:
+ gcc_unreachable();
+ }
+
+ // A NaN or Infinity always fits in the range of the type.
+ if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
+ {
+ if (mpfr_get_exp(real) > max_exp)
+ {
+ error_at(location, "complex real part constant overflow");
+ return false;
+ }
+ }
+
+ if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
+ {
+ if (mpfr_get_exp(imag) > max_exp)
+ {
+ error_at(location, "complex imaginary part constant overflow");
+ return false;
+ }
+ }
+
+ return true;
+}
+
+// Check the type of a complex value.
+
+void
+Complex_expression::do_check_types(Gogo*)
+{
+ if (this->type_ == NULL)
+ return;
+
+ if (!Complex_expression::check_constant(this->real_, this->imag_,
+ this->type_, this->location()))
+ this->set_is_error();
+}
+
+// Get a tree for a complex constant.
+
+tree
+Complex_expression::do_get_tree(Translate_context* context)
+{
+ Gogo* gogo = context->gogo();
+ tree type;
+ if (this->type_ != NULL && !this->type_->is_abstract())
+ type = this->type_->get_tree(gogo);
+ else
+ {
+ // If we still have an abstract type here, this this is being
+ // used in a constant expression which didn't get reduced. We
+ // just use complex128 and hope for the best.
+ type = Type::lookup_complex_type("complex128")->get_tree(gogo);
+ }
+ return Expression::complex_constant_tree(this->real_, this->imag_, type);
+}
+
+// Write REAL/IMAG to export data.
+
+void
+Complex_expression::export_complex(Export* exp, const mpfr_t real,
+ const mpfr_t imag)
+{
+ if (!mpfr_zero_p(real))
+ {
+ Float_expression::export_float(exp, real);
+ if (mpfr_sgn(imag) > 0)
+ exp->write_c_string("+");
+ }
+ Float_expression::export_float(exp, imag);
+ exp->write_c_string("i");
+}
+
+// Export a complex number in a constant expression.
+
+void
+Complex_expression::do_export(Export* exp) const
+{
+ Complex_expression::export_complex(exp, this->real_, this->imag_);
+ // A trailing space lets us reliably identify the end of the number.
+ exp->write_c_string(" ");
+}
+
+// Make a complex expression.
+
+Expression*
+Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
+ source_location location)
+{
+ return new Complex_expression(real, imag, type, location);
+}
+
+// Find a named object in an expression.
+
+class Find_named_object : public Traverse
+{
+ public:
+ Find_named_object(Named_object* no)
+ : Traverse(traverse_expressions),
+ no_(no), found_(false)
+ { }
+
+ // Whether we found the object.
+ bool
+ found() const
+ { return this->found_; }
+
+ protected:
+ int
+ expression(Expression**);
+
+ private:
+ // The object we are looking for.
+ Named_object* no_;
+ // Whether we found it.
+ bool found_;
+};
+
+// A reference to a const in an expression.
+
+class Const_expression : public Expression
+{
+ public:
+ Const_expression(Named_object* constant, source_location location)
+ : Expression(EXPRESSION_CONST_REFERENCE, location),
+ constant_(constant), type_(NULL), seen_(false)
+ { }
+
+ Named_object*
+ named_object()
+ { return this->constant_; }
+
+ // Check that the initializer does not refer to the constant itself.
+ void
+ check_for_init_loop();
+
+ protected:
+ int
+ do_traverse(Traverse*);
+
+ Expression*
+ do_lower(Gogo*, Named_object*, int);
+
+ bool
+ do_is_constant() const
+ { return true; }
+
+ bool
+ do_integer_constant_value(bool, mpz_t val, Type**) const;
+
+ bool
+ do_float_constant_value(mpfr_t val, Type**) const;
+
+ bool
+ do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
+
+ bool
+ do_string_constant_value(std::string* val) const
+ { return this->constant_->const_value()->expr()->string_constant_value(val); }
+
+ Type*
+ do_type();
+
+ // The type of a const is set by the declaration, not the use.
+ void
+ do_determine_type(const Type_context*);
+
+ void
+ do_check_types(Gogo*);
+
+ Expression*
+ do_copy()
+ { return this; }
+
+ tree
+ do_get_tree(Translate_context* context);
+
+ // When exporting a reference to a const as part of a const
+ // expression, we export the value. We ignore the fact that it has
+ // a name.
+ void
+ do_export(Export* exp) const
+ { this->constant_->const_value()->expr()->export_expression(exp); }
+
+ private:
+ // The constant.
+ Named_object* constant_;
+ // The type of this reference. This is used if the constant has an
+ // abstract type.
+ Type* type_;
+ // Used to prevent infinite recursion when a constant incorrectly
+ // refers to itself.
+ mutable bool seen_;
+};
+
+// Traversal.
+
+int
+Const_expression::do_traverse(Traverse* traverse)
+{
+ if (this->type_ != NULL)
+ return Type::traverse(this->type_, traverse);
+ return TRAVERSE_CONTINUE;
+}
+
+// Lower a constant expression. This is where we convert the
+// predeclared constant iota into an integer value.
+
+Expression*
+Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
+{
+ if (this->constant_->const_value()->expr()->classification()
+ == EXPRESSION_IOTA)
+ {
+ if (iota_value == -1)
+ {
+ error_at(this->location(),
+ "iota is only defined in const declarations");
+ iota_value = 0;
+ }
+ mpz_t val;
+ mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
+ Expression* ret = Expression::make_integer(&val, NULL,
+ this->location());
+ mpz_clear(val);
+ return ret;
+ }
+
+ // Make sure that the constant itself has been lowered.
+ gogo->lower_constant(this->constant_);
+
+ return this;
+}
+
+// Return an integer constant value.
+
+bool
+Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
+ Type** ptype) const
+{
+ if (this->seen_)
+ return false;
+
+ Type* ctype;
+ if (this->type_ != NULL)
+ ctype = this->type_;
+ else
+ ctype = this->constant_->const_value()->type();
+ if (ctype != NULL && ctype->integer_type() == NULL)
+ return false;
+
+ Expression* e = this->constant_->const_value()->expr();
+
+ this->seen_ = true;
+
+ Type* t;
+ bool r = e->integer_constant_value(iota_is_constant, val, &t);
+
+ this->seen_ = false;
+
+ if (r
+ && ctype != NULL
+ && !Integer_expression::check_constant(val, ctype, this->location()))
+ return false;
+
+ *ptype = ctype != NULL ? ctype : t;
+ return r;
+}
+
+// Return a floating point constant value.
+
+bool
+Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
+{
+ if (this->seen_)
+ return false;
+
+ Type* ctype;
+ if (this->type_ != NULL)
+ ctype = this->type_;
+ else
+ ctype = this->constant_->const_value()->type();
+ if (ctype != NULL && ctype->float_type() == NULL)
+ return false;
+
+ this->seen_ = true;
+
+ Type* t;
+ bool r = this->constant_->const_value()->expr()->float_constant_value(val,
+ &t);
+
+ this->seen_ = false;
+
+ if (r && ctype != NULL)
+ {
+ if (!Float_expression::check_constant(val, ctype, this->location()))
+ return false;
+ Float_expression::constrain_float(val, ctype);
+ }
+ *ptype = ctype != NULL ? ctype : t;
+ return r;
+}
+
+// Return a complex constant value.
+
+bool
+Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
+ Type **ptype) const
+{
+ if (this->seen_)
+ return false;
+
+ Type* ctype;
+ if (this->type_ != NULL)
+ ctype = this->type_;
+ else
+ ctype = this->constant_->const_value()->type();
+ if (ctype != NULL && ctype->complex_type() == NULL)
+ return false;
+
+ this->seen_ = true;
+
+ Type *t;
+ bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
+ imag,
+ &t);
+
+ this->seen_ = false;
+
+ if (r && ctype != NULL)
+ {
+ if (!Complex_expression::check_constant(real, imag, ctype,
+ this->location()))
+ return false;
+ Complex_expression::constrain_complex(real, imag, ctype);
+ }
+ *ptype = ctype != NULL ? ctype : t;
+ return r;
+}
+
+// Return the type of the const reference.
+
+Type*
+Const_expression::do_type()
+{
+ if (this->type_ != NULL)
+ return this->type_;
+
+ Named_constant* nc = this->constant_->const_value();
+
+ if (this->seen_ || nc->lowering())
+ {
+ this->report_error(_("constant refers to itself"));
+ this->type_ = Type::make_error_type();
+ return this->type_;
+ }
+
+ this->seen_ = true;
+
+ Type* ret = nc->type();
+
+ if (ret != NULL)
+ {
+ this->seen_ = false;
+ return ret;
+ }
+
+ // During parsing, a named constant may have a NULL type, but we
+ // must not return a NULL type here.
+ ret = nc->expr()->type();
+
+ this->seen_ = false;
+
+ return ret;
+}
+
+// Set the type of the const reference.
+
+void
+Const_expression::do_determine_type(const Type_context* context)
+{
+ Type* ctype = this->constant_->const_value()->type();
+ Type* cetype = (ctype != NULL
+ ? ctype
+ : this->constant_->const_value()->expr()->type());
+ if (ctype != NULL && !ctype->is_abstract())
+ ;
+ else if (context->type != NULL
+ && (context->type->integer_type() != NULL
+ || context->type->float_type() != NULL
+ || context->type->complex_type() != NULL)
+ && (cetype->integer_type() != NULL
+ || cetype->float_type() != NULL
+ || cetype->complex_type() != NULL))
+ this->type_ = context->type;
+ else if (context->type != NULL
+ && context->type->is_string_type()
+ && cetype->is_string_type())
+ this->type_ = context->type;
+ else if (context->type != NULL
+ && context->type->is_boolean_type()
+ && cetype->is_boolean_type())
+ this->type_ = context->type;
+ else if (!context->may_be_abstract)
+ {
+ if (cetype->is_abstract())
+ cetype = cetype->make_non_abstract_type();
+ this->type_ = cetype;
+ }
+}
+
+// Check for a loop in which the initializer of a constant refers to
+// the constant itself.
+
+void
+Const_expression::check_for_init_loop()
+{
+ if (this->type_ != NULL && this->type_->is_error_type())
+ return;
+
+ if (this->seen_)
+ {
+ this->report_error(_("constant refers to itself"));
+ this->type_ = Type::make_error_type();
+ return;
+ }
+
+ Expression* init = this->constant_->const_value()->expr();
+ Find_named_object find_named_object(this->constant_);
+
+ this->seen_ = true;
+ Expression::traverse(&init, &find_named_object);
+ this->seen_ = false;
+
+ if (find_named_object.found())
+ {
+ if (this->type_ == NULL || !this->type_->is_error_type())
+ {
+ this->report_error(_("constant refers to itself"));
+ this->type_ = Type::make_error_type();
+ }
+ return;
+ }
+}
+
+// Check types of a const reference.
+
+void
+Const_expression::do_check_types(Gogo*)
+{
+ if (this->type_ != NULL && this->type_->is_error_type())
+ return;
+
+ this->check_for_init_loop();
+
+ if (this->type_ == NULL || this->type_->is_abstract())
+ return;
+
+ // Check for integer overflow.
+ if (this->type_->integer_type() != NULL)
+ {
+ mpz_t ival;
+ mpz_init(ival);
+ Type* dummy;
+ if (!this->integer_constant_value(true, ival, &dummy))
+ {
+ mpfr_t fval;
+ mpfr_init(fval);
+ Expression* cexpr = this->constant_->const_value()->expr();
+ if (cexpr->float_constant_value(fval, &dummy))
+ {
+ if (!mpfr_integer_p(fval))
+ this->report_error(_("floating point constant "
+ "truncated to integer"));
+ else
+ {
+ mpfr_get_z(ival, fval, GMP_RNDN);
+ Integer_expression::check_constant(ival, this->type_,
+ this->location());
+ }
+ }
+ mpfr_clear(fval);
+ }
+ mpz_clear(ival);
+ }
+}
+
+// Return a tree for the const reference.
+
+tree
+Const_expression::do_get_tree(Translate_context* context)
+{
+ Gogo* gogo = context->gogo();
+ tree type_tree;
+ if (this->type_ == NULL)
+ type_tree = NULL_TREE;
+ else
+ {
+ type_tree = this->type_->get_tree(gogo);
+ if (type_tree == error_mark_node)
+ return error_mark_node;
+ }
+
+ // If the type has been set for this expression, but the underlying
+ // object is an abstract int or float, we try to get the abstract
+ // value. Otherwise we may lose something in the conversion.
+ if (this->type_ != NULL
+ && (this->constant_->const_value()->type() == NULL
+ || this->constant_->const_value()->type()->is_abstract()))
+ {
+ Expression* expr = this->constant_->const_value()->expr();
+ mpz_t ival;
+ mpz_init(ival);
+ Type* t;
+ if (expr->integer_constant_value(true, ival, &t))
+ {
+ tree ret = Expression::integer_constant_tree(ival, type_tree);
+ mpz_clear(ival);
+ return ret;
+ }
+ mpz_clear(ival);
+
+ mpfr_t fval;
+ mpfr_init(fval);
+ if (expr->float_constant_value(fval, &t))
+ {
+ tree ret = Expression::float_constant_tree(fval, type_tree);
+ mpfr_clear(fval);
+ return ret;
+ }
+
+ mpfr_t imag;
+ mpfr_init(imag);
+ if (expr->complex_constant_value(fval, imag, &t))
+ {
+ tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
+ mpfr_clear(fval);
+ mpfr_clear(imag);
+ return ret;
+ }
+ mpfr_clear(imag);
+ mpfr_clear(fval);
+ }
+
+ tree const_tree = this->constant_->get_tree(gogo, context->function());
+ if (this->type_ == NULL
+ || const_tree == error_mark_node
+ || TREE_TYPE(const_tree) == error_mark_node)
+ return const_tree;
+
+ tree ret;
+ if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
+ ret = fold_convert(type_tree, const_tree);
+ else if (TREE_CODE(type_tree) == INTEGER_TYPE)
+ ret = fold(convert_to_integer(type_tree, const_tree));
+ else if (TREE_CODE(type_tree) == REAL_TYPE)
+ ret = fold(convert_to_real(type_tree, const_tree));
+ else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
+ ret = fold(convert_to_complex(type_tree, const_tree));
+ else
+ gcc_unreachable();
+ return ret;
+}
+
+// Make a reference to a constant in an expression.
+
+Expression*
+Expression::make_const_reference(Named_object* constant,
+ source_location location)
+{
+ return new Const_expression(constant, location);
+}
+
+// Find a named object in an expression.
+
+int
+Find_named_object::expression(Expression** pexpr)
+{
+ switch ((*pexpr)->classification())
+ {
+ case Expression::EXPRESSION_CONST_REFERENCE:
+ {
+ Const_expression* ce = static_cast<Const_expression*>(*pexpr);
+ if (ce->named_object() == this->no_)
+ break;
+
+ // We need to check a constant initializer explicitly, as
+ // loops here will not be caught by the loop checking for
+ // variable initializers.
+ ce->check_for_init_loop();
+
+ return TRAVERSE_CONTINUE;
+ }
+
+ case Expression::EXPRESSION_VAR_REFERENCE:
+ if ((*pexpr)->var_expression()->named_object() == this->no_)
+ break;
+ return TRAVERSE_CONTINUE;
+ case Expression::EXPRESSION_FUNC_REFERENCE:
+ if ((*pexpr)->func_expression()->named_object() == this->no_)
+ break;
+ return TRAVERSE_CONTINUE;
+ default:
+ return TRAVERSE_CONTINUE;
+ }
+ this->found_ = true;
+ return TRAVERSE_EXIT;
+}
+
+// The nil value.
+
+class Nil_expression : public Expression
+{
+ public:
+ Nil_expression(source_location location)
+ : Expression(EXPRESSION_NIL, location)
+ { }
+
+ static Expression*
+ do_import(Import*);
+
+ protected:
+ bool
+ do_is_constant() const
+ { return true; }
+
+ Type*
+ do_type()
+ { return Type::make_nil_type(); }
+
+ void
+ do_determine_type(const Type_context*)
+ { }
+
+ Expression*
+ do_copy()
+ { return this; }
+
+ tree
+ do_get_tree(Translate_context*)
+ { return null_pointer_node; }
+
+ void
+ do_export(Export* exp) const
+ { exp->write_c_string("nil"); }
+};
+
+// Import a nil expression.
+
+Expression*
+Nil_expression::do_import(Import* imp)
+{
+ imp->require_c_string("nil");
+ return Expression::make_nil(imp->location());
+}
+
+// Make a nil expression.
+
+Expression*
+Expression::make_nil(source_location location)
+{
+ return new Nil_expression(location);
+}
+
+// The value of the predeclared constant iota. This is little more
+// than a marker. This will be lowered to an integer in
+// Const_expression::do_lower, which is where we know the value that
+// it should have.
+
+class Iota_expression : public Parser_expression
+{
+ public:
+ Iota_expression(source_location location)
+ : Parser_expression(EXPRESSION_IOTA, location)
+ { }
+
+ protected:
+ Expression*
+ do_lower(Gogo*, Named_object*, int)
+ { gcc_unreachable(); }
+
+ // There should only ever be one of these.
+ Expression*
+ do_copy()
+ { gcc_unreachable(); }
+};
+
+// Make an iota expression. This is only called for one case: the
+// value of the predeclared constant iota.
+
+Expression*
+Expression::make_iota()
+{
+ static Iota_expression iota_expression(UNKNOWN_LOCATION);
+ return &iota_expression;
+}
+
+// A type conversion expression.
+
+class Type_conversion_expression : public Expression
+{
+ public:
+ Type_conversion_expression(Type* type, Expression* expr,
+ source_location location)
+ : Expression(EXPRESSION_CONVERSION, location),
+ type_(type), expr_(expr), may_convert_function_types_(false)
+ { }
+
+ // Return the type to which we are converting.
+ Type*
+ type() const
+ { return this->type_; }
+
+ // Return the expression which we are converting.
+ Expression*
+ expr() const
+ { return this->expr_; }
+
+ // Permit converting from one function type to another. This is
+ // used internally for method expressions.
+ void
+ set_may_convert_function_types()
+ {
+ this->may_convert_function_types_ = true;
+ }
+
+ // Import a type conversion expression.
+ static Expression*
+ do_import(Import*);
+
+ protected:
+ int
+ do_traverse(Traverse* traverse);
+
+ Expression*
+ do_lower(Gogo*, Named_object*, int);
+
+ bool
+ do_is_constant() const
+ { return this->expr_->is_constant(); }
+
+ bool
+ do_integer_constant_value(bool, mpz_t, Type**) const;
+
+ bool
+ do_float_constant_value(mpfr_t, Type**) const;
+
+ bool
+ do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
+
+ bool
+ do_string_constant_value(std::string*) const;
+
+ Type*
+ do_type()
+ { return this->type_; }
+
+ void
+ do_determine_type(const Type_context*)
+ {
+ Type_context subcontext(this->type_, false);
+ this->expr_->determine_type(&subcontext);
+ }
+
+ void
+ do_check_types(Gogo*);
+
+ Expression*
+ do_copy()
+ {
+ return new Type_conversion_expression(this->type_, this->expr_->copy(),
+ this->location());
+ }
+
+ tree
+ do_get_tree(Translate_context* context);
+
+ void
+ do_export(Export*) const;
+
+ private:
+ // The type to convert to.
+ Type* type_;
+ // The expression to convert.
+ Expression* expr_;
+ // True if this is permitted to convert function types. This is
+ // used internally for method expressions.
+ bool may_convert_function_types_;
+};
+
+// Traversal.
+
+int
+Type_conversion_expression::do_traverse(Traverse* traverse)
+{
+ if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
+ || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ return TRAVERSE_CONTINUE;
+}
+
+// Convert to a constant at lowering time.
+
+Expression*
+Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
+{
+ Type* type = this->type_;
+ Expression* val = this->expr_;
+ source_location location = this->location();
+
+ if (type->integer_type() != NULL)
+ {
+ mpz_t ival;
+ mpz_init(ival);
+ Type* dummy;
+ if (val->integer_constant_value(false, ival, &dummy))
+ {
+ if (!Integer_expression::check_constant(ival, type, location))
+ mpz_set_ui(ival, 0);
+ Expression* ret = Expression::make_integer(&ival, type, location);
+ mpz_clear(ival);
+ return ret;
+ }
+
+ mpfr_t fval;
+ mpfr_init(fval);
+ if (val->float_constant_value(fval, &dummy))
+ {
+ if (!mpfr_integer_p(fval))
+ {
+ error_at(location,
+ "floating point constant truncated to integer");
+ return Expression::make_error(location);
+ }
+ mpfr_get_z(ival, fval, GMP_RNDN);
+ if (!Integer_expression::check_constant(ival, type, location))
+ mpz_set_ui(ival, 0);
+ Expression* ret = Expression::make_integer(&ival, type, location);
+ mpfr_clear(fval);
+ mpz_clear(ival);
+ return ret;
+ }
+ mpfr_clear(fval);
+ mpz_clear(ival);
+ }
+
+ if (type->float_type() != NULL)
+ {
+ mpfr_t fval;
+ mpfr_init(fval);
+ Type* dummy;
+ if (val->float_constant_value(fval, &dummy))
+ {
+ if (!Float_expression::check_constant(fval, type, location))
+ mpfr_set_ui(fval, 0, GMP_RNDN);
+ Float_expression::constrain_float(fval, type);
+ Expression *ret = Expression::make_float(&fval, type, location);
+ mpfr_clear(fval);
+ return ret;
+ }
+ mpfr_clear(fval);
+ }
+
+ if (type->complex_type() != NULL)
+ {
+ mpfr_t real;
+ mpfr_t imag;
+ mpfr_init(real);
+ mpfr_init(imag);
+ Type* dummy;
+ if (val->complex_constant_value(real, imag, &dummy))
+ {
+ if (!Complex_expression::check_constant(real, imag, type, location))
+ {
+ mpfr_set_ui(real, 0, GMP_RNDN);
+ mpfr_set_ui(imag, 0, GMP_RNDN);
+ }
+ Complex_expression::constrain_complex(real, imag, type);
+ Expression* ret = Expression::make_complex(&real, &imag, type,
+ location);
+ mpfr_clear(real);
+ mpfr_clear(imag);
+ return ret;
+ }
+ mpfr_clear(real);
+ mpfr_clear(imag);
+ }
+
+ if (type->is_open_array_type() && type->named_type() == NULL)
+ {
+ Type* element_type = type->array_type()->element_type()->forwarded();
+ bool is_byte = element_type == Type::lookup_integer_type("uint8");
+ bool is_int = element_type == Type::lookup_integer_type("int");
+ if (is_byte || is_int)
+ {
+ std::string s;
+ if (val->string_constant_value(&s))
+ {
+ Expression_list* vals = new Expression_list();
+ if (is_byte)
+ {
+ for (std::string::const_iterator p = s.begin();
+ p != s.end();
+ p++)
+ {
+ mpz_t val;
+ mpz_init_set_ui(val, static_cast<unsigned char>(*p));
+ Expression* v = Expression::make_integer(&val,
+ element_type,
+ location);
+ vals->push_back(v);
+ mpz_clear(val);
+ }
+ }
+ else
+ {
+ const char *p = s.data();
+ const char *pend = s.data() + s.length();
+ while (p < pend)
+ {
+ unsigned int c;
+ int adv = Lex::fetch_char(p, &c);
+ if (adv == 0)
+ {
+ warning_at(this->location(), 0,
+ "invalid UTF-8 encoding");
+ adv = 1;
+ }
+ p += adv;
+ mpz_t val;
+ mpz_init_set_ui(val, c);
+ Expression* v = Expression::make_integer(&val,
+ element_type,
+ location);
+ vals->push_back(v);
+ mpz_clear(val);
+ }
+ }
+
+ return Expression::make_slice_composite_literal(type, vals,
+ location);
+ }
+ }
+ }
+
+ return this;
+}
+
+// Return the constant integer value if there is one.
+
+bool
+Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
+ mpz_t val,
+ Type** ptype) const
+{
+ if (this->type_->integer_type() == NULL)
+ return false;
+
+ mpz_t ival;
+ mpz_init(ival);
+ Type* dummy;
+ if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
+ {
+ if (!Integer_expression::check_constant(ival, this->type_,
+ this->location()))
+ {
+ mpz_clear(ival);
+ return false;
+ }
+ mpz_set(val, ival);
+ mpz_clear(ival);
+ *ptype = this->type_;
+ return true;
+ }
+ mpz_clear(ival);
+
+ mpfr_t fval;
+ mpfr_init(fval);
+ if (this->expr_->float_constant_value(fval, &dummy))
+ {
+ mpfr_get_z(val, fval, GMP_RNDN);
+ mpfr_clear(fval);
+ if (!Integer_expression::check_constant(val, this->type_,
+ this->location()))
+ return false;
+ *ptype = this->type_;
+ return true;
+ }
+ mpfr_clear(fval);
+
+ return false;
+}
+
+// Return the constant floating point value if there is one.
+
+bool
+Type_conversion_expression::do_float_constant_value(mpfr_t val,
+ Type** ptype) const
+{
+ if (this->type_->float_type() == NULL)
+ return false;
+
+ mpfr_t fval;
+ mpfr_init(fval);
+ Type* dummy;
+ if (this->expr_->float_constant_value(fval, &dummy))
+ {
+ if (!Float_expression::check_constant(fval, this->type_,
+ this->location()))
+ {
+ mpfr_clear(fval);
+ return false;
+ }
+ mpfr_set(val, fval, GMP_RNDN);
+ mpfr_clear(fval);
+ Float_expression::constrain_float(val, this->type_);
+ *ptype = this->type_;
+ return true;
+ }
+ mpfr_clear(fval);
+
+ return false;
+}
+
+// Return the constant complex value if there is one.
+
+bool
+Type_conversion_expression::do_complex_constant_value(mpfr_t real,
+ mpfr_t imag,
+ Type **ptype) const
+{
+ if (this->type_->complex_type() == NULL)
+ return false;
+
+ mpfr_t rval;
+ mpfr_t ival;
+ mpfr_init(rval);
+ mpfr_init(ival);
+ Type* dummy;
+ if (this->expr_->complex_constant_value(rval, ival, &dummy))
+ {
+ if (!Complex_expression::check_constant(rval, ival, this->type_,
+ this->location()))
+ {
+ mpfr_clear(rval);
+ mpfr_clear(ival);
+ return false;
+ }
+ mpfr_set(real, rval, GMP_RNDN);
+ mpfr_set(imag, ival, GMP_RNDN);
+ mpfr_clear(rval);
+ mpfr_clear(ival);
+ Complex_expression::constrain_complex(real, imag, this->type_);
+ *ptype = this->type_;
+ return true;
+ }
+ mpfr_clear(rval);
+ mpfr_clear(ival);
+
+ return false;
+}
+
+// Return the constant string value if there is one.
+
+bool
+Type_conversion_expression::do_string_constant_value(std::string* val) const
+{
+ if (this->type_->is_string_type()
+ && this->expr_->type()->integer_type() != NULL)
+ {
+ mpz_t ival;
+ mpz_init(ival);
+ Type* dummy;
+ if (this->expr_->integer_constant_value(false, ival, &dummy))
+ {
+ unsigned long ulval = mpz_get_ui(ival);
+ if (mpz_cmp_ui(ival, ulval) == 0)
+ {
+ Lex::append_char(ulval, true, val, this->location());
+ mpz_clear(ival);
+ return true;
+ }
+ }
+ mpz_clear(ival);
+ }
+
+ // FIXME: Could handle conversion from const []int here.
+
+ return false;
+}
+
+// Check that types are convertible.
+
+void
+Type_conversion_expression::do_check_types(Gogo*)
+{
+ Type* type = this->type_;
+ Type* expr_type = this->expr_->type();
+ std::string reason;
+
+ if (type->is_error_type()
+ || type->is_undefined()
+ || expr_type->is_error_type()
+ || expr_type->is_undefined())
+ {
+ // Make sure we emit an error for an undefined type.
+ type->base();
+ expr_type->base();
+ this->set_is_error();
+ return;
+ }
+
+ if (this->may_convert_function_types_
+ && type->function_type() != NULL
+ && expr_type->function_type() != NULL)
+ return;
+
+ if (Type::are_convertible(type, expr_type, &reason))
+ return;
+
+ error_at(this->location(), "%s", reason.c_str());
+ this->set_is_error();
+}
+
+// Get a tree for a type conversion.
+
+tree
+Type_conversion_expression::do_get_tree(Translate_context* context)
+{
+ Gogo* gogo = context->gogo();
+ tree type_tree = this->type_->get_tree(gogo);
+ tree expr_tree = this->expr_->get_tree(context);
+
+ if (type_tree == error_mark_node
+ || expr_tree == error_mark_node
+ || TREE_TYPE(expr_tree) == error_mark_node)
+ return error_mark_node;
+
+ if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
+ return fold_convert(type_tree, expr_tree);
+
+ Type* type = this->type_;
+ Type* expr_type = this->expr_->type();
+ tree ret;
+ if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
+ ret = Expression::convert_for_assignment(context, type, expr_type,
+ expr_tree, this->location());
+ else if (type->integer_type() != NULL)
+ {
+ if (expr_type->integer_type() != NULL
+ || expr_type->float_type() != NULL
+ || expr_type->is_unsafe_pointer_type())
+ ret = fold(convert_to_integer(type_tree, expr_tree));
+ else
+ gcc_unreachable();
+ }
+ else if (type->float_type() != NULL)
+ {
+ if (expr_type->integer_type() != NULL
+ || expr_type->float_type() != NULL)
+ ret = fold(convert_to_real(type_tree, expr_tree));
+ else
+ gcc_unreachable();
+ }
+ else if (type->complex_type() != NULL)
+ {
+ if (expr_type->complex_type() != NULL)
+ ret = fold(convert_to_complex(type_tree, expr_tree));
+ else
+ gcc_unreachable();
+ }
+ else if (type->is_string_type()
+ && expr_type->integer_type() != NULL)
+ {
+ expr_tree = fold_convert(integer_type_node, expr_tree);
+ if (host_integerp(expr_tree, 0))
+ {
+ HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
+ std::string s;
+ Lex::append_char(intval, true, &s, this->location());
+ Expression* se = Expression::make_string(s, this->location());
+ return se->get_tree(context);
+ }
+
+ static tree int_to_string_fndecl;
+ ret = Gogo::call_builtin(&int_to_string_fndecl,
+ this->location(),
+ "__go_int_to_string",
+ 1,
+ type_tree,
+ integer_type_node,
+ fold_convert(integer_type_node, expr_tree));
+ }
+ else if (type->is_string_type()
+ && (expr_type->array_type() != NULL
+ || (expr_type->points_to() != NULL
+ && expr_type->points_to()->array_type() != NULL)))
+ {
+ Type* t = expr_type;
+ if (t->points_to() != NULL)
+ {
+ t = t->points_to();
+ expr_tree = build_fold_indirect_ref(expr_tree);
+ }
+ if (!DECL_P(expr_tree))
+ expr_tree = save_expr(expr_tree);
+ Array_type* a = t->array_type();
+ Type* e = a->element_type()->forwarded();
+ gcc_assert(e->integer_type() != NULL);
+ tree valptr = fold_convert(const_ptr_type_node,
+ a->value_pointer_tree(gogo, expr_tree));
+ tree len = a->length_tree(gogo, expr_tree);
+ len = fold_convert_loc(this->location(), size_type_node, len);
+ if (e->integer_type()->is_unsigned()
+ && e->integer_type()->bits() == 8)
+ {
+ static tree byte_array_to_string_fndecl;
+ ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
+ this->location(),
+ "__go_byte_array_to_string",
+ 2,
+ type_tree,
+ const_ptr_type_node,
+ valptr,
+ size_type_node,
+ len);
+ }
+ else
+ {
+ gcc_assert(e == Type::lookup_integer_type("int"));
+ static tree int_array_to_string_fndecl;
+ ret = Gogo::call_builtin(&int_array_to_string_fndecl,
+ this->location(),
+ "__go_int_array_to_string",
+ 2,
+ type_tree,
+ const_ptr_type_node,
+ valptr,
+ size_type_node,
+ len);
+ }
+ }
+ else if (type->is_open_array_type() && expr_type->is_string_type())
+ {
+ Type* e = type->array_type()->element_type()->forwarded();
+ gcc_assert(e->integer_type() != NULL);
+ if (e->integer_type()->is_unsigned()
+ && e->integer_type()->bits() == 8)
+ {
+ static tree string_to_byte_array_fndecl;
+ ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
+ this->location(),
+ "__go_string_to_byte_array",
+ 1,
+ type_tree,
+ TREE_TYPE(expr_tree),
+ expr_tree);
+ }
+ else
+ {
+ gcc_assert(e == Type::lookup_integer_type("int"));
+ static tree string_to_int_array_fndecl;
+ ret = Gogo::call_builtin(&string_to_int_array_fndecl,
+ this->location(),
+ "__go_string_to_int_array",
+ 1,
+ type_tree,
+ TREE_TYPE(expr_tree),
+ expr_tree);
+ }
+ }
+ else if ((type->is_unsafe_pointer_type()
+ && expr_type->points_to() != NULL)
+ || (expr_type->is_unsafe_pointer_type()
+ && type->points_to() != NULL))
+ ret = fold_convert(type_tree, expr_tree);
+ else if (type->is_unsafe_pointer_type()
+ && expr_type->integer_type() != NULL)
+ ret = convert_to_pointer(type_tree, expr_tree);
+ else if (this->may_convert_function_types_
+ && type->function_type() != NULL
+ && expr_type->function_type() != NULL)
+ ret = fold_convert_loc(this->location(), type_tree, expr_tree);
+ else
+ ret = Expression::convert_for_assignment(context, type, expr_type,
+ expr_tree, this->location());
+
+ return ret;
+}
+
+// Output a type conversion in a constant expression.
+
+void
+Type_conversion_expression::do_export(Export* exp) const
+{
+ exp->write_c_string("convert(");
+ exp->write_type(this->type_);
+ exp->write_c_string(", ");
+ this->expr_->export_expression(exp);
+ exp->write_c_string(")");
+}
+
+// Import a type conversion or a struct construction.
+
+Expression*
+Type_conversion_expression::do_import(Import* imp)
+{
+ imp->require_c_string("convert(");
+ Type* type = imp->read_type();
+ imp->require_c_string(", ");
+ Expression* val = Expression::import_expression(imp);
+ imp->require_c_string(")");
+ return Expression::make_cast(type, val, imp->location());
+}
+
+// Make a type cast expression.
+
+Expression*
+Expression::make_cast(Type* type, Expression* val, source_location location)
+{
+ if (type->is_error_type() || val->is_error_expression())
+ return Expression::make_error(location);
+ return new Type_conversion_expression(type, val, location);
+}
+
+// Unary expressions.
+
+class Unary_expression : public Expression
+{
+ public:
+ Unary_expression(Operator op, Expression* expr, source_location location)
+ : Expression(EXPRESSION_UNARY, location),
+ op_(op), escapes_(true), expr_(expr)
+ { }
+
+ // Return the operator.
+ Operator
+ op() const
+ { return this->op_; }
+
+ // Return the operand.
+ Expression*
+ operand() const
+ { return this->expr_; }
+
+ // Record that an address expression does not escape.
+ void
+ set_does_not_escape()
+ {
+ gcc_assert(this->op_ == OPERATOR_AND);
+ this->escapes_ = false;
+ }
+
+ // Apply unary opcode OP to UVAL, setting VAL. Return true if this
+ // could be done, false if not.
+ static bool
+ eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
+ source_location);
+
+ // Apply unary opcode OP to UVAL, setting VAL. Return true if this
+ // could be done, false if not.
+ static bool
+ eval_float(Operator op, mpfr_t uval, mpfr_t val);
+
+ // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
+ // true if this could be done, false if not.
+ static bool
+ eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
+ mpfr_t imag);
+
+ static Expression*
+ do_import(Import*);
+
+ protected:
+ int
+ do_traverse(Traverse* traverse)
+ { return Expression::traverse(&this->expr_, traverse); }
+
+ Expression*
+ do_lower(Gogo*, Named_object*, int);
+
+ bool
+ do_is_constant() const;
+
+ bool
+ do_integer_constant_value(bool, mpz_t, Type**) const;
+
+ bool
+ do_float_constant_value(mpfr_t, Type**) const;
+
+ bool
+ do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
+
+ Type*
+ do_type();
+
+ void
+ do_determine_type(const Type_context*);
+
+ void
+ do_check_types(Gogo*);
+
+ Expression*
+ do_copy()
+ {
+ return Expression::make_unary(this->op_, this->expr_->copy(),
+ this->location());
+ }
+
+ bool
+ do_is_addressable() const
+ { return this->op_ == OPERATOR_MULT; }
+
+ tree
+ do_get_tree(Translate_context*);
+
+ void
+ do_export(Export*) const;
+
+ private:
+ // The unary operator to apply.
+ Operator op_;
+ // Normally true. False if this is an address expression which does
+ // not escape the current function.
+ bool escapes_;
+ // The operand.
+ Expression* expr_;
+};
+
+// If we are taking the address of a composite literal, and the
+// contents are not constant, then we want to make a heap composite
+// instead.
+
+Expression*
+Unary_expression::do_lower(Gogo*, Named_object*, int)
+{
+ source_location loc = this->location();
+ Operator op = this->op_;
+ Expression* expr = this->expr_;
+
+ if (op == OPERATOR_MULT && expr->is_type_expression())
+ return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
+
+ // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
+ // moving x to the heap. FIXME: Is it worth doing a real escape
+ // analysis here? This case is found in math/unsafe.go and is
+ // therefore worth special casing.
+ if (op == OPERATOR_MULT)
+ {
+ Expression* e = expr;
+ while (e->classification() == EXPRESSION_CONVERSION)
+ {
+ Type_conversion_expression* te
+ = static_cast<Type_conversion_expression*>(e);
+ e = te->expr();
+ }
+
+ if (e->classification() == EXPRESSION_UNARY)
+ {
+ Unary_expression* ue = static_cast<Unary_expression*>(e);
+ if (ue->op_ == OPERATOR_AND)
+ {
+ if (e == expr)
+ {
+ // *&x == x.
+ return ue->expr_;
+ }
+ ue->set_does_not_escape();
+ }
+ }
+ }
+
+ if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
+ || op == OPERATOR_NOT || op == OPERATOR_XOR)
+ {
+ Expression* ret = NULL;
+
+ mpz_t eval;
+ mpz_init(eval);
+ Type* etype;
+ if (expr->integer_constant_value(false, eval, &etype))
+ {
+ mpz_t val;
+ mpz_init(val);
+ if (Unary_expression::eval_integer(op, etype, eval, val, loc))
+ ret = Expression::make_integer(&val, etype, loc);
+ mpz_clear(val);
+ }
+ mpz_clear(eval);
+ if (ret != NULL)
+ return ret;
+
+ if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
+ {
+ mpfr_t fval;
+ mpfr_init(fval);
+ Type* ftype;
+ if (expr->float_constant_value(fval, &ftype))
+ {
+ mpfr_t val;
+ mpfr_init(val);
+ if (Unary_expression::eval_float(op, fval, val))
+ ret = Expression::make_float(&val, ftype, loc);
+ mpfr_clear(val);
+ }
+ if (ret != NULL)
+ {
+ mpfr_clear(fval);
+ return ret;
+ }
+
+ mpfr_t ival;
+ mpfr_init(ival);
+ if (expr->complex_constant_value(fval, ival, &ftype))
+ {
+ mpfr_t real;
+ mpfr_t imag;
+ mpfr_init(real);
+ mpfr_init(imag);
+ if (Unary_expression::eval_complex(op, fval, ival, real, imag))
+ ret = Expression::make_complex(&real, &imag, ftype, loc);
+ mpfr_clear(real);
+ mpfr_clear(imag);
+ }
+ mpfr_clear(ival);
+ mpfr_clear(fval);
+ if (ret != NULL)
+ return ret;
+ }
+ }
+
+ return this;
+}
+
+// Return whether a unary expression is a constant.
+
+bool
+Unary_expression::do_is_constant() const
+{
+ if (this->op_ == OPERATOR_MULT)
+ {
+ // Indirecting through a pointer is only constant if the object
+ // to which the expression points is constant, but we currently
+ // have no way to determine that.
+ return false;
+ }
+ else if (this->op_ == OPERATOR_AND)
+ {
+ // Taking the address of a variable is constant if it is a
+ // global variable, not constant otherwise. In other cases
+ // taking the address is probably not a constant.
+ Var_expression* ve = this->expr_->var_expression();
+ if (ve != NULL)
+ {
+ Named_object* no = ve->named_object();
+ return no->is_variable() && no->var_value()->is_global();
+ }
+ return false;
+ }
+ else
+ return this->expr_->is_constant();
+}
+
+// Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
+// UVAL, if known; it may be NULL. Return true if this could be done,
+// false if not.
+
+bool
+Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
+ source_location location)
+{
+ switch (op)
+ {
+ case OPERATOR_PLUS:
+ mpz_set(val, uval);
+ return true;
+ case OPERATOR_MINUS:
+ mpz_neg(val, uval);
+ return Integer_expression::check_constant(val, utype, location);
+ case OPERATOR_NOT:
+ mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
+ return true;
+ case OPERATOR_XOR:
+ if (utype == NULL
+ || utype->integer_type() == NULL
+ || utype->integer_type()->is_abstract())
+ mpz_com(val, uval);
+ else
+ {
+ // The number of HOST_WIDE_INTs that it takes to represent
+ // UVAL.
+ size_t count = ((mpz_sizeinbase(uval, 2)
+ + HOST_BITS_PER_WIDE_INT
+ - 1)
+ / HOST_BITS_PER_WIDE_INT);
+
+ unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
+ memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
+
+ size_t ecount;
+ mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
+ gcc_assert(ecount <= count);
+
+ // Trim down to the number of words required by the type.
+ size_t obits = utype->integer_type()->bits();
+ if (!utype->integer_type()->is_unsigned())
+ ++obits;
+ size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
+ / HOST_BITS_PER_WIDE_INT);
+ gcc_assert(ocount <= ocount);
+
+ for (size_t i = 0; i < ocount; ++i)
+ phwi[i] = ~phwi[i];
+
+ size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
+ if (clearbits != 0)
+ phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
+ >> clearbits);
+
+ mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
+
+ delete[] phwi;
+ }
+ return Integer_expression::check_constant(val, utype, location);
+ case OPERATOR_AND:
+ case OPERATOR_MULT:
+ return false;
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Apply unary opcode OP to UVAL, setting VAL. Return true if this
+// could be done, false if not.
+
+bool
+Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
+{
+ switch (op)
+ {
+ case OPERATOR_PLUS:
+ mpfr_set(val, uval, GMP_RNDN);
+ return true;
+ case OPERATOR_MINUS:
+ mpfr_neg(val, uval, GMP_RNDN);
+ return true;
+ case OPERATOR_NOT:
+ case OPERATOR_XOR:
+ case OPERATOR_AND:
+ case OPERATOR_MULT:
+ return false;
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
+// if this could be done, false if not.
+
+bool
+Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
+ mpfr_t real, mpfr_t imag)
+{
+ switch (op)
+ {
+ case OPERATOR_PLUS:
+ mpfr_set(real, rval, GMP_RNDN);
+ mpfr_set(imag, ival, GMP_RNDN);
+ return true;
+ case OPERATOR_MINUS:
+ mpfr_neg(real, rval, GMP_RNDN);
+ mpfr_neg(imag, ival, GMP_RNDN);
+ return true;
+ case OPERATOR_NOT:
+ case OPERATOR_XOR:
+ case OPERATOR_AND:
+ case OPERATOR_MULT:
+ return false;
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Return the integral constant value of a unary expression, if it has one.
+
+bool
+Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
+ Type** ptype) const
+{
+ mpz_t uval;
+ mpz_init(uval);
+ bool ret;
+ if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
+ ret = false;
+ else
+ ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
+ this->location());
+ mpz_clear(uval);
+ return ret;
+}
+
+// Return the floating point constant value of a unary expression, if
+// it has one.
+
+bool
+Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
+{
+ mpfr_t uval;
+ mpfr_init(uval);
+ bool ret;
+ if (!this->expr_->float_constant_value(uval, ptype))
+ ret = false;
+ else
+ ret = Unary_expression::eval_float(this->op_, uval, val);
+ mpfr_clear(uval);
+ return ret;
+}
+
+// Return the complex constant value of a unary expression, if it has
+// one.
+
+bool
+Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
+ Type** ptype) const
+{
+ mpfr_t rval;
+ mpfr_t ival;
+ mpfr_init(rval);
+ mpfr_init(ival);
+ bool ret;
+ if (!this->expr_->complex_constant_value(rval, ival, ptype))
+ ret = false;
+ else
+ ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
+ mpfr_clear(rval);
+ mpfr_clear(ival);
+ return ret;
+}
+
+// Return the type of a unary expression.
+
+Type*
+Unary_expression::do_type()
+{
+ switch (this->op_)
+ {
+ case OPERATOR_PLUS:
+ case OPERATOR_MINUS:
+ case OPERATOR_NOT:
+ case OPERATOR_XOR:
+ return this->expr_->type();
+
+ case OPERATOR_AND:
+ return Type::make_pointer_type(this->expr_->type());
+
+ case OPERATOR_MULT:
+ {
+ Type* subtype = this->expr_->type();
+ Type* points_to = subtype->points_to();
+ if (points_to == NULL)
+ return Type::make_error_type();
+ return points_to;
+ }
+
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Determine abstract types for a unary expression.
+
+void
+Unary_expression::do_determine_type(const Type_context* context)
+{
+ switch (this->op_)
+ {
+ case OPERATOR_PLUS:
+ case OPERATOR_MINUS:
+ case OPERATOR_NOT:
+ case OPERATOR_XOR:
+ this->expr_->determine_type(context);
+ break;
+
+ case OPERATOR_AND:
+ // Taking the address of something.
+ {
+ Type* subtype = (context->type == NULL
+ ? NULL
+ : context->type->points_to());
+ Type_context subcontext(subtype, false);
+ this->expr_->determine_type(&subcontext);
+ }
+ break;
+
+ case OPERATOR_MULT:
+ // Indirecting through a pointer.
+ {
+ Type* subtype = (context->type == NULL
+ ? NULL
+ : Type::make_pointer_type(context->type));
+ Type_context subcontext(subtype, false);
+ this->expr_->determine_type(&subcontext);
+ }
+ break;
+
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Check types for a unary expression.
+
+void
+Unary_expression::do_check_types(Gogo*)
+{
+ Type* type = this->expr_->type();
+ if (type->is_error_type())
+ {
+ this->set_is_error();
+ return;
+ }
+
+ switch (this->op_)
+ {
+ case OPERATOR_PLUS:
+ case OPERATOR_MINUS:
+ if (type->integer_type() == NULL
+ && type->float_type() == NULL
+ && type->complex_type() == NULL)
+ this->report_error(_("expected numeric type"));
+ break;
+
+ case OPERATOR_NOT:
+ case OPERATOR_XOR:
+ if (type->integer_type() == NULL
+ && !type->is_boolean_type())
+ this->report_error(_("expected integer or boolean type"));
+ break;
+
+ case OPERATOR_AND:
+ if (!this->expr_->is_addressable())
+ this->report_error(_("invalid operand for unary %<&%>"));
+ else
+ this->expr_->address_taken(this->escapes_);
+ break;
+
+ case OPERATOR_MULT:
+ // Indirecting through a pointer.
+ if (type->points_to() == NULL)
+ this->report_error(_("expected pointer"));
+ break;
+
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Get a tree for a unary expression.
+
+tree
+Unary_expression::do_get_tree(Translate_context* context)
+{
+ tree expr = this->expr_->get_tree(context);
+ if (expr == error_mark_node)
+ return error_mark_node;
+
+ source_location loc = this->location();
+ switch (this->op_)
+ {
+ case OPERATOR_PLUS:
+ return expr;
+
+ case OPERATOR_MINUS:
+ {
+ tree type = TREE_TYPE(expr);
+ tree compute_type = excess_precision_type(type);
+ if (compute_type != NULL_TREE)
+ expr = ::convert(compute_type, expr);
+ tree ret = fold_build1_loc(loc, NEGATE_EXPR,
+ (compute_type != NULL_TREE
+ ? compute_type
+ : type),
+ expr);
+ if (compute_type != NULL_TREE)
+ ret = ::convert(type, ret);
+ return ret;
+ }
+
+ case OPERATOR_NOT:
+ if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
+ return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
+ else
+ return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
+ build_int_cst(TREE_TYPE(expr), 0));
+
+ case OPERATOR_XOR:
+ return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
+
+ case OPERATOR_AND:
+ // We should not see a non-constant constructor here; cases
+ // where we would see one should have been moved onto the heap
+ // at parse time. Taking the address of a nonconstant
+ // constructor will not do what the programmer expects.
+ gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
+ gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
+
+ // Build a decl for a constant constructor.
+ if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
+ {
+ tree decl = build_decl(this->location(), VAR_DECL,
+ create_tmp_var_name("C"), TREE_TYPE(expr));
+ DECL_EXTERNAL(decl) = 0;
+ TREE_PUBLIC(decl) = 0;
+ TREE_READONLY(decl) = 1;
+ TREE_CONSTANT(decl) = 1;
+ TREE_STATIC(decl) = 1;
+ TREE_ADDRESSABLE(decl) = 1;
+ DECL_ARTIFICIAL(decl) = 1;
+ DECL_INITIAL(decl) = expr;
+ rest_of_decl_compilation(decl, 1, 0);
+ expr = decl;
+ }
+
+ return build_fold_addr_expr_loc(loc, expr);
+
+ case OPERATOR_MULT:
+ {
+ gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
+
+ // If we are dereferencing the pointer to a large struct, we
+ // need to check for nil. We don't bother to check for small
+ // structs because we expect the system to crash on a nil
+ // pointer dereference.
+ HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
+ if (s == -1 || s >= 4096)
+ {
+ if (!DECL_P(expr))
+ expr = save_expr(expr);
+ tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
+ expr,
+ fold_convert(TREE_TYPE(expr),
+ null_pointer_node));
+ tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
+ loc);
+ expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
+ build3(COND_EXPR, void_type_node,
+ compare, crash, NULL_TREE),
+ expr);
+ }
+
+ // If the type of EXPR is a recursive pointer type, then we
+ // need to insert a cast before indirecting.
+ if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
+ {
+ Type* pt = this->expr_->type()->points_to();
+ tree ind = pt->get_tree(context->gogo());
+ expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
+ }
+
+ return build_fold_indirect_ref_loc(loc, expr);
+ }
+
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Export a unary expression.
+
+void
+Unary_expression::do_export(Export* exp) const
+{
+ switch (this->op_)
+ {
+ case OPERATOR_PLUS:
+ exp->write_c_string("+ ");
+ break;
+ case OPERATOR_MINUS:
+ exp->write_c_string("- ");
+ break;
+ case OPERATOR_NOT:
+ exp->write_c_string("! ");
+ break;
+ case OPERATOR_XOR:
+ exp->write_c_string("^ ");
+ break;
+ case OPERATOR_AND:
+ case OPERATOR_MULT:
+ default:
+ gcc_unreachable();
+ }
+ this->expr_->export_expression(exp);
+}
+
+// Import a unary expression.
+
+Expression*
+Unary_expression::do_import(Import* imp)
+{
+ Operator op;
+ switch (imp->get_char())
+ {
+ case '+':
+ op = OPERATOR_PLUS;
+ break;
+ case '-':
+ op = OPERATOR_MINUS;
+ break;
+ case '!':
+ op = OPERATOR_NOT;
+ break;
+ case '^':
+ op = OPERATOR_XOR;
+ break;
+ default:
+ gcc_unreachable();
+ }
+ imp->require_c_string(" ");
+ Expression* expr = Expression::import_expression(imp);
+ return Expression::make_unary(op, expr, imp->location());
+}
+
+// Make a unary expression.
+
+Expression*
+Expression::make_unary(Operator op, Expression* expr, source_location location)
+{
+ return new Unary_expression(op, expr, location);
+}
+
+// If this is an indirection through a pointer, return the expression
+// being pointed through. Otherwise return this.
+
+Expression*
+Expression::deref()
+{
+ if (this->classification_ == EXPRESSION_UNARY)
+ {
+ Unary_expression* ue = static_cast<Unary_expression*>(this);
+ if (ue->op() == OPERATOR_MULT)
+ return ue->operand();
+ }
+ return this;
+}
+
+// Class Binary_expression.
+
+// Traversal.
+
+int
+Binary_expression::do_traverse(Traverse* traverse)
+{
+ int t = Expression::traverse(&this->left_, traverse);
+ if (t == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ return Expression::traverse(&this->right_, traverse);
+}
+
+// Compare integer constants according to OP.
+
+bool
+Binary_expression::compare_integer(Operator op, mpz_t left_val,
+ mpz_t right_val)
+{
+ int i = mpz_cmp(left_val, right_val);
+ switch (op)
+ {
+ case OPERATOR_EQEQ:
+ return i == 0;
+ case OPERATOR_NOTEQ:
+ return i != 0;
+ case OPERATOR_LT:
+ return i < 0;
+ case OPERATOR_LE:
+ return i <= 0;
+ case OPERATOR_GT:
+ return i > 0;
+ case OPERATOR_GE:
+ return i >= 0;
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Compare floating point constants according to OP.
+
+bool
+Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
+ mpfr_t right_val)
+{
+ int i;
+ if (type == NULL)
+ i = mpfr_cmp(left_val, right_val);
+ else
+ {
+ mpfr_t lv;
+ mpfr_init_set(lv, left_val, GMP_RNDN);
+ mpfr_t rv;
+ mpfr_init_set(rv, right_val, GMP_RNDN);
+ Float_expression::constrain_float(lv, type);
+ Float_expression::constrain_float(rv, type);
+ i = mpfr_cmp(lv, rv);
+ mpfr_clear(lv);
+ mpfr_clear(rv);
+ }
+ switch (op)
+ {
+ case OPERATOR_EQEQ:
+ return i == 0;
+ case OPERATOR_NOTEQ:
+ return i != 0;
+ case OPERATOR_LT:
+ return i < 0;
+ case OPERATOR_LE:
+ return i <= 0;
+ case OPERATOR_GT:
+ return i > 0;
+ case OPERATOR_GE:
+ return i >= 0;
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Compare complex constants according to OP. Complex numbers may
+// only be compared for equality.
+
+bool
+Binary_expression::compare_complex(Operator op, Type* type,
+ mpfr_t left_real, mpfr_t left_imag,
+ mpfr_t right_real, mpfr_t right_imag)
+{
+ bool is_equal;
+ if (type == NULL)
+ is_equal = (mpfr_cmp(left_real, right_real) == 0
+ && mpfr_cmp(left_imag, right_imag) == 0);
+ else
+ {
+ mpfr_t lr;
+ mpfr_t li;
+ mpfr_init_set(lr, left_real, GMP_RNDN);
+ mpfr_init_set(li, left_imag, GMP_RNDN);
+ mpfr_t rr;
+ mpfr_t ri;
+ mpfr_init_set(rr, right_real, GMP_RNDN);
+ mpfr_init_set(ri, right_imag, GMP_RNDN);
+ Complex_expression::constrain_complex(lr, li, type);
+ Complex_expression::constrain_complex(rr, ri, type);
+ is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
+ mpfr_clear(lr);
+ mpfr_clear(li);
+ mpfr_clear(rr);
+ mpfr_clear(ri);
+ }
+ switch (op)
+ {
+ case OPERATOR_EQEQ:
+ return is_equal;
+ case OPERATOR_NOTEQ:
+ return !is_equal;
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
+// LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
+// RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
+// this could be done, false if not.
+
+bool
+Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
+ Type* right_type, mpz_t right_val,
+ source_location location, mpz_t val)
+{
+ bool is_shift_op = false;
+ switch (op)
+ {
+ case OPERATOR_OROR:
+ case OPERATOR_ANDAND:
+ case OPERATOR_EQEQ:
+ case OPERATOR_NOTEQ:
+ case OPERATOR_LT:
+ case OPERATOR_LE:
+ case OPERATOR_GT:
+ case OPERATOR_GE:
+ // These return boolean values. We should probably handle them
+ // anyhow in case a type conversion is used on the result.
+ return false;
+ case OPERATOR_PLUS:
+ mpz_add(val, left_val, right_val);
+ break;
+ case OPERATOR_MINUS:
+ mpz_sub(val, left_val, right_val);
+ break;
+ case OPERATOR_OR:
+ mpz_ior(val, left_val, right_val);
+ break;
+ case OPERATOR_XOR:
+ mpz_xor(val, left_val, right_val);
+ break;
+ case OPERATOR_MULT:
+ mpz_mul(val, left_val, right_val);
+ break;
+ case OPERATOR_DIV:
+ if (mpz_sgn(right_val) != 0)
+ mpz_tdiv_q(val, left_val, right_val);
+ else
+ {
+ error_at(location, "division by zero");
+ mpz_set_ui(val, 0);
+ return true;
+ }
+ break;
+ case OPERATOR_MOD:
+ if (mpz_sgn(right_val) != 0)
+ mpz_tdiv_r(val, left_val, right_val);
+ else
+ {
+ error_at(location, "division by zero");
+ mpz_set_ui(val, 0);
+ return true;
+ }
+ break;
+ case OPERATOR_LSHIFT:
+ {
+ unsigned long shift = mpz_get_ui(right_val);
+ if (mpz_cmp_ui(right_val, shift) != 0 || shift > 0x100000)
+ {
+ error_at(location, "shift count overflow");
+ mpz_set_ui(val, 0);
+ return true;
+ }
+ mpz_mul_2exp(val, left_val, shift);
+ is_shift_op = true;
+ break;
+ }
+ break;
+ case OPERATOR_RSHIFT:
+ {
+ unsigned long shift = mpz_get_ui(right_val);
+ if (mpz_cmp_ui(right_val, shift) != 0)
+ {
+ error_at(location, "shift count overflow");
+ mpz_set_ui(val, 0);
+ return true;
+ }
+ if (mpz_cmp_ui(left_val, 0) >= 0)
+ mpz_tdiv_q_2exp(val, left_val, shift);
+ else
+ mpz_fdiv_q_2exp(val, left_val, shift);
+ is_shift_op = true;
+ break;
+ }
+ break;
+ case OPERATOR_AND:
+ mpz_and(val, left_val, right_val);
+ break;
+ case OPERATOR_BITCLEAR:
+ {
+ mpz_t tval;
+ mpz_init(tval);
+ mpz_com(tval, right_val);
+ mpz_and(val, left_val, tval);
+ mpz_clear(tval);
+ }
+ break;
+ default:
+ gcc_unreachable();
+ }
+
+ Type* type = left_type;
+ if (!is_shift_op)
+ {
+ if (type == NULL)
+ type = right_type;
+ else if (type != right_type && right_type != NULL)
+ {
+ if (type->is_abstract())
+ type = right_type;
+ else if (!right_type->is_abstract())
+ {
+ // This look like a type error which should be diagnosed
+ // elsewhere. Don't do anything here, to avoid an
+ // unhelpful chain of error messages.
+ return true;
+ }
+ }
+ }
+
+ if (type != NULL && !type->is_abstract())
+ {
+ // We have to check the operands too, as we have implicitly
+ // coerced them to TYPE.
+ if ((type != left_type
+ && !Integer_expression::check_constant(left_val, type, location))
+ || (!is_shift_op
+ && type != right_type
+ && !Integer_expression::check_constant(right_val, type,
+ location))
+ || !Integer_expression::check_constant(val, type, location))
+ mpz_set_ui(val, 0);
+ }
+
+ return true;
+}
+
+// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
+// Return true if this could be done, false if not.
+
+bool
+Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
+ Type* right_type, mpfr_t right_val,
+ mpfr_t val, source_location location)
+{
+ switch (op)
+ {
+ case OPERATOR_OROR:
+ case OPERATOR_ANDAND:
+ case OPERATOR_EQEQ:
+ case OPERATOR_NOTEQ:
+ case OPERATOR_LT:
+ case OPERATOR_LE:
+ case OPERATOR_GT:
+ case OPERATOR_GE:
+ // These return boolean values. We should probably handle them
+ // anyhow in case a type conversion is used on the result.
+ return false;
+ case OPERATOR_PLUS:
+ mpfr_add(val, left_val, right_val, GMP_RNDN);
+ break;
+ case OPERATOR_MINUS:
+ mpfr_sub(val, left_val, right_val, GMP_RNDN);
+ break;
+ case OPERATOR_OR:
+ case OPERATOR_XOR:
+ case OPERATOR_AND:
+ case OPERATOR_BITCLEAR:
+ return false;
+ case OPERATOR_MULT:
+ mpfr_mul(val, left_val, right_val, GMP_RNDN);
+ break;
+ case OPERATOR_DIV:
+ if (mpfr_zero_p(right_val))
+ error_at(location, "division by zero");
+ mpfr_div(val, left_val, right_val, GMP_RNDN);
+ break;
+ case OPERATOR_MOD:
+ return false;
+ case OPERATOR_LSHIFT:
+ case OPERATOR_RSHIFT:
+ return false;
+ default:
+ gcc_unreachable();
+ }
+
+ Type* type = left_type;
+ if (type == NULL)
+ type = right_type;
+ else if (type != right_type && right_type != NULL)
+ {
+ if (type->is_abstract())
+ type = right_type;
+ else if (!right_type->is_abstract())
+ {
+ // This looks like a type error which should be diagnosed
+ // elsewhere. Don't do anything here, to avoid an unhelpful
+ // chain of error messages.
+ return true;
+ }
+ }
+
+ if (type != NULL && !type->is_abstract())
+ {
+ if ((type != left_type
+ && !Float_expression::check_constant(left_val, type, location))
+ || (type != right_type
+ && !Float_expression::check_constant(right_val, type,
+ location))
+ || !Float_expression::check_constant(val, type, location))
+ mpfr_set_ui(val, 0, GMP_RNDN);
+ }
+
+ return true;
+}
+
+// Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
+// RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
+// could be done, false if not.
+
+bool
+Binary_expression::eval_complex(Operator op, Type* left_type,
+ mpfr_t left_real, mpfr_t left_imag,
+ Type *right_type,
+ mpfr_t right_real, mpfr_t right_imag,
+ mpfr_t real, mpfr_t imag,
+ source_location location)
+{
+ switch (op)
+ {
+ case OPERATOR_OROR:
+ case OPERATOR_ANDAND:
+ case OPERATOR_EQEQ:
+ case OPERATOR_NOTEQ:
+ case OPERATOR_LT:
+ case OPERATOR_LE:
+ case OPERATOR_GT:
+ case OPERATOR_GE:
+ // These return boolean values and must be handled differently.
+ return false;
+ case OPERATOR_PLUS:
+ mpfr_add(real, left_real, right_real, GMP_RNDN);
+ mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
+ break;
+ case OPERATOR_MINUS:
+ mpfr_sub(real, left_real, right_real, GMP_RNDN);
+ mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
+ break;
+ case OPERATOR_OR:
+ case OPERATOR_XOR:
+ case OPERATOR_AND:
+ case OPERATOR_BITCLEAR:
+ return false;
+ case OPERATOR_MULT:
+ {
+ // You might think that multiplying two complex numbers would
+ // be simple, and you would be right, until you start to think
+ // about getting the right answer for infinity. If one
+ // operand here is infinity and the other is anything other
+ // than zero or NaN, then we are going to wind up subtracting
+ // two infinity values. That will give us a NaN, but the
+ // correct answer is infinity.
+
+ mpfr_t lrrr;
+ mpfr_init(lrrr);
+ mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
+
+ mpfr_t lrri;
+ mpfr_init(lrri);
+ mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
+
+ mpfr_t lirr;
+ mpfr_init(lirr);
+ mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
+
+ mpfr_t liri;
+ mpfr_init(liri);
+ mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
+
+ mpfr_sub(real, lrrr, liri, GMP_RNDN);
+ mpfr_add(imag, lrri, lirr, GMP_RNDN);
+
+ // If we get NaN on both sides, check whether it should really
+ // be infinity. The rule is that if either side of the
+ // complex number is infinity, then the whole value is
+ // infinity, even if the other side is NaN. So the only case
+ // we have to fix is the one in which both sides are NaN.
+ if (mpfr_nan_p(real) && mpfr_nan_p(imag)
+ && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
+ && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
+ {
+ bool is_infinity = false;
+
+ mpfr_t lr;
+ mpfr_t li;
+ mpfr_init_set(lr, left_real, GMP_RNDN);
+ mpfr_init_set(li, left_imag, GMP_RNDN);
+
+ mpfr_t rr;
+ mpfr_t ri;
+ mpfr_init_set(rr, right_real, GMP_RNDN);
+ mpfr_init_set(ri, right_imag, GMP_RNDN);
+
+ // If the left side is infinity, then the result is
+ // infinity.
+ if (mpfr_inf_p(lr) || mpfr_inf_p(li))
+ {
+ mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
+ mpfr_copysign(lr, lr, left_real, GMP_RNDN);
+ mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
+ mpfr_copysign(li, li, left_imag, GMP_RNDN);
+ if (mpfr_nan_p(rr))
+ {
+ mpfr_set_ui(rr, 0, GMP_RNDN);
+ mpfr_copysign(rr, rr, right_real, GMP_RNDN);
+ }
+ if (mpfr_nan_p(ri))
+ {
+ mpfr_set_ui(ri, 0, GMP_RNDN);
+ mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
+ }
+ is_infinity = true;
+ }
+
+ // If the right side is infinity, then the result is
+ // infinity.
+ if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
+ {
+ mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
+ mpfr_copysign(rr, rr, right_real, GMP_RNDN);
+ mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
+ mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
+ if (mpfr_nan_p(lr))
+ {
+ mpfr_set_ui(lr, 0, GMP_RNDN);
+ mpfr_copysign(lr, lr, left_real, GMP_RNDN);
+ }
+ if (mpfr_nan_p(li))
+ {
+ mpfr_set_ui(li, 0, GMP_RNDN);
+ mpfr_copysign(li, li, left_imag, GMP_RNDN);
+ }
+ is_infinity = true;
+ }
+
+ // If we got an overflow in the intermediate computations,
+ // then the result is infinity.
+ if (!is_infinity
+ && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
+ || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
+ {
+ if (mpfr_nan_p(lr))
+ {
+ mpfr_set_ui(lr, 0, GMP_RNDN);
+ mpfr_copysign(lr, lr, left_real, GMP_RNDN);
+ }
+ if (mpfr_nan_p(li))
+ {
+ mpfr_set_ui(li, 0, GMP_RNDN);
+ mpfr_copysign(li, li, left_imag, GMP_RNDN);
+ }
+ if (mpfr_nan_p(rr))
+ {
+ mpfr_set_ui(rr, 0, GMP_RNDN);
+ mpfr_copysign(rr, rr, right_real, GMP_RNDN);
+ }
+ if (mpfr_nan_p(ri))
+ {
+ mpfr_set_ui(ri, 0, GMP_RNDN);
+ mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
+ }
+ is_infinity = true;
+ }
+
+ if (is_infinity)
+ {
+ mpfr_mul(lrrr, lr, rr, GMP_RNDN);
+ mpfr_mul(lrri, lr, ri, GMP_RNDN);
+ mpfr_mul(lirr, li, rr, GMP_RNDN);
+ mpfr_mul(liri, li, ri, GMP_RNDN);
+ mpfr_sub(real, lrrr, liri, GMP_RNDN);
+ mpfr_add(imag, lrri, lirr, GMP_RNDN);
+ mpfr_set_inf(real, mpfr_sgn(real));
+ mpfr_set_inf(imag, mpfr_sgn(imag));
+ }
+
+ mpfr_clear(lr);
+ mpfr_clear(li);
+ mpfr_clear(rr);
+ mpfr_clear(ri);
+ }
+
+ mpfr_clear(lrrr);
+ mpfr_clear(lrri);
+ mpfr_clear(lirr);
+ mpfr_clear(liri);
+ }
+ break;
+ case OPERATOR_DIV:
+ {
+ // For complex division we want to avoid having an
+ // intermediate overflow turn the whole result in a NaN. We
+ // scale the values to try to avoid this.
+
+ if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
+ error_at(location, "division by zero");
+
+ mpfr_t rra;
+ mpfr_t ria;
+ mpfr_init(rra);
+ mpfr_init(ria);
+ mpfr_abs(rra, right_real, GMP_RNDN);
+ mpfr_abs(ria, right_imag, GMP_RNDN);
+ mpfr_t t;
+ mpfr_init(t);
+ mpfr_max(t, rra, ria, GMP_RNDN);
+
+ mpfr_t rr;
+ mpfr_t ri;
+ mpfr_init_set(rr, right_real, GMP_RNDN);
+ mpfr_init_set(ri, right_imag, GMP_RNDN);
+ long ilogbw = 0;
+ if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
+ {
+ ilogbw = mpfr_get_exp(t);
+ mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
+ mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
+ }
+
+ mpfr_t denom;
+ mpfr_init(denom);
+ mpfr_mul(denom, rr, rr, GMP_RNDN);
+ mpfr_mul(t, ri, ri, GMP_RNDN);
+ mpfr_add(denom, denom, t, GMP_RNDN);
+
+ mpfr_mul(real, left_real, rr, GMP_RNDN);
+ mpfr_mul(t, left_imag, ri, GMP_RNDN);
+ mpfr_add(real, real, t, GMP_RNDN);
+ mpfr_div(real, real, denom, GMP_RNDN);
+ mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
+
+ mpfr_mul(imag, left_imag, rr, GMP_RNDN);
+ mpfr_mul(t, left_real, ri, GMP_RNDN);
+ mpfr_sub(imag, imag, t, GMP_RNDN);
+ mpfr_div(imag, imag, denom, GMP_RNDN);
+ mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
+
+ // If we wind up with NaN on both sides, check whether we
+ // should really have infinity. The rule is that if either
+ // side of the complex number is infinity, then the whole
+ // value is infinity, even if the other side is NaN. So the
+ // only case we have to fix is the one in which both sides are
+ // NaN.
+ if (mpfr_nan_p(real) && mpfr_nan_p(imag)
+ && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
+ && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
+ {
+ if (mpfr_zero_p(denom))
+ {
+ mpfr_set_inf(real, mpfr_sgn(rr));
+ mpfr_mul(real, real, left_real, GMP_RNDN);
+ mpfr_set_inf(imag, mpfr_sgn(rr));
+ mpfr_mul(imag, imag, left_imag, GMP_RNDN);
+ }
+ else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
+ && mpfr_number_p(rr) && mpfr_number_p(ri))
+ {
+ mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
+ mpfr_copysign(t, t, left_real, GMP_RNDN);
+
+ mpfr_t t2;
+ mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
+ mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
+
+ mpfr_t t3;
+ mpfr_init(t3);
+ mpfr_mul(t3, t, rr, GMP_RNDN);
+
+ mpfr_t t4;
+ mpfr_init(t4);
+ mpfr_mul(t4, t2, ri, GMP_RNDN);
+
+ mpfr_add(t3, t3, t4, GMP_RNDN);
+ mpfr_set_inf(real, mpfr_sgn(t3));
+
+ mpfr_mul(t3, t2, rr, GMP_RNDN);
+ mpfr_mul(t4, t, ri, GMP_RNDN);
+ mpfr_sub(t3, t3, t4, GMP_RNDN);
+ mpfr_set_inf(imag, mpfr_sgn(t3));
+
+ mpfr_clear(t2);
+ mpfr_clear(t3);
+ mpfr_clear(t4);
+ }
+ else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
+ && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
+ {
+ mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
+ mpfr_copysign(t, t, rr, GMP_RNDN);
+
+ mpfr_t t2;
+ mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
+ mpfr_copysign(t2, t2, ri, GMP_RNDN);
+
+ mpfr_t t3;
+ mpfr_init(t3);
+ mpfr_mul(t3, left_real, t, GMP_RNDN);
+
+ mpfr_t t4;
+ mpfr_init(t4);
+ mpfr_mul(t4, left_imag, t2, GMP_RNDN);
+
+ mpfr_add(t3, t3, t4, GMP_RNDN);
+ mpfr_set_ui(real, 0, GMP_RNDN);
+ mpfr_mul(real, real, t3, GMP_RNDN);
+
+ mpfr_mul(t3, left_imag, t, GMP_RNDN);
+ mpfr_mul(t4, left_real, t2, GMP_RNDN);
+ mpfr_sub(t3, t3, t4, GMP_RNDN);
+ mpfr_set_ui(imag, 0, GMP_RNDN);
+ mpfr_mul(imag, imag, t3, GMP_RNDN);
+
+ mpfr_clear(t2);
+ mpfr_clear(t3);
+ mpfr_clear(t4);
+ }
+ }
+
+ mpfr_clear(denom);
+ mpfr_clear(rr);
+ mpfr_clear(ri);
+ mpfr_clear(t);
+ mpfr_clear(rra);
+ mpfr_clear(ria);
+ }
+ break;
+ case OPERATOR_MOD:
+ return false;
+ case OPERATOR_LSHIFT:
+ case OPERATOR_RSHIFT:
+ return false;
+ default:
+ gcc_unreachable();
+ }
+
+ Type* type = left_type;
+ if (type == NULL)
+ type = right_type;
+ else if (type != right_type && right_type != NULL)
+ {
+ if (type->is_abstract())
+ type = right_type;
+ else if (!right_type->is_abstract())
+ {
+ // This looks like a type error which should be diagnosed
+ // elsewhere. Don't do anything here, to avoid an unhelpful
+ // chain of error messages.
+ return true;
+ }
+ }
+
+ if (type != NULL && !type->is_abstract())
+ {
+ if ((type != left_type
+ && !Complex_expression::check_constant(left_real, left_imag,
+ type, location))
+ || (type != right_type
+ && !Complex_expression::check_constant(right_real, right_imag,
+ type, location))
+ || !Complex_expression::check_constant(real, imag, type,
+ location))
+ {
+ mpfr_set_ui(real, 0, GMP_RNDN);
+ mpfr_set_ui(imag, 0, GMP_RNDN);
+ }
+ }
+
+ return true;
+}
+
+// Lower a binary expression. We have to evaluate constant
+// expressions now, in order to implement Go's unlimited precision
+// constants.
+
+Expression*
+Binary_expression::do_lower(Gogo*, Named_object*, int)
+{
+ source_location location = this->location();
+ Operator op = this->op_;
+ Expression* left = this->left_;
+ Expression* right = this->right_;
+
+ const bool is_comparison = (op == OPERATOR_EQEQ
+ || op == OPERATOR_NOTEQ
+ || op == OPERATOR_LT
+ || op == OPERATOR_LE
+ || op == OPERATOR_GT
+ || op == OPERATOR_GE);
+
+ // Integer constant expressions.
+ {
+ mpz_t left_val;
+ mpz_init(left_val);
+ Type* left_type;
+ mpz_t right_val;
+ mpz_init(right_val);
+ Type* right_type;
+ if (left->integer_constant_value(false, left_val, &left_type)
+ && right->integer_constant_value(false, right_val, &right_type))
+ {
+ Expression* ret = NULL;
+ if (left_type != right_type
+ && left_type != NULL
+ && right_type != NULL
+ && left_type->base() != right_type->base()
+ && op != OPERATOR_LSHIFT
+ && op != OPERATOR_RSHIFT)
+ {
+ // May be a type error--let it be diagnosed later.
+ }
+ else if (is_comparison)
+ {
+ bool b = Binary_expression::compare_integer(op, left_val,
+ right_val);
+ ret = Expression::make_cast(Type::lookup_bool_type(),
+ Expression::make_boolean(b, location),
+ location);
+ }
+ else
+ {
+ mpz_t val;
+ mpz_init(val);
+
+ if (Binary_expression::eval_integer(op, left_type, left_val,
+ right_type, right_val,
+ location, val))
+ {
+ gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
+ Type* type;
+ if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
+ type = left_type;
+ else if (left_type == NULL)
+ type = right_type;
+ else if (right_type == NULL)
+ type = left_type;
+ else if (!left_type->is_abstract()
+ && left_type->named_type() != NULL)
+ type = left_type;
+ else if (!right_type->is_abstract()
+ && right_type->named_type() != NULL)
+ type = right_type;
+ else if (!left_type->is_abstract())
+ type = left_type;
+ else if (!right_type->is_abstract())
+ type = right_type;
+ else if (left_type->float_type() != NULL)
+ type = left_type;
+ else if (right_type->float_type() != NULL)
+ type = right_type;
+ else if (left_type->complex_type() != NULL)
+ type = left_type;
+ else if (right_type->complex_type() != NULL)
+ type = right_type;
+ else
+ type = left_type;
+ ret = Expression::make_integer(&val, type, location);
+ }
+
+ mpz_clear(val);
+ }
+
+ if (ret != NULL)
+ {
+ mpz_clear(right_val);
+ mpz_clear(left_val);
+ return ret;
+ }
+ }
+ mpz_clear(right_val);
+ mpz_clear(left_val);
+ }
+
+ // Floating point constant expressions.
+ {
+ mpfr_t left_val;
+ mpfr_init(left_val);
+ Type* left_type;
+ mpfr_t right_val;
+ mpfr_init(right_val);
+ Type* right_type;
+ if (left->float_constant_value(left_val, &left_type)
+ && right->float_constant_value(right_val, &right_type))
+ {
+ Expression* ret = NULL;
+ if (left_type != right_type
+ && left_type != NULL
+ && right_type != NULL
+ && left_type->base() != right_type->base()
+ && op != OPERATOR_LSHIFT
+ && op != OPERATOR_RSHIFT)
+ {
+ // May be a type error--let it be diagnosed later.
+ }
+ else if (is_comparison)
+ {
+ bool b = Binary_expression::compare_float(op,
+ (left_type != NULL
+ ? left_type
+ : right_type),
+ left_val, right_val);
+ ret = Expression::make_boolean(b, location);
+ }
+ else
+ {
+ mpfr_t val;
+ mpfr_init(val);
+
+ if (Binary_expression::eval_float(op, left_type, left_val,
+ right_type, right_val, val,
+ location))
+ {
+ gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
+ && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
+ Type* type;
+ if (left_type == NULL)
+ type = right_type;
+ else if (right_type == NULL)
+ type = left_type;
+ else if (!left_type->is_abstract()
+ && left_type->named_type() != NULL)
+ type = left_type;
+ else if (!right_type->is_abstract()
+ && right_type->named_type() != NULL)
+ type = right_type;
+ else if (!left_type->is_abstract())
+ type = left_type;
+ else if (!right_type->is_abstract())
+ type = right_type;
+ else if (left_type->float_type() != NULL)
+ type = left_type;
+ else if (right_type->float_type() != NULL)
+ type = right_type;
+ else
+ type = left_type;
+ ret = Expression::make_float(&val, type, location);
+ }
+
+ mpfr_clear(val);
+ }
+
+ if (ret != NULL)
+ {
+ mpfr_clear(right_val);
+ mpfr_clear(left_val);
+ return ret;
+ }
+ }
+ mpfr_clear(right_val);
+ mpfr_clear(left_val);
+ }
+
+ // Complex constant expressions.
+ {
+ mpfr_t left_real;
+ mpfr_t left_imag;
+ mpfr_init(left_real);
+ mpfr_init(left_imag);
+ Type* left_type;
+
+ mpfr_t right_real;
+ mpfr_t right_imag;
+ mpfr_init(right_real);
+ mpfr_init(right_imag);
+ Type* right_type;
+
+ if (left->complex_constant_value(left_real, left_imag, &left_type)
+ && right->complex_constant_value(right_real, right_imag, &right_type))
+ {
+ Expression* ret = NULL;
+ if (left_type != right_type
+ && left_type != NULL
+ && right_type != NULL
+ && left_type->base() != right_type->base())
+ {
+ // May be a type error--let it be diagnosed later.
+ }
+ else if (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ)
+ {
+ bool b = Binary_expression::compare_complex(op,
+ (left_type != NULL
+ ? left_type
+ : right_type),
+ left_real,
+ left_imag,
+ right_real,
+ right_imag);
+ ret = Expression::make_boolean(b, location);
+ }
+ else
+ {
+ mpfr_t real;
+ mpfr_t imag;
+ mpfr_init(real);
+ mpfr_init(imag);
+
+ if (Binary_expression::eval_complex(op, left_type,
+ left_real, left_imag,
+ right_type,
+ right_real, right_imag,
+ real, imag,
+ location))
+ {
+ gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
+ && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
+ Type* type;
+ if (left_type == NULL)
+ type = right_type;
+ else if (right_type == NULL)
+ type = left_type;
+ else if (!left_type->is_abstract()
+ && left_type->named_type() != NULL)
+ type = left_type;
+ else if (!right_type->is_abstract()
+ && right_type->named_type() != NULL)
+ type = right_type;
+ else if (!left_type->is_abstract())
+ type = left_type;
+ else if (!right_type->is_abstract())
+ type = right_type;
+ else if (left_type->complex_type() != NULL)
+ type = left_type;
+ else if (right_type->complex_type() != NULL)
+ type = right_type;
+ else
+ type = left_type;
+ ret = Expression::make_complex(&real, &imag, type,
+ location);
+ }
+ mpfr_clear(real);
+ mpfr_clear(imag);
+ }
+
+ if (ret != NULL)
+ {
+ mpfr_clear(left_real);
+ mpfr_clear(left_imag);
+ mpfr_clear(right_real);
+ mpfr_clear(right_imag);
+ return ret;
+ }
+ }
+
+ mpfr_clear(left_real);
+ mpfr_clear(left_imag);
+ mpfr_clear(right_real);
+ mpfr_clear(right_imag);
+ }
+
+ // String constant expressions.
+ if (op == OPERATOR_PLUS
+ && left->type()->is_string_type()
+ && right->type()->is_string_type())
+ {
+ std::string left_string;
+ std::string right_string;
+ if (left->string_constant_value(&left_string)
+ && right->string_constant_value(&right_string))
+ return Expression::make_string(left_string + right_string, location);
+ }
+
+ return this;
+}
+
+// Return the integer constant value, if it has one.
+
+bool
+Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
+ Type** ptype) const
+{
+ mpz_t left_val;
+ mpz_init(left_val);
+ Type* left_type;
+ if (!this->left_->integer_constant_value(iota_is_constant, left_val,
+ &left_type))
+ {
+ mpz_clear(left_val);
+ return false;
+ }
+
+ mpz_t right_val;
+ mpz_init(right_val);
+ Type* right_type;
+ if (!this->right_->integer_constant_value(iota_is_constant, right_val,
+ &right_type))
+ {
+ mpz_clear(right_val);
+ mpz_clear(left_val);
+ return false;
+ }
+
+ bool ret;
+ if (left_type != right_type
+ && left_type != NULL
+ && right_type != NULL
+ && left_type->base() != right_type->base()
+ && this->op_ != OPERATOR_RSHIFT
+ && this->op_ != OPERATOR_LSHIFT)
+ ret = false;
+ else
+ ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
+ right_type, right_val,
+ this->location(), val);
+
+ mpz_clear(right_val);
+ mpz_clear(left_val);
+
+ if (ret)
+ *ptype = left_type;
+
+ return ret;
+}
+
+// Return the floating point constant value, if it has one.
+
+bool
+Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
+{
+ mpfr_t left_val;
+ mpfr_init(left_val);
+ Type* left_type;
+ if (!this->left_->float_constant_value(left_val, &left_type))
+ {
+ mpfr_clear(left_val);
+ return false;
+ }
+
+ mpfr_t right_val;
+ mpfr_init(right_val);
+ Type* right_type;
+ if (!this->right_->float_constant_value(right_val, &right_type))
+ {
+ mpfr_clear(right_val);
+ mpfr_clear(left_val);
+ return false;
+ }
+
+ bool ret;
+ if (left_type != right_type
+ && left_type != NULL
+ && right_type != NULL
+ && left_type->base() != right_type->base())
+ ret = false;
+ else
+ ret = Binary_expression::eval_float(this->op_, left_type, left_val,
+ right_type, right_val,
+ val, this->location());
+
+ mpfr_clear(left_val);
+ mpfr_clear(right_val);
+
+ if (ret)
+ *ptype = left_type;
+
+ return ret;
+}
+
+// Return the complex constant value, if it has one.
+
+bool
+Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
+ Type** ptype) const
+{
+ mpfr_t left_real;
+ mpfr_t left_imag;
+ mpfr_init(left_real);
+ mpfr_init(left_imag);
+ Type* left_type;
+ if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
+ {
+ mpfr_clear(left_real);
+ mpfr_clear(left_imag);
+ return false;
+ }
+
+ mpfr_t right_real;
+ mpfr_t right_imag;
+ mpfr_init(right_real);
+ mpfr_init(right_imag);
+ Type* right_type;
+ if (!this->right_->complex_constant_value(right_real, right_imag,
+ &right_type))
+ {
+ mpfr_clear(left_real);
+ mpfr_clear(left_imag);
+ mpfr_clear(right_real);
+ mpfr_clear(right_imag);
+ return false;
+ }
+
+ bool ret;
+ if (left_type != right_type
+ && left_type != NULL
+ && right_type != NULL
+ && left_type->base() != right_type->base())
+ ret = false;
+ else
+ ret = Binary_expression::eval_complex(this->op_, left_type,
+ left_real, left_imag,
+ right_type,
+ right_real, right_imag,
+ real, imag,
+ this->location());
+ mpfr_clear(left_real);
+ mpfr_clear(left_imag);
+ mpfr_clear(right_real);
+ mpfr_clear(right_imag);
+
+ if (ret)
+ *ptype = left_type;
+
+ return ret;
+}
+
+// Note that the value is being discarded.
+
+void
+Binary_expression::do_discarding_value()
+{
+ if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
+ this->right_->discarding_value();
+ else
+ this->warn_about_unused_value();
+}
+
+// Get type.
+
+Type*
+Binary_expression::do_type()
+{
+ if (this->classification() == EXPRESSION_ERROR)
+ return Type::make_error_type();
+
+ switch (this->op_)
+ {
+ case OPERATOR_OROR:
+ case OPERATOR_ANDAND:
+ case OPERATOR_EQEQ:
+ case OPERATOR_NOTEQ:
+ case OPERATOR_LT:
+ case OPERATOR_LE:
+ case OPERATOR_GT:
+ case OPERATOR_GE:
+ return Type::lookup_bool_type();
+
+ case OPERATOR_PLUS:
+ case OPERATOR_MINUS:
+ case OPERATOR_OR:
+ case OPERATOR_XOR:
+ case OPERATOR_MULT:
+ case OPERATOR_DIV:
+ case OPERATOR_MOD:
+ case OPERATOR_AND:
+ case OPERATOR_BITCLEAR:
+ {
+ Type* left_type = this->left_->type();
+ Type* right_type = this->right_->type();
+ if (left_type->is_error_type())
+ return left_type;
+ else if (right_type->is_error_type())
+ return right_type;
+ else if (!Type::are_compatible_for_binop(left_type, right_type))
+ {
+ this->report_error(_("incompatible types in binary expression"));
+ return Type::make_error_type();
+ }
+ else if (!left_type->is_abstract() && left_type->named_type() != NULL)
+ return left_type;
+ else if (!right_type->is_abstract() && right_type->named_type() != NULL)
+ return right_type;
+ else if (!left_type->is_abstract())
+ return left_type;
+ else if (!right_type->is_abstract())
+ return right_type;
+ else if (left_type->complex_type() != NULL)
+ return left_type;
+ else if (right_type->complex_type() != NULL)
+ return right_type;
+ else if (left_type->float_type() != NULL)
+ return left_type;
+ else if (right_type->float_type() != NULL)
+ return right_type;
+ else
+ return left_type;
+ }
+
+ case OPERATOR_LSHIFT:
+ case OPERATOR_RSHIFT:
+ return this->left_->type();
+
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Set type for a binary expression.
+
+void
+Binary_expression::do_determine_type(const Type_context* context)
+{
+ Type* tleft = this->left_->type();
+ Type* tright = this->right_->type();
+
+ // Both sides should have the same type, except for the shift
+ // operations. For a comparison, we should ignore the incoming
+ // type.
+
+ bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
+ || this->op_ == OPERATOR_RSHIFT);
+
+ bool is_comparison = (this->op_ == OPERATOR_EQEQ
+ || this->op_ == OPERATOR_NOTEQ
+ || this->op_ == OPERATOR_LT
+ || this->op_ == OPERATOR_LE
+ || this->op_ == OPERATOR_GT
+ || this->op_ == OPERATOR_GE);
+
+ Type_context subcontext(*context);
+
+ if (is_comparison)
+ {
+ // In a comparison, the context does not determine the types of
+ // the operands.
+ subcontext.type = NULL;
+ }
+
+ // Set the context for the left hand operand.
+ if (is_shift_op)
+ {
+ // The right hand operand plays no role in determining the type
+ // of the left hand operand. A shift of an abstract integer in
+ // a string context gets special treatment, which may be a
+ // language bug.
+ if (subcontext.type != NULL
+ && subcontext.type->is_string_type()
+ && tleft->is_abstract())
+ error_at(this->location(), "shift of non-integer operand");
+ }
+ else if (!tleft->is_abstract())
+ subcontext.type = tleft;
+ else if (!tright->is_abstract())
+ subcontext.type = tright;
+ else if (subcontext.type == NULL)
+ {
+ if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
+ || (tleft->float_type() != NULL && tright->float_type() != NULL)
+ || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
+ {
+ // Both sides have an abstract integer, abstract float, or
+ // abstract complex type. Just let CONTEXT determine
+ // whether they may remain abstract or not.
+ }
+ else if (tleft->complex_type() != NULL)
+ subcontext.type = tleft;
+ else if (tright->complex_type() != NULL)
+ subcontext.type = tright;
+ else if (tleft->float_type() != NULL)
+ subcontext.type = tleft;
+ else if (tright->float_type() != NULL)
+ subcontext.type = tright;
+ else
+ subcontext.type = tleft;
+
+ if (subcontext.type != NULL && !context->may_be_abstract)
+ subcontext.type = subcontext.type->make_non_abstract_type();
+ }
+
+ this->left_->determine_type(&subcontext);
+
+ // The context for the right hand operand is the same as for the
+ // left hand operand, except for a shift operator.
+ if (is_shift_op)
+ {
+ subcontext.type = Type::lookup_integer_type("uint");
+ subcontext.may_be_abstract = false;
+ }
+
+ this->right_->determine_type(&subcontext);
+}
+
+// Report an error if the binary operator OP does not support TYPE.
+// Return whether the operation is OK. This should not be used for
+// shift.
+
+bool
+Binary_expression::check_operator_type(Operator op, Type* type,
+ source_location location)
+{
+ switch (op)
+ {
+ case OPERATOR_OROR:
+ case OPERATOR_ANDAND:
+ if (!type->is_boolean_type())
+ {
+ error_at(location, "expected boolean type");
+ return false;
+ }
+ break;
+
+ case OPERATOR_EQEQ:
+ case OPERATOR_NOTEQ:
+ if (type->integer_type() == NULL
+ && type->float_type() == NULL
+ && type->complex_type() == NULL
+ && !type->is_string_type()
+ && type->points_to() == NULL
+ && !type->is_nil_type()
+ && !type->is_boolean_type()
+ && type->interface_type() == NULL
+ && (type->array_type() == NULL
+ || type->array_type()->length() != NULL)
+ && type->map_type() == NULL
+ && type->channel_type() == NULL
+ && type->function_type() == NULL)
+ {
+ error_at(location,
+ ("expected integer, floating, complex, string, pointer, "
+ "boolean, interface, slice, map, channel, "
+ "or function type"));
+ return false;
+ }
+ break;
+
+ case OPERATOR_LT:
+ case OPERATOR_LE:
+ case OPERATOR_GT:
+ case OPERATOR_GE:
+ if (type->integer_type() == NULL
+ && type->float_type() == NULL
+ && !type->is_string_type())
+ {
+ error_at(location, "expected integer, floating, or string type");
+ return false;
+ }
+ break;
+
+ case OPERATOR_PLUS:
+ case OPERATOR_PLUSEQ:
+ if (type->integer_type() == NULL
+ && type->float_type() == NULL
+ && type->complex_type() == NULL
+ && !type->is_string_type())
+ {
+ error_at(location,
+ "expected integer, floating, complex, or string type");
+ return false;
+ }
+ break;
+
+ case OPERATOR_MINUS:
+ case OPERATOR_MINUSEQ:
+ case OPERATOR_MULT:
+ case OPERATOR_MULTEQ:
+ case OPERATOR_DIV:
+ case OPERATOR_DIVEQ:
+ if (type->integer_type() == NULL
+ && type->float_type() == NULL
+ && type->complex_type() == NULL)
+ {
+ error_at(location, "expected integer, floating, or complex type");
+ return false;
+ }
+ break;
+
+ case OPERATOR_MOD:
+ case OPERATOR_MODEQ:
+ case OPERATOR_OR:
+ case OPERATOR_OREQ:
+ case OPERATOR_AND:
+ case OPERATOR_ANDEQ:
+ case OPERATOR_XOR:
+ case OPERATOR_XOREQ:
+ case OPERATOR_BITCLEAR:
+ case OPERATOR_BITCLEAREQ:
+ if (type->integer_type() == NULL)
+ {
+ error_at(location, "expected integer type");
+ return false;
+ }
+ break;
+
+ default:
+ gcc_unreachable();
+ }
+
+ return true;
+}
+
+// Check types.
+
+void
+Binary_expression::do_check_types(Gogo*)
+{
+ if (this->classification() == EXPRESSION_ERROR)
+ return;
+
+ Type* left_type = this->left_->type();
+ Type* right_type = this->right_->type();
+ if (left_type->is_error_type() || right_type->is_error_type())
+ {
+ this->set_is_error();
+ return;
+ }
+
+ if (this->op_ == OPERATOR_EQEQ
+ || this->op_ == OPERATOR_NOTEQ
+ || this->op_ == OPERATOR_LT
+ || this->op_ == OPERATOR_LE
+ || this->op_ == OPERATOR_GT
+ || this->op_ == OPERATOR_GE)
+ {
+ if (!Type::are_assignable(left_type, right_type, NULL)
+ && !Type::are_assignable(right_type, left_type, NULL))
+ {
+ this->report_error(_("incompatible types in binary expression"));
+ return;
+ }
+ if (!Binary_expression::check_operator_type(this->op_, left_type,
+ this->location())
+ || !Binary_expression::check_operator_type(this->op_, right_type,
+ this->location()))
+ {
+ this->set_is_error();
+ return;
+ }
+ }
+ else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
+ {
+ if (!Type::are_compatible_for_binop(left_type, right_type))
+ {
+ this->report_error(_("incompatible types in binary expression"));
+ return;
+ }
+ if (!Binary_expression::check_operator_type(this->op_, left_type,
+ this->location()))
+ {
+ this->set_is_error();
+ return;
+ }
+ }
+ else
+ {
+ if (left_type->integer_type() == NULL)
+ this->report_error(_("shift of non-integer operand"));
+
+ if (!right_type->is_abstract()
+ && (right_type->integer_type() == NULL
+ || !right_type->integer_type()->is_unsigned()))
+ this->report_error(_("shift count not unsigned integer"));
+ else
+ {
+ mpz_t val;
+ mpz_init(val);
+ Type* type;
+ if (this->right_->integer_constant_value(true, val, &type))
+ {
+ if (mpz_sgn(val) < 0)
+ this->report_error(_("negative shift count"));
+ }
+ mpz_clear(val);
+ }
+ }
+}
+
+// Get a tree for a binary expression.
+
+tree
+Binary_expression::do_get_tree(Translate_context* context)
+{
+ tree left = this->left_->get_tree(context);
+ tree right = this->right_->get_tree(context);
+
+ if (left == error_mark_node || right == error_mark_node)
+ return error_mark_node;
+
+ enum tree_code code;
+ bool use_left_type = true;
+ bool is_shift_op = false;
+ switch (this->op_)
+ {
+ case OPERATOR_EQEQ:
+ case OPERATOR_NOTEQ:
+ case OPERATOR_LT:
+ case OPERATOR_LE:
+ case OPERATOR_GT:
+ case OPERATOR_GE:
+ return Expression::comparison_tree(context, this->op_,
+ this->left_->type(), left,
+ this->right_->type(), right,
+ this->location());
+
+ case OPERATOR_OROR:
+ code = TRUTH_ORIF_EXPR;
+ use_left_type = false;
+ break;
+ case OPERATOR_ANDAND:
+ code = TRUTH_ANDIF_EXPR;
+ use_left_type = false;
+ break;
+ case OPERATOR_PLUS:
+ code = PLUS_EXPR;
+ break;
+ case OPERATOR_MINUS:
+ code = MINUS_EXPR;
+ break;
+ case OPERATOR_OR:
+ code = BIT_IOR_EXPR;
+ break;
+ case OPERATOR_XOR:
+ code = BIT_XOR_EXPR;
+ break;
+ case OPERATOR_MULT:
+ code = MULT_EXPR;
+ break;
+ case OPERATOR_DIV:
+ {
+ Type *t = this->left_->type();
+ if (t->float_type() != NULL || t->complex_type() != NULL)
+ code = RDIV_EXPR;
+ else
+ code = TRUNC_DIV_EXPR;
+ }
+ break;
+ case OPERATOR_MOD:
+ code = TRUNC_MOD_EXPR;
+ break;
+ case OPERATOR_LSHIFT:
+ code = LSHIFT_EXPR;
+ is_shift_op = true;
+ break;
+ case OPERATOR_RSHIFT:
+ code = RSHIFT_EXPR;
+ is_shift_op = true;
+ break;
+ case OPERATOR_AND:
+ code = BIT_AND_EXPR;
+ break;
+ case OPERATOR_BITCLEAR:
+ right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
+ code = BIT_AND_EXPR;
+ break;
+ default:
+ gcc_unreachable();
+ }
+
+ tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
+
+ if (this->left_->type()->is_string_type())
+ {
+ gcc_assert(this->op_ == OPERATOR_PLUS);
+ tree string_type = Type::make_string_type()->get_tree(context->gogo());
+ static tree string_plus_decl;
+ return Gogo::call_builtin(&string_plus_decl,
+ this->location(),
+ "__go_string_plus",
+ 2,
+ string_type,
+ string_type,
+ left,
+ string_type,
+ right);
+ }
+
+ tree compute_type = excess_precision_type(type);
+ if (compute_type != NULL_TREE)
+ {
+ left = ::convert(compute_type, left);
+ right = ::convert(compute_type, right);
+ }
+
+ tree eval_saved = NULL_TREE;
+ if (is_shift_op)
+ {
+ // Make sure the values are evaluated.
+ if (!DECL_P(left) && TREE_SIDE_EFFECTS(left))
+ {
+ left = save_expr(left);
+ eval_saved = left;
+ }
+ if (!DECL_P(right) && TREE_SIDE_EFFECTS(right))
+ {
+ right = save_expr(right);
+ if (eval_saved == NULL_TREE)
+ eval_saved = right;
+ else
+ eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
+ void_type_node, eval_saved, right);
+ }
+ }
+
+ tree ret = fold_build2_loc(this->location(),
+ code,
+ compute_type != NULL_TREE ? compute_type : type,
+ left, right);
+
+ if (compute_type != NULL_TREE)
+ ret = ::convert(type, ret);
+
+ // In Go, a shift larger than the size of the type is well-defined.
+ // This is not true in GENERIC, so we need to insert a conditional.
+ if (is_shift_op)
+ {
+ gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
+ gcc_assert(this->left_->type()->integer_type() != NULL);
+ int bits = TYPE_PRECISION(TREE_TYPE(left));
+
+ tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
+ build_int_cst_type(TREE_TYPE(right), bits));
+
+ tree overflow_result = fold_convert_loc(this->location(),
+ TREE_TYPE(left),
+ integer_zero_node);
+ if (this->op_ == OPERATOR_RSHIFT
+ && !this->left_->type()->integer_type()->is_unsigned())
+ {
+ tree neg = fold_build2_loc(this->location(), LT_EXPR,
+ boolean_type_node, left,
+ fold_convert_loc(this->location(),
+ TREE_TYPE(left),
+ integer_zero_node));
+ tree neg_one = fold_build2_loc(this->location(),
+ MINUS_EXPR, TREE_TYPE(left),
+ fold_convert_loc(this->location(),
+ TREE_TYPE(left),
+ integer_zero_node),
+ fold_convert_loc(this->location(),
+ TREE_TYPE(left),
+ integer_one_node));
+ overflow_result = fold_build3_loc(this->location(), COND_EXPR,
+ TREE_TYPE(left), neg, neg_one,
+ overflow_result);
+ }
+
+ ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
+ compare, ret, overflow_result);
+
+ if (eval_saved != NULL_TREE)
+ ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
+ TREE_TYPE(ret), eval_saved, ret);
+ }
+
+ return ret;
+}
+
+// Export a binary expression.
+
+void
+Binary_expression::do_export(Export* exp) const
+{
+ exp->write_c_string("(");
+ this->left_->export_expression(exp);
+ switch (this->op_)
+ {
+ case OPERATOR_OROR:
+ exp->write_c_string(" || ");
+ break;
+ case OPERATOR_ANDAND:
+ exp->write_c_string(" && ");
+ break;
+ case OPERATOR_EQEQ:
+ exp->write_c_string(" == ");
+ break;
+ case OPERATOR_NOTEQ:
+ exp->write_c_string(" != ");
+ break;
+ case OPERATOR_LT:
+ exp->write_c_string(" < ");
+ break;
+ case OPERATOR_LE:
+ exp->write_c_string(" <= ");
+ break;
+ case OPERATOR_GT:
+ exp->write_c_string(" > ");
+ break;
+ case OPERATOR_GE:
+ exp->write_c_string(" >= ");
+ break;
+ case OPERATOR_PLUS:
+ exp->write_c_string(" + ");
+ break;
+ case OPERATOR_MINUS:
+ exp->write_c_string(" - ");
+ break;
+ case OPERATOR_OR:
+ exp->write_c_string(" | ");
+ break;
+ case OPERATOR_XOR:
+ exp->write_c_string(" ^ ");
+ break;
+ case OPERATOR_MULT:
+ exp->write_c_string(" * ");
+ break;
+ case OPERATOR_DIV:
+ exp->write_c_string(" / ");
+ break;
+ case OPERATOR_MOD:
+ exp->write_c_string(" % ");
+ break;
+ case OPERATOR_LSHIFT:
+ exp->write_c_string(" << ");
+ break;
+ case OPERATOR_RSHIFT:
+ exp->write_c_string(" >> ");
+ break;
+ case OPERATOR_AND:
+ exp->write_c_string(" & ");
+ break;
+ case OPERATOR_BITCLEAR:
+ exp->write_c_string(" &^ ");
+ break;
+ default:
+ gcc_unreachable();
+ }
+ this->right_->export_expression(exp);
+ exp->write_c_string(")");
+}
+
+// Import a binary expression.
+
+Expression*
+Binary_expression::do_import(Import* imp)
+{
+ imp->require_c_string("(");
+
+ Expression* left = Expression::import_expression(imp);
+
+ Operator op;
+ if (imp->match_c_string(" || "))
+ {
+ op = OPERATOR_OROR;
+ imp->advance(4);
+ }
+ else if (imp->match_c_string(" && "))
+ {
+ op = OPERATOR_ANDAND;
+ imp->advance(4);
+ }
+ else if (imp->match_c_string(" == "))
+ {
+ op = OPERATOR_EQEQ;
+ imp->advance(4);
+ }
+ else if (imp->match_c_string(" != "))
+ {
+ op = OPERATOR_NOTEQ;
+ imp->advance(4);
+ }
+ else if (imp->match_c_string(" < "))
+ {
+ op = OPERATOR_LT;
+ imp->advance(3);
+ }
+ else if (imp->match_c_string(" <= "))
+ {
+ op = OPERATOR_LE;
+ imp->advance(4);
+ }
+ else if (imp->match_c_string(" > "))
+ {
+ op = OPERATOR_GT;
+ imp->advance(3);
+ }
+ else if (imp->match_c_string(" >= "))
+ {
+ op = OPERATOR_GE;
+ imp->advance(4);
+ }
+ else if (imp->match_c_string(" + "))
+ {
+ op = OPERATOR_PLUS;
+ imp->advance(3);
+ }
+ else if (imp->match_c_string(" - "))
+ {
+ op = OPERATOR_MINUS;
+ imp->advance(3);
+ }
+ else if (imp->match_c_string(" | "))
+ {
+ op = OPERATOR_OR;
+ imp->advance(3);
+ }
+ else if (imp->match_c_string(" ^ "))
+ {
+ op = OPERATOR_XOR;
+ imp->advance(3);
+ }
+ else if (imp->match_c_string(" * "))
+ {
+ op = OPERATOR_MULT;
+ imp->advance(3);
+ }
+ else if (imp->match_c_string(" / "))
+ {
+ op = OPERATOR_DIV;
+ imp->advance(3);
+ }
+ else if (imp->match_c_string(" % "))
+ {
+ op = OPERATOR_MOD;
+ imp->advance(3);
+ }
+ else if (imp->match_c_string(" << "))
+ {
+ op = OPERATOR_LSHIFT;
+ imp->advance(4);
+ }
+ else if (imp->match_c_string(" >> "))
+ {
+ op = OPERATOR_RSHIFT;
+ imp->advance(4);
+ }
+ else if (imp->match_c_string(" & "))
+ {
+ op = OPERATOR_AND;
+ imp->advance(3);
+ }
+ else if (imp->match_c_string(" &^ "))
+ {
+ op = OPERATOR_BITCLEAR;
+ imp->advance(4);
+ }
+ else
+ {
+ error_at(imp->location(), "unrecognized binary operator");
+ return Expression::make_error(imp->location());
+ }
+
+ Expression* right = Expression::import_expression(imp);
+
+ imp->require_c_string(")");
+
+ return Expression::make_binary(op, left, right, imp->location());
+}
+
+// Make a binary expression.
+
+Expression*
+Expression::make_binary(Operator op, Expression* left, Expression* right,
+ source_location location)
+{
+ return new Binary_expression(op, left, right, location);
+}
+
+// Implement a comparison.
+
+tree
+Expression::comparison_tree(Translate_context* context, Operator op,
+ Type* left_type, tree left_tree,
+ Type* right_type, tree right_tree,
+ source_location location)
+{
+ enum tree_code code;
+ switch (op)
+ {
+ case OPERATOR_EQEQ:
+ code = EQ_EXPR;
+ break;
+ case OPERATOR_NOTEQ:
+ code = NE_EXPR;
+ break;
+ case OPERATOR_LT:
+ code = LT_EXPR;
+ break;
+ case OPERATOR_LE:
+ code = LE_EXPR;
+ break;
+ case OPERATOR_GT:
+ code = GT_EXPR;
+ break;
+ case OPERATOR_GE:
+ code = GE_EXPR;
+ break;
+ default:
+ gcc_unreachable();
+ }
+
+ if (left_type->is_string_type() && right_type->is_string_type())
+ {
+ tree string_type = Type::make_string_type()->get_tree(context->gogo());
+ static tree string_compare_decl;
+ left_tree = Gogo::call_builtin(&string_compare_decl,
+ location,
+ "__go_strcmp",
+ 2,
+ integer_type_node,
+ string_type,
+ left_tree,
+ string_type,
+ right_tree);
+ right_tree = build_int_cst_type(integer_type_node, 0);
+ }
+ else if ((left_type->interface_type() != NULL
+ && right_type->interface_type() == NULL
+ && !right_type->is_nil_type())
+ || (left_type->interface_type() == NULL
+ && !left_type->is_nil_type()
+ && right_type->interface_type() != NULL))
+ {
+ // Comparing an interface value to a non-interface value.
+ if (left_type->interface_type() == NULL)
+ {
+ std::swap(left_type, right_type);
+ std::swap(left_tree, right_tree);
+ }
+
+ // The right operand is not an interface. We need to take its
+ // address if it is not a pointer.
+ tree make_tmp;
+ tree arg;
+ if (right_type->points_to() != NULL)
+ {
+ make_tmp = NULL_TREE;
+ arg = right_tree;
+ }
+ else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
+ {
+ make_tmp = NULL_TREE;
+ arg = build_fold_addr_expr_loc(location, right_tree);
+ if (DECL_P(right_tree))
+ TREE_ADDRESSABLE(right_tree) = 1;
+ }
+ else
+ {
+ tree tmp = create_tmp_var(TREE_TYPE(right_tree),
+ get_name(right_tree));
+ DECL_IGNORED_P(tmp) = 0;
+ DECL_INITIAL(tmp) = right_tree;
+ TREE_ADDRESSABLE(tmp) = 1;
+ make_tmp = build1(DECL_EXPR, void_type_node, tmp);
+ SET_EXPR_LOCATION(make_tmp, location);
+ arg = build_fold_addr_expr_loc(location, tmp);
+ }
+ arg = fold_convert_loc(location, ptr_type_node, arg);
+
+ tree descriptor = right_type->type_descriptor_pointer(context->gogo());
+
+ if (left_type->interface_type()->is_empty())
+ {
+ static tree empty_interface_value_compare_decl;
+ left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
+ location,
+ "__go_empty_interface_value_compare",
+ 3,
+ integer_type_node,
+ TREE_TYPE(left_tree),
+ left_tree,
+ TREE_TYPE(descriptor),
+ descriptor,
+ ptr_type_node,
+ arg);
+ if (left_tree == error_mark_node)
+ return error_mark_node;
+ // This can panic if the type is not comparable.
+ TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
+ }
+ else
+ {
+ static tree interface_value_compare_decl;
+ left_tree = Gogo::call_builtin(&interface_value_compare_decl,
+ location,
+ "__go_interface_value_compare",
+ 3,
+ integer_type_node,
+ TREE_TYPE(left_tree),
+ left_tree,
+ TREE_TYPE(descriptor),
+ descriptor,
+ ptr_type_node,
+ arg);
+ if (left_tree == error_mark_node)
+ return error_mark_node;
+ // This can panic if the type is not comparable.
+ TREE_NOTHROW(interface_value_compare_decl) = 0;
+ }
+ right_tree = build_int_cst_type(integer_type_node, 0);
+
+ if (make_tmp != NULL_TREE)
+ left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
+ left_tree);
+ }
+ else if (left_type->interface_type() != NULL
+ && right_type->interface_type() != NULL)
+ {
+ if (left_type->interface_type()->is_empty()
+ && right_type->interface_type()->is_empty())
+ {
+ static tree empty_interface_compare_decl;
+ left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
+ location,
+ "__go_empty_interface_compare",
+ 2,
+ integer_type_node,
+ TREE_TYPE(left_tree),
+ left_tree,
+ TREE_TYPE(right_tree),
+ right_tree);
+ if (left_tree == error_mark_node)
+ return error_mark_node;
+ // This can panic if the type is uncomparable.
+ TREE_NOTHROW(empty_interface_compare_decl) = 0;
+ }
+ else if (!left_type->interface_type()->is_empty()
+ && !right_type->interface_type()->is_empty())
+ {
+ static tree interface_compare_decl;
+ left_tree = Gogo::call_builtin(&interface_compare_decl,
+ location,
+ "__go_interface_compare",
+ 2,
+ integer_type_node,
+ TREE_TYPE(left_tree),
+ left_tree,
+ TREE_TYPE(right_tree),
+ right_tree);
+ if (left_tree == error_mark_node)
+ return error_mark_node;
+ // This can panic if the type is uncomparable.
+ TREE_NOTHROW(interface_compare_decl) = 0;
+ }
+ else
+ {
+ if (left_type->interface_type()->is_empty())
+ {
+ gcc_assert(op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ);
+ std::swap(left_type, right_type);
+ std::swap(left_tree, right_tree);
+ }
+ gcc_assert(!left_type->interface_type()->is_empty());
+ gcc_assert(right_type->interface_type()->is_empty());
+ static tree interface_empty_compare_decl;
+ left_tree = Gogo::call_builtin(&interface_empty_compare_decl,
+ location,
+ "__go_interface_empty_compare",
+ 2,
+ integer_type_node,
+ TREE_TYPE(left_tree),
+ left_tree,
+ TREE_TYPE(right_tree),
+ right_tree);
+ if (left_tree == error_mark_node)
+ return error_mark_node;
+ // This can panic if the type is uncomparable.
+ TREE_NOTHROW(interface_empty_compare_decl) = 0;
+ }
+
+ right_tree = build_int_cst_type(integer_type_node, 0);
+ }
+
+ if (left_type->is_nil_type()
+ && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
+ {
+ std::swap(left_type, right_type);
+ std::swap(left_tree, right_tree);
+ }
+
+ if (right_type->is_nil_type())
+ {
+ if (left_type->array_type() != NULL
+ && left_type->array_type()->length() == NULL)
+ {
+ Array_type* at = left_type->array_type();
+ left_tree = at->value_pointer_tree(context->gogo(), left_tree);
+ right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
+ }
+ else if (left_type->interface_type() != NULL)
+ {
+ // An interface is nil if the first field is nil.
+ tree left_type_tree = TREE_TYPE(left_tree);
+ gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
+ tree field = TYPE_FIELDS(left_type_tree);
+ left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
+ field, NULL_TREE);
+ right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
+ }
+ else
+ {
+ gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
+ right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
+ }
+ }
+
+ if (left_tree == error_mark_node || right_tree == error_mark_node)
+ return error_mark_node;
+
+ tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
+ if (CAN_HAVE_LOCATION_P(ret))
+ SET_EXPR_LOCATION(ret, location);
+ return ret;
+}
+
+// Class Bound_method_expression.
+
+// Traversal.
+
+int
+Bound_method_expression::do_traverse(Traverse* traverse)
+{
+ if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ return Expression::traverse(&this->method_, traverse);
+}
+
+// Return the type of a bound method expression. The type of this
+// object is really the type of the method with no receiver. We
+// should be able to get away with just returning the type of the
+// method.
+
+Type*
+Bound_method_expression::do_type()
+{
+ return this->method_->type();
+}
+
+// Determine the types of a method expression.
+
+void
+Bound_method_expression::do_determine_type(const Type_context*)
+{
+ this->method_->determine_type_no_context();
+ Type* mtype = this->method_->type();
+ Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
+ if (fntype == NULL || !fntype->is_method())
+ this->expr_->determine_type_no_context();
+ else
+ {
+ Type_context subcontext(fntype->receiver()->type(), false);
+ this->expr_->determine_type(&subcontext);
+ }
+}
+
+// Check the types of a method expression.
+
+void
+Bound_method_expression::do_check_types(Gogo*)
+{
+ Type* type = this->method_->type()->deref();
+ if (type == NULL
+ || type->function_type() == NULL
+ || !type->function_type()->is_method())
+ this->report_error(_("object is not a method"));
+ else
+ {
+ Type* rtype = type->function_type()->receiver()->type()->deref();
+ Type* etype = (this->expr_type_ != NULL
+ ? this->expr_type_
+ : this->expr_->type());
+ etype = etype->deref();
+ if (!Type::are_identical(rtype, etype, true, NULL))
+ this->report_error(_("method type does not match object type"));
+ }
+}
+
+// Get the tree for a method expression. There is no standard tree
+// representation for this. The only places it may currently be used
+// are in a Call_expression or a Go_statement, which will take it
+// apart directly. So this has nothing to do at present.
+
+tree
+Bound_method_expression::do_get_tree(Translate_context*)
+{
+ error_at(this->location(), "reference to method other than calling it");
+ return error_mark_node;
+}
+
+// Make a method expression.
+
+Bound_method_expression*
+Expression::make_bound_method(Expression* expr, Expression* method,
+ source_location location)
+{
+ return new Bound_method_expression(expr, method, location);
+}
+
+// Class Builtin_call_expression. This is used for a call to a
+// builtin function.
+
+class Builtin_call_expression : public Call_expression
+{
+ public:
+ Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
+ bool is_varargs, source_location location);
+
+ protected:
+ // This overrides Call_expression::do_lower.
+ Expression*
+ do_lower(Gogo*, Named_object*, int);
+
+ bool
+ do_is_constant() const;
+
+ bool
+ do_integer_constant_value(bool, mpz_t, Type**) const;
+
+ bool
+ do_float_constant_value(mpfr_t, Type**) const;
+
+ bool
+ do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
+
+ Type*
+ do_type();
+
+ void
+ do_determine_type(const Type_context*);
+
+ void
+ do_check_types(Gogo*);
+
+ Expression*
+ do_copy()
+ {
+ return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
+ this->args()->copy(),
+ this->is_varargs(),
+ this->location());
+ }
+
+ tree
+ do_get_tree(Translate_context*);
+
+ void
+ do_export(Export*) const;
+
+ virtual bool
+ do_is_recover_call() const;
+
+ virtual void
+ do_set_recover_arg(Expression*);
+
+ private:
+ // The builtin functions.
+ enum Builtin_function_code
+ {
+ BUILTIN_INVALID,
+
+ // Predeclared builtin functions.
+ BUILTIN_APPEND,
+ BUILTIN_CAP,
+ BUILTIN_CLOSE,
+ BUILTIN_CLOSED,
+ BUILTIN_COMPLEX,
+ BUILTIN_COPY,
+ BUILTIN_IMAG,
+ BUILTIN_LEN,
+ BUILTIN_MAKE,
+ BUILTIN_NEW,
+ BUILTIN_PANIC,
+ BUILTIN_PRINT,
+ BUILTIN_PRINTLN,
+ BUILTIN_REAL,
+ BUILTIN_RECOVER,
+
+ // Builtin functions from the unsafe package.
+ BUILTIN_ALIGNOF,
+ BUILTIN_OFFSETOF,
+ BUILTIN_SIZEOF
+ };
+
+ Expression*
+ one_arg() const;
+
+ bool
+ check_one_arg();
+
+ static Type*
+ real_imag_type(Type*);
+
+ static Type*
+ complex_type(Type*);
+
+ // A pointer back to the general IR structure. This avoids a global
+ // variable, or passing it around everywhere.
+ Gogo* gogo_;
+ // The builtin function being called.
+ Builtin_function_code code_;
+ // Used to stop endless loops when the length of an array uses len
+ // or cap of the array itself.
+ mutable bool seen_;
+};
+
+Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
+ Expression* fn,
+ Expression_list* args,
+ bool is_varargs,
+ source_location location)
+ : Call_expression(fn, args, is_varargs, location),
+ gogo_(gogo), code_(BUILTIN_INVALID), seen_(false)
+{
+ Func_expression* fnexp = this->fn()->func_expression();
+ gcc_assert(fnexp != NULL);
+ const std::string& name(fnexp->named_object()->name());
+ if (name == "append")
+ this->code_ = BUILTIN_APPEND;
+ else if (name == "cap")
+ this->code_ = BUILTIN_CAP;
+ else if (name == "close")
+ this->code_ = BUILTIN_CLOSE;
+ else if (name == "closed")
+ this->code_ = BUILTIN_CLOSED;
+ else if (name == "complex")
+ this->code_ = BUILTIN_COMPLEX;
+ else if (name == "copy")
+ this->code_ = BUILTIN_COPY;
+ else if (name == "imag")
+ this->code_ = BUILTIN_IMAG;
+ else if (name == "len")
+ this->code_ = BUILTIN_LEN;
+ else if (name == "make")
+ this->code_ = BUILTIN_MAKE;
+ else if (name == "new")
+ this->code_ = BUILTIN_NEW;
+ else if (name == "panic")
+ this->code_ = BUILTIN_PANIC;
+ else if (name == "print")
+ this->code_ = BUILTIN_PRINT;
+ else if (name == "println")
+ this->code_ = BUILTIN_PRINTLN;
+ else if (name == "real")
+ this->code_ = BUILTIN_REAL;
+ else if (name == "recover")
+ this->code_ = BUILTIN_RECOVER;
+ else if (name == "Alignof")
+ this->code_ = BUILTIN_ALIGNOF;
+ else if (name == "Offsetof")
+ this->code_ = BUILTIN_OFFSETOF;
+ else if (name == "Sizeof")
+ this->code_ = BUILTIN_SIZEOF;
+ else
+ gcc_unreachable();
+}
+
+// Return whether this is a call to recover. This is a virtual
+// function called from the parent class.
+
+bool
+Builtin_call_expression::do_is_recover_call() const
+{
+ if (this->classification() == EXPRESSION_ERROR)
+ return false;
+ return this->code_ == BUILTIN_RECOVER;
+}
+
+// Set the argument for a call to recover.
+
+void
+Builtin_call_expression::do_set_recover_arg(Expression* arg)
+{
+ const Expression_list* args = this->args();
+ gcc_assert(args == NULL || args->empty());
+ Expression_list* new_args = new Expression_list();
+ new_args->push_back(arg);
+ this->set_args(new_args);
+}
+
+// A traversal class which looks for a call expression.
+
+class Find_call_expression : public Traverse
+{
+ public:
+ Find_call_expression()
+ : Traverse(traverse_expressions),
+ found_(false)
+ { }
+
+ int
+ expression(Expression**);
+
+ bool
+ found()
+ { return this->found_; }
+
+ private:
+ bool found_;
+};
+
+int
+Find_call_expression::expression(Expression** pexpr)
+{
+ if ((*pexpr)->call_expression() != NULL)
+ {
+ this->found_ = true;
+ return TRAVERSE_EXIT;
+ }
+ return TRAVERSE_CONTINUE;
+}
+
+// Lower a builtin call expression. This turns new and make into
+// specific expressions. We also convert to a constant if we can.
+
+Expression*
+Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
+{
+ if (this->code_ == BUILTIN_NEW)
+ {
+ const Expression_list* args = this->args();
+ if (args == NULL || args->size() < 1)
+ this->report_error(_("not enough arguments"));
+ else if (args->size() > 1)
+ this->report_error(_("too many arguments"));
+ else
+ {
+ Expression* arg = args->front();
+ if (!arg->is_type_expression())
+ {
+ error_at(arg->location(), "expected type");
+ this->set_is_error();
+ }
+ else
+ return Expression::make_allocation(arg->type(), this->location());
+ }
+ }
+ else if (this->code_ == BUILTIN_MAKE)
+ {
+ const Expression_list* args = this->args();
+ if (args == NULL || args->size() < 1)
+ this->report_error(_("not enough arguments"));
+ else
+ {
+ Expression* arg = args->front();
+ if (!arg->is_type_expression())
+ {
+ error_at(arg->location(), "expected type");
+ this->set_is_error();
+ }
+ else
+ {
+ Expression_list* newargs;
+ if (args->size() == 1)
+ newargs = NULL;
+ else
+ {
+ newargs = new Expression_list();
+ Expression_list::const_iterator p = args->begin();
+ ++p;
+ for (; p != args->end(); ++p)
+ newargs->push_back(*p);
+ }
+ return Expression::make_make(arg->type(), newargs,
+ this->location());
+ }
+ }
+ }
+ else if (this->is_constant())
+ {
+ // We can only lower len and cap if there are no function calls
+ // in the arguments. Otherwise we have to make the call.
+ if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
+ {
+ Expression* arg = this->one_arg();
+ if (!arg->is_constant())
+ {
+ Find_call_expression find_call;
+ Expression::traverse(&arg, &find_call);
+ if (find_call.found())
+ return this;
+ }
+ }
+
+ mpz_t ival;
+ mpz_init(ival);
+ Type* type;
+ if (this->integer_constant_value(true, ival, &type))
+ {
+ Expression* ret = Expression::make_integer(&ival, type,
+ this->location());
+ mpz_clear(ival);
+ return ret;
+ }
+ mpz_clear(ival);
+
+ mpfr_t rval;
+ mpfr_init(rval);
+ if (this->float_constant_value(rval, &type))
+ {
+ Expression* ret = Expression::make_float(&rval, type,
+ this->location());
+ mpfr_clear(rval);
+ return ret;
+ }
+
+ mpfr_t imag;
+ mpfr_init(imag);
+ if (this->complex_constant_value(rval, imag, &type))
+ {
+ Expression* ret = Expression::make_complex(&rval, &imag, type,
+ this->location());
+ mpfr_clear(rval);
+ mpfr_clear(imag);
+ return ret;
+ }
+ mpfr_clear(rval);
+ mpfr_clear(imag);
+ }
+ else if (this->code_ == BUILTIN_RECOVER)
+ {
+ if (function != NULL)
+ function->func_value()->set_calls_recover();
+ else
+ {
+ // Calling recover outside of a function always returns the
+ // nil empty interface.
+ Type* eface = Type::make_interface_type(NULL, this->location());
+ return Expression::make_cast(eface,
+ Expression::make_nil(this->location()),
+ this->location());
+ }
+ }
+ else if (this->code_ == BUILTIN_APPEND)
+ {
+ // Lower the varargs.
+ const Expression_list* args = this->args();
+ if (args == NULL || args->empty())
+ return this;
+ Type* slice_type = args->front()->type();
+ if (!slice_type->is_open_array_type())
+ {
+ error_at(args->front()->location(), "argument 1 must be a slice");
+ this->set_is_error();
+ return this;
+ }
+ return this->lower_varargs(gogo, function, slice_type, 2);
+ }
+
+ return this;
+}
+
+// Return the type of the real or imag functions, given the type of
+// the argument. We need to map complex to float, complex64 to
+// float32, and complex128 to float64, so it has to be done by name.
+// This returns NULL if it can't figure out the type.
+
+Type*
+Builtin_call_expression::real_imag_type(Type* arg_type)
+{
+ if (arg_type == NULL || arg_type->is_abstract())
+ return NULL;
+ Named_type* nt = arg_type->named_type();
+ if (nt == NULL)
+ return NULL;
+ while (nt->real_type()->named_type() != NULL)
+ nt = nt->real_type()->named_type();
+ if (nt->name() == "complex64")
+ return Type::lookup_float_type("float32");
+ else if (nt->name() == "complex128")
+ return Type::lookup_float_type("float64");
+ else
+ return NULL;
+}
+
+// Return the type of the complex function, given the type of one of the
+// argments. Like real_imag_type, we have to map by name.
+
+Type*
+Builtin_call_expression::complex_type(Type* arg_type)
+{
+ if (arg_type == NULL || arg_type->is_abstract())
+ return NULL;
+ Named_type* nt = arg_type->named_type();
+ if (nt == NULL)
+ return NULL;
+ while (nt->real_type()->named_type() != NULL)
+ nt = nt->real_type()->named_type();
+ if (nt->name() == "float32")
+ return Type::lookup_complex_type("complex64");
+ else if (nt->name() == "float64")
+ return Type::lookup_complex_type("complex128");
+ else
+ return NULL;
+}
+
+// Return a single argument, or NULL if there isn't one.
+
+Expression*
+Builtin_call_expression::one_arg() const
+{
+ const Expression_list* args = this->args();
+ if (args->size() != 1)
+ return NULL;
+ return args->front();
+}
+
+// Return whether this is constant: len of a string, or len or cap of
+// a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
+
+bool
+Builtin_call_expression::do_is_constant() const
+{
+ switch (this->code_)
+ {
+ case BUILTIN_LEN:
+ case BUILTIN_CAP:
+ {
+ if (this->seen_)
+ return false;
+
+ Expression* arg = this->one_arg();
+ if (arg == NULL)
+ return false;
+ Type* arg_type = arg->type();
+
+ if (arg_type->points_to() != NULL
+ && arg_type->points_to()->array_type() != NULL
+ && !arg_type->points_to()->is_open_array_type())
+ arg_type = arg_type->points_to();
+
+ if (arg_type->array_type() != NULL
+ && arg_type->array_type()->length() != NULL)
+ return true;
+
+ if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
+ {
+ this->seen_ = true;
+ bool ret = arg->is_constant();
+ this->seen_ = false;
+ return ret;
+ }
+ }
+ break;
+
+ case BUILTIN_SIZEOF:
+ case BUILTIN_ALIGNOF:
+ return this->one_arg() != NULL;
+
+ case BUILTIN_OFFSETOF:
+ {
+ Expression* arg = this->one_arg();
+ if (arg == NULL)
+ return false;
+ return arg->field_reference_expression() != NULL;
+ }
+
+ case BUILTIN_COMPLEX:
+ {
+ const Expression_list* args = this->args();
+ if (args != NULL && args->size() == 2)
+ return args->front()->is_constant() && args->back()->is_constant();
+ }
+ break;
+
+ case BUILTIN_REAL:
+ case BUILTIN_IMAG:
+ {
+ Expression* arg = this->one_arg();
+ return arg != NULL && arg->is_constant();
+ }
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+// Return an integer constant value if possible.
+
+bool
+Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
+ mpz_t val,
+ Type** ptype) const
+{
+ if (this->code_ == BUILTIN_LEN
+ || this->code_ == BUILTIN_CAP)
+ {
+ Expression* arg = this->one_arg();
+ if (arg == NULL)
+ return false;
+ Type* arg_type = arg->type();
+
+ if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
+ {
+ std::string sval;
+ if (arg->string_constant_value(&sval))
+ {
+ mpz_set_ui(val, sval.length());
+ *ptype = Type::lookup_integer_type("int");
+ return true;
+ }
+ }
+
+ if (arg_type->points_to() != NULL
+ && arg_type->points_to()->array_type() != NULL
+ && !arg_type->points_to()->is_open_array_type())
+ arg_type = arg_type->points_to();
+
+ if (arg_type->array_type() != NULL
+ && arg_type->array_type()->length() != NULL)
+ {
+ if (this->seen_)
+ return false;
+ Expression* e = arg_type->array_type()->length();
+ this->seen_ = true;
+ bool r = e->integer_constant_value(iota_is_constant, val, ptype);
+ this->seen_ = false;
+ if (r)
+ {
+ *ptype = Type::lookup_integer_type("int");
+ return true;
+ }
+ }
+ }
+ else if (this->code_ == BUILTIN_SIZEOF
+ || this->code_ == BUILTIN_ALIGNOF)
+ {
+ Expression* arg = this->one_arg();
+ if (arg == NULL)
+ return false;
+ Type* arg_type = arg->type();
+ if (arg_type->is_error_type() || arg_type->is_undefined())
+ return false;
+ if (arg_type->is_abstract())
+ return false;
+ if (arg_type->named_type() != NULL)
+ arg_type->named_type()->convert(this->gogo_);
+ tree arg_type_tree = arg_type->get_tree(this->gogo_);
+ if (arg_type_tree == error_mark_node)
+ return false;
+ unsigned long val_long;
+ if (this->code_ == BUILTIN_SIZEOF)
+ {
+ tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
+ gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
+ if (TREE_INT_CST_HIGH(type_size) != 0)
+ return false;
+ unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
+ val_long = static_cast<unsigned long>(val_wide);
+ if (val_long != val_wide)
+ return false;
+ }
+ else if (this->code_ == BUILTIN_ALIGNOF)
+ {
+ if (arg->field_reference_expression() == NULL)
+ val_long = go_type_alignment(arg_type_tree);
+ else
+ {
+ // Calling unsafe.Alignof(s.f) returns the alignment of
+ // the type of f when it is used as a field in a struct.
+ val_long = go_field_alignment(arg_type_tree);
+ }
+ }
+ else
+ gcc_unreachable();
+ mpz_set_ui(val, val_long);
+ *ptype = NULL;
+ return true;
+ }
+ else if (this->code_ == BUILTIN_OFFSETOF)
+ {
+ Expression* arg = this->one_arg();
+ if (arg == NULL)
+ return false;
+ Field_reference_expression* farg = arg->field_reference_expression();
+ if (farg == NULL)
+ return false;
+ Expression* struct_expr = farg->expr();
+ Type* st = struct_expr->type();
+ if (st->struct_type() == NULL)
+ return false;
+ if (st->named_type() != NULL)
+ st->named_type()->convert(this->gogo_);
+ tree struct_tree = st->get_tree(this->gogo_);
+ gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
+ tree field = TYPE_FIELDS(struct_tree);
+ for (unsigned int index = farg->field_index(); index > 0; --index)
+ {
+ field = DECL_CHAIN(field);
+ gcc_assert(field != NULL_TREE);
+ }
+ HOST_WIDE_INT offset_wide = int_byte_position (field);
+ if (offset_wide < 0)
+ return false;
+ unsigned long offset_long = static_cast<unsigned long>(offset_wide);
+ if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
+ return false;
+ mpz_set_ui(val, offset_long);
+ return true;
+ }
+ return false;
+}
+
+// Return a floating point constant value if possible.
+
+bool
+Builtin_call_expression::do_float_constant_value(mpfr_t val,
+ Type** ptype) const
+{
+ if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
+ {
+ Expression* arg = this->one_arg();
+ if (arg == NULL)
+ return false;
+
+ mpfr_t real;
+ mpfr_t imag;
+ mpfr_init(real);
+ mpfr_init(imag);
+
+ bool ret = false;
+ Type* type;
+ if (arg->complex_constant_value(real, imag, &type))
+ {
+ if (this->code_ == BUILTIN_REAL)
+ mpfr_set(val, real, GMP_RNDN);
+ else
+ mpfr_set(val, imag, GMP_RNDN);
+ *ptype = Builtin_call_expression::real_imag_type(type);
+ ret = true;
+ }
+
+ mpfr_clear(real);
+ mpfr_clear(imag);
+ return ret;
+ }
+
+ return false;
+}
+
+// Return a complex constant value if possible.
+
+bool
+Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
+ Type** ptype) const
+{
+ if (this->code_ == BUILTIN_COMPLEX)
+ {
+ const Expression_list* args = this->args();
+ if (args == NULL || args->size() != 2)
+ return false;
+
+ mpfr_t r;
+ mpfr_init(r);
+ Type* rtype;
+ if (!args->front()->float_constant_value(r, &rtype))
+ {
+ mpfr_clear(r);
+ return false;
+ }
+
+ mpfr_t i;
+ mpfr_init(i);
+
+ bool ret = false;
+ Type* itype;
+ if (args->back()->float_constant_value(i, &itype)
+ && Type::are_identical(rtype, itype, false, NULL))
+ {
+ mpfr_set(real, r, GMP_RNDN);
+ mpfr_set(imag, i, GMP_RNDN);
+ *ptype = Builtin_call_expression::complex_type(rtype);
+ ret = true;
+ }
+
+ mpfr_clear(r);
+ mpfr_clear(i);
+
+ return ret;
+ }
+
+ return false;
+}
+
+// Return the type.
+
+Type*
+Builtin_call_expression::do_type()
+{
+ switch (this->code_)
+ {
+ case BUILTIN_INVALID:
+ default:
+ gcc_unreachable();
+
+ case BUILTIN_NEW:
+ case BUILTIN_MAKE:
+ {
+ const Expression_list* args = this->args();
+ if (args == NULL || args->empty())
+ return Type::make_error_type();
+ return Type::make_pointer_type(args->front()->type());
+ }
+
+ case BUILTIN_CAP:
+ case BUILTIN_COPY:
+ case BUILTIN_LEN:
+ case BUILTIN_ALIGNOF:
+ case BUILTIN_OFFSETOF:
+ case BUILTIN_SIZEOF:
+ return Type::lookup_integer_type("int");
+
+ case BUILTIN_CLOSE:
+ case BUILTIN_PANIC:
+ case BUILTIN_PRINT:
+ case BUILTIN_PRINTLN:
+ return Type::make_void_type();
+
+ case BUILTIN_CLOSED:
+ return Type::lookup_bool_type();
+
+ case BUILTIN_RECOVER:
+ return Type::make_interface_type(NULL, BUILTINS_LOCATION);
+
+ case BUILTIN_APPEND:
+ {
+ const Expression_list* args = this->args();
+ if (args == NULL || args->empty())
+ return Type::make_error_type();
+ return args->front()->type();
+ }
+
+ case BUILTIN_REAL:
+ case BUILTIN_IMAG:
+ {
+ Expression* arg = this->one_arg();
+ if (arg == NULL)
+ return Type::make_error_type();
+ Type* t = arg->type();
+ if (t->is_abstract())
+ t = t->make_non_abstract_type();
+ t = Builtin_call_expression::real_imag_type(t);
+ if (t == NULL)
+ t = Type::make_error_type();
+ return t;
+ }
+
+ case BUILTIN_COMPLEX:
+ {
+ const Expression_list* args = this->args();
+ if (args == NULL || args->size() != 2)
+ return Type::make_error_type();
+ Type* t = args->front()->type();
+ if (t->is_abstract())
+ {
+ t = args->back()->type();
+ if (t->is_abstract())
+ t = t->make_non_abstract_type();
+ }
+ t = Builtin_call_expression::complex_type(t);
+ if (t == NULL)
+ t = Type::make_error_type();
+ return t;
+ }
+ }
+}
+
+// Determine the type.
+
+void
+Builtin_call_expression::do_determine_type(const Type_context* context)
+{
+ if (!this->determining_types())
+ return;
+
+ this->fn()->determine_type_no_context();
+
+ const Expression_list* args = this->args();
+
+ bool is_print;
+ Type* arg_type = NULL;
+ switch (this->code_)
+ {
+ case BUILTIN_PRINT:
+ case BUILTIN_PRINTLN:
+ // Do not force a large integer constant to "int".
+ is_print = true;
+ break;
+
+ case BUILTIN_REAL:
+ case BUILTIN_IMAG:
+ arg_type = Builtin_call_expression::complex_type(context->type);
+ is_print = false;
+ break;
+
+ case BUILTIN_COMPLEX:
+ {
+ // For the complex function the type of one operand can
+ // determine the type of the other, as in a binary expression.
+ arg_type = Builtin_call_expression::real_imag_type(context->type);
+ if (args != NULL && args->size() == 2)
+ {
+ Type* t1 = args->front()->type();
+ Type* t2 = args->front()->type();
+ if (!t1->is_abstract())
+ arg_type = t1;
+ else if (!t2->is_abstract())
+ arg_type = t2;
+ }
+ is_print = false;
+ }
+ break;
+
+ default:
+ is_print = false;
+ break;
+ }
+
+ if (args != NULL)
+ {
+ for (Expression_list::const_iterator pa = args->begin();
+ pa != args->end();
+ ++pa)
+ {
+ Type_context subcontext;
+ subcontext.type = arg_type;
+
+ if (is_print)
+ {
+ // We want to print large constants, we so can't just
+ // use the appropriate nonabstract type. Use uint64 for
+ // an integer if we know it is nonnegative, otherwise
+ // use int64 for a integer, otherwise use float64 for a
+ // float or complex128 for a complex.
+ Type* want_type = NULL;
+ Type* atype = (*pa)->type();
+ if (atype->is_abstract())
+ {
+ if (atype->integer_type() != NULL)
+ {
+ mpz_t val;
+ mpz_init(val);
+ Type* dummy;
+ if (this->integer_constant_value(true, val, &dummy)
+ && mpz_sgn(val) >= 0)
+ want_type = Type::lookup_integer_type("uint64");
+ else
+ want_type = Type::lookup_integer_type("int64");
+ mpz_clear(val);
+ }
+ else if (atype->float_type() != NULL)
+ want_type = Type::lookup_float_type("float64");
+ else if (atype->complex_type() != NULL)
+ want_type = Type::lookup_complex_type("complex128");
+ else if (atype->is_abstract_string_type())
+ want_type = Type::lookup_string_type();
+ else if (atype->is_abstract_boolean_type())
+ want_type = Type::lookup_bool_type();
+ else
+ gcc_unreachable();
+ subcontext.type = want_type;
+ }
+ }
+
+ (*pa)->determine_type(&subcontext);
+ }
+ }
+}
+
+// If there is exactly one argument, return true. Otherwise give an
+// error message and return false.
+
+bool
+Builtin_call_expression::check_one_arg()
+{
+ const Expression_list* args = this->args();
+ if (args == NULL || args->size() < 1)
+ {
+ this->report_error(_("not enough arguments"));
+ return false;
+ }
+ else if (args->size() > 1)
+ {
+ this->report_error(_("too many arguments"));
+ return false;
+ }
+ if (args->front()->is_error_expression()
+ || args->front()->type()->is_error_type()
+ || args->front()->type()->is_undefined())
+ {
+ this->set_is_error();
+ return false;
+ }
+ return true;
+}
+
+// Check argument types for a builtin function.
+
+void
+Builtin_call_expression::do_check_types(Gogo*)
+{
+ switch (this->code_)
+ {
+ case BUILTIN_INVALID:
+ case BUILTIN_NEW:
+ case BUILTIN_MAKE:
+ return;
+
+ case BUILTIN_LEN:
+ case BUILTIN_CAP:
+ {
+ // The single argument may be either a string or an array or a
+ // map or a channel, or a pointer to a closed array.
+ if (this->check_one_arg())
+ {
+ Type* arg_type = this->one_arg()->type();
+ if (arg_type->points_to() != NULL
+ && arg_type->points_to()->array_type() != NULL
+ && !arg_type->points_to()->is_open_array_type())
+ arg_type = arg_type->points_to();
+ if (this->code_ == BUILTIN_CAP)
+ {
+ if (!arg_type->is_error_type()
+ && arg_type->array_type() == NULL
+ && arg_type->channel_type() == NULL)
+ this->report_error(_("argument must be array or slice "
+ "or channel"));
+ }
+ else
+ {
+ if (!arg_type->is_error_type()
+ && !arg_type->is_string_type()
+ && arg_type->array_type() == NULL
+ && arg_type->map_type() == NULL
+ && arg_type->channel_type() == NULL)
+ this->report_error(_("argument must be string or "
+ "array or slice or map or channel"));
+ }
+ }
+ }
+ break;
+
+ case BUILTIN_PRINT:
+ case BUILTIN_PRINTLN:
+ {
+ const Expression_list* args = this->args();
+ if (args == NULL)
+ {
+ if (this->code_ == BUILTIN_PRINT)
+ warning_at(this->location(), 0,
+ "no arguments for builtin function %<%s%>",
+ (this->code_ == BUILTIN_PRINT
+ ? "print"
+ : "println"));
+ }
+ else
+ {
+ for (Expression_list::const_iterator p = args->begin();
+ p != args->end();
+ ++p)
+ {
+ Type* type = (*p)->type();
+ if (type->is_error_type()
+ || type->is_string_type()
+ || type->integer_type() != NULL
+ || type->float_type() != NULL
+ || type->complex_type() != NULL
+ || type->is_boolean_type()
+ || type->points_to() != NULL
+ || type->interface_type() != NULL
+ || type->channel_type() != NULL
+ || type->map_type() != NULL
+ || type->function_type() != NULL
+ || type->is_open_array_type())
+ ;
+ else
+ this->report_error(_("unsupported argument type to "
+ "builtin function"));
+ }
+ }
+ }
+ break;
+
+ case BUILTIN_CLOSE:
+ case BUILTIN_CLOSED:
+ if (this->check_one_arg())
+ {
+ if (this->one_arg()->type()->channel_type() == NULL)
+ this->report_error(_("argument must be channel"));
+ }
+ break;
+
+ case BUILTIN_PANIC:
+ case BUILTIN_SIZEOF:
+ case BUILTIN_ALIGNOF:
+ this->check_one_arg();
+ break;
+
+ case BUILTIN_RECOVER:
+ if (this->args() != NULL && !this->args()->empty())
+ this->report_error(_("too many arguments"));
+ break;
+
+ case BUILTIN_OFFSETOF:
+ if (this->check_one_arg())
+ {
+ Expression* arg = this->one_arg();
+ if (arg->field_reference_expression() == NULL)
+ this->report_error(_("argument must be a field reference"));
+ }
+ break;
+
+ case BUILTIN_COPY:
+ {
+ const Expression_list* args = this->args();
+ if (args == NULL || args->size() < 2)
+ {
+ this->report_error(_("not enough arguments"));
+ break;
+ }
+ else if (args->size() > 2)
+ {
+ this->report_error(_("too many arguments"));
+ break;
+ }
+ Type* arg1_type = args->front()->type();
+ Type* arg2_type = args->back()->type();
+ if (arg1_type->is_error_type() || arg2_type->is_error_type())
+ break;
+
+ Type* e1;
+ if (arg1_type->is_open_array_type())
+ e1 = arg1_type->array_type()->element_type();
+ else
+ {
+ this->report_error(_("left argument must be a slice"));
+ break;
+ }
+
+ Type* e2;
+ if (arg2_type->is_open_array_type())
+ e2 = arg2_type->array_type()->element_type();
+ else if (arg2_type->is_string_type())
+ e2 = Type::lookup_integer_type("uint8");
+ else
+ {
+ this->report_error(_("right argument must be a slice or a string"));
+ break;
+ }
+
+ if (!Type::are_identical(e1, e2, true, NULL))
+ this->report_error(_("element types must be the same"));
+ }
+ break;
+
+ case BUILTIN_APPEND:
+ {
+ const Expression_list* args = this->args();
+ if (args == NULL || args->size() < 2)
+ {
+ this->report_error(_("not enough arguments"));
+ break;
+ }
+ if (args->size() > 2)
+ {
+ this->report_error(_("too many arguments"));
+ break;
+ }
+ std::string reason;
+ if (!Type::are_assignable(args->front()->type(), args->back()->type(),
+ &reason))
+ {
+ if (reason.empty())
+ this->report_error(_("arguments 1 and 2 have different types"));
+ else
+ {
+ error_at(this->location(),
+ "arguments 1 and 2 have different types (%s)",
+ reason.c_str());
+ this->set_is_error();
+ }
+ }
+ break;
+ }
+
+ case BUILTIN_REAL:
+ case BUILTIN_IMAG:
+ if (this->check_one_arg())
+ {
+ if (this->one_arg()->type()->complex_type() == NULL)
+ this->report_error(_("argument must have complex type"));
+ }
+ break;
+
+ case BUILTIN_COMPLEX:
+ {
+ const Expression_list* args = this->args();
+ if (args == NULL || args->size() < 2)
+ this->report_error(_("not enough arguments"));
+ else if (args->size() > 2)
+ this->report_error(_("too many arguments"));
+ else if (args->front()->is_error_expression()
+ || args->front()->type()->is_error_type()
+ || args->back()->is_error_expression()
+ || args->back()->type()->is_error_type())
+ this->set_is_error();
+ else if (!Type::are_identical(args->front()->type(),
+ args->back()->type(), true, NULL))
+ this->report_error(_("complex arguments must have identical types"));
+ else if (args->front()->type()->float_type() == NULL)
+ this->report_error(_("complex arguments must have "
+ "floating-point type"));
+ }
+ break;
+
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Return the tree for a builtin function.
+
+tree
+Builtin_call_expression::do_get_tree(Translate_context* context)
+{
+ Gogo* gogo = context->gogo();
+ source_location location = this->location();
+ switch (this->code_)
+ {
+ case BUILTIN_INVALID:
+ case BUILTIN_NEW:
+ case BUILTIN_MAKE:
+ gcc_unreachable();
+
+ case BUILTIN_LEN:
+ case BUILTIN_CAP:
+ {
+ const Expression_list* args = this->args();
+ gcc_assert(args != NULL && args->size() == 1);
+ Expression* arg = *args->begin();
+ Type* arg_type = arg->type();
+
+ if (this->seen_)
+ {
+ gcc_assert(saw_errors());
+ return error_mark_node;
+ }
+ this->seen_ = true;
+
+ tree arg_tree = arg->get_tree(context);
+
+ this->seen_ = false;
+
+ if (arg_tree == error_mark_node)
+ return error_mark_node;
+
+ if (arg_type->points_to() != NULL)
+ {
+ arg_type = arg_type->points_to();
+ gcc_assert(arg_type->array_type() != NULL
+ && !arg_type->is_open_array_type());
+ gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
+ arg_tree = build_fold_indirect_ref(arg_tree);
+ }
+
+ tree val_tree;
+ if (this->code_ == BUILTIN_LEN)
+ {
+ if (arg_type->is_string_type())
+ val_tree = String_type::length_tree(gogo, arg_tree);
+ else if (arg_type->array_type() != NULL)
+ {
+ if (this->seen_)
+ {
+ gcc_assert(saw_errors());
+ return error_mark_node;
+ }
+ this->seen_ = true;
+ val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
+ this->seen_ = false;
+ }
+ else if (arg_type->map_type() != NULL)
+ {
+ static tree map_len_fndecl;
+ val_tree = Gogo::call_builtin(&map_len_fndecl,
+ location,
+ "__go_map_len",
+ 1,
+ sizetype,
+ arg_type->get_tree(gogo),
+ arg_tree);
+ }
+ else if (arg_type->channel_type() != NULL)
+ {
+ static tree chan_len_fndecl;
+ val_tree = Gogo::call_builtin(&chan_len_fndecl,
+ location,
+ "__go_chan_len",
+ 1,
+ sizetype,
+ arg_type->get_tree(gogo),
+ arg_tree);
+ }
+ else
+ gcc_unreachable();
+ }
+ else
+ {
+ if (arg_type->array_type() != NULL)
+ {
+ if (this->seen_)
+ {
+ gcc_assert(saw_errors());
+ return error_mark_node;
+ }
+ this->seen_ = true;
+ val_tree = arg_type->array_type()->capacity_tree(gogo,
+ arg_tree);
+ this->seen_ = false;
+ }
+ else if (arg_type->channel_type() != NULL)
+ {
+ static tree chan_cap_fndecl;
+ val_tree = Gogo::call_builtin(&chan_cap_fndecl,
+ location,
+ "__go_chan_cap",
+ 1,
+ sizetype,
+ arg_type->get_tree(gogo),
+ arg_tree);
+ }
+ else
+ gcc_unreachable();
+ }
+
+ if (val_tree == error_mark_node)
+ return error_mark_node;
+
+ tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
+ if (type_tree == TREE_TYPE(val_tree))
+ return val_tree;
+ else
+ return fold(convert_to_integer(type_tree, val_tree));
+ }
+
+ case BUILTIN_PRINT:
+ case BUILTIN_PRINTLN:
+ {
+ const bool is_ln = this->code_ == BUILTIN_PRINTLN;
+ tree stmt_list = NULL_TREE;
+
+ const Expression_list* call_args = this->args();
+ if (call_args != NULL)
+ {
+ for (Expression_list::const_iterator p = call_args->begin();
+ p != call_args->end();
+ ++p)
+ {
+ if (is_ln && p != call_args->begin())
+ {
+ static tree print_space_fndecl;
+ tree call = Gogo::call_builtin(&print_space_fndecl,
+ location,
+ "__go_print_space",
+ 0,
+ void_type_node);
+ if (call == error_mark_node)
+ return error_mark_node;
+ append_to_statement_list(call, &stmt_list);
+ }
+
+ Type* type = (*p)->type();
+
+ tree arg = (*p)->get_tree(context);
+ if (arg == error_mark_node)
+ return error_mark_node;
+
+ tree* pfndecl;
+ const char* fnname;
+ if (type->is_string_type())
+ {
+ static tree print_string_fndecl;
+ pfndecl = &print_string_fndecl;
+ fnname = "__go_print_string";
+ }
+ else if (type->integer_type() != NULL
+ && type->integer_type()->is_unsigned())
+ {
+ static tree print_uint64_fndecl;
+ pfndecl = &print_uint64_fndecl;
+ fnname = "__go_print_uint64";
+ Type* itype = Type::lookup_integer_type("uint64");
+ arg = fold_convert_loc(location, itype->get_tree(gogo),
+ arg);
+ }
+ else if (type->integer_type() != NULL)
+ {
+ static tree print_int64_fndecl;
+ pfndecl = &print_int64_fndecl;
+ fnname = "__go_print_int64";
+ Type* itype = Type::lookup_integer_type("int64");
+ arg = fold_convert_loc(location, itype->get_tree(gogo),
+ arg);
+ }
+ else if (type->float_type() != NULL)
+ {
+ static tree print_double_fndecl;
+ pfndecl = &print_double_fndecl;
+ fnname = "__go_print_double";
+ arg = fold_convert_loc(location, double_type_node, arg);
+ }
+ else if (type->complex_type() != NULL)
+ {
+ static tree print_complex_fndecl;
+ pfndecl = &print_complex_fndecl;
+ fnname = "__go_print_complex";
+ arg = fold_convert_loc(location, complex_double_type_node,
+ arg);
+ }
+ else if (type->is_boolean_type())
+ {
+ static tree print_bool_fndecl;
+ pfndecl = &print_bool_fndecl;
+ fnname = "__go_print_bool";
+ }
+ else if (type->points_to() != NULL
+ || type->channel_type() != NULL
+ || type->map_type() != NULL
+ || type->function_type() != NULL)
+ {
+ static tree print_pointer_fndecl;
+ pfndecl = &print_pointer_fndecl;
+ fnname = "__go_print_pointer";
+ arg = fold_convert_loc(location, ptr_type_node, arg);
+ }
+ else if (type->interface_type() != NULL)
+ {
+ if (type->interface_type()->is_empty())
+ {
+ static tree print_empty_interface_fndecl;
+ pfndecl = &print_empty_interface_fndecl;
+ fnname = "__go_print_empty_interface";
+ }
+ else
+ {
+ static tree print_interface_fndecl;
+ pfndecl = &print_interface_fndecl;
+ fnname = "__go_print_interface";
+ }
+ }
+ else if (type->is_open_array_type())
+ {
+ static tree print_slice_fndecl;
+ pfndecl = &print_slice_fndecl;
+ fnname = "__go_print_slice";
+ }
+ else
+ gcc_unreachable();
+
+ tree call = Gogo::call_builtin(pfndecl,
+ location,
+ fnname,
+ 1,
+ void_type_node,
+ TREE_TYPE(arg),
+ arg);
+ if (call == error_mark_node)
+ return error_mark_node;
+ append_to_statement_list(call, &stmt_list);
+ }
+ }
+
+ if (is_ln)
+ {
+ static tree print_nl_fndecl;
+ tree call = Gogo::call_builtin(&print_nl_fndecl,
+ location,
+ "__go_print_nl",
+ 0,
+ void_type_node);
+ if (call == error_mark_node)
+ return error_mark_node;
+ append_to_statement_list(call, &stmt_list);
+ }
+
+ return stmt_list;
+ }
+
+ case BUILTIN_PANIC:
+ {
+ const Expression_list* args = this->args();
+ gcc_assert(args != NULL && args->size() == 1);
+ Expression* arg = args->front();
+ tree arg_tree = arg->get_tree(context);
+ if (arg_tree == error_mark_node)
+ return error_mark_node;
+ Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
+ arg_tree = Expression::convert_for_assignment(context, empty,
+ arg->type(),
+ arg_tree, location);
+ static tree panic_fndecl;
+ tree call = Gogo::call_builtin(&panic_fndecl,
+ location,
+ "__go_panic",
+ 1,
+ void_type_node,
+ TREE_TYPE(arg_tree),
+ arg_tree);
+ if (call == error_mark_node)
+ return error_mark_node;
+ // This function will throw an exception.
+ TREE_NOTHROW(panic_fndecl) = 0;
+ // This function will not return.
+ TREE_THIS_VOLATILE(panic_fndecl) = 1;
+ return call;
+ }
+
+ case BUILTIN_RECOVER:
+ {
+ // The argument is set when building recover thunks. It's a
+ // boolean value which is true if we can recover a value now.
+ const Expression_list* args = this->args();
+ gcc_assert(args != NULL && args->size() == 1);
+ Expression* arg = args->front();
+ tree arg_tree = arg->get_tree(context);
+ if (arg_tree == error_mark_node)
+ return error_mark_node;
+
+ Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
+ tree empty_tree = empty->get_tree(context->gogo());
+
+ Type* nil_type = Type::make_nil_type();
+ Expression* nil = Expression::make_nil(location);
+ tree nil_tree = nil->get_tree(context);
+ tree empty_nil_tree = Expression::convert_for_assignment(context,
+ empty,
+ nil_type,
+ nil_tree,
+ location);
+
+ // We need to handle a deferred call to recover specially,
+ // because it changes whether it can recover a panic or not.
+ // See test7 in test/recover1.go.
+ tree call;
+ if (this->is_deferred())
+ {
+ static tree deferred_recover_fndecl;
+ call = Gogo::call_builtin(&deferred_recover_fndecl,
+ location,
+ "__go_deferred_recover",
+ 0,
+ empty_tree);
+ }
+ else
+ {
+ static tree recover_fndecl;
+ call = Gogo::call_builtin(&recover_fndecl,
+ location,
+ "__go_recover",
+ 0,
+ empty_tree);
+ }
+ if (call == error_mark_node)
+ return error_mark_node;
+ return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
+ call, empty_nil_tree);
+ }
+
+ case BUILTIN_CLOSE:
+ case BUILTIN_CLOSED:
+ {
+ const Expression_list* args = this->args();
+ gcc_assert(args != NULL && args->size() == 1);
+ Expression* arg = args->front();
+ tree arg_tree = arg->get_tree(context);
+ if (arg_tree == error_mark_node)
+ return error_mark_node;
+ if (this->code_ == BUILTIN_CLOSE)
+ {
+ static tree close_fndecl;
+ return Gogo::call_builtin(&close_fndecl,
+ location,
+ "__go_builtin_close",
+ 1,
+ void_type_node,
+ TREE_TYPE(arg_tree),
+ arg_tree);
+ }
+ else
+ {
+ static tree closed_fndecl;
+ return Gogo::call_builtin(&closed_fndecl,
+ location,
+ "__go_builtin_closed",
+ 1,
+ boolean_type_node,
+ TREE_TYPE(arg_tree),
+ arg_tree);
+ }
+ }
+
+ case BUILTIN_SIZEOF:
+ case BUILTIN_OFFSETOF:
+ case BUILTIN_ALIGNOF:
+ {
+ mpz_t val;
+ mpz_init(val);
+ Type* dummy;
+ bool b = this->integer_constant_value(true, val, &dummy);
+ if (!b)
+ {
+ gcc_assert(saw_errors());
+ return error_mark_node;
+ }
+ tree type = Type::lookup_integer_type("int")->get_tree(gogo);
+ tree ret = Expression::integer_constant_tree(val, type);
+ mpz_clear(val);
+ return ret;
+ }
+
+ case BUILTIN_COPY:
+ {
+ const Expression_list* args = this->args();
+ gcc_assert(args != NULL && args->size() == 2);
+ Expression* arg1 = args->front();
+ Expression* arg2 = args->back();
+
+ tree arg1_tree = arg1->get_tree(context);
+ tree arg2_tree = arg2->get_tree(context);
+ if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
+ return error_mark_node;
+
+ Type* arg1_type = arg1->type();
+ Array_type* at = arg1_type->array_type();
+ arg1_tree = save_expr(arg1_tree);
+ tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
+ tree arg1_len = at->length_tree(gogo, arg1_tree);
+ if (arg1_val == error_mark_node || arg1_len == error_mark_node)
+ return error_mark_node;
+
+ Type* arg2_type = arg2->type();
+ tree arg2_val;
+ tree arg2_len;
+ if (arg2_type->is_open_array_type())
+ {
+ at = arg2_type->array_type();
+ arg2_tree = save_expr(arg2_tree);
+ arg2_val = at->value_pointer_tree(gogo, arg2_tree);
+ arg2_len = at->length_tree(gogo, arg2_tree);
+ }
+ else
+ {
+ arg2_tree = save_expr(arg2_tree);
+ arg2_val = String_type::bytes_tree(gogo, arg2_tree);
+ arg2_len = String_type::length_tree(gogo, arg2_tree);
+ }
+ if (arg2_val == error_mark_node || arg2_len == error_mark_node)
+ return error_mark_node;
+
+ arg1_len = save_expr(arg1_len);
+ arg2_len = save_expr(arg2_len);
+ tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
+ fold_build2_loc(location, LT_EXPR,
+ boolean_type_node,
+ arg1_len, arg2_len),
+ arg1_len, arg2_len);
+ len = save_expr(len);
+
+ Type* element_type = at->element_type();
+ tree element_type_tree = element_type->get_tree(gogo);
+ if (element_type_tree == error_mark_node)
+ return error_mark_node;
+ tree element_size = TYPE_SIZE_UNIT(element_type_tree);
+ tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
+ len);
+ bytecount = fold_build2_loc(location, MULT_EXPR,
+ TREE_TYPE(element_size),
+ bytecount, element_size);
+ bytecount = fold_convert_loc(location, size_type_node, bytecount);
+
+ arg1_val = fold_convert_loc(location, ptr_type_node, arg1_val);
+ arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
+
+ static tree copy_fndecl;
+ tree call = Gogo::call_builtin(&copy_fndecl,
+ location,
+ "__go_copy",
+ 3,
+ void_type_node,
+ ptr_type_node,
+ arg1_val,
+ ptr_type_node,
+ arg2_val,
+ size_type_node,
+ bytecount);
+ if (call == error_mark_node)
+ return error_mark_node;
+
+ return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
+ call, len);
+ }
+
+ case BUILTIN_APPEND:
+ {
+ const Expression_list* args = this->args();
+ gcc_assert(args != NULL && args->size() == 2);
+ Expression* arg1 = args->front();
+ Expression* arg2 = args->back();
+
+ tree arg1_tree = arg1->get_tree(context);
+ tree arg2_tree = arg2->get_tree(context);
+ if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
+ return error_mark_node;
+
+ Array_type* at = arg1->type()->array_type();
+ Type* element_type = at->element_type();
+
+ arg2_tree = Expression::convert_for_assignment(context, at,
+ arg2->type(),
+ arg2_tree,
+ location);
+ if (arg2_tree == error_mark_node)
+ return error_mark_node;
+
+ arg2_tree = save_expr(arg2_tree);
+ tree arg2_val = at->value_pointer_tree(gogo, arg2_tree);
+ tree arg2_len = at->length_tree(gogo, arg2_tree);
+ if (arg2_val == error_mark_node || arg2_len == error_mark_node)
+ return error_mark_node;
+ arg2_val = fold_convert_loc(location, ptr_type_node, arg2_val);
+ arg2_len = fold_convert_loc(location, size_type_node, arg2_len);
+
+ tree element_type_tree = element_type->get_tree(gogo);
+ if (element_type_tree == error_mark_node)
+ return error_mark_node;
+ tree element_size = TYPE_SIZE_UNIT(element_type_tree);
+ element_size = fold_convert_loc(location, size_type_node,
+ element_size);
+
+ // We rebuild the decl each time since the slice types may
+ // change.
+ tree append_fndecl = NULL_TREE;
+ return Gogo::call_builtin(&append_fndecl,
+ location,
+ "__go_append",
+ 4,
+ TREE_TYPE(arg1_tree),
+ TREE_TYPE(arg1_tree),
+ arg1_tree,
+ ptr_type_node,
+ arg2_val,
+ size_type_node,
+ arg2_len,
+ size_type_node,
+ element_size);
+ }
+
+ case BUILTIN_REAL:
+ case BUILTIN_IMAG:
+ {
+ const Expression_list* args = this->args();
+ gcc_assert(args != NULL && args->size() == 1);
+ Expression* arg = args->front();
+ tree arg_tree = arg->get_tree(context);
+ if (arg_tree == error_mark_node)
+ return error_mark_node;
+ gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
+ if (this->code_ == BUILTIN_REAL)
+ return fold_build1_loc(location, REALPART_EXPR,
+ TREE_TYPE(TREE_TYPE(arg_tree)),
+ arg_tree);
+ else
+ return fold_build1_loc(location, IMAGPART_EXPR,
+ TREE_TYPE(TREE_TYPE(arg_tree)),
+ arg_tree);
+ }
+
+ case BUILTIN_COMPLEX:
+ {
+ const Expression_list* args = this->args();
+ gcc_assert(args != NULL && args->size() == 2);
+ tree r = args->front()->get_tree(context);
+ tree i = args->back()->get_tree(context);
+ if (r == error_mark_node || i == error_mark_node)
+ return error_mark_node;
+ gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
+ == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
+ gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
+ return fold_build2_loc(location, COMPLEX_EXPR,
+ build_complex_type(TREE_TYPE(r)),
+ r, i);
+ }
+
+ default:
+ gcc_unreachable();
+ }
+}
+
+// We have to support exporting a builtin call expression, because
+// code can set a constant to the result of a builtin expression.
+
+void
+Builtin_call_expression::do_export(Export* exp) const
+{
+ bool ok = false;
+
+ mpz_t val;
+ mpz_init(val);
+ Type* dummy;
+ if (this->integer_constant_value(true, val, &dummy))
+ {
+ Integer_expression::export_integer(exp, val);
+ ok = true;
+ }
+ mpz_clear(val);
+
+ if (!ok)
+ {
+ mpfr_t fval;
+ mpfr_init(fval);
+ if (this->float_constant_value(fval, &dummy))
+ {
+ Float_expression::export_float(exp, fval);
+ ok = true;
+ }
+ mpfr_clear(fval);
+ }
+
+ if (!ok)
+ {
+ mpfr_t real;
+ mpfr_t imag;
+ mpfr_init(real);
+ mpfr_init(imag);
+ if (this->complex_constant_value(real, imag, &dummy))
+ {
+ Complex_expression::export_complex(exp, real, imag);
+ ok = true;
+ }
+ mpfr_clear(real);
+ mpfr_clear(imag);
+ }
+
+ if (!ok)
+ {
+ error_at(this->location(), "value is not constant");
+ return;
+ }
+
+ // A trailing space lets us reliably identify the end of the number.
+ exp->write_c_string(" ");
+}
+
+// Class Call_expression.
+
+// Traversal.
+
+int
+Call_expression::do_traverse(Traverse* traverse)
+{
+ if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ if (this->args_ != NULL)
+ {
+ if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ return TRAVERSE_CONTINUE;
+}
+
+// Lower a call statement.
+
+Expression*
+Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
+{
+ // A type case can look like a function call.
+ if (this->fn_->is_type_expression()
+ && this->args_ != NULL
+ && this->args_->size() == 1)
+ return Expression::make_cast(this->fn_->type(), this->args_->front(),
+ this->location());
+
+ // Recognize a call to a builtin function.
+ Func_expression* fne = this->fn_->func_expression();
+ if (fne != NULL
+ && fne->named_object()->is_function_declaration()
+ && fne->named_object()->func_declaration_value()->type()->is_builtin())
+ return new Builtin_call_expression(gogo, this->fn_, this->args_,
+ this->is_varargs_, this->location());
+
+ // Handle an argument which is a call to a function which returns
+ // multiple results.
+ if (this->args_ != NULL
+ && this->args_->size() == 1
+ && this->args_->front()->call_expression() != NULL
+ && this->fn_->type()->function_type() != NULL)
+ {
+ Function_type* fntype = this->fn_->type()->function_type();
+ size_t rc = this->args_->front()->call_expression()->result_count();
+ if (rc > 1
+ && fntype->parameters() != NULL
+ && (fntype->parameters()->size() == rc
+ || (fntype->is_varargs()
+ && fntype->parameters()->size() - 1 <= rc)))
+ {
+ Call_expression* call = this->args_->front()->call_expression();
+ Expression_list* args = new Expression_list;
+ for (size_t i = 0; i < rc; ++i)
+ args->push_back(Expression::make_call_result(call, i));
+ // We can't return a new call expression here, because this
+ // one may be referenced by Call_result expressions. We
+ // also can't delete the old arguments, because we may still
+ // traverse them somewhere up the call stack. FIXME.
+ this->args_ = args;
+ }
+ }
+
+ // Handle a call to a varargs function by packaging up the extra
+ // parameters.
+ if (this->fn_->type()->function_type() != NULL
+ && this->fn_->type()->function_type()->is_varargs())
+ {
+ Function_type* fntype = this->fn_->type()->function_type();
+ const Typed_identifier_list* parameters = fntype->parameters();
+ gcc_assert(parameters != NULL && !parameters->empty());
+ Type* varargs_type = parameters->back().type();
+ return this->lower_varargs(gogo, function, varargs_type,
+ parameters->size());
+ }
+
+ return this;
+}
+
+// Lower a call to a varargs function. FUNCTION is the function in
+// which the call occurs--it's not the function we are calling.
+// VARARGS_TYPE is the type of the varargs parameter, a slice type.
+// PARAM_COUNT is the number of parameters of the function we are
+// calling; the last of these parameters will be the varargs
+// parameter.
+
+Expression*
+Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
+ Type* varargs_type, size_t param_count)
+{
+ if (this->varargs_are_lowered_)
+ return this;
+
+ source_location loc = this->location();
+
+ gcc_assert(param_count > 0);
+ gcc_assert(varargs_type->is_open_array_type());
+
+ size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
+ if (arg_count < param_count - 1)
+ {
+ // Not enough arguments; will be caught in check_types.
+ return this;
+ }
+
+ Expression_list* old_args = this->args_;
+ Expression_list* new_args = new Expression_list();
+ bool push_empty_arg = false;
+ if (old_args == NULL || old_args->empty())
+ {
+ gcc_assert(param_count == 1);
+ push_empty_arg = true;
+ }
+ else
+ {
+ Expression_list::const_iterator pa;
+ int i = 1;
+ for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
+ {
+ if (static_cast<size_t>(i) == param_count)
+ break;
+ new_args->push_back(*pa);
+ }
+
+ // We have reached the varargs parameter.
+
+ bool issued_error = false;
+ if (pa == old_args->end())
+ push_empty_arg = true;
+ else if (pa + 1 == old_args->end() && this->is_varargs_)
+ new_args->push_back(*pa);
+ else if (this->is_varargs_)
+ {
+ this->report_error(_("too many arguments"));
+ return this;
+ }
+ else
+ {
+ Type* element_type = varargs_type->array_type()->element_type();
+ Expression_list* vals = new Expression_list;
+ for (; pa != old_args->end(); ++pa, ++i)
+ {
+ // Check types here so that we get a better message.
+ Type* patype = (*pa)->type();
+ source_location paloc = (*pa)->location();
+ if (!this->check_argument_type(i, element_type, patype,
+ paloc, issued_error))
+ continue;
+ vals->push_back(*pa);
+ }
+ Expression* val =
+ Expression::make_slice_composite_literal(varargs_type, vals, loc);
+ new_args->push_back(val);
+ }
+ }
+
+ if (push_empty_arg)
+ new_args->push_back(Expression::make_nil(loc));
+
+ // We can't return a new call expression here, because this one may
+ // be referenced by Call_result expressions. FIXME.
+ if (old_args != NULL)
+ delete old_args;
+ this->args_ = new_args;
+ this->varargs_are_lowered_ = true;
+
+ // Lower all the new subexpressions.
+ Expression* ret = this;
+ gogo->lower_expression(function, &ret);
+ gcc_assert(ret == this);
+ return ret;
+}
+
+// Get the function type. Returns NULL if we don't know the type. If
+// this returns NULL, and if_ERROR is true, issues an error.
+
+Function_type*
+Call_expression::get_function_type() const
+{
+ return this->fn_->type()->function_type();
+}
+
+// Return the number of values which this call will return.
+
+size_t
+Call_expression::result_count() const
+{
+ const Function_type* fntype = this->get_function_type();
+ if (fntype == NULL)
+ return 0;
+ if (fntype->results() == NULL)
+ return 0;
+ return fntype->results()->size();
+}
+
+// Return whether this is a call to the predeclared function recover.
+
+bool
+Call_expression::is_recover_call() const
+{
+ return this->do_is_recover_call();
+}
+
+// Set the argument to the recover function.
+
+void
+Call_expression::set_recover_arg(Expression* arg)
+{
+ this->do_set_recover_arg(arg);
+}
+
+// Virtual functions also implemented by Builtin_call_expression.
+
+bool
+Call_expression::do_is_recover_call() const
+{
+ return false;
+}
+
+void
+Call_expression::do_set_recover_arg(Expression*)
+{
+ gcc_unreachable();
+}
+
+// Get the type.
+
+Type*
+Call_expression::do_type()
+{
+ if (this->type_ != NULL)
+ return this->type_;
+
+ Type* ret;
+ Function_type* fntype = this->get_function_type();
+ if (fntype == NULL)
+ return Type::make_error_type();
+
+ const Typed_identifier_list* results = fntype->results();
+ if (results == NULL)
+ ret = Type::make_void_type();
+ else if (results->size() == 1)
+ ret = results->begin()->type();
+ else
+ ret = Type::make_call_multiple_result_type(this);
+
+ this->type_ = ret;
+
+ return this->type_;
+}
+
+// Determine types for a call expression. We can use the function
+// parameter types to set the types of the arguments.
+
+void
+Call_expression::do_determine_type(const Type_context*)
+{
+ if (!this->determining_types())
+ return;
+
+ this->fn_->determine_type_no_context();
+ Function_type* fntype = this->get_function_type();
+ const Typed_identifier_list* parameters = NULL;
+ if (fntype != NULL)
+ parameters = fntype->parameters();
+ if (this->args_ != NULL)
+ {
+ Typed_identifier_list::const_iterator pt;
+ if (parameters != NULL)
+ pt = parameters->begin();
+ for (Expression_list::const_iterator pa = this->args_->begin();
+ pa != this->args_->end();
+ ++pa)
+ {
+ if (parameters != NULL && pt != parameters->end())
+ {
+ Type_context subcontext(pt->type(), false);
+ (*pa)->determine_type(&subcontext);
+ ++pt;
+ }
+ else
+ (*pa)->determine_type_no_context();
+ }
+ }
+}
+
+// Called when determining types for a Call_expression. Return true
+// if we should go ahead, false if they have already been determined.
+
+bool
+Call_expression::determining_types()
+{
+ if (this->types_are_determined_)
+ return false;
+ else
+ {
+ this->types_are_determined_ = true;
+ return true;
+ }
+}
+
+// Check types for parameter I.
+
+bool
+Call_expression::check_argument_type(int i, const Type* parameter_type,
+ const Type* argument_type,
+ source_location argument_location,
+ bool issued_error)
+{
+ std::string reason;
+ if (!Type::are_assignable(parameter_type, argument_type, &reason))
+ {
+ if (!issued_error)
+ {
+ if (reason.empty())
+ error_at(argument_location, "argument %d has incompatible type", i);
+ else
+ error_at(argument_location,
+ "argument %d has incompatible type (%s)",
+ i, reason.c_str());
+ }
+ this->set_is_error();
+ return false;
+ }
+ return true;
+}
+
+// Check types.
+
+void
+Call_expression::do_check_types(Gogo*)
+{
+ Function_type* fntype = this->get_function_type();
+ if (fntype == NULL)
+ {
+ if (!this->fn_->type()->is_error_type())
+ this->report_error(_("expected function"));
+ return;
+ }
+
+ if (fntype->is_method())
+ {
+ // We don't support pointers to methods, so the function has to
+ // be a bound method expression.
+ Bound_method_expression* bme = this->fn_->bound_method_expression();
+ if (bme == NULL)
+ {
+ this->report_error(_("method call without object"));
+ return;
+ }
+ Type* first_arg_type = bme->first_argument()->type();
+ if (first_arg_type->points_to() == NULL)
+ {
+ // When passing a value, we need to check that we are
+ // permitted to copy it.
+ std::string reason;
+ if (!Type::are_assignable(fntype->receiver()->type(),
+ first_arg_type, &reason))
+ {
+ if (reason.empty())
+ this->report_error(_("incompatible type for receiver"));
+ else
+ {
+ error_at(this->location(),
+ "incompatible type for receiver (%s)",
+ reason.c_str());
+ this->set_is_error();
+ }
+ }
+ }
+ }
+
+ // Note that varargs was handled by the lower_varargs() method, so
+ // we don't have to worry about it here.
+
+ const Typed_identifier_list* parameters = fntype->parameters();
+ if (this->args_ == NULL)
+ {
+ if (parameters != NULL && !parameters->empty())
+ this->report_error(_("not enough arguments"));
+ }
+ else if (parameters == NULL)
+ this->report_error(_("too many arguments"));
+ else
+ {
+ int i = 0;
+ Typed_identifier_list::const_iterator pt = parameters->begin();
+ for (Expression_list::const_iterator pa = this->args_->begin();
+ pa != this->args_->end();
+ ++pa, ++pt, ++i)
+ {
+ if (pt == parameters->end())
+ {
+ this->report_error(_("too many arguments"));
+ return;
+ }
+ this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
+ (*pa)->location(), false);
+ }
+ if (pt != parameters->end())
+ this->report_error(_("not enough arguments"));
+ }
+}
+
+// Return whether we have to use a temporary variable to ensure that
+// we evaluate this call expression in order. If the call returns no
+// results then it will inevitably be executed last. If the call
+// returns more than one result then it will be used with Call_result
+// expressions. So we only have to use a temporary variable if the
+// call returns exactly one result.
+
+bool
+Call_expression::do_must_eval_in_order() const
+{
+ return this->result_count() == 1;
+}
+
+// Get the function and the first argument to use when calling a bound
+// method.
+
+tree
+Call_expression::bound_method_function(Translate_context* context,
+ Bound_method_expression* bound_method,
+ tree* first_arg_ptr)
+{
+ Expression* first_argument = bound_method->first_argument();
+ tree first_arg = first_argument->get_tree(context);
+ if (first_arg == error_mark_node)
+ return error_mark_node;
+
+ // We always pass a pointer to the first argument when calling a
+ // method.
+ if (first_argument->type()->points_to() == NULL)
+ {
+ tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
+ if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
+ || DECL_P(first_arg)
+ || TREE_CODE(first_arg) == INDIRECT_REF
+ || TREE_CODE(first_arg) == COMPONENT_REF)
+ {
+ first_arg = build_fold_addr_expr(first_arg);
+ if (DECL_P(first_arg))
+ TREE_ADDRESSABLE(first_arg) = 1;
+ }
+ else
+ {
+ tree tmp = create_tmp_var(TREE_TYPE(first_arg),
+ get_name(first_arg));
+ DECL_IGNORED_P(tmp) = 0;
+ DECL_INITIAL(tmp) = first_arg;
+ first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
+ build1(DECL_EXPR, void_type_node, tmp),
+ build_fold_addr_expr(tmp));
+ TREE_ADDRESSABLE(tmp) = 1;
+ }
+ if (first_arg == error_mark_node)
+ return error_mark_node;
+ }
+
+ Type* fatype = bound_method->first_argument_type();
+ if (fatype != NULL)
+ {
+ if (fatype->points_to() == NULL)
+ fatype = Type::make_pointer_type(fatype);
+ first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
+ if (first_arg == error_mark_node
+ || TREE_TYPE(first_arg) == error_mark_node)
+ return error_mark_node;
+ }
+
+ *first_arg_ptr = first_arg;
+
+ return bound_method->method()->get_tree(context);
+}
+
+// Get the function and the first argument to use when calling an
+// interface method.
+
+tree
+Call_expression::interface_method_function(
+ Translate_context* context,
+ Interface_field_reference_expression* interface_method,
+ tree* first_arg_ptr)
+{
+ tree expr = interface_method->expr()->get_tree(context);
+ if (expr == error_mark_node)
+ return error_mark_node;
+ expr = save_expr(expr);
+ tree first_arg = interface_method->get_underlying_object_tree(context, expr);
+ if (first_arg == error_mark_node)
+ return error_mark_node;
+ *first_arg_ptr = first_arg;
+ return interface_method->get_function_tree(context, expr);
+}
+
+// Build the call expression.
+
+tree
+Call_expression::do_get_tree(Translate_context* context)
+{
+ if (this->tree_ != NULL_TREE)
+ return this->tree_;
+
+ Function_type* fntype = this->get_function_type();
+ if (fntype == NULL)
+ return error_mark_node;
+
+ if (this->fn_->is_error_expression())
+ return error_mark_node;
+
+ Gogo* gogo = context->gogo();
+ source_location location = this->location();
+
+ Func_expression* func = this->fn_->func_expression();
+ Bound_method_expression* bound_method = this->fn_->bound_method_expression();
+ Interface_field_reference_expression* interface_method =
+ this->fn_->interface_field_reference_expression();
+ const bool has_closure = func != NULL && func->closure() != NULL;
+ const bool is_method = bound_method != NULL || interface_method != NULL;
+ gcc_assert(!fntype->is_method() || is_method);
+
+ int nargs;
+ tree* args;
+ if (this->args_ == NULL || this->args_->empty())
+ {
+ nargs = is_method ? 1 : 0;
+ args = nargs == 0 ? NULL : new tree[nargs];
+ }
+ else
+ {
+ const Typed_identifier_list* params = fntype->parameters();
+ gcc_assert(params != NULL);
+
+ nargs = this->args_->size();
+ int i = is_method ? 1 : 0;
+ nargs += i;
+ args = new tree[nargs];
+
+ Typed_identifier_list::const_iterator pp = params->begin();
+ Expression_list::const_iterator pe;
+ for (pe = this->args_->begin();
+ pe != this->args_->end();
+ ++pe, ++pp, ++i)
+ {
+ gcc_assert(pp != params->end());
+ tree arg_val = (*pe)->get_tree(context);
+ args[i] = Expression::convert_for_assignment(context,
+ pp->type(),
+ (*pe)->type(),
+ arg_val,
+ location);
+ if (args[i] == error_mark_node)
+ {
+ delete[] args;
+ return error_mark_node;
+ }
+ }
+ gcc_assert(pp == params->end());
+ gcc_assert(i == nargs);
+ }
+
+ tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
+ if (rettype == error_mark_node)
+ {
+ delete[] args;
+ return error_mark_node;
+ }
+
+ tree fn;
+ if (has_closure)
+ fn = func->get_tree_without_closure(gogo);
+ else if (!is_method)
+ fn = this->fn_->get_tree(context);
+ else if (bound_method != NULL)
+ fn = this->bound_method_function(context, bound_method, &args[0]);
+ else if (interface_method != NULL)
+ fn = this->interface_method_function(context, interface_method, &args[0]);
+ else
+ gcc_unreachable();
+
+ if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
+ {
+ delete[] args;
+ return error_mark_node;
+ }
+
+ tree fndecl = fn;
+ if (TREE_CODE(fndecl) == ADDR_EXPR)
+ fndecl = TREE_OPERAND(fndecl, 0);
+
+ // Add a type cast in case the type of the function is a recursive
+ // type which refers to itself.
+ if (!DECL_P(fndecl) || !DECL_IS_BUILTIN(fndecl))
+ {
+ tree fnt = fntype->get_tree(gogo);
+ if (fnt == error_mark_node)
+ return error_mark_node;
+ fn = fold_convert_loc(location, fnt, fn);
+ }
+
+ // This is to support builtin math functions when using 80387 math.
+ tree excess_type = NULL_TREE;
+ if (DECL_P(fndecl)
+ && DECL_IS_BUILTIN(fndecl)
+ && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
+ && nargs > 0
+ && ((SCALAR_FLOAT_TYPE_P(rettype)
+ && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
+ || (COMPLEX_FLOAT_TYPE_P(rettype)
+ && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
+ {
+ excess_type = excess_precision_type(TREE_TYPE(args[0]));
+ if (excess_type != NULL_TREE)
+ {
+ tree excess_fndecl = mathfn_built_in(excess_type,
+ DECL_FUNCTION_CODE(fndecl));
+ if (excess_fndecl == NULL_TREE)
+ excess_type = NULL_TREE;
+ else
+ {
+ fn = build_fold_addr_expr_loc(location, excess_fndecl);
+ for (int i = 0; i < nargs; ++i)
+ args[i] = ::convert(excess_type, args[i]);
+ }
+ }
+ }
+
+ tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
+ fn, nargs, args);
+ delete[] args;
+
+ SET_EXPR_LOCATION(ret, location);
+
+ if (has_closure)
+ {
+ tree closure_tree = func->closure()->get_tree(context);
+ if (closure_tree != error_mark_node)
+ CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
+ }
+
+ // If this is a recursive function type which returns itself, as in
+ // type F func() F
+ // we have used ptr_type_node for the return type. Add a cast here
+ // to the correct type.
+ if (TREE_TYPE(ret) == ptr_type_node)
+ {
+ tree t = this->type()->base()->get_tree(gogo);
+ ret = fold_convert_loc(location, t, ret);
+ }
+
+ if (excess_type != NULL_TREE)
+ {
+ // Calling convert here can undo our excess precision change.
+ // That may or may not be a bug in convert_to_real.
+ ret = build1(NOP_EXPR, rettype, ret);
+ }
+
+ // If there is more than one result, we will refer to the call
+ // multiple times.
+ if (fntype->results() != NULL && fntype->results()->size() > 1)
+ ret = save_expr(ret);
+
+ this->tree_ = ret;
+
+ return ret;
+}
+
+// Make a call expression.
+
+Call_expression*
+Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
+ source_location location)
+{
+ return new Call_expression(fn, args, is_varargs, location);
+}
+
+// A single result from a call which returns multiple results.
+
+class Call_result_expression : public Expression
+{
+ public:
+ Call_result_expression(Call_expression* call, unsigned int index)
+ : Expression(EXPRESSION_CALL_RESULT, call->location()),
+ call_(call), index_(index)
+ { }
+
+ protected:
+ int
+ do_traverse(Traverse*);
+
+ Type*
+ do_type();
+
+ void
+ do_determine_type(const Type_context*);
+
+ void
+ do_check_types(Gogo*);
+
+ Expression*
+ do_copy()
+ {
+ return new Call_result_expression(this->call_->call_expression(),
+ this->index_);
+ }
+
+ bool
+ do_must_eval_in_order() const
+ { return true; }
+
+ tree
+ do_get_tree(Translate_context*);
+
+ private:
+ // The underlying call expression.
+ Expression* call_;
+ // Which result we want.
+ unsigned int index_;
+};
+
+// Traverse a call result.
+
+int
+Call_result_expression::do_traverse(Traverse* traverse)
+{
+ if (traverse->remember_expression(this->call_))
+ {
+ // We have already traversed the call expression.
+ return TRAVERSE_CONTINUE;
+ }
+ return Expression::traverse(&this->call_, traverse);
+}
+
+// Get the type.
+
+Type*
+Call_result_expression::do_type()
+{
+ if (this->classification() == EXPRESSION_ERROR)
+ return Type::make_error_type();
+
+ // THIS->CALL_ can be replaced with a temporary reference due to
+ // Call_expression::do_must_eval_in_order when there is an error.
+ Call_expression* ce = this->call_->call_expression();
+ if (ce == NULL)
+ {
+ this->set_is_error();
+ return Type::make_error_type();
+ }
+ Function_type* fntype = ce->get_function_type();
+ if (fntype == NULL)
+ {
+ this->set_is_error();
+ return Type::make_error_type();
+ }
+ const Typed_identifier_list* results = fntype->results();
+ if (results == NULL)
+ {
+ this->report_error(_("number of results does not match "
+ "number of values"));
+ return Type::make_error_type();
+ }
+ Typed_identifier_list::const_iterator pr = results->begin();
+ for (unsigned int i = 0; i < this->index_; ++i)
+ {
+ if (pr == results->end())
+ break;
+ ++pr;
+ }
+ if (pr == results->end())
+ {
+ this->report_error(_("number of results does not match "
+ "number of values"));
+ return Type::make_error_type();
+ }
+ return pr->type();
+}
+
+// Check the type. Just make sure that we trigger the warning in
+// do_type.
+
+void
+Call_result_expression::do_check_types(Gogo*)
+{
+ this->type();
+}
+
+// Determine the type. We have nothing to do here, but the 0 result
+// needs to pass down to the caller.
+
+void
+Call_result_expression::do_determine_type(const Type_context*)
+{
+ this->call_->determine_type_no_context();
+}
+
+// Return the tree.
+
+tree
+Call_result_expression::do_get_tree(Translate_context* context)
+{
+ tree call_tree = this->call_->get_tree(context);
+ if (call_tree == error_mark_node)
+ return error_mark_node;
+ if (TREE_CODE(TREE_TYPE(call_tree)) != RECORD_TYPE)
+ {
+ gcc_assert(saw_errors());
+ return error_mark_node;
+ }
+ tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
+ for (unsigned int i = 0; i < this->index_; ++i)
+ {
+ gcc_assert(field != NULL_TREE);
+ field = DECL_CHAIN(field);
+ }
+ gcc_assert(field != NULL_TREE);
+ return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
+}
+
+// Make a reference to a single result of a call which returns
+// multiple results.
+
+Expression*
+Expression::make_call_result(Call_expression* call, unsigned int index)
+{
+ return new Call_result_expression(call, index);
+}
+
+// Class Index_expression.
+
+// Traversal.
+
+int
+Index_expression::do_traverse(Traverse* traverse)
+{
+ if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
+ || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
+ || (this->end_ != NULL
+ && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
+ return TRAVERSE_EXIT;
+ return TRAVERSE_CONTINUE;
+}
+
+// Lower an index expression. This converts the generic index
+// expression into an array index, a string index, or a map index.
+
+Expression*
+Index_expression::do_lower(Gogo*, Named_object*, int)
+{
+ source_location location = this->location();
+ Expression* left = this->left_;
+ Expression* start = this->start_;
+ Expression* end = this->end_;
+
+ Type* type = left->type();
+ if (type->is_error_type())
+ return Expression::make_error(location);
+ else if (left->is_type_expression())
+ {
+ error_at(location, "attempt to index type expression");
+ return Expression::make_error(location);
+ }
+ else if (type->array_type() != NULL)
+ return Expression::make_array_index(left, start, end, location);
+ else if (type->points_to() != NULL
+ && type->points_to()->array_type() != NULL
+ && !type->points_to()->is_open_array_type())
+ {
+ Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
+ location);
+ return Expression::make_array_index(deref, start, end, location);
+ }
+ else if (type->is_string_type())
+ return Expression::make_string_index(left, start, end, location);
+ else if (type->map_type() != NULL)
+ {
+ if (end != NULL)
+ {
+ error_at(location, "invalid slice of map");
+ return Expression::make_error(location);
+ }
+ Map_index_expression* ret= Expression::make_map_index(left, start,
+ location);
+ if (this->is_lvalue_)
+ ret->set_is_lvalue();
+ return ret;
+ }
+ else
+ {
+ error_at(location,
+ "attempt to index object which is not array, string, or map");
+ return Expression::make_error(location);
+ }
+}
+
+// Make an index expression.
+
+Expression*
+Expression::make_index(Expression* left, Expression* start, Expression* end,
+ source_location location)
+{
+ return new Index_expression(left, start, end, location);
+}
+
+// An array index. This is used for both indexing and slicing.
+
+class Array_index_expression : public Expression
+{
+ public:
+ Array_index_expression(Expression* array, Expression* start,
+ Expression* end, source_location location)
+ : Expression(EXPRESSION_ARRAY_INDEX, location),
+ array_(array), start_(start), end_(end), type_(NULL)
+ { }
+
+ protected:
+ int
+ do_traverse(Traverse*);
+
+ Type*
+ do_type();
+
+ void
+ do_determine_type(const Type_context*);
+
+ void
+ do_check_types(Gogo*);
+
+ Expression*
+ do_copy()
+ {
+ return Expression::make_array_index(this->array_->copy(),
+ this->start_->copy(),
+ (this->end_ == NULL
+ ? NULL
+ : this->end_->copy()),
+ this->location());
+ }
+
+ bool
+ do_is_addressable() const;
+
+ void
+ do_address_taken(bool escapes)
+ { this->array_->address_taken(escapes); }
+
+ tree
+ do_get_tree(Translate_context*);
+
+ private:
+ // The array we are getting a value from.
+ Expression* array_;
+ // The start or only index.
+ Expression* start_;
+ // The end index of a slice. This may be NULL for a simple array
+ // index, or it may be a nil expression for the length of the array.
+ Expression* end_;
+ // The type of the expression.
+ Type* type_;
+};
+
+// Array index traversal.
+
+int
+Array_index_expression::do_traverse(Traverse* traverse)
+{
+ if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ if (this->end_ != NULL)
+ {
+ if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ return TRAVERSE_CONTINUE;
+}
+
+// Return the type of an array index.
+
+Type*
+Array_index_expression::do_type()
+{
+ if (this->type_ == NULL)
+ {
+ Array_type* type = this->array_->type()->array_type();
+ if (type == NULL)
+ this->type_ = Type::make_error_type();
+ else if (this->end_ == NULL)
+ this->type_ = type->element_type();
+ else if (type->is_open_array_type())
+ {
+ // A slice of a slice has the same type as the original
+ // slice.
+ this->type_ = this->array_->type()->deref();
+ }
+ else
+ {
+ // A slice of an array is a slice.
+ this->type_ = Type::make_array_type(type->element_type(), NULL);
+ }
+ }
+ return this->type_;
+}
+
+// Set the type of an array index.
+
+void
+Array_index_expression::do_determine_type(const Type_context*)
+{
+ this->array_->determine_type_no_context();
+ this->start_->determine_type_no_context();
+ if (this->end_ != NULL)
+ this->end_->determine_type_no_context();
+}
+
+// Check types of an array index.
+
+void
+Array_index_expression::do_check_types(Gogo*)
+{
+ if (this->start_->type()->integer_type() == NULL)
+ this->report_error(_("index must be integer"));
+ if (this->end_ != NULL
+ && this->end_->type()->integer_type() == NULL
+ && !this->end_->is_nil_expression())
+ this->report_error(_("slice end must be integer"));
+
+ Array_type* array_type = this->array_->type()->array_type();
+ if (array_type == NULL)
+ {
+ gcc_assert(this->array_->type()->is_error_type());
+ return;
+ }
+
+ unsigned int int_bits =
+ Type::lookup_integer_type("int")->integer_type()->bits();
+
+ Type* dummy;
+ mpz_t lval;
+ mpz_init(lval);
+ bool lval_valid = (array_type->length() != NULL
+ && array_type->length()->integer_constant_value(true,
+ lval,
+ &dummy));
+ mpz_t ival;
+ mpz_init(ival);
+ if (this->start_->integer_constant_value(true, ival, &dummy))
+ {
+ if (mpz_sgn(ival) < 0
+ || mpz_sizeinbase(ival, 2) >= int_bits
+ || (lval_valid
+ && (this->end_ == NULL
+ ? mpz_cmp(ival, lval) >= 0
+ : mpz_cmp(ival, lval) > 0)))
+ {
+ error_at(this->start_->location(), "array index out of bounds");
+ this->set_is_error();
+ }
+ }
+ if (this->end_ != NULL && !this->end_->is_nil_expression())
+ {
+ if (this->end_->integer_constant_value(true, ival, &dummy))
+ {
+ if (mpz_sgn(ival) < 0
+ || mpz_sizeinbase(ival, 2) >= int_bits
+ || (lval_valid && mpz_cmp(ival, lval) > 0))
+ {
+ error_at(this->end_->location(), "array index out of bounds");
+ this->set_is_error();
+ }
+ }
+ }
+ mpz_clear(ival);
+ mpz_clear(lval);
+
+ // A slice of an array requires an addressable array. A slice of a
+ // slice is always possible.
+ if (this->end_ != NULL
+ && !array_type->is_open_array_type()
+ && !this->array_->is_addressable())
+ this->report_error(_("array is not addressable"));
+}
+
+// Return whether this expression is addressable.
+
+bool
+Array_index_expression::do_is_addressable() const
+{
+ // A slice expression is not addressable.
+ if (this->end_ != NULL)
+ return false;
+
+ // An index into a slice is addressable.
+ if (this->array_->type()->is_open_array_type())
+ return true;
+
+ // An index into an array is addressable if the array is
+ // addressable.
+ return this->array_->is_addressable();
+}
+
+// Get a tree for an array index.
+
+tree
+Array_index_expression::do_get_tree(Translate_context* context)
+{
+ Gogo* gogo = context->gogo();
+ source_location loc = this->location();
+
+ Array_type* array_type = this->array_->type()->array_type();
+ if (array_type == NULL)
+ {
+ gcc_assert(this->array_->type()->is_error_type());
+ return error_mark_node;
+ }
+
+ tree type_tree = array_type->get_tree(gogo);
+ if (type_tree == error_mark_node)
+ return error_mark_node;
+
+ tree array_tree = this->array_->get_tree(context);
+ if (array_tree == error_mark_node)
+ return error_mark_node;
+
+ if (array_type->length() == NULL && !DECL_P(array_tree))
+ array_tree = save_expr(array_tree);
+ tree length_tree = array_type->length_tree(gogo, array_tree);
+ if (length_tree == error_mark_node)
+ return error_mark_node;
+ length_tree = save_expr(length_tree);
+ tree length_type = TREE_TYPE(length_tree);
+
+ tree bad_index = boolean_false_node;
+
+ tree start_tree = this->start_->get_tree(context);
+ if (start_tree == error_mark_node)
+ return error_mark_node;
+ if (!DECL_P(start_tree))
+ start_tree = save_expr(start_tree);
+ if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
+ start_tree = convert_to_integer(length_type, start_tree);
+
+ bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
+ loc);
+
+ start_tree = fold_convert_loc(loc, length_type, start_tree);
+ bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
+ fold_build2_loc(loc,
+ (this->end_ == NULL
+ ? GE_EXPR
+ : GT_EXPR),
+ boolean_type_node, start_tree,
+ length_tree));
+
+ int code = (array_type->length() != NULL
+ ? (this->end_ == NULL
+ ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
+ : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
+ : (this->end_ == NULL
+ ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
+ : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
+ tree crash = Gogo::runtime_error(code, loc);
+
+ if (this->end_ == NULL)
+ {
+ // Simple array indexing. This has to return an l-value, so
+ // wrap the index check into START_TREE.
+ start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
+ build3(COND_EXPR, void_type_node,
+ bad_index, crash, NULL_TREE),
+ start_tree);
+ start_tree = fold_convert_loc(loc, sizetype, start_tree);
+
+ if (array_type->length() != NULL)
+ {
+ // Fixed array.
+ return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
+ start_tree, NULL_TREE, NULL_TREE);
+ }
+ else
+ {
+ // Open array.
+ tree values = array_type->value_pointer_tree(gogo, array_tree);
+ tree element_type_tree = array_type->element_type()->get_tree(gogo);
+ if (element_type_tree == error_mark_node)
+ return error_mark_node;
+ tree element_size = TYPE_SIZE_UNIT(element_type_tree);
+ tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
+ start_tree, element_size);
+ tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
+ TREE_TYPE(values), values, offset);
+ return build_fold_indirect_ref(ptr);
+ }
+ }
+
+ // Array slice.
+
+ tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
+ if (capacity_tree == error_mark_node)
+ return error_mark_node;
+ capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
+
+ tree end_tree;
+ if (this->end_->is_nil_expression())
+ end_tree = length_tree;
+ else
+ {
+ end_tree = this->end_->get_tree(context);
+ if (end_tree == error_mark_node)
+ return error_mark_node;
+ if (!DECL_P(end_tree))
+ end_tree = save_expr(end_tree);
+ if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
+ end_tree = convert_to_integer(length_type, end_tree);
+
+ bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
+ loc);
+
+ end_tree = fold_convert_loc(loc, length_type, end_tree);
+
+ capacity_tree = save_expr(capacity_tree);
+ tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
+ fold_build2_loc(loc, LT_EXPR,
+ boolean_type_node,
+ end_tree, start_tree),
+ fold_build2_loc(loc, GT_EXPR,
+ boolean_type_node,
+ end_tree, capacity_tree));
+ bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
+ bad_index, bad_end);
+ }
+
+ tree element_type_tree = array_type->element_type()->get_tree(gogo);
+ if (element_type_tree == error_mark_node)
+ return error_mark_node;
+ tree element_size = TYPE_SIZE_UNIT(element_type_tree);
+
+ tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
+ fold_convert_loc(loc, sizetype, start_tree),
+ element_size);
+
+ tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
+ if (value_pointer == error_mark_node)
+ return error_mark_node;
+
+ value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
+ TREE_TYPE(value_pointer),
+ value_pointer, offset);
+
+ tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
+ end_tree, start_tree);
+
+ tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
+ capacity_tree, start_tree);
+
+ tree struct_tree = this->type()->get_tree(gogo);
+ gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
+
+ VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
+
+ constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
+ tree field = TYPE_FIELDS(struct_tree);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
+ elt->index = field;
+ elt->value = value_pointer;
+
+ elt = VEC_quick_push(constructor_elt, init, NULL);
+ field = DECL_CHAIN(field);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
+ elt->index = field;
+ elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
+
+ elt = VEC_quick_push(constructor_elt, init, NULL);
+ field = DECL_CHAIN(field);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
+ elt->index = field;
+ elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
+
+ tree constructor = build_constructor(struct_tree, init);
+
+ if (TREE_CONSTANT(value_pointer)
+ && TREE_CONSTANT(result_length_tree)
+ && TREE_CONSTANT(result_capacity_tree))
+ TREE_CONSTANT(constructor) = 1;
+
+ return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
+ build3(COND_EXPR, void_type_node,
+ bad_index, crash, NULL_TREE),
+ constructor);
+}
+
+// Make an array index expression. END may be NULL.
+
+Expression*
+Expression::make_array_index(Expression* array, Expression* start,
+ Expression* end, source_location location)
+{
+ // Taking a slice of a composite literal requires moving the literal
+ // onto the heap.
+ if (end != NULL && array->is_composite_literal())
+ {
+ array = Expression::make_heap_composite(array, location);
+ array = Expression::make_unary(OPERATOR_MULT, array, location);
+ }
+ return new Array_index_expression(array, start, end, location);
+}
+
+// A string index. This is used for both indexing and slicing.
+
+class String_index_expression : public Expression
+{
+ public:
+ String_index_expression(Expression* string, Expression* start,
+ Expression* end, source_location location)
+ : Expression(EXPRESSION_STRING_INDEX, location),
+ string_(string), start_(start), end_(end)
+ { }
+
+ protected:
+ int
+ do_traverse(Traverse*);
+
+ Type*
+ do_type();
+
+ void
+ do_determine_type(const Type_context*);
+
+ void
+ do_check_types(Gogo*);
+
+ Expression*
+ do_copy()
+ {
+ return Expression::make_string_index(this->string_->copy(),
+ this->start_->copy(),
+ (this->end_ == NULL
+ ? NULL
+ : this->end_->copy()),
+ this->location());
+ }
+
+ tree
+ do_get_tree(Translate_context*);
+
+ private:
+ // The string we are getting a value from.
+ Expression* string_;
+ // The start or only index.
+ Expression* start_;
+ // The end index of a slice. This may be NULL for a single index,
+ // or it may be a nil expression for the length of the string.
+ Expression* end_;
+};
+
+// String index traversal.
+
+int
+String_index_expression::do_traverse(Traverse* traverse)
+{
+ if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ if (this->end_ != NULL)
+ {
+ if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ return TRAVERSE_CONTINUE;
+}
+
+// Return the type of a string index.
+
+Type*
+String_index_expression::do_type()
+{
+ if (this->end_ == NULL)
+ return Type::lookup_integer_type("uint8");
+ else
+ return this->string_->type();
+}
+
+// Determine the type of a string index.
+
+void
+String_index_expression::do_determine_type(const Type_context*)
+{
+ this->string_->determine_type_no_context();
+ this->start_->determine_type_no_context();
+ if (this->end_ != NULL)
+ this->end_->determine_type_no_context();
+}
+
+// Check types of a string index.
+
+void
+String_index_expression::do_check_types(Gogo*)
+{
+ if (this->start_->type()->integer_type() == NULL)
+ this->report_error(_("index must be integer"));
+ if (this->end_ != NULL
+ && this->end_->type()->integer_type() == NULL
+ && !this->end_->is_nil_expression())
+ this->report_error(_("slice end must be integer"));
+
+ std::string sval;
+ bool sval_valid = this->string_->string_constant_value(&sval);
+
+ mpz_t ival;
+ mpz_init(ival);
+ Type* dummy;
+ if (this->start_->integer_constant_value(true, ival, &dummy))
+ {
+ if (mpz_sgn(ival) < 0
+ || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
+ {
+ error_at(this->start_->location(), "string index out of bounds");
+ this->set_is_error();
+ }
+ }
+ if (this->end_ != NULL && !this->end_->is_nil_expression())
+ {
+ if (this->end_->integer_constant_value(true, ival, &dummy))
+ {
+ if (mpz_sgn(ival) < 0
+ || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
+ {
+ error_at(this->end_->location(), "string index out of bounds");
+ this->set_is_error();
+ }
+ }
+ }
+ mpz_clear(ival);
+}
+
+// Get a tree for a string index.
+
+tree
+String_index_expression::do_get_tree(Translate_context* context)
+{
+ source_location loc = this->location();
+
+ tree string_tree = this->string_->get_tree(context);
+ if (string_tree == error_mark_node)
+ return error_mark_node;
+
+ if (this->string_->type()->points_to() != NULL)
+ string_tree = build_fold_indirect_ref(string_tree);
+ if (!DECL_P(string_tree))
+ string_tree = save_expr(string_tree);
+ tree string_type = TREE_TYPE(string_tree);
+
+ tree length_tree = String_type::length_tree(context->gogo(), string_tree);
+ length_tree = save_expr(length_tree);
+ tree length_type = TREE_TYPE(length_tree);
+
+ tree bad_index = boolean_false_node;
+
+ tree start_tree = this->start_->get_tree(context);
+ if (start_tree == error_mark_node)
+ return error_mark_node;
+ if (!DECL_P(start_tree))
+ start_tree = save_expr(start_tree);
+ if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
+ start_tree = convert_to_integer(length_type, start_tree);
+
+ bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
+ loc);
+
+ start_tree = fold_convert_loc(loc, length_type, start_tree);
+
+ int code = (this->end_ == NULL
+ ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
+ : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
+ tree crash = Gogo::runtime_error(code, loc);
+
+ if (this->end_ == NULL)
+ {
+ bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
+ bad_index,
+ fold_build2_loc(loc, GE_EXPR,
+ boolean_type_node,
+ start_tree, length_tree));
+
+ tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
+ tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
+ bytes_tree,
+ fold_convert_loc(loc, sizetype, start_tree));
+ tree index = build_fold_indirect_ref_loc(loc, ptr);
+
+ return build2(COMPOUND_EXPR, TREE_TYPE(index),
+ build3(COND_EXPR, void_type_node,
+ bad_index, crash, NULL_TREE),
+ index);
+ }
+ else
+ {
+ tree end_tree;
+ if (this->end_->is_nil_expression())
+ end_tree = build_int_cst(length_type, -1);
+ else
+ {
+ end_tree = this->end_->get_tree(context);
+ if (end_tree == error_mark_node)
+ return error_mark_node;
+ if (!DECL_P(end_tree))
+ end_tree = save_expr(end_tree);
+ if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
+ end_tree = convert_to_integer(length_type, end_tree);
+
+ bad_index = Expression::check_bounds(end_tree, length_type,
+ bad_index, loc);
+
+ end_tree = fold_convert_loc(loc, length_type, end_tree);
+ }
+
+ static tree strslice_fndecl;
+ tree ret = Gogo::call_builtin(&strslice_fndecl,
+ loc,
+ "__go_string_slice",
+ 3,
+ string_type,
+ string_type,
+ string_tree,
+ length_type,
+ start_tree,
+ length_type,
+ end_tree);
+ if (ret == error_mark_node)
+ return error_mark_node;
+ // This will panic if the bounds are out of range for the
+ // string.
+ TREE_NOTHROW(strslice_fndecl) = 0;
+
+ if (bad_index == boolean_false_node)
+ return ret;
+ else
+ return build2(COMPOUND_EXPR, TREE_TYPE(ret),
+ build3(COND_EXPR, void_type_node,
+ bad_index, crash, NULL_TREE),
+ ret);
+ }
+}
+
+// Make a string index expression. END may be NULL.
+
+Expression*
+Expression::make_string_index(Expression* string, Expression* start,
+ Expression* end, source_location location)
+{
+ return new String_index_expression(string, start, end, location);
+}
+
+// Class Map_index.
+
+// Get the type of the map.
+
+Map_type*
+Map_index_expression::get_map_type() const
+{
+ Map_type* mt = this->map_->type()->deref()->map_type();
+ if (mt == NULL)
+ gcc_assert(saw_errors());
+ return mt;
+}
+
+// Map index traversal.
+
+int
+Map_index_expression::do_traverse(Traverse* traverse)
+{
+ if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ return Expression::traverse(&this->index_, traverse);
+}
+
+// Return the type of a map index.
+
+Type*
+Map_index_expression::do_type()
+{
+ Map_type* mt = this->get_map_type();
+ if (mt == NULL)
+ return Type::make_error_type();
+ Type* type = mt->val_type();
+ // If this map index is in a tuple assignment, we actually return a
+ // pointer to the value type. Tuple_map_assignment_statement is
+ // responsible for handling this correctly. We need to get the type
+ // right in case this gets assigned to a temporary variable.
+ if (this->is_in_tuple_assignment_)
+ type = Type::make_pointer_type(type);
+ return type;
+}
+
+// Fix the type of a map index.
+
+void
+Map_index_expression::do_determine_type(const Type_context*)
+{
+ this->map_->determine_type_no_context();
+ Map_type* mt = this->get_map_type();
+ Type* key_type = mt == NULL ? NULL : mt->key_type();
+ Type_context subcontext(key_type, false);
+ this->index_->determine_type(&subcontext);
+}
+
+// Check types of a map index.
+
+void
+Map_index_expression::do_check_types(Gogo*)
+{
+ std::string reason;
+ Map_type* mt = this->get_map_type();
+ if (mt == NULL)
+ return;
+ if (!Type::are_assignable(mt->key_type(), this->index_->type(), &reason))
+ {
+ if (reason.empty())
+ this->report_error(_("incompatible type for map index"));
+ else
+ {
+ error_at(this->location(), "incompatible type for map index (%s)",
+ reason.c_str());
+ this->set_is_error();
+ }
+ }
+}
+
+// Get a tree for a map index.
+
+tree
+Map_index_expression::do_get_tree(Translate_context* context)
+{
+ Map_type* type = this->get_map_type();
+ if (type == NULL)
+ return error_mark_node;
+
+ tree valptr = this->get_value_pointer(context, this->is_lvalue_);
+ if (valptr == error_mark_node)
+ return error_mark_node;
+ valptr = save_expr(valptr);
+
+ tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
+
+ if (this->is_lvalue_)
+ return build_fold_indirect_ref(valptr);
+ else if (this->is_in_tuple_assignment_)
+ {
+ // Tuple_map_assignment_statement is responsible for using this
+ // appropriately.
+ return valptr;
+ }
+ else
+ {
+ return fold_build3(COND_EXPR, val_type_tree,
+ fold_build2(EQ_EXPR, boolean_type_node, valptr,
+ fold_convert(TREE_TYPE(valptr),
+ null_pointer_node)),
+ type->val_type()->get_init_tree(context->gogo(),
+ false),
+ build_fold_indirect_ref(valptr));
+ }
+}
+
+// Get a tree for the map index. This returns a tree which evaluates
+// to a pointer to a value. The pointer will be NULL if the key is
+// not in the map.
+
+tree
+Map_index_expression::get_value_pointer(Translate_context* context,
+ bool insert)
+{
+ Map_type* type = this->get_map_type();
+ if (type == NULL)
+ return error_mark_node;
+
+ tree map_tree = this->map_->get_tree(context);
+ tree index_tree = this->index_->get_tree(context);
+ index_tree = Expression::convert_for_assignment(context, type->key_type(),
+ this->index_->type(),
+ index_tree,
+ this->location());
+ if (map_tree == error_mark_node || index_tree == error_mark_node)
+ return error_mark_node;
+
+ if (this->map_->type()->points_to() != NULL)
+ map_tree = build_fold_indirect_ref(map_tree);
+
+ // We need to pass in a pointer to the key, so stuff it into a
+ // variable.
+ tree tmp;
+ tree make_tmp;
+ if (current_function_decl != NULL)
+ {
+ tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
+ DECL_IGNORED_P(tmp) = 0;
+ DECL_INITIAL(tmp) = index_tree;
+ make_tmp = build1(DECL_EXPR, void_type_node, tmp);
+ TREE_ADDRESSABLE(tmp) = 1;
+ }
+ else
+ {
+ tmp = build_decl(this->location(), VAR_DECL, create_tmp_var_name("M"),
+ TREE_TYPE(index_tree));
+ DECL_EXTERNAL(tmp) = 0;
+ TREE_PUBLIC(tmp) = 0;
+ TREE_STATIC(tmp) = 1;
+ DECL_ARTIFICIAL(tmp) = 1;
+ if (!TREE_CONSTANT(index_tree))
+ make_tmp = fold_build2_loc(this->location(), INIT_EXPR, void_type_node,
+ tmp, index_tree);
+ else
+ {
+ TREE_READONLY(tmp) = 1;
+ TREE_CONSTANT(tmp) = 1;
+ DECL_INITIAL(tmp) = index_tree;
+ make_tmp = NULL_TREE;
+ }
+ rest_of_decl_compilation(tmp, 1, 0);
+ }
+ tree tmpref = fold_convert_loc(this->location(), const_ptr_type_node,
+ build_fold_addr_expr_loc(this->location(),
+ tmp));
+
+ static tree map_index_fndecl;
+ tree call = Gogo::call_builtin(&map_index_fndecl,
+ this->location(),
+ "__go_map_index",
+ 3,
+ const_ptr_type_node,
+ TREE_TYPE(map_tree),
+ map_tree,
+ const_ptr_type_node,
+ tmpref,
+ boolean_type_node,
+ (insert
+ ? boolean_true_node
+ : boolean_false_node));
+ if (call == error_mark_node)
+ return error_mark_node;
+ // This can panic on a map of interface type if the interface holds
+ // an uncomparable or unhashable type.
+ TREE_NOTHROW(map_index_fndecl) = 0;
+
+ tree val_type_tree = type->val_type()->get_tree(context->gogo());
+ if (val_type_tree == error_mark_node)
+ return error_mark_node;
+ tree ptr_val_type_tree = build_pointer_type(val_type_tree);
+
+ tree ret = fold_convert_loc(this->location(), ptr_val_type_tree, call);
+ if (make_tmp != NULL_TREE)
+ ret = build2(COMPOUND_EXPR, ptr_val_type_tree, make_tmp, ret);
+ return ret;
+}
+
+// Make a map index expression.
+
+Map_index_expression*
+Expression::make_map_index(Expression* map, Expression* index,
+ source_location location)
+{
+ return new Map_index_expression(map, index, location);
+}
+
+// Class Field_reference_expression.
+
+// Return the type of a field reference.
+
+Type*
+Field_reference_expression::do_type()
+{
+ Type* type = this->expr_->type();
+ if (type->is_error_type())
+ return type;
+ Struct_type* struct_type = type->struct_type();
+ gcc_assert(struct_type != NULL);
+ return struct_type->field(this->field_index_)->type();
+}
+
+// Check the types for a field reference.
+
+void
+Field_reference_expression::do_check_types(Gogo*)
+{
+ Type* type = this->expr_->type();
+ if (type->is_error_type())
+ return;
+ Struct_type* struct_type = type->struct_type();
+ gcc_assert(struct_type != NULL);
+ gcc_assert(struct_type->field(this->field_index_) != NULL);
+}
+
+// Get a tree for a field reference.
+
+tree
+Field_reference_expression::do_get_tree(Translate_context* context)
+{
+ tree struct_tree = this->expr_->get_tree(context);
+ if (struct_tree == error_mark_node
+ || TREE_TYPE(struct_tree) == error_mark_node)
+ return error_mark_node;
+ gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
+ tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
+ if (field == NULL_TREE)
+ {
+ // This can happen for a type which refers to itself indirectly
+ // and then turns out to be erroneous.
+ gcc_assert(saw_errors());
+ return error_mark_node;
+ }
+ for (unsigned int i = this->field_index_; i > 0; --i)
+ {
+ field = DECL_CHAIN(field);
+ gcc_assert(field != NULL_TREE);
+ }
+ if (TREE_TYPE(field) == error_mark_node)
+ return error_mark_node;
+ return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
+ NULL_TREE);
+}
+
+// Make a reference to a qualified identifier in an expression.
+
+Field_reference_expression*
+Expression::make_field_reference(Expression* expr, unsigned int field_index,
+ source_location location)
+{
+ return new Field_reference_expression(expr, field_index, location);
+}
+
+// Class Interface_field_reference_expression.
+
+// Return a tree for the pointer to the function to call.
+
+tree
+Interface_field_reference_expression::get_function_tree(Translate_context*,
+ tree expr)
+{
+ if (this->expr_->type()->points_to() != NULL)
+ expr = build_fold_indirect_ref(expr);
+
+ tree expr_type = TREE_TYPE(expr);
+ gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
+
+ tree field = TYPE_FIELDS(expr_type);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
+
+ tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
+ gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
+
+ table = build_fold_indirect_ref(table);
+ gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
+
+ std::string name = Gogo::unpack_hidden_name(this->name_);
+ for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
+ field != NULL_TREE;
+ field = DECL_CHAIN(field))
+ {
+ if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
+ break;
+ }
+ gcc_assert(field != NULL_TREE);
+
+ return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
+}
+
+// Return a tree for the first argument to pass to the interface
+// function.
+
+tree
+Interface_field_reference_expression::get_underlying_object_tree(
+ Translate_context*,
+ tree expr)
+{
+ if (this->expr_->type()->points_to() != NULL)
+ expr = build_fold_indirect_ref(expr);
+
+ tree expr_type = TREE_TYPE(expr);
+ gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
+
+ tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
+
+ return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
+}
+
+// Traversal.
+
+int
+Interface_field_reference_expression::do_traverse(Traverse* traverse)
+{
+ return Expression::traverse(&this->expr_, traverse);
+}
+
+// Return the type of an interface field reference.
+
+Type*
+Interface_field_reference_expression::do_type()
+{
+ Type* expr_type = this->expr_->type();
+
+ Type* points_to = expr_type->points_to();
+ if (points_to != NULL)
+ expr_type = points_to;
+
+ Interface_type* interface_type = expr_type->interface_type();
+ if (interface_type == NULL)
+ return Type::make_error_type();
+
+ const Typed_identifier* method = interface_type->find_method(this->name_);
+ if (method == NULL)
+ return Type::make_error_type();
+
+ return method->type();
+}
+
+// Determine types.
+
+void
+Interface_field_reference_expression::do_determine_type(const Type_context*)
+{
+ this->expr_->determine_type_no_context();
+}
+
+// Check the types for an interface field reference.
+
+void
+Interface_field_reference_expression::do_check_types(Gogo*)
+{
+ Type* type = this->expr_->type();
+
+ Type* points_to = type->points_to();
+ if (points_to != NULL)
+ type = points_to;
+
+ Interface_type* interface_type = type->interface_type();
+ if (interface_type == NULL)
+ this->report_error(_("expected interface or pointer to interface"));
+ else
+ {
+ const Typed_identifier* method =
+ interface_type->find_method(this->name_);
+ if (method == NULL)
+ {
+ error_at(this->location(), "method %qs not in interface",
+ Gogo::message_name(this->name_).c_str());
+ this->set_is_error();
+ }
+ }
+}
+
+// Get a tree for a reference to a field in an interface. There is no
+// standard tree type representation for this: it's a function
+// attached to its first argument, like a Bound_method_expression.
+// The only places it may currently be used are in a Call_expression
+// or a Go_statement, which will take it apart directly. So this has
+// nothing to do at present.
+
+tree
+Interface_field_reference_expression::do_get_tree(Translate_context*)
+{
+ gcc_unreachable();
+}
+
+// Make a reference to a field in an interface.
+
+Expression*
+Expression::make_interface_field_reference(Expression* expr,
+ const std::string& field,
+ source_location location)
+{
+ return new Interface_field_reference_expression(expr, field, location);
+}
+
+// A general selector. This is a Parser_expression for LEFT.NAME. It
+// is lowered after we know the type of the left hand side.
+
+class Selector_expression : public Parser_expression
+{
+ public:
+ Selector_expression(Expression* left, const std::string& name,
+ source_location location)
+ : Parser_expression(EXPRESSION_SELECTOR, location),
+ left_(left), name_(name)
+ { }
+
+ protected:
+ int
+ do_traverse(Traverse* traverse)
+ { return Expression::traverse(&this->left_, traverse); }
+
+ Expression*
+ do_lower(Gogo*, Named_object*, int);
+
+ Expression*
+ do_copy()
+ {
+ return new Selector_expression(this->left_->copy(), this->name_,
+ this->location());
+ }
+
+ private:
+ Expression*
+ lower_method_expression(Gogo*);
+
+ // The expression on the left hand side.
+ Expression* left_;
+ // The name on the right hand side.
+ std::string name_;
+};
+
+// Lower a selector expression once we know the real type of the left
+// hand side.
+
+Expression*
+Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
+{
+ Expression* left = this->left_;
+ if (left->is_type_expression())
+ return this->lower_method_expression(gogo);
+ return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
+ this->location());
+}
+
+// Lower a method expression T.M or (*T).M. We turn this into a
+// function literal.
+
+Expression*
+Selector_expression::lower_method_expression(Gogo* gogo)
+{
+ source_location location = this->location();
+ Type* type = this->left_->type();
+ const std::string& name(this->name_);
+
+ bool is_pointer;
+ if (type->points_to() == NULL)
+ is_pointer = false;
+ else
+ {
+ is_pointer = true;
+ type = type->points_to();
+ }
+ Named_type* nt = type->named_type();
+ if (nt == NULL)
+ {
+ error_at(location,
+ ("method expression requires named type or "
+ "pointer to named type"));
+ return Expression::make_error(location);
+ }
+
+ bool is_ambiguous;
+ Method* method = nt->method_function(name, &is_ambiguous);
+ if (method == NULL)
+ {
+ if (!is_ambiguous)
+ error_at(location, "type %<%s%> has no method %<%s%>",
+ nt->message_name().c_str(),
+ Gogo::message_name(name).c_str());
+ else
+ error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
+ Gogo::message_name(name).c_str(),
+ nt->message_name().c_str());
+ return Expression::make_error(location);
+ }
+
+ if (!is_pointer && !method->is_value_method())
+ {
+ error_at(location, "method requires pointer (use %<(*%s).%s)%>",
+ nt->message_name().c_str(),
+ Gogo::message_name(name).c_str());
+ return Expression::make_error(location);
+ }
+
+ // Build a new function type in which the receiver becomes the first
+ // argument.
+ Function_type* method_type = method->type();
+ gcc_assert(method_type->is_method());
+
+ const char* const receiver_name = "$this";
+ Typed_identifier_list* parameters = new Typed_identifier_list();
+ parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
+ location));
+
+ const Typed_identifier_list* method_parameters = method_type->parameters();
+ if (method_parameters != NULL)
+ {
+ for (Typed_identifier_list::const_iterator p = method_parameters->begin();
+ p != method_parameters->end();
+ ++p)
+ parameters->push_back(*p);
+ }
+
+ const Typed_identifier_list* method_results = method_type->results();
+ Typed_identifier_list* results;
+ if (method_results == NULL)
+ results = NULL;
+ else
+ {
+ results = new Typed_identifier_list();
+ for (Typed_identifier_list::const_iterator p = method_results->begin();
+ p != method_results->end();
+ ++p)
+ results->push_back(*p);
+ }
+
+ Function_type* fntype = Type::make_function_type(NULL, parameters, results,
+ location);
+ if (method_type->is_varargs())
+ fntype->set_is_varargs();
+
+ // We generate methods which always takes a pointer to the receiver
+ // as their first argument. If this is for a pointer type, we can
+ // simply reuse the existing function. We use an internal hack to
+ // get the right type.
+
+ if (is_pointer)
+ {
+ Named_object* mno = (method->needs_stub_method()
+ ? method->stub_object()
+ : method->named_object());
+ Expression* f = Expression::make_func_reference(mno, NULL, location);
+ f = Expression::make_cast(fntype, f, location);
+ Type_conversion_expression* tce =
+ static_cast<Type_conversion_expression*>(f);
+ tce->set_may_convert_function_types();
+ return f;
+ }
+
+ Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
+ location);
+
+ Named_object* vno = gogo->lookup(receiver_name, NULL);
+ gcc_assert(vno != NULL);
+ Expression* ve = Expression::make_var_reference(vno, location);
+ Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
+
+ // Even though we found the method above, if it has an error type we
+ // may see an error here.
+ if (bm->is_error_expression())
+ {
+ gogo->finish_function(location);
+ return bm;
+ }
+
+ Expression_list* args;
+ if (method_parameters == NULL)
+ args = NULL;
+ else
+ {
+ args = new Expression_list();
+ for (Typed_identifier_list::const_iterator p = method_parameters->begin();
+ p != method_parameters->end();
+ ++p)
+ {
+ vno = gogo->lookup(p->name(), NULL);
+ gcc_assert(vno != NULL);
+ args->push_back(Expression::make_var_reference(vno, location));
+ }
+ }
+
+ Call_expression* call = Expression::make_call(bm, args,
+ method_type->is_varargs(),
+ location);
+
+ size_t count = call->result_count();
+ Statement* s;
+ if (count == 0)
+ s = Statement::make_statement(call);
+ else
+ {
+ Expression_list* retvals = new Expression_list();
+ if (count <= 1)
+ retvals->push_back(call);
+ else
+ {
+ for (size_t i = 0; i < count; ++i)
+ retvals->push_back(Expression::make_call_result(call, i));
+ }
+ s = Statement::make_return_statement(no->func_value()->type()->results(),
+ retvals, location);
+ }
+ gogo->add_statement(s);
+
+ gogo->finish_function(location);
+
+ return Expression::make_func_reference(no, NULL, location);
+}
+
+// Make a selector expression.
+
+Expression*
+Expression::make_selector(Expression* left, const std::string& name,
+ source_location location)
+{
+ return new Selector_expression(left, name, location);
+}
+
+// Implement the builtin function new.
+
+class Allocation_expression : public Expression
+{
+ public:
+ Allocation_expression(Type* type, source_location location)
+ : Expression(EXPRESSION_ALLOCATION, location),
+ type_(type)
+ { }
+
+ protected:
+ int
+ do_traverse(Traverse* traverse)
+ { return Type::traverse(this->type_, traverse); }
+
+ Type*
+ do_type()
+ { return Type::make_pointer_type(this->type_); }
+
+ void
+ do_determine_type(const Type_context*)
+ { }
+
+ void
+ do_check_types(Gogo*);
+
+ Expression*
+ do_copy()
+ { return new Allocation_expression(this->type_, this->location()); }
+
+ tree
+ do_get_tree(Translate_context*);
+
+ private:
+ // The type we are allocating.
+ Type* type_;
+};
+
+// Check the type of an allocation expression.
+
+void
+Allocation_expression::do_check_types(Gogo*)
+{
+ if (this->type_->function_type() != NULL)
+ this->report_error(_("invalid new of function type"));
+}
+
+// Return a tree for an allocation expression.
+
+tree
+Allocation_expression::do_get_tree(Translate_context* context)
+{
+ tree type_tree = this->type_->get_tree(context->gogo());
+ if (type_tree == error_mark_node)
+ return error_mark_node;
+ tree size_tree = TYPE_SIZE_UNIT(type_tree);
+ tree space = context->gogo()->allocate_memory(this->type_, size_tree,
+ this->location());
+ if (space == error_mark_node)
+ return error_mark_node;
+ return fold_convert(build_pointer_type(type_tree), space);
+}
+
+// Make an allocation expression.
+
+Expression*
+Expression::make_allocation(Type* type, source_location location)
+{
+ return new Allocation_expression(type, location);
+}
+
+// Implement the builtin function make.
+
+class Make_expression : public Expression
+{
+ public:
+ Make_expression(Type* type, Expression_list* args, source_location location)
+ : Expression(EXPRESSION_MAKE, location),
+ type_(type), args_(args)
+ { }
+
+ protected:
+ int
+ do_traverse(Traverse* traverse);
+
+ Type*
+ do_type()
+ { return this->type_; }
+
+ void
+ do_determine_type(const Type_context*);
+
+ void
+ do_check_types(Gogo*);
+
+ Expression*
+ do_copy()
+ {
+ return new Make_expression(this->type_, this->args_->copy(),
+ this->location());
+ }
+
+ tree
+ do_get_tree(Translate_context*);
+
+ private:
+ // The type we are making.
+ Type* type_;
+ // The arguments to pass to the make routine.
+ Expression_list* args_;
+};
+
+// Traversal.
+
+int
+Make_expression::do_traverse(Traverse* traverse)
+{
+ if (this->args_ != NULL
+ && this->args_->traverse(traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ return TRAVERSE_CONTINUE;
+}
+
+// Set types of arguments.
+
+void
+Make_expression::do_determine_type(const Type_context*)
+{
+ if (this->args_ != NULL)
+ {
+ Type_context context(Type::lookup_integer_type("int"), false);
+ for (Expression_list::const_iterator pe = this->args_->begin();
+ pe != this->args_->end();
+ ++pe)
+ (*pe)->determine_type(&context);
+ }
+}
+
+// Check types for a make expression.
+
+void
+Make_expression::do_check_types(Gogo*)
+{
+ if (this->type_->channel_type() == NULL
+ && this->type_->map_type() == NULL
+ && (this->type_->array_type() == NULL
+ || this->type_->array_type()->length() != NULL))
+ this->report_error(_("invalid type for make function"));
+ else if (!this->type_->check_make_expression(this->args_, this->location()))
+ this->set_is_error();
+}
+
+// Return a tree for a make expression.
+
+tree
+Make_expression::do_get_tree(Translate_context* context)
+{
+ return this->type_->make_expression_tree(context, this->args_,
+ this->location());
+}
+
+// Make a make expression.
+
+Expression*
+Expression::make_make(Type* type, Expression_list* args,
+ source_location location)
+{
+ return new Make_expression(type, args, location);
+}
+
+// Construct a struct.
+
+class Struct_construction_expression : public Expression
+{
+ public:
+ Struct_construction_expression(Type* type, Expression_list* vals,
+ source_location location)
+ : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
+ type_(type), vals_(vals)
+ { }
+
+ // Return whether this is a constant initializer.
+ bool
+ is_constant_struct() const;
+
+ protected:
+ int
+ do_traverse(Traverse* traverse);
+
+ Type*
+ do_type()
+ { return this->type_; }
+
+ void
+ do_determine_type(const Type_context*);
+
+ void
+ do_check_types(Gogo*);
+
+ Expression*
+ do_copy()
+ {
+ return new Struct_construction_expression(this->type_, this->vals_->copy(),
+ this->location());
+ }
+
+ bool
+ do_is_addressable() const
+ { return true; }
+
+ tree
+ do_get_tree(Translate_context*);
+
+ void
+ do_export(Export*) const;
+
+ private:
+ // The type of the struct to construct.
+ Type* type_;
+ // The list of values, in order of the fields in the struct. A NULL
+ // entry means that the field should be zero-initialized.
+ Expression_list* vals_;
+};
+
+// Traversal.
+
+int
+Struct_construction_expression::do_traverse(Traverse* traverse)
+{
+ if (this->vals_ != NULL
+ && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ return TRAVERSE_CONTINUE;
+}
+
+// Return whether this is a constant initializer.
+
+bool
+Struct_construction_expression::is_constant_struct() const
+{
+ if (this->vals_ == NULL)
+ return true;
+ for (Expression_list::const_iterator pv = this->vals_->begin();
+ pv != this->vals_->end();
+ ++pv)
+ {
+ if (*pv != NULL
+ && !(*pv)->is_constant()
+ && (!(*pv)->is_composite_literal()
+ || (*pv)->is_nonconstant_composite_literal()))
+ return false;
+ }
+
+ const Struct_field_list* fields = this->type_->struct_type()->fields();
+ for (Struct_field_list::const_iterator pf = fields->begin();
+ pf != fields->end();
+ ++pf)
+ {
+ // There are no constant constructors for interfaces.
+ if (pf->type()->interface_type() != NULL)
+ return false;
+ }
+
+ return true;
+}
+
+// Final type determination.
+
+void
+Struct_construction_expression::do_determine_type(const Type_context*)
+{
+ if (this->vals_ == NULL)
+ return;
+ const Struct_field_list* fields = this->type_->struct_type()->fields();
+ Expression_list::const_iterator pv = this->vals_->begin();
+ for (Struct_field_list::const_iterator pf = fields->begin();
+ pf != fields->end();
+ ++pf, ++pv)
+ {
+ if (pv == this->vals_->end())
+ return;
+ if (*pv != NULL)
+ {
+ Type_context subcontext(pf->type(), false);
+ (*pv)->determine_type(&subcontext);
+ }
+ }
+ // Extra values are an error we will report elsewhere; we still want
+ // to determine the type to avoid knockon errors.
+ for (; pv != this->vals_->end(); ++pv)
+ (*pv)->determine_type_no_context();
+}
+
+// Check types.
+
+void
+Struct_construction_expression::do_check_types(Gogo*)
+{
+ if (this->vals_ == NULL)
+ return;
+
+ Struct_type* st = this->type_->struct_type();
+ if (this->vals_->size() > st->field_count())
+ {
+ this->report_error(_("too many expressions for struct"));
+ return;
+ }
+
+ const Struct_field_list* fields = st->fields();
+ Expression_list::const_iterator pv = this->vals_->begin();
+ int i = 0;
+ for (Struct_field_list::const_iterator pf = fields->begin();
+ pf != fields->end();
+ ++pf, ++pv, ++i)
+ {
+ if (pv == this->vals_->end())
+ {
+ this->report_error(_("too few expressions for struct"));
+ break;
+ }
+
+ if (*pv == NULL)
+ continue;
+
+ std::string reason;
+ if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
+ {
+ if (reason.empty())
+ error_at((*pv)->location(),
+ "incompatible type for field %d in struct construction",
+ i + 1);
+ else
+ error_at((*pv)->location(),
+ ("incompatible type for field %d in "
+ "struct construction (%s)"),
+ i + 1, reason.c_str());
+ this->set_is_error();
+ }
+ }
+ gcc_assert(pv == this->vals_->end());
+}
+
+// Return a tree for constructing a struct.
+
+tree
+Struct_construction_expression::do_get_tree(Translate_context* context)
+{
+ Gogo* gogo = context->gogo();
+
+ if (this->vals_ == NULL)
+ return this->type_->get_init_tree(gogo, false);
+
+ tree type_tree = this->type_->get_tree(gogo);
+ if (type_tree == error_mark_node)
+ return error_mark_node;
+ gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
+
+ bool is_constant = true;
+ const Struct_field_list* fields = this->type_->struct_type()->fields();
+ VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
+ fields->size());
+ Struct_field_list::const_iterator pf = fields->begin();
+ Expression_list::const_iterator pv = this->vals_->begin();
+ for (tree field = TYPE_FIELDS(type_tree);
+ field != NULL_TREE;
+ field = DECL_CHAIN(field), ++pf)
+ {
+ gcc_assert(pf != fields->end());
+
+ tree val;
+ if (pv == this->vals_->end())
+ val = pf->type()->get_init_tree(gogo, false);
+ else if (*pv == NULL)
+ {
+ val = pf->type()->get_init_tree(gogo, false);
+ ++pv;
+ }
+ else
+ {
+ val = Expression::convert_for_assignment(context, pf->type(),
+ (*pv)->type(),
+ (*pv)->get_tree(context),
+ this->location());
+ ++pv;
+ }
+
+ if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
+ return error_mark_node;
+
+ constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
+ elt->index = field;
+ elt->value = val;
+ if (!TREE_CONSTANT(val))
+ is_constant = false;
+ }
+ gcc_assert(pf == fields->end());
+
+ tree ret = build_constructor(type_tree, elts);
+ if (is_constant)
+ TREE_CONSTANT(ret) = 1;
+ return ret;
+}
+
+// Export a struct construction.
+
+void
+Struct_construction_expression::do_export(Export* exp) const
+{
+ exp->write_c_string("convert(");
+ exp->write_type(this->type_);
+ for (Expression_list::const_iterator pv = this->vals_->begin();
+ pv != this->vals_->end();
+ ++pv)
+ {
+ exp->write_c_string(", ");
+ if (*pv != NULL)
+ (*pv)->export_expression(exp);
+ }
+ exp->write_c_string(")");
+}
+
+// Make a struct composite literal. This used by the thunk code.
+
+Expression*
+Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
+ source_location location)
+{
+ gcc_assert(type->struct_type() != NULL);
+ return new Struct_construction_expression(type, vals, location);
+}
+
+// Construct an array. This class is not used directly; instead we
+// use the child classes, Fixed_array_construction_expression and
+// Open_array_construction_expression.
+
+class Array_construction_expression : public Expression
+{
+ protected:
+ Array_construction_expression(Expression_classification classification,
+ Type* type, Expression_list* vals,
+ source_location location)
+ : Expression(classification, location),
+ type_(type), vals_(vals)
+ { }
+
+ public:
+ // Return whether this is a constant initializer.
+ bool
+ is_constant_array() const;
+
+ // Return the number of elements.
+ size_t
+ element_count() const
+ { return this->vals_ == NULL ? 0 : this->vals_->size(); }
+
+protected:
+ int
+ do_traverse(Traverse* traverse);
+
+ Type*
+ do_type()
+ { return this->type_; }
+
+ void
+ do_determine_type(const Type_context*);
+
+ void
+ do_check_types(Gogo*);
+
+ bool
+ do_is_addressable() const
+ { return true; }
+
+ void
+ do_export(Export*) const;
+
+ // The list of values.
+ Expression_list*
+ vals()
+ { return this->vals_; }
+
+ // Get a constructor tree for the array values.
+ tree
+ get_constructor_tree(Translate_context* context, tree type_tree);
+
+ private:
+ // The type of the array to construct.
+ Type* type_;
+ // The list of values.
+ Expression_list* vals_;
+};
+
+// Traversal.
+
+int
+Array_construction_expression::do_traverse(Traverse* traverse)
+{
+ if (this->vals_ != NULL
+ && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ return TRAVERSE_CONTINUE;
+}
+
+// Return whether this is a constant initializer.
+
+bool
+Array_construction_expression::is_constant_array() const
+{
+ if (this->vals_ == NULL)
+ return true;
+
+ // There are no constant constructors for interfaces.
+ if (this->type_->array_type()->element_type()->interface_type() != NULL)
+ return false;
+
+ for (Expression_list::const_iterator pv = this->vals_->begin();
+ pv != this->vals_->end();
+ ++pv)
+ {
+ if (*pv != NULL
+ && !(*pv)->is_constant()
+ && (!(*pv)->is_composite_literal()
+ || (*pv)->is_nonconstant_composite_literal()))
+ return false;
+ }
+ return true;
+}
+
+// Final type determination.
+
+void
+Array_construction_expression::do_determine_type(const Type_context*)
+{
+ if (this->vals_ == NULL)
+ return;
+ Type_context subcontext(this->type_->array_type()->element_type(), false);
+ for (Expression_list::const_iterator pv = this->vals_->begin();
+ pv != this->vals_->end();
+ ++pv)
+ {
+ if (*pv != NULL)
+ (*pv)->determine_type(&subcontext);
+ }
+}
+
+// Check types.
+
+void
+Array_construction_expression::do_check_types(Gogo*)
+{
+ if (this->vals_ == NULL)
+ return;
+
+ Array_type* at = this->type_->array_type();
+ int i = 0;
+ Type* element_type = at->element_type();
+ for (Expression_list::const_iterator pv = this->vals_->begin();
+ pv != this->vals_->end();
+ ++pv, ++i)
+ {
+ if (*pv != NULL
+ && !Type::are_assignable(element_type, (*pv)->type(), NULL))
+ {
+ error_at((*pv)->location(),
+ "incompatible type for element %d in composite literal",
+ i + 1);
+ this->set_is_error();
+ }
+ }
+
+ Expression* length = at->length();
+ if (length != NULL)
+ {
+ mpz_t val;
+ mpz_init(val);
+ Type* type;
+ if (at->length()->integer_constant_value(true, val, &type))
+ {
+ if (this->vals_->size() > mpz_get_ui(val))
+ this->report_error(_("too many elements in composite literal"));
+ }
+ mpz_clear(val);
+ }
+}
+
+// Get a constructor tree for the array values.
+
+tree
+Array_construction_expression::get_constructor_tree(Translate_context* context,
+ tree type_tree)
+{
+ VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
+ (this->vals_ == NULL
+ ? 0
+ : this->vals_->size()));
+ Type* element_type = this->type_->array_type()->element_type();
+ bool is_constant = true;
+ if (this->vals_ != NULL)
+ {
+ size_t i = 0;
+ for (Expression_list::const_iterator pv = this->vals_->begin();
+ pv != this->vals_->end();
+ ++pv, ++i)
+ {
+ constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
+ elt->index = size_int(i);
+ if (*pv == NULL)
+ elt->value = element_type->get_init_tree(context->gogo(), false);
+ else
+ {
+ tree value_tree = (*pv)->get_tree(context);
+ elt->value = Expression::convert_for_assignment(context,
+ element_type,
+ (*pv)->type(),
+ value_tree,
+ this->location());
+ }
+ if (elt->value == error_mark_node)
+ return error_mark_node;
+ if (!TREE_CONSTANT(elt->value))
+ is_constant = false;
+ }
+ }
+
+ tree ret = build_constructor(type_tree, values);
+ if (is_constant)
+ TREE_CONSTANT(ret) = 1;
+ return ret;
+}
+
+// Export an array construction.
+
+void
+Array_construction_expression::do_export(Export* exp) const
+{
+ exp->write_c_string("convert(");
+ exp->write_type(this->type_);
+ if (this->vals_ != NULL)
+ {
+ for (Expression_list::const_iterator pv = this->vals_->begin();
+ pv != this->vals_->end();
+ ++pv)
+ {
+ exp->write_c_string(", ");
+ if (*pv != NULL)
+ (*pv)->export_expression(exp);
+ }
+ }
+ exp->write_c_string(")");
+}
+
+// Construct a fixed array.
+
+class Fixed_array_construction_expression :
+ public Array_construction_expression
+{
+ public:
+ Fixed_array_construction_expression(Type* type, Expression_list* vals,
+ source_location location)
+ : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
+ type, vals, location)
+ {
+ gcc_assert(type->array_type() != NULL
+ && type->array_type()->length() != NULL);
+ }
+
+ protected:
+ Expression*
+ do_copy()
+ {
+ return new Fixed_array_construction_expression(this->type(),
+ (this->vals() == NULL
+ ? NULL
+ : this->vals()->copy()),
+ this->location());
+ }
+
+ tree
+ do_get_tree(Translate_context*);
+};
+
+// Return a tree for constructing a fixed array.
+
+tree
+Fixed_array_construction_expression::do_get_tree(Translate_context* context)
+{
+ return this->get_constructor_tree(context,
+ this->type()->get_tree(context->gogo()));
+}
+
+// Construct an open array.
+
+class Open_array_construction_expression : public Array_construction_expression
+{
+ public:
+ Open_array_construction_expression(Type* type, Expression_list* vals,
+ source_location location)
+ : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
+ type, vals, location)
+ {
+ gcc_assert(type->array_type() != NULL
+ && type->array_type()->length() == NULL);
+ }
+
+ protected:
+ // Note that taking the address of an open array literal is invalid.
+
+ Expression*
+ do_copy()
+ {
+ return new Open_array_construction_expression(this->type(),
+ (this->vals() == NULL
+ ? NULL
+ : this->vals()->copy()),
+ this->location());
+ }
+
+ tree
+ do_get_tree(Translate_context*);
+};
+
+// Return a tree for constructing an open array.
+
+tree
+Open_array_construction_expression::do_get_tree(Translate_context* context)
+{
+ Array_type* array_type = this->type()->array_type();
+ if (array_type == NULL)
+ {
+ gcc_assert(this->type()->is_error_type());
+ return error_mark_node;
+ }
+
+ Type* element_type = array_type->element_type();
+ tree element_type_tree = element_type->get_tree(context->gogo());
+ if (element_type_tree == error_mark_node)
+ return error_mark_node;
+
+ tree values;
+ tree length_tree;
+ if (this->vals() == NULL || this->vals()->empty())
+ {
+ // We need to create a unique value.
+ tree max = size_int(0);
+ tree constructor_type = build_array_type(element_type_tree,
+ build_index_type(max));
+ if (constructor_type == error_mark_node)
+ return error_mark_node;
+ VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
+ constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
+ elt->index = size_int(0);
+ elt->value = element_type->get_init_tree(context->gogo(), false);
+ values = build_constructor(constructor_type, vec);
+ if (TREE_CONSTANT(elt->value))
+ TREE_CONSTANT(values) = 1;
+ length_tree = size_int(0);
+ }
+ else
+ {
+ tree max = size_int(this->vals()->size() - 1);
+ tree constructor_type = build_array_type(element_type_tree,
+ build_index_type(max));
+ if (constructor_type == error_mark_node)
+ return error_mark_node;
+ values = this->get_constructor_tree(context, constructor_type);
+ length_tree = size_int(this->vals()->size());
+ }
+
+ if (values == error_mark_node)
+ return error_mark_node;
+
+ bool is_constant_initializer = TREE_CONSTANT(values);
+
+ // We have to copy the initial values into heap memory if we are in
+ // a function or if the values are not constants. We also have to
+ // copy them if they may contain pointers in a non-constant context,
+ // as otherwise the garbage collector won't see them.
+ bool copy_to_heap = (context->function() != NULL
+ || !is_constant_initializer
+ || (element_type->has_pointer()
+ && !context->is_const()));
+
+ if (is_constant_initializer)
+ {
+ tree tmp = build_decl(this->location(), VAR_DECL,
+ create_tmp_var_name("C"), TREE_TYPE(values));
+ DECL_EXTERNAL(tmp) = 0;
+ TREE_PUBLIC(tmp) = 0;
+ TREE_STATIC(tmp) = 1;
+ DECL_ARTIFICIAL(tmp) = 1;
+ if (copy_to_heap)
+ {
+ // If we are not copying the value to the heap, we will only
+ // initialize the value once, so we can use this directly
+ // rather than copying it. In that case we can't make it
+ // read-only, because the program is permitted to change it.
+ TREE_READONLY(tmp) = 1;
+ TREE_CONSTANT(tmp) = 1;
+ }
+ DECL_INITIAL(tmp) = values;
+ rest_of_decl_compilation(tmp, 1, 0);
+ values = tmp;
+ }
+
+ tree space;
+ tree set;
+ if (!copy_to_heap)
+ {
+ // the initializer will only run once.
+ space = build_fold_addr_expr(values);
+ set = NULL_TREE;
+ }
+ else
+ {
+ tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
+ space = context->gogo()->allocate_memory(element_type, memsize,
+ this->location());
+ space = save_expr(space);
+
+ tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
+ tree ref = build_fold_indirect_ref_loc(this->location(), s);
+ TREE_THIS_NOTRAP(ref) = 1;
+ set = build2(MODIFY_EXPR, void_type_node, ref, values);
+ }
+
+ // Build a constructor for the open array.
+
+ tree type_tree = this->type()->get_tree(context->gogo());
+ if (type_tree == error_mark_node)
+ return error_mark_node;
+ gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
+
+ VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
+
+ constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
+ tree field = TYPE_FIELDS(type_tree);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
+ elt->index = field;
+ elt->value = fold_convert(TREE_TYPE(field), space);
+
+ elt = VEC_quick_push(constructor_elt, init, NULL);
+ field = DECL_CHAIN(field);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
+ elt->index = field;
+ elt->value = fold_convert(TREE_TYPE(field), length_tree);
+
+ elt = VEC_quick_push(constructor_elt, init, NULL);
+ field = DECL_CHAIN(field);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
+ elt->index = field;
+ elt->value = fold_convert(TREE_TYPE(field), length_tree);
+
+ tree constructor = build_constructor(type_tree, init);
+ if (constructor == error_mark_node)
+ return error_mark_node;
+ if (!copy_to_heap)
+ TREE_CONSTANT(constructor) = 1;
+
+ if (set == NULL_TREE)
+ return constructor;
+ else
+ return build2(COMPOUND_EXPR, type_tree, set, constructor);
+}
+
+// Make a slice composite literal. This is used by the type
+// descriptor code.
+
+Expression*
+Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
+ source_location location)
+{
+ gcc_assert(type->is_open_array_type());
+ return new Open_array_construction_expression(type, vals, location);
+}
+
+// Construct a map.
+
+class Map_construction_expression : public Expression
+{
+ public:
+ Map_construction_expression(Type* type, Expression_list* vals,
+ source_location location)
+ : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
+ type_(type), vals_(vals)
+ { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
+
+ protected:
+ int
+ do_traverse(Traverse* traverse);
+
+ Type*
+ do_type()
+ { return this->type_; }
+
+ void
+ do_determine_type(const Type_context*);
+
+ void
+ do_check_types(Gogo*);
+
+ Expression*
+ do_copy()
+ {
+ return new Map_construction_expression(this->type_, this->vals_->copy(),
+ this->location());
+ }
+
+ tree
+ do_get_tree(Translate_context*);
+
+ void
+ do_export(Export*) const;
+
+ private:
+ // The type of the map to construct.
+ Type* type_;
+ // The list of values.
+ Expression_list* vals_;
+};
+
+// Traversal.
+
+int
+Map_construction_expression::do_traverse(Traverse* traverse)
+{
+ if (this->vals_ != NULL
+ && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ return TRAVERSE_CONTINUE;
+}
+
+// Final type determination.
+
+void
+Map_construction_expression::do_determine_type(const Type_context*)
+{
+ if (this->vals_ == NULL)
+ return;
+
+ Map_type* mt = this->type_->map_type();
+ Type_context key_context(mt->key_type(), false);
+ Type_context val_context(mt->val_type(), false);
+ for (Expression_list::const_iterator pv = this->vals_->begin();
+ pv != this->vals_->end();
+ ++pv)
+ {
+ (*pv)->determine_type(&key_context);
+ ++pv;
+ (*pv)->determine_type(&val_context);
+ }
+}
+
+// Check types.
+
+void
+Map_construction_expression::do_check_types(Gogo*)
+{
+ if (this->vals_ == NULL)
+ return;
+
+ Map_type* mt = this->type_->map_type();
+ int i = 0;
+ Type* key_type = mt->key_type();
+ Type* val_type = mt->val_type();
+ for (Expression_list::const_iterator pv = this->vals_->begin();
+ pv != this->vals_->end();
+ ++pv, ++i)
+ {
+ if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
+ {
+ error_at((*pv)->location(),
+ "incompatible type for element %d key in map construction",
+ i + 1);
+ this->set_is_error();
+ }
+ ++pv;
+ if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
+ {
+ error_at((*pv)->location(),
+ ("incompatible type for element %d value "
+ "in map construction"),
+ i + 1);
+ this->set_is_error();
+ }
+ }
+}
+
+// Return a tree for constructing a map.
+
+tree
+Map_construction_expression::do_get_tree(Translate_context* context)
+{
+ Gogo* gogo = context->gogo();
+ source_location loc = this->location();
+
+ Map_type* mt = this->type_->map_type();
+
+ // Build a struct to hold the key and value.
+ tree struct_type = make_node(RECORD_TYPE);
+
+ Type* key_type = mt->key_type();
+ tree id = get_identifier("__key");
+ tree key_type_tree = key_type->get_tree(gogo);
+ if (key_type_tree == error_mark_node)
+ return error_mark_node;
+ tree key_field = build_decl(loc, FIELD_DECL, id, key_type_tree);
+ DECL_CONTEXT(key_field) = struct_type;
+ TYPE_FIELDS(struct_type) = key_field;
+
+ Type* val_type = mt->val_type();
+ id = get_identifier("__val");
+ tree val_type_tree = val_type->get_tree(gogo);
+ if (val_type_tree == error_mark_node)
+ return error_mark_node;
+ tree val_field = build_decl(loc, FIELD_DECL, id, val_type_tree);
+ DECL_CONTEXT(val_field) = struct_type;
+ DECL_CHAIN(key_field) = val_field;
+
+ layout_type(struct_type);
+
+ bool is_constant = true;
+ size_t i = 0;
+ tree valaddr;
+ tree make_tmp;
+
+ if (this->vals_ == NULL || this->vals_->empty())
+ {
+ valaddr = null_pointer_node;
+ make_tmp = NULL_TREE;
+ }
+ else
+ {
+ VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
+ this->vals_->size() / 2);
+
+ for (Expression_list::const_iterator pv = this->vals_->begin();
+ pv != this->vals_->end();
+ ++pv, ++i)
+ {
+ bool one_is_constant = true;
+
+ VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
+
+ constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
+ elt->index = key_field;
+ tree val_tree = (*pv)->get_tree(context);
+ elt->value = Expression::convert_for_assignment(context, key_type,
+ (*pv)->type(),
+ val_tree, loc);
+ if (elt->value == error_mark_node)
+ return error_mark_node;
+ if (!TREE_CONSTANT(elt->value))
+ one_is_constant = false;
+
+ ++pv;
+
+ elt = VEC_quick_push(constructor_elt, one, NULL);
+ elt->index = val_field;
+ val_tree = (*pv)->get_tree(context);
+ elt->value = Expression::convert_for_assignment(context, val_type,
+ (*pv)->type(),
+ val_tree, loc);
+ if (elt->value == error_mark_node)
+ return error_mark_node;
+ if (!TREE_CONSTANT(elt->value))
+ one_is_constant = false;
+
+ elt = VEC_quick_push(constructor_elt, values, NULL);
+ elt->index = size_int(i);
+ elt->value = build_constructor(struct_type, one);
+ if (one_is_constant)
+ TREE_CONSTANT(elt->value) = 1;
+ else
+ is_constant = false;
+ }
+
+ tree index_type = build_index_type(size_int(i - 1));
+ tree array_type = build_array_type(struct_type, index_type);
+ tree init = build_constructor(array_type, values);
+ if (is_constant)
+ TREE_CONSTANT(init) = 1;
+ tree tmp;
+ if (current_function_decl != NULL)
+ {
+ tmp = create_tmp_var(array_type, get_name(array_type));
+ DECL_INITIAL(tmp) = init;
+ make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
+ TREE_ADDRESSABLE(tmp) = 1;
+ }
+ else
+ {
+ tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
+ DECL_EXTERNAL(tmp) = 0;
+ TREE_PUBLIC(tmp) = 0;
+ TREE_STATIC(tmp) = 1;
+ DECL_ARTIFICIAL(tmp) = 1;
+ if (!TREE_CONSTANT(init))
+ make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
+ init);
+ else
+ {
+ TREE_READONLY(tmp) = 1;
+ TREE_CONSTANT(tmp) = 1;
+ DECL_INITIAL(tmp) = init;
+ make_tmp = NULL_TREE;
+ }
+ rest_of_decl_compilation(tmp, 1, 0);
+ }
+
+ valaddr = build_fold_addr_expr(tmp);
+ }
+
+ tree descriptor = gogo->map_descriptor(mt);
+
+ tree type_tree = this->type_->get_tree(gogo);
+ if (type_tree == error_mark_node)
+ return error_mark_node;
+
+ static tree construct_map_fndecl;
+ tree call = Gogo::call_builtin(&construct_map_fndecl,
+ loc,
+ "__go_construct_map",
+ 6,
+ type_tree,
+ TREE_TYPE(descriptor),
+ descriptor,
+ sizetype,
+ size_int(i),
+ sizetype,
+ TYPE_SIZE_UNIT(struct_type),
+ sizetype,
+ byte_position(val_field),
+ sizetype,
+ TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
+ const_ptr_type_node,
+ fold_convert(const_ptr_type_node, valaddr));
+ if (call == error_mark_node)
+ return error_mark_node;
+
+ tree ret;
+ if (make_tmp == NULL)
+ ret = call;
+ else
+ ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
+ return ret;
+}
+
+// Export an array construction.
+
+void
+Map_construction_expression::do_export(Export* exp) const
+{
+ exp->write_c_string("convert(");
+ exp->write_type(this->type_);
+ for (Expression_list::const_iterator pv = this->vals_->begin();
+ pv != this->vals_->end();
+ ++pv)
+ {
+ exp->write_c_string(", ");
+ (*pv)->export_expression(exp);
+ }
+ exp->write_c_string(")");
+}
+
+// A general composite literal. This is lowered to a type specific
+// version.
+
+class Composite_literal_expression : public Parser_expression
+{
+ public:
+ Composite_literal_expression(Type* type, int depth, bool has_keys,
+ Expression_list* vals, source_location location)
+ : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
+ type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
+ { }
+
+ protected:
+ int
+ do_traverse(Traverse* traverse);
+
+ Expression*
+ do_lower(Gogo*, Named_object*, int);
+
+ Expression*
+ do_copy()
+ {
+ return new Composite_literal_expression(this->type_, this->depth_,
+ this->has_keys_,
+ (this->vals_ == NULL
+ ? NULL
+ : this->vals_->copy()),
+ this->location());
+ }
+
+ private:
+ Expression*
+ lower_struct(Gogo*, Type*);
+
+ Expression*
+ lower_array(Type*);
+
+ Expression*
+ make_array(Type*, Expression_list*);
+
+ Expression*
+ lower_map(Gogo*, Named_object*, Type*);
+
+ // The type of the composite literal.
+ Type* type_;
+ // The depth within a list of composite literals within a composite
+ // literal, when the type is omitted.
+ int depth_;
+ // The values to put in the composite literal.
+ Expression_list* vals_;
+ // If this is true, then VALS_ is a list of pairs: a key and a
+ // value. In an array initializer, a missing key will be NULL.
+ bool has_keys_;
+};
+
+// Traversal.
+
+int
+Composite_literal_expression::do_traverse(Traverse* traverse)
+{
+ if (this->vals_ != NULL
+ && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ return Type::traverse(this->type_, traverse);
+}
+
+// Lower a generic composite literal into a specific version based on
+// the type.
+
+Expression*
+Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
+{
+ Type* type = this->type_;
+
+ for (int depth = this->depth_; depth > 0; --depth)
+ {
+ if (type->array_type() != NULL)
+ type = type->array_type()->element_type();
+ else if (type->map_type() != NULL)
+ type = type->map_type()->val_type();
+ else
+ {
+ if (!type->is_error_type())
+ error_at(this->location(),
+ ("may only omit types within composite literals "
+ "of slice, array, or map type"));
+ return Expression::make_error(this->location());
+ }
+ }
+
+ if (type->is_error_type())
+ return Expression::make_error(this->location());
+ else if (type->struct_type() != NULL)
+ return this->lower_struct(gogo, type);
+ else if (type->array_type() != NULL)
+ return this->lower_array(type);
+ else if (type->map_type() != NULL)
+ return this->lower_map(gogo, function, type);
+ else
+ {
+ error_at(this->location(),
+ ("expected struct, slice, array, or map type "
+ "for composite literal"));
+ return Expression::make_error(this->location());
+ }
+}
+
+// Lower a struct composite literal.
+
+Expression*
+Composite_literal_expression::lower_struct(Gogo* gogo, Type* type)
+{
+ source_location location = this->location();
+ Struct_type* st = type->struct_type();
+ if (this->vals_ == NULL || !this->has_keys_)
+ return new Struct_construction_expression(type, this->vals_, location);
+
+ size_t field_count = st->field_count();
+ std::vector<Expression*> vals(field_count);
+ Expression_list::const_iterator p = this->vals_->begin();
+ while (p != this->vals_->end())
+ {
+ Expression* name_expr = *p;
+
+ ++p;
+ gcc_assert(p != this->vals_->end());
+ Expression* val = *p;
+
+ ++p;
+
+ if (name_expr == NULL)
+ {
+ error_at(val->location(), "mixture of field and value initializers");
+ return Expression::make_error(location);
+ }
+
+ bool bad_key = false;
+ std::string name;
+ const Named_object* no = NULL;
+ switch (name_expr->classification())
+ {
+ case EXPRESSION_UNKNOWN_REFERENCE:
+ name = name_expr->unknown_expression()->name();
+ break;
+
+ case EXPRESSION_CONST_REFERENCE:
+ no = static_cast<Const_expression*>(name_expr)->named_object();
+ break;
+
+ case EXPRESSION_TYPE:
+ {
+ Type* t = name_expr->type();
+ Named_type* nt = t->named_type();
+ if (nt == NULL)
+ bad_key = true;
+ else
+ no = nt->named_object();
+ }
+ break;
+
+ case EXPRESSION_VAR_REFERENCE:
+ no = name_expr->var_expression()->named_object();
+ break;
+
+ case EXPRESSION_FUNC_REFERENCE:
+ no = name_expr->func_expression()->named_object();
+ break;
+
+ case EXPRESSION_UNARY:
+ // If there is a local variable around with the same name as
+ // the field, and this occurs in the closure, then the
+ // parser may turn the field reference into an indirection
+ // through the closure. FIXME: This is a mess.
+ {
+ bad_key = true;
+ Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
+ if (ue->op() == OPERATOR_MULT)
+ {
+ Field_reference_expression* fre =
+ ue->operand()->field_reference_expression();
+ if (fre != NULL)
+ {
+ Struct_type* st =
+ fre->expr()->type()->deref()->struct_type();
+ if (st != NULL)
+ {
+ const Struct_field* sf = st->field(fre->field_index());
+ name = sf->field_name();
+ char buf[20];
+ snprintf(buf, sizeof buf, "%u", fre->field_index());
+ size_t buflen = strlen(buf);
+ if (name.compare(name.length() - buflen, buflen, buf)
+ == 0)
+ {
+ name = name.substr(0, name.length() - buflen);
+ bad_key = false;
+ }
+ }
+ }
+ }
+ }
+ break;
+
+ default:
+ bad_key = true;
+ break;
+ }
+ if (bad_key)
+ {
+ error_at(name_expr->location(), "expected struct field name");
+ return Expression::make_error(location);
+ }
+
+ if (no != NULL)
+ {
+ name = no->name();
+
+ // A predefined name won't be packed. If it starts with a
+ // lower case letter we need to check for that case, because
+ // the field name will be packed.
+ if (!Gogo::is_hidden_name(name)
+ && name[0] >= 'a'
+ && name[0] <= 'z')
+ {
+ Named_object* gno = gogo->lookup_global(name.c_str());
+ if (gno == no)
+ name = gogo->pack_hidden_name(name, false);
+ }
+ }
+
+ unsigned int index;
+ const Struct_field* sf = st->find_local_field(name, &index);
+ if (sf == NULL)
+ {
+ error_at(name_expr->location(), "unknown field %qs in %qs",
+ Gogo::message_name(name).c_str(),
+ (type->named_type() != NULL
+ ? type->named_type()->message_name().c_str()
+ : "unnamed struct"));
+ return Expression::make_error(location);
+ }
+ if (vals[index] != NULL)
+ {
+ error_at(name_expr->location(),
+ "duplicate value for field %qs in %qs",
+ Gogo::message_name(name).c_str(),
+ (type->named_type() != NULL
+ ? type->named_type()->message_name().c_str()
+ : "unnamed struct"));
+ return Expression::make_error(location);
+ }
+
+ vals[index] = val;
+ }
+
+ Expression_list* list = new Expression_list;
+ list->reserve(field_count);
+ for (size_t i = 0; i < field_count; ++i)
+ list->push_back(vals[i]);
+
+ return new Struct_construction_expression(type, list, location);
+}
+
+// Lower an array composite literal.
+
+Expression*
+Composite_literal_expression::lower_array(Type* type)
+{
+ source_location location = this->location();
+ if (this->vals_ == NULL || !this->has_keys_)
+ return this->make_array(type, this->vals_);
+
+ std::vector<Expression*> vals;
+ vals.reserve(this->vals_->size());
+ unsigned long index = 0;
+ Expression_list::const_iterator p = this->vals_->begin();
+ while (p != this->vals_->end())
+ {
+ Expression* index_expr = *p;
+
+ ++p;
+ gcc_assert(p != this->vals_->end());
+ Expression* val = *p;
+
+ ++p;
+
+ if (index_expr != NULL)
+ {
+ mpz_t ival;
+ mpz_init(ival);
+
+ Type* dummy;
+ if (!index_expr->integer_constant_value(true, ival, &dummy))
+ {
+ mpz_clear(ival);
+ error_at(index_expr->location(),
+ "index expression is not integer constant");
+ return Expression::make_error(location);
+ }
+
+ if (mpz_sgn(ival) < 0)
+ {
+ mpz_clear(ival);
+ error_at(index_expr->location(), "index expression is negative");
+ return Expression::make_error(location);
+ }
+
+ index = mpz_get_ui(ival);
+ if (mpz_cmp_ui(ival, index) != 0)
+ {
+ mpz_clear(ival);
+ error_at(index_expr->location(), "index value overflow");
+ return Expression::make_error(location);
+ }
+
+ Named_type* ntype = Type::lookup_integer_type("int");
+ Integer_type* inttype = ntype->integer_type();
+ mpz_t max;
+ mpz_init_set_ui(max, 1);
+ mpz_mul_2exp(max, max, inttype->bits() - 1);
+ bool ok = mpz_cmp(ival, max) < 0;
+ mpz_clear(max);
+ if (!ok)
+ {
+ mpz_clear(ival);
+ error_at(index_expr->location(), "index value overflow");
+ return Expression::make_error(location);
+ }
+
+ mpz_clear(ival);
+
+ // FIXME: Our representation isn't very good; this avoids
+ // thrashing.
+ if (index > 0x1000000)
+ {
+ error_at(index_expr->location(), "index too large for compiler");
+ return Expression::make_error(location);
+ }
+ }
+
+ if (index == vals.size())
+ vals.push_back(val);
+ else
+ {
+ if (index > vals.size())
+ {
+ vals.reserve(index + 32);
+ vals.resize(index + 1, static_cast<Expression*>(NULL));
+ }
+ if (vals[index] != NULL)
+ {
+ error_at((index_expr != NULL
+ ? index_expr->location()
+ : val->location()),
+ "duplicate value for index %lu",
+ index);
+ return Expression::make_error(location);
+ }
+ vals[index] = val;
+ }
+
+ ++index;
+ }
+
+ size_t size = vals.size();
+ Expression_list* list = new Expression_list;
+ list->reserve(size);
+ for (size_t i = 0; i < size; ++i)
+ list->push_back(vals[i]);
+
+ return this->make_array(type, list);
+}
+
+// Actually build the array composite literal. This handles
+// [...]{...}.
+
+Expression*
+Composite_literal_expression::make_array(Type* type, Expression_list* vals)
+{
+ source_location location = this->location();
+ Array_type* at = type->array_type();
+ if (at->length() != NULL && at->length()->is_nil_expression())
+ {
+ size_t size = vals == NULL ? 0 : vals->size();
+ mpz_t vlen;
+ mpz_init_set_ui(vlen, size);
+ Expression* elen = Expression::make_integer(&vlen, NULL, location);
+ mpz_clear(vlen);
+ at = Type::make_array_type(at->element_type(), elen);
+ type = at;
+ }
+ if (at->length() != NULL)
+ return new Fixed_array_construction_expression(type, vals, location);
+ else
+ return new Open_array_construction_expression(type, vals, location);
+}
+
+// Lower a map composite literal.
+
+Expression*
+Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
+ Type* type)
+{
+ source_location location = this->location();
+ if (this->vals_ != NULL)
+ {
+ if (!this->has_keys_)
+ {
+ error_at(location, "map composite literal must have keys");
+ return Expression::make_error(location);
+ }
+
+ for (Expression_list::iterator p = this->vals_->begin();
+ p != this->vals_->end();
+ p += 2)
+ {
+ if (*p == NULL)
+ {
+ ++p;
+ error_at((*p)->location(),
+ "map composite literal must have keys for every value");
+ return Expression::make_error(location);
+ }
+ // Make sure we have lowered the key; it may not have been
+ // lowered in order to handle keys for struct composite
+ // literals. Lower it now to get the right error message.
+ if ((*p)->unknown_expression() != NULL)
+ {
+ (*p)->unknown_expression()->clear_is_composite_literal_key();
+ gogo->lower_expression(function, &*p);
+ gcc_assert((*p)->is_error_expression());
+ return Expression::make_error(location);
+ }
+ }
+ }
+
+ return new Map_construction_expression(type, this->vals_, location);
+}
+
+// Make a composite literal expression.
+
+Expression*
+Expression::make_composite_literal(Type* type, int depth, bool has_keys,
+ Expression_list* vals,
+ source_location location)
+{
+ return new Composite_literal_expression(type, depth, has_keys, vals,
+ location);
+}
+
+// Return whether this expression is a composite literal.
+
+bool
+Expression::is_composite_literal() const
+{
+ switch (this->classification_)
+ {
+ case EXPRESSION_COMPOSITE_LITERAL:
+ case EXPRESSION_STRUCT_CONSTRUCTION:
+ case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
+ case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
+ case EXPRESSION_MAP_CONSTRUCTION:
+ return true;
+ default:
+ return false;
+ }
+}
+
+// Return whether this expression is a composite literal which is not
+// constant.
+
+bool
+Expression::is_nonconstant_composite_literal() const
+{
+ switch (this->classification_)
+ {
+ case EXPRESSION_STRUCT_CONSTRUCTION:
+ {
+ const Struct_construction_expression *psce =
+ static_cast<const Struct_construction_expression*>(this);
+ return !psce->is_constant_struct();
+ }
+ case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
+ {
+ const Fixed_array_construction_expression *pace =
+ static_cast<const Fixed_array_construction_expression*>(this);
+ return !pace->is_constant_array();
+ }
+ case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
+ {
+ const Open_array_construction_expression *pace =
+ static_cast<const Open_array_construction_expression*>(this);
+ return !pace->is_constant_array();
+ }
+ case EXPRESSION_MAP_CONSTRUCTION:
+ return true;
+ default:
+ return false;
+ }
+}
+
+// Return true if this is a reference to a local variable.
+
+bool
+Expression::is_local_variable() const
+{
+ const Var_expression* ve = this->var_expression();
+ if (ve == NULL)
+ return false;
+ const Named_object* no = ve->named_object();
+ return (no->is_result_variable()
+ || (no->is_variable() && !no->var_value()->is_global()));
+}
+
+// Class Type_guard_expression.
+
+// Traversal.
+
+int
+Type_guard_expression::do_traverse(Traverse* traverse)
+{
+ if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
+ || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ return TRAVERSE_CONTINUE;
+}
+
+// Check types of a type guard expression. The expression must have
+// an interface type, but the actual type conversion is checked at run
+// time.
+
+void
+Type_guard_expression::do_check_types(Gogo*)
+{
+ // 6g permits using a type guard with unsafe.pointer; we are
+ // compatible.
+ Type* expr_type = this->expr_->type();
+ if (expr_type->is_unsafe_pointer_type())
+ {
+ if (this->type_->points_to() == NULL
+ && (this->type_->integer_type() == NULL
+ || (this->type_->forwarded()
+ != Type::lookup_integer_type("uintptr"))))
+ this->report_error(_("invalid unsafe.Pointer conversion"));
+ }
+ else if (this->type_->is_unsafe_pointer_type())
+ {
+ if (expr_type->points_to() == NULL
+ && (expr_type->integer_type() == NULL
+ || (expr_type->forwarded()
+ != Type::lookup_integer_type("uintptr"))))
+ this->report_error(_("invalid unsafe.Pointer conversion"));
+ }
+ else if (expr_type->interface_type() == NULL)
+ {
+ if (!expr_type->is_error_type() && !this->type_->is_error_type())
+ this->report_error(_("type assertion only valid for interface types"));
+ this->set_is_error();
+ }
+ else if (this->type_->interface_type() == NULL)
+ {
+ std::string reason;
+ if (!expr_type->interface_type()->implements_interface(this->type_,
+ &reason))
+ {
+ if (!this->type_->is_error_type())
+ {
+ if (reason.empty())
+ this->report_error(_("impossible type assertion: "
+ "type does not implement interface"));
+ else
+ error_at(this->location(),
+ ("impossible type assertion: "
+ "type does not implement interface (%s)"),
+ reason.c_str());
+ }
+ this->set_is_error();
+ }
+ }
+}
+
+// Return a tree for a type guard expression.
+
+tree
+Type_guard_expression::do_get_tree(Translate_context* context)
+{
+ Gogo* gogo = context->gogo();
+ tree expr_tree = this->expr_->get_tree(context);
+ if (expr_tree == error_mark_node)
+ return error_mark_node;
+ Type* expr_type = this->expr_->type();
+ if ((this->type_->is_unsafe_pointer_type()
+ && (expr_type->points_to() != NULL
+ || expr_type->integer_type() != NULL))
+ || (expr_type->is_unsafe_pointer_type()
+ && this->type_->points_to() != NULL))
+ return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
+ else if (expr_type->is_unsafe_pointer_type()
+ && this->type_->integer_type() != NULL)
+ return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
+ else if (this->type_->interface_type() != NULL)
+ return Expression::convert_interface_to_interface(context, this->type_,
+ this->expr_->type(),
+ expr_tree, true,
+ this->location());
+ else
+ return Expression::convert_for_assignment(context, this->type_,
+ this->expr_->type(), expr_tree,
+ this->location());
+}
+
+// Make a type guard expression.
+
+Expression*
+Expression::make_type_guard(Expression* expr, Type* type,
+ source_location location)
+{
+ return new Type_guard_expression(expr, type, location);
+}
+
+// Class Heap_composite_expression.
+
+// When you take the address of a composite literal, it is allocated
+// on the heap. This class implements that.
+
+class Heap_composite_expression : public Expression
+{
+ public:
+ Heap_composite_expression(Expression* expr, source_location location)
+ : Expression(EXPRESSION_HEAP_COMPOSITE, location),
+ expr_(expr)
+ { }
+
+ protected:
+ int
+ do_traverse(Traverse* traverse)
+ { return Expression::traverse(&this->expr_, traverse); }
+
+ Type*
+ do_type()
+ { return Type::make_pointer_type(this->expr_->type()); }
+
+ void
+ do_determine_type(const Type_context*)
+ { this->expr_->determine_type_no_context(); }
+
+ Expression*
+ do_copy()
+ {
+ return Expression::make_heap_composite(this->expr_->copy(),
+ this->location());
+ }
+
+ tree
+ do_get_tree(Translate_context*);
+
+ // We only export global objects, and the parser does not generate
+ // this in global scope.
+ void
+ do_export(Export*) const
+ { gcc_unreachable(); }
+
+ private:
+ // The composite literal which is being put on the heap.
+ Expression* expr_;
+};
+
+// Return a tree which allocates a composite literal on the heap.
+
+tree
+Heap_composite_expression::do_get_tree(Translate_context* context)
+{
+ tree expr_tree = this->expr_->get_tree(context);
+ if (expr_tree == error_mark_node)
+ return error_mark_node;
+ tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
+ gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
+ tree space = context->gogo()->allocate_memory(this->expr_->type(),
+ expr_size, this->location());
+ space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
+ space = save_expr(space);
+ tree ref = build_fold_indirect_ref_loc(this->location(), space);
+ TREE_THIS_NOTRAP(ref) = 1;
+ tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
+ build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
+ space);
+ SET_EXPR_LOCATION(ret, this->location());
+ return ret;
+}
+
+// Allocate a composite literal on the heap.
+
+Expression*
+Expression::make_heap_composite(Expression* expr, source_location location)
+{
+ return new Heap_composite_expression(expr, location);
+}
+
+// Class Receive_expression.
+
+// Return the type of a receive expression.
+
+Type*
+Receive_expression::do_type()
+{
+ Channel_type* channel_type = this->channel_->type()->channel_type();
+ if (channel_type == NULL)
+ return Type::make_error_type();
+ return channel_type->element_type();
+}
+
+// Check types for a receive expression.
+
+void
+Receive_expression::do_check_types(Gogo*)
+{
+ Type* type = this->channel_->type();
+ if (type->is_error_type())
+ {
+ this->set_is_error();
+ return;
+ }
+ if (type->channel_type() == NULL)
+ {
+ this->report_error(_("expected channel"));
+ return;
+ }
+ if (!type->channel_type()->may_receive())
+ {
+ this->report_error(_("invalid receive on send-only channel"));
+ return;
+ }
+}
+
+// Get a tree for a receive expression.
+
+tree
+Receive_expression::do_get_tree(Translate_context* context)
+{
+ Channel_type* channel_type = this->channel_->type()->channel_type();
+ if (channel_type == NULL)
+ {
+ gcc_assert(this->channel_->type()->is_error_type());
+ return error_mark_node;
+ }
+ Type* element_type = channel_type->element_type();
+ tree element_type_tree = element_type->get_tree(context->gogo());
+
+ tree channel = this->channel_->get_tree(context);
+ if (element_type_tree == error_mark_node || channel == error_mark_node)
+ return error_mark_node;
+
+ return Gogo::receive_from_channel(element_type_tree, channel,
+ this->for_select_, this->location());
+}
+
+// Make a receive expression.
+
+Receive_expression*
+Expression::make_receive(Expression* channel, source_location location)
+{
+ return new Receive_expression(channel, location);
+}
+
+// Class Send_expression.
+
+// Traversal.
+
+int
+Send_expression::do_traverse(Traverse* traverse)
+{
+ if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ return Expression::traverse(&this->val_, traverse);
+}
+
+// Get the type.
+
+Type*
+Send_expression::do_type()
+{
+ if (this->is_value_discarded_)
+ return Type::make_void_type();
+ else
+ return Type::lookup_bool_type();
+}
+
+// Set types.
+
+void
+Send_expression::do_determine_type(const Type_context*)
+{
+ this->channel_->determine_type_no_context();
+
+ Type* type = this->channel_->type();
+ Type_context subcontext;
+ if (type->channel_type() != NULL)
+ subcontext.type = type->channel_type()->element_type();
+ this->val_->determine_type(&subcontext);
+}
+
+// Check types.
+
+void
+Send_expression::do_check_types(Gogo*)
+{
+ Type* type = this->channel_->type();
+ if (type->is_error_type())
+ {
+ this->set_is_error();
+ return;
+ }
+ Channel_type* channel_type = type->channel_type();
+ if (channel_type == NULL)
+ {
+ error_at(this->location(), "left operand of %<<-%> must be channel");
+ this->set_is_error();
+ return;
+ }
+ Type* element_type = channel_type->element_type();
+ if (element_type != NULL
+ && !Type::are_assignable(element_type, this->val_->type(), NULL))
+ {
+ this->report_error(_("incompatible types in send"));
+ return;
+ }
+ if (!channel_type->may_send())
+ {
+ this->report_error(_("invalid send on receive-only channel"));
+ return;
+ }
+}
+
+// Get a tree for a send expression.
+
+tree
+Send_expression::do_get_tree(Translate_context* context)
+{
+ tree channel = this->channel_->get_tree(context);
+ tree val = this->val_->get_tree(context);
+ if (channel == error_mark_node || val == error_mark_node)
+ return error_mark_node;
+ Channel_type* channel_type = this->channel_->type()->channel_type();
+ val = Expression::convert_for_assignment(context,
+ channel_type->element_type(),
+ this->val_->type(),
+ val,
+ this->location());
+ return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
+ this->for_select_, this->location());
+}
+
+// Make a send expression
+
+Send_expression*
+Expression::make_send(Expression* channel, Expression* val,
+ source_location location)
+{
+ return new Send_expression(channel, val, location);
+}
+
+// An expression which evaluates to a pointer to the type descriptor
+// of a type.
+
+class Type_descriptor_expression : public Expression
+{
+ public:
+ Type_descriptor_expression(Type* type, source_location location)
+ : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
+ type_(type)
+ { }
+
+ protected:
+ Type*
+ do_type()
+ { return Type::make_type_descriptor_ptr_type(); }
+
+ void
+ do_determine_type(const Type_context*)
+ { }
+
+ Expression*
+ do_copy()
+ { return this; }
+
+ tree
+ do_get_tree(Translate_context* context)
+ { return this->type_->type_descriptor_pointer(context->gogo()); }
+
+ private:
+ // The type for which this is the descriptor.
+ Type* type_;
+};
+
+// Make a type descriptor expression.
+
+Expression*
+Expression::make_type_descriptor(Type* type, source_location location)
+{
+ return new Type_descriptor_expression(type, location);
+}
+
+// An expression which evaluates to some characteristic of a type.
+// This is only used to initialize fields of a type descriptor. Using
+// a new expression class is slightly inefficient but gives us a good
+// separation between the frontend and the middle-end with regard to
+// how types are laid out.
+
+class Type_info_expression : public Expression
+{
+ public:
+ Type_info_expression(Type* type, Type_info type_info)
+ : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
+ type_(type), type_info_(type_info)
+ { }
+
+ protected:
+ Type*
+ do_type();
+
+ void
+ do_determine_type(const Type_context*)
+ { }
+
+ Expression*
+ do_copy()
+ { return this; }
+
+ tree
+ do_get_tree(Translate_context* context);
+
+ private:
+ // The type for which we are getting information.
+ Type* type_;
+ // What information we want.
+ Type_info type_info_;
+};
+
+// The type is chosen to match what the type descriptor struct
+// expects.
+
+Type*
+Type_info_expression::do_type()
+{
+ switch (this->type_info_)
+ {
+ case TYPE_INFO_SIZE:
+ return Type::lookup_integer_type("uintptr");
+ case TYPE_INFO_ALIGNMENT:
+ case TYPE_INFO_FIELD_ALIGNMENT:
+ return Type::lookup_integer_type("uint8");
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Return type information in GENERIC.
+
+tree
+Type_info_expression::do_get_tree(Translate_context* context)
+{
+ tree type_tree = this->type_->get_tree(context->gogo());
+ if (type_tree == error_mark_node)
+ return error_mark_node;
+
+ tree val_type_tree = this->type()->get_tree(context->gogo());
+ gcc_assert(val_type_tree != error_mark_node);
+
+ if (this->type_info_ == TYPE_INFO_SIZE)
+ return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
+ TYPE_SIZE_UNIT(type_tree));
+ else
+ {
+ unsigned int val;
+ if (this->type_info_ == TYPE_INFO_ALIGNMENT)
+ val = go_type_alignment(type_tree);
+ else
+ val = go_field_alignment(type_tree);
+ return build_int_cstu(val_type_tree, val);
+ }
+}
+
+// Make a type info expression.
+
+Expression*
+Expression::make_type_info(Type* type, Type_info type_info)
+{
+ return new Type_info_expression(type, type_info);
+}
+
+// An expression which evaluates to the offset of a field within a
+// struct. This, like Type_info_expression, q.v., is only used to
+// initialize fields of a type descriptor.
+
+class Struct_field_offset_expression : public Expression
+{
+ public:
+ Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
+ : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
+ type_(type), field_(field)
+ { }
+
+ protected:
+ Type*
+ do_type()
+ { return Type::lookup_integer_type("uintptr"); }
+
+ void
+ do_determine_type(const Type_context*)
+ { }
+
+ Expression*
+ do_copy()
+ { return this; }
+
+ tree
+ do_get_tree(Translate_context* context);
+
+ private:
+ // The type of the struct.
+ Struct_type* type_;
+ // The field.
+ const Struct_field* field_;
+};
+
+// Return a struct field offset in GENERIC.
+
+tree
+Struct_field_offset_expression::do_get_tree(Translate_context* context)
+{
+ tree type_tree = this->type_->get_tree(context->gogo());
+ if (type_tree == error_mark_node)
+ return error_mark_node;
+
+ tree val_type_tree = this->type()->get_tree(context->gogo());
+ gcc_assert(val_type_tree != error_mark_node);
+
+ const Struct_field_list* fields = this->type_->fields();
+ tree struct_field_tree = TYPE_FIELDS(type_tree);
+ Struct_field_list::const_iterator p;
+ for (p = fields->begin();
+ p != fields->end();
+ ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
+ {
+ gcc_assert(struct_field_tree != NULL_TREE);
+ if (&*p == this->field_)
+ break;
+ }
+ gcc_assert(&*p == this->field_);
+
+ return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
+ byte_position(struct_field_tree));
+}
+
+// Make an expression for a struct field offset.
+
+Expression*
+Expression::make_struct_field_offset(Struct_type* type,
+ const Struct_field* field)
+{
+ return new Struct_field_offset_expression(type, field);
+}
+
+// An expression which evaluates to the address of an unnamed label.
+
+class Label_addr_expression : public Expression
+{
+ public:
+ Label_addr_expression(Label* label, source_location location)
+ : Expression(EXPRESSION_LABEL_ADDR, location),
+ label_(label)
+ { }
+
+ protected:
+ Type*
+ do_type()
+ { return Type::make_pointer_type(Type::make_void_type()); }
+
+ void
+ do_determine_type(const Type_context*)
+ { }
+
+ Expression*
+ do_copy()
+ { return new Label_addr_expression(this->label_, this->location()); }
+
+ tree
+ do_get_tree(Translate_context*)
+ { return this->label_->get_addr(this->location()); }
+
+ private:
+ // The label whose address we are taking.
+ Label* label_;
+};
+
+// Make an expression for the address of an unnamed label.
+
+Expression*
+Expression::make_label_addr(Label* label, source_location location)
+{
+ return new Label_addr_expression(label, location);
+}
+
+// Import an expression. This comes at the end in order to see the
+// various class definitions.
+
+Expression*
+Expression::import_expression(Import* imp)
+{
+ int c = imp->peek_char();
+ if (imp->match_c_string("- ")
+ || imp->match_c_string("! ")
+ || imp->match_c_string("^ "))
+ return Unary_expression::do_import(imp);
+ else if (c == '(')
+ return Binary_expression::do_import(imp);
+ else if (imp->match_c_string("true")
+ || imp->match_c_string("false"))
+ return Boolean_expression::do_import(imp);
+ else if (c == '"')
+ return String_expression::do_import(imp);
+ else if (c == '-' || (c >= '0' && c <= '9'))
+ {
+ // This handles integers, floats and complex constants.
+ return Integer_expression::do_import(imp);
+ }
+ else if (imp->match_c_string("nil"))
+ return Nil_expression::do_import(imp);
+ else if (imp->match_c_string("convert"))
+ return Type_conversion_expression::do_import(imp);
+ else
+ {
+ error_at(imp->location(), "import error: expected expression");
+ return Expression::make_error(imp->location());
+ }
+}
+
+// Class Expression_list.
+
+// Traverse the list.
+
+int
+Expression_list::traverse(Traverse* traverse)
+{
+ for (Expression_list::iterator p = this->begin();
+ p != this->end();
+ ++p)
+ {
+ if (*p != NULL)
+ {
+ if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ }
+ return TRAVERSE_CONTINUE;
+}
+
+// Copy the list.
+
+Expression_list*
+Expression_list::copy()
+{
+ Expression_list* ret = new Expression_list();
+ for (Expression_list::iterator p = this->begin();
+ p != this->end();
+ ++p)
+ {
+ if (*p == NULL)
+ ret->push_back(NULL);
+ else
+ ret->push_back((*p)->copy());
+ }
+ return ret;
+}
+
+// Return whether an expression list has an error expression.
+
+bool
+Expression_list::contains_error() const
+{
+ for (Expression_list::const_iterator p = this->begin();
+ p != this->end();
+ ++p)
+ if (*p != NULL && (*p)->is_error_expression())
+ return true;
+ return false;
+}