summaryrefslogtreecommitdiff
path: root/gcc/go/gofrontend/types.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/go/gofrontend/types.cc')
-rw-r--r--gcc/go/gofrontend/types.cc8644
1 files changed, 8644 insertions, 0 deletions
diff --git a/gcc/go/gofrontend/types.cc b/gcc/go/gofrontend/types.cc
new file mode 100644
index 000000000..0db599441
--- /dev/null
+++ b/gcc/go/gofrontend/types.cc
@@ -0,0 +1,8644 @@
+// types.cc -- Go frontend types.
+
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+#include "go-system.h"
+
+#include <gmp.h>
+
+#ifndef ENABLE_BUILD_WITH_CXX
+extern "C"
+{
+#endif
+
+#include "toplev.h"
+#include "intl.h"
+#include "tree.h"
+#include "gimple.h"
+#include "real.h"
+#include "convert.h"
+
+#ifndef ENABLE_BUILD_WITH_CXX
+}
+#endif
+
+#include "go-c.h"
+#include "gogo.h"
+#include "operator.h"
+#include "expressions.h"
+#include "statements.h"
+#include "export.h"
+#include "import.h"
+#include "types.h"
+
+// Class Type.
+
+Type::Type(Type_classification classification)
+ : classification_(classification), tree_(NULL_TREE),
+ type_descriptor_decl_(NULL_TREE)
+{
+}
+
+Type::~Type()
+{
+}
+
+// Get the base type for a type--skip names and forward declarations.
+
+Type*
+Type::base()
+{
+ switch (this->classification_)
+ {
+ case TYPE_NAMED:
+ return this->named_type()->named_base();
+ case TYPE_FORWARD:
+ return this->forward_declaration_type()->real_type()->base();
+ default:
+ return this;
+ }
+}
+
+const Type*
+Type::base() const
+{
+ switch (this->classification_)
+ {
+ case TYPE_NAMED:
+ return this->named_type()->named_base();
+ case TYPE_FORWARD:
+ return this->forward_declaration_type()->real_type()->base();
+ default:
+ return this;
+ }
+}
+
+// Skip defined forward declarations.
+
+Type*
+Type::forwarded()
+{
+ Type* t = this;
+ Forward_declaration_type* ftype = t->forward_declaration_type();
+ while (ftype != NULL && ftype->is_defined())
+ {
+ t = ftype->real_type();
+ ftype = t->forward_declaration_type();
+ }
+ return t;
+}
+
+const Type*
+Type::forwarded() const
+{
+ const Type* t = this;
+ const Forward_declaration_type* ftype = t->forward_declaration_type();
+ while (ftype != NULL && ftype->is_defined())
+ {
+ t = ftype->real_type();
+ ftype = t->forward_declaration_type();
+ }
+ return t;
+}
+
+// If this is a named type, return it. Otherwise, return NULL.
+
+Named_type*
+Type::named_type()
+{
+ return this->forwarded()->convert_no_base<Named_type, TYPE_NAMED>();
+}
+
+const Named_type*
+Type::named_type() const
+{
+ return this->forwarded()->convert_no_base<const Named_type, TYPE_NAMED>();
+}
+
+// Return true if this type is not defined.
+
+bool
+Type::is_undefined() const
+{
+ return this->forwarded()->forward_declaration_type() != NULL;
+}
+
+// Return true if this is a basic type: a type which is not composed
+// of other types, and is not void.
+
+bool
+Type::is_basic_type() const
+{
+ switch (this->classification_)
+ {
+ case TYPE_INTEGER:
+ case TYPE_FLOAT:
+ case TYPE_COMPLEX:
+ case TYPE_BOOLEAN:
+ case TYPE_STRING:
+ case TYPE_NIL:
+ return true;
+
+ case TYPE_ERROR:
+ case TYPE_VOID:
+ case TYPE_FUNCTION:
+ case TYPE_POINTER:
+ case TYPE_STRUCT:
+ case TYPE_ARRAY:
+ case TYPE_MAP:
+ case TYPE_CHANNEL:
+ case TYPE_INTERFACE:
+ return false;
+
+ case TYPE_NAMED:
+ case TYPE_FORWARD:
+ return this->base()->is_basic_type();
+
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Return true if this is an abstract type.
+
+bool
+Type::is_abstract() const
+{
+ switch (this->classification())
+ {
+ case TYPE_INTEGER:
+ return this->integer_type()->is_abstract();
+ case TYPE_FLOAT:
+ return this->float_type()->is_abstract();
+ case TYPE_COMPLEX:
+ return this->complex_type()->is_abstract();
+ case TYPE_STRING:
+ return this->is_abstract_string_type();
+ case TYPE_BOOLEAN:
+ return this->is_abstract_boolean_type();
+ default:
+ return false;
+ }
+}
+
+// Return a non-abstract version of an abstract type.
+
+Type*
+Type::make_non_abstract_type()
+{
+ gcc_assert(this->is_abstract());
+ switch (this->classification())
+ {
+ case TYPE_INTEGER:
+ return Type::lookup_integer_type("int");
+ case TYPE_FLOAT:
+ return Type::lookup_float_type("float64");
+ case TYPE_COMPLEX:
+ return Type::lookup_complex_type("complex128");
+ case TYPE_STRING:
+ return Type::lookup_string_type();
+ case TYPE_BOOLEAN:
+ return Type::lookup_bool_type();
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Return true if this is an error type. Don't give an error if we
+// try to dereference an undefined forwarding type, as this is called
+// in the parser when the type may legitimately be undefined.
+
+bool
+Type::is_error_type() const
+{
+ const Type* t = this->forwarded();
+ // Note that we return false for an undefined forward type.
+ switch (t->classification_)
+ {
+ case TYPE_ERROR:
+ return true;
+ case TYPE_NAMED:
+ return t->named_type()->is_named_error_type();
+ default:
+ return false;
+ }
+}
+
+// If this is a pointer type, return the type to which it points.
+// Otherwise, return NULL.
+
+Type*
+Type::points_to() const
+{
+ const Pointer_type* ptype = this->convert<const Pointer_type,
+ TYPE_POINTER>();
+ return ptype == NULL ? NULL : ptype->points_to();
+}
+
+// Return whether this is an open array type.
+
+bool
+Type::is_open_array_type() const
+{
+ return this->array_type() != NULL && this->array_type()->length() == NULL;
+}
+
+// Return whether this is the predeclared constant nil being used as a
+// type.
+
+bool
+Type::is_nil_constant_as_type() const
+{
+ const Type* t = this->forwarded();
+ if (t->forward_declaration_type() != NULL)
+ {
+ const Named_object* no = t->forward_declaration_type()->named_object();
+ if (no->is_unknown())
+ no = no->unknown_value()->real_named_object();
+ if (no != NULL
+ && no->is_const()
+ && no->const_value()->expr()->is_nil_expression())
+ return true;
+ }
+ return false;
+}
+
+// Traverse a type.
+
+int
+Type::traverse(Type* type, Traverse* traverse)
+{
+ gcc_assert((traverse->traverse_mask() & Traverse::traverse_types) != 0
+ || (traverse->traverse_mask()
+ & Traverse::traverse_expressions) != 0);
+ if (traverse->remember_type(type))
+ {
+ // We have already traversed this type.
+ return TRAVERSE_CONTINUE;
+ }
+ if ((traverse->traverse_mask() & Traverse::traverse_types) != 0)
+ {
+ int t = traverse->type(type);
+ if (t == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ else if (t == TRAVERSE_SKIP_COMPONENTS)
+ return TRAVERSE_CONTINUE;
+ }
+ // An array type has an expression which we need to traverse if
+ // traverse_expressions is set.
+ if (type->do_traverse(traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ return TRAVERSE_CONTINUE;
+}
+
+// Default implementation for do_traverse for child class.
+
+int
+Type::do_traverse(Traverse*)
+{
+ return TRAVERSE_CONTINUE;
+}
+
+// Return whether two types are identical. If ERRORS_ARE_IDENTICAL,
+// then return true for all erroneous types; this is used to avoid
+// cascading errors. If REASON is not NULL, optionally set *REASON to
+// the reason the types are not identical.
+
+bool
+Type::are_identical(const Type* t1, const Type* t2, bool errors_are_identical,
+ std::string* reason)
+{
+ if (t1 == NULL || t2 == NULL)
+ {
+ // Something is wrong.
+ return errors_are_identical ? true : t1 == t2;
+ }
+
+ // Skip defined forward declarations.
+ t1 = t1->forwarded();
+ t2 = t2->forwarded();
+
+ if (t1 == t2)
+ return true;
+
+ // An undefined forward declaration is an error.
+ if (t1->forward_declaration_type() != NULL
+ || t2->forward_declaration_type() != NULL)
+ return errors_are_identical;
+
+ // Avoid cascading errors with error types.
+ if (t1->is_error_type() || t2->is_error_type())
+ {
+ if (errors_are_identical)
+ return true;
+ return t1->is_error_type() && t2->is_error_type();
+ }
+
+ // Get a good reason for the sink type. Note that the sink type on
+ // the left hand side of an assignment is handled in are_assignable.
+ if (t1->is_sink_type() || t2->is_sink_type())
+ {
+ if (reason != NULL)
+ *reason = "invalid use of _";
+ return false;
+ }
+
+ // A named type is only identical to itself.
+ if (t1->named_type() != NULL || t2->named_type() != NULL)
+ return false;
+
+ // Check type shapes.
+ if (t1->classification() != t2->classification())
+ return false;
+
+ switch (t1->classification())
+ {
+ case TYPE_VOID:
+ case TYPE_BOOLEAN:
+ case TYPE_STRING:
+ case TYPE_NIL:
+ // These types are always identical.
+ return true;
+
+ case TYPE_INTEGER:
+ return t1->integer_type()->is_identical(t2->integer_type());
+
+ case TYPE_FLOAT:
+ return t1->float_type()->is_identical(t2->float_type());
+
+ case TYPE_COMPLEX:
+ return t1->complex_type()->is_identical(t2->complex_type());
+
+ case TYPE_FUNCTION:
+ return t1->function_type()->is_identical(t2->function_type(),
+ false,
+ errors_are_identical,
+ reason);
+
+ case TYPE_POINTER:
+ return Type::are_identical(t1->points_to(), t2->points_to(),
+ errors_are_identical, reason);
+
+ case TYPE_STRUCT:
+ return t1->struct_type()->is_identical(t2->struct_type(),
+ errors_are_identical);
+
+ case TYPE_ARRAY:
+ return t1->array_type()->is_identical(t2->array_type(),
+ errors_are_identical);
+
+ case TYPE_MAP:
+ return t1->map_type()->is_identical(t2->map_type(),
+ errors_are_identical);
+
+ case TYPE_CHANNEL:
+ return t1->channel_type()->is_identical(t2->channel_type(),
+ errors_are_identical);
+
+ case TYPE_INTERFACE:
+ return t1->interface_type()->is_identical(t2->interface_type(),
+ errors_are_identical);
+
+ case TYPE_CALL_MULTIPLE_RESULT:
+ if (reason != NULL)
+ *reason = "invalid use of multiple value function call";
+ return false;
+
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Return true if it's OK to have a binary operation with types LHS
+// and RHS. This is not used for shifts or comparisons.
+
+bool
+Type::are_compatible_for_binop(const Type* lhs, const Type* rhs)
+{
+ if (Type::are_identical(lhs, rhs, true, NULL))
+ return true;
+
+ // A constant of abstract bool type may be mixed with any bool type.
+ if ((rhs->is_abstract_boolean_type() && lhs->is_boolean_type())
+ || (lhs->is_abstract_boolean_type() && rhs->is_boolean_type()))
+ return true;
+
+ // A constant of abstract string type may be mixed with any string
+ // type.
+ if ((rhs->is_abstract_string_type() && lhs->is_string_type())
+ || (lhs->is_abstract_string_type() && rhs->is_string_type()))
+ return true;
+
+ lhs = lhs->base();
+ rhs = rhs->base();
+
+ // A constant of abstract integer, float, or complex type may be
+ // mixed with an integer, float, or complex type.
+ if ((rhs->is_abstract()
+ && (rhs->integer_type() != NULL
+ || rhs->float_type() != NULL
+ || rhs->complex_type() != NULL)
+ && (lhs->integer_type() != NULL
+ || lhs->float_type() != NULL
+ || lhs->complex_type() != NULL))
+ || (lhs->is_abstract()
+ && (lhs->integer_type() != NULL
+ || lhs->float_type() != NULL
+ || lhs->complex_type() != NULL)
+ && (rhs->integer_type() != NULL
+ || rhs->float_type() != NULL
+ || rhs->complex_type() != NULL)))
+ return true;
+
+ // The nil type may be compared to a pointer, an interface type, a
+ // slice type, a channel type, a map type, or a function type.
+ if (lhs->is_nil_type()
+ && (rhs->points_to() != NULL
+ || rhs->interface_type() != NULL
+ || rhs->is_open_array_type()
+ || rhs->map_type() != NULL
+ || rhs->channel_type() != NULL
+ || rhs->function_type() != NULL))
+ return true;
+ if (rhs->is_nil_type()
+ && (lhs->points_to() != NULL
+ || lhs->interface_type() != NULL
+ || lhs->is_open_array_type()
+ || lhs->map_type() != NULL
+ || lhs->channel_type() != NULL
+ || lhs->function_type() != NULL))
+ return true;
+
+ return false;
+}
+
+// Return true if a value with type RHS may be assigned to a variable
+// with type LHS. If REASON is not NULL, set *REASON to the reason
+// the types are not assignable.
+
+bool
+Type::are_assignable(const Type* lhs, const Type* rhs, std::string* reason)
+{
+ // Do some checks first. Make sure the types are defined.
+ if (rhs != NULL
+ && rhs->forwarded()->forward_declaration_type() == NULL
+ && rhs->is_void_type())
+ {
+ if (reason != NULL)
+ *reason = "non-value used as value";
+ return false;
+ }
+
+ if (lhs != NULL && lhs->forwarded()->forward_declaration_type() == NULL)
+ {
+ // Any value may be assigned to the blank identifier.
+ if (lhs->is_sink_type())
+ return true;
+
+ // All fields of a struct must be exported, or the assignment
+ // must be in the same package.
+ if (rhs != NULL && rhs->forwarded()->forward_declaration_type() == NULL)
+ {
+ if (lhs->has_hidden_fields(NULL, reason)
+ || rhs->has_hidden_fields(NULL, reason))
+ return false;
+ }
+ }
+
+ // Identical types are assignable.
+ if (Type::are_identical(lhs, rhs, true, reason))
+ return true;
+
+ // The types are assignable if they have identical underlying types
+ // and either LHS or RHS is not a named type.
+ if (((lhs->named_type() != NULL && rhs->named_type() == NULL)
+ || (rhs->named_type() != NULL && lhs->named_type() == NULL))
+ && Type::are_identical(lhs->base(), rhs->base(), true, reason))
+ return true;
+
+ // The types are assignable if LHS is an interface type and RHS
+ // implements the required methods.
+ const Interface_type* lhs_interface_type = lhs->interface_type();
+ if (lhs_interface_type != NULL)
+ {
+ if (lhs_interface_type->implements_interface(rhs, reason))
+ return true;
+ const Interface_type* rhs_interface_type = rhs->interface_type();
+ if (rhs_interface_type != NULL
+ && lhs_interface_type->is_compatible_for_assign(rhs_interface_type,
+ reason))
+ return true;
+ }
+
+ // The type are assignable if RHS is a bidirectional channel type,
+ // LHS is a channel type, they have identical element types, and
+ // either LHS or RHS is not a named type.
+ if (lhs->channel_type() != NULL
+ && rhs->channel_type() != NULL
+ && rhs->channel_type()->may_send()
+ && rhs->channel_type()->may_receive()
+ && (lhs->named_type() == NULL || rhs->named_type() == NULL)
+ && Type::are_identical(lhs->channel_type()->element_type(),
+ rhs->channel_type()->element_type(),
+ true,
+ reason))
+ return true;
+
+ // The nil type may be assigned to a pointer, function, slice, map,
+ // channel, or interface type.
+ if (rhs->is_nil_type()
+ && (lhs->points_to() != NULL
+ || lhs->function_type() != NULL
+ || lhs->is_open_array_type()
+ || lhs->map_type() != NULL
+ || lhs->channel_type() != NULL
+ || lhs->interface_type() != NULL))
+ return true;
+
+ // An untyped numeric constant may be assigned to a numeric type if
+ // it is representable in that type.
+ if ((rhs->is_abstract()
+ && (rhs->integer_type() != NULL
+ || rhs->float_type() != NULL
+ || rhs->complex_type() != NULL))
+ && (lhs->integer_type() != NULL
+ || lhs->float_type() != NULL
+ || lhs->complex_type() != NULL))
+ return true;
+
+ // Give some better error messages.
+ if (reason != NULL && reason->empty())
+ {
+ if (rhs->interface_type() != NULL)
+ reason->assign(_("need explicit conversion"));
+ else if (rhs->is_call_multiple_result_type())
+ reason->assign(_("multiple value function call in "
+ "single value context"));
+ else if (lhs->named_type() != NULL && rhs->named_type() != NULL)
+ {
+ size_t len = (lhs->named_type()->name().length()
+ + rhs->named_type()->name().length()
+ + 100);
+ char* buf = new char[len];
+ snprintf(buf, len, _("cannot use type %s as type %s"),
+ rhs->named_type()->message_name().c_str(),
+ lhs->named_type()->message_name().c_str());
+ reason->assign(buf);
+ delete[] buf;
+ }
+ }
+
+ return false;
+}
+
+// Return true if a value with type RHS may be converted to type LHS.
+// If REASON is not NULL, set *REASON to the reason the types are not
+// convertible.
+
+bool
+Type::are_convertible(const Type* lhs, const Type* rhs, std::string* reason)
+{
+ // The types are convertible if they are assignable.
+ if (Type::are_assignable(lhs, rhs, reason))
+ return true;
+
+ // The types are convertible if they have identical underlying
+ // types.
+ if ((lhs->named_type() != NULL || rhs->named_type() != NULL)
+ && Type::are_identical(lhs->base(), rhs->base(), true, reason))
+ return true;
+
+ // The types are convertible if they are both unnamed pointer types
+ // and their pointer base types have identical underlying types.
+ if (lhs->named_type() == NULL
+ && rhs->named_type() == NULL
+ && lhs->points_to() != NULL
+ && rhs->points_to() != NULL
+ && (lhs->points_to()->named_type() != NULL
+ || rhs->points_to()->named_type() != NULL)
+ && Type::are_identical(lhs->points_to()->base(),
+ rhs->points_to()->base(),
+ true,
+ reason))
+ return true;
+
+ // Integer and floating point types are convertible to each other.
+ if ((lhs->integer_type() != NULL || lhs->float_type() != NULL)
+ && (rhs->integer_type() != NULL || rhs->float_type() != NULL))
+ return true;
+
+ // Complex types are convertible to each other.
+ if (lhs->complex_type() != NULL && rhs->complex_type() != NULL)
+ return true;
+
+ // An integer, or []byte, or []int, may be converted to a string.
+ if (lhs->is_string_type())
+ {
+ if (rhs->integer_type() != NULL)
+ return true;
+ if (rhs->is_open_array_type() && rhs->named_type() == NULL)
+ {
+ const Type* e = rhs->array_type()->element_type()->forwarded();
+ if (e->integer_type() != NULL
+ && (e == Type::lookup_integer_type("uint8")
+ || e == Type::lookup_integer_type("int")))
+ return true;
+ }
+ }
+
+ // A string may be converted to []byte or []int.
+ if (rhs->is_string_type()
+ && lhs->is_open_array_type()
+ && lhs->named_type() == NULL)
+ {
+ const Type* e = lhs->array_type()->element_type()->forwarded();
+ if (e->integer_type() != NULL
+ && (e == Type::lookup_integer_type("uint8")
+ || e == Type::lookup_integer_type("int")))
+ return true;
+ }
+
+ // An unsafe.Pointer type may be converted to any pointer type or to
+ // uintptr, and vice-versa.
+ if (lhs->is_unsafe_pointer_type()
+ && (rhs->points_to() != NULL
+ || (rhs->integer_type() != NULL
+ && rhs->forwarded() == Type::lookup_integer_type("uintptr"))))
+ return true;
+ if (rhs->is_unsafe_pointer_type()
+ && (lhs->points_to() != NULL
+ || (lhs->integer_type() != NULL
+ && lhs->forwarded() == Type::lookup_integer_type("uintptr"))))
+ return true;
+
+ // Give a better error message.
+ if (reason != NULL)
+ {
+ if (reason->empty())
+ *reason = "invalid type conversion";
+ else
+ {
+ std::string s = "invalid type conversion (";
+ s += *reason;
+ s += ')';
+ *reason = s;
+ }
+ }
+
+ return false;
+}
+
+// Return whether this type has any hidden fields. This is only a
+// possibility for a few types.
+
+bool
+Type::has_hidden_fields(const Named_type* within, std::string* reason) const
+{
+ switch (this->forwarded()->classification_)
+ {
+ case TYPE_NAMED:
+ return this->named_type()->named_type_has_hidden_fields(reason);
+ case TYPE_STRUCT:
+ return this->struct_type()->struct_has_hidden_fields(within, reason);
+ case TYPE_ARRAY:
+ return this->array_type()->array_has_hidden_fields(within, reason);
+ default:
+ return false;
+ }
+}
+
+// Return a hash code for the type to be used for method lookup.
+
+unsigned int
+Type::hash_for_method(Gogo* gogo) const
+{
+ unsigned int ret = 0;
+ if (this->classification_ != TYPE_FORWARD)
+ ret += this->classification_;
+ return ret + this->do_hash_for_method(gogo);
+}
+
+// Default implementation of do_hash_for_method. This is appropriate
+// for types with no subfields.
+
+unsigned int
+Type::do_hash_for_method(Gogo*) const
+{
+ return 0;
+}
+
+// Return a hash code for a string, given a starting hash.
+
+unsigned int
+Type::hash_string(const std::string& s, unsigned int h)
+{
+ const char* p = s.data();
+ size_t len = s.length();
+ for (; len > 0; --len)
+ {
+ h ^= *p++;
+ h*= 16777619;
+ }
+ return h;
+}
+
+// Default check for the expression passed to make. Any type which
+// may be used with make implements its own version of this.
+
+bool
+Type::do_check_make_expression(Expression_list*, source_location)
+{
+ gcc_unreachable();
+}
+
+// Return whether an expression has an integer value. Report an error
+// if not. This is used when handling calls to the predeclared make
+// function.
+
+bool
+Type::check_int_value(Expression* e, const char* errmsg,
+ source_location location)
+{
+ if (e->type()->integer_type() != NULL)
+ return true;
+
+ // Check for a floating point constant with integer value.
+ mpfr_t fval;
+ mpfr_init(fval);
+
+ Type* dummy;
+ if (e->float_constant_value(fval, &dummy) && mpfr_integer_p(fval))
+ {
+ mpz_t ival;
+ mpz_init(ival);
+
+ bool ok = false;
+
+ mpfr_clear_overflow();
+ mpfr_clear_erangeflag();
+ mpfr_get_z(ival, fval, GMP_RNDN);
+ if (!mpfr_overflow_p()
+ && !mpfr_erangeflag_p()
+ && mpz_sgn(ival) >= 0)
+ {
+ Named_type* ntype = Type::lookup_integer_type("int");
+ Integer_type* inttype = ntype->integer_type();
+ mpz_t max;
+ mpz_init_set_ui(max, 1);
+ mpz_mul_2exp(max, max, inttype->bits() - 1);
+ ok = mpz_cmp(ival, max) < 0;
+ mpz_clear(max);
+ }
+ mpz_clear(ival);
+
+ if (ok)
+ {
+ mpfr_clear(fval);
+ return true;
+ }
+ }
+
+ mpfr_clear(fval);
+
+ error_at(location, "%s", errmsg);
+ return false;
+}
+
+// A hash table mapping unnamed types to trees.
+
+Type::Type_trees Type::type_trees;
+
+// Return a tree representing this type.
+
+tree
+Type::get_tree(Gogo* gogo)
+{
+ if (this->tree_ != NULL)
+ return this->tree_;
+
+ if (this->forward_declaration_type() != NULL
+ || this->named_type() != NULL)
+ return this->get_tree_without_hash(gogo);
+
+ if (this->is_error_type())
+ return error_mark_node;
+
+ // To avoid confusing GIMPLE, we need to translate all identical Go
+ // types to the same GIMPLE type. We use a hash table to do that.
+ // There is no need to use the hash table for named types, as named
+ // types are only identical to themselves.
+
+ std::pair<Type*, tree> val(this, NULL);
+ std::pair<Type_trees::iterator, bool> ins =
+ Type::type_trees.insert(val);
+ if (!ins.second && ins.first->second != NULL_TREE)
+ {
+ if (gogo != NULL && gogo->named_types_are_converted())
+ this->tree_ = ins.first->second;
+ return ins.first->second;
+ }
+
+ tree t = this->get_tree_without_hash(gogo);
+
+ if (ins.first->second == NULL_TREE)
+ ins.first->second = t;
+ else
+ {
+ // We have already created a tree for this type. This can
+ // happen when an unnamed type is defined using a named type
+ // which in turns uses an identical unnamed type. Use the tree
+ // we created earlier and ignore the one we just built.
+ t = ins.first->second;
+ if (gogo == NULL || !gogo->named_types_are_converted())
+ return t;
+ this->tree_ = t;
+ }
+
+ return t;
+}
+
+// Return a tree for a type without looking in the hash table for
+// identical types. This is used for named types, since there is no
+// point to looking in the hash table for them.
+
+tree
+Type::get_tree_without_hash(Gogo* gogo)
+{
+ if (this->tree_ == NULL_TREE)
+ {
+ tree t = this->do_get_tree(gogo);
+
+ // For a recursive function or pointer type, we will temporarily
+ // return ptr_type_node during the recursion. We don't want to
+ // record that for a forwarding type, as it may confuse us
+ // later.
+ if (t == ptr_type_node && this->forward_declaration_type() != NULL)
+ return t;
+
+ if (gogo == NULL || !gogo->named_types_are_converted())
+ return t;
+
+ this->tree_ = t;
+ go_preserve_from_gc(t);
+ }
+
+ return this->tree_;
+}
+
+// Return a tree representing a zero initialization for this type.
+
+tree
+Type::get_init_tree(Gogo* gogo, bool is_clear)
+{
+ tree type_tree = this->get_tree(gogo);
+ if (type_tree == error_mark_node)
+ return error_mark_node;
+ return this->do_get_init_tree(gogo, type_tree, is_clear);
+}
+
+// Any type which supports the builtin make function must implement
+// this.
+
+tree
+Type::do_make_expression_tree(Translate_context*, Expression_list*,
+ source_location)
+{
+ gcc_unreachable();
+}
+
+// Return a pointer to the type descriptor for this type.
+
+tree
+Type::type_descriptor_pointer(Gogo* gogo)
+{
+ Type* t = this->forwarded();
+ if (t->type_descriptor_decl_ == NULL_TREE)
+ {
+ Expression* e = t->do_type_descriptor(gogo, NULL);
+ gogo->build_type_descriptor_decl(t, e, &t->type_descriptor_decl_);
+ gcc_assert(t->type_descriptor_decl_ != NULL_TREE
+ && (t->type_descriptor_decl_ == error_mark_node
+ || DECL_P(t->type_descriptor_decl_)));
+ }
+ if (t->type_descriptor_decl_ == error_mark_node)
+ return error_mark_node;
+ return build_fold_addr_expr(t->type_descriptor_decl_);
+}
+
+// Return a composite literal for a type descriptor.
+
+Expression*
+Type::type_descriptor(Gogo* gogo, Type* type)
+{
+ return type->do_type_descriptor(gogo, NULL);
+}
+
+// Return a composite literal for a type descriptor with a name.
+
+Expression*
+Type::named_type_descriptor(Gogo* gogo, Type* type, Named_type* name)
+{
+ gcc_assert(name != NULL && type->named_type() != name);
+ return type->do_type_descriptor(gogo, name);
+}
+
+// Make a builtin struct type from a list of fields. The fields are
+// pairs of a name and a type.
+
+Struct_type*
+Type::make_builtin_struct_type(int nfields, ...)
+{
+ va_list ap;
+ va_start(ap, nfields);
+
+ source_location bloc = BUILTINS_LOCATION;
+ Struct_field_list* sfl = new Struct_field_list();
+ for (int i = 0; i < nfields; i++)
+ {
+ const char* field_name = va_arg(ap, const char *);
+ Type* type = va_arg(ap, Type*);
+ sfl->push_back(Struct_field(Typed_identifier(field_name, type, bloc)));
+ }
+
+ va_end(ap);
+
+ return Type::make_struct_type(sfl, bloc);
+}
+
+// A list of builtin named types.
+
+std::vector<Named_type*> Type::named_builtin_types;
+
+// Make a builtin named type.
+
+Named_type*
+Type::make_builtin_named_type(const char* name, Type* type)
+{
+ source_location bloc = BUILTINS_LOCATION;
+ Named_object* no = Named_object::make_type(name, NULL, type, bloc);
+ Named_type* ret = no->type_value();
+ Type::named_builtin_types.push_back(ret);
+ return ret;
+}
+
+// Convert the named builtin types.
+
+void
+Type::convert_builtin_named_types(Gogo* gogo)
+{
+ for (std::vector<Named_type*>::const_iterator p =
+ Type::named_builtin_types.begin();
+ p != Type::named_builtin_types.end();
+ ++p)
+ {
+ bool r = (*p)->verify();
+ gcc_assert(r);
+ (*p)->convert(gogo);
+ }
+}
+
+// Return the type of a type descriptor. We should really tie this to
+// runtime.Type rather than copying it. This must match commonType in
+// libgo/go/runtime/type.go.
+
+Type*
+Type::make_type_descriptor_type()
+{
+ static Type* ret;
+ if (ret == NULL)
+ {
+ source_location bloc = BUILTINS_LOCATION;
+
+ Type* uint8_type = Type::lookup_integer_type("uint8");
+ Type* uint32_type = Type::lookup_integer_type("uint32");
+ Type* uintptr_type = Type::lookup_integer_type("uintptr");
+ Type* string_type = Type::lookup_string_type();
+ Type* pointer_string_type = Type::make_pointer_type(string_type);
+
+ // This is an unnamed version of unsafe.Pointer. Perhaps we
+ // should use the named version instead, although that would
+ // require us to create the unsafe package if it has not been
+ // imported. It probably doesn't matter.
+ Type* void_type = Type::make_void_type();
+ Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
+
+ // Forward declaration for the type descriptor type.
+ Named_object* named_type_descriptor_type =
+ Named_object::make_type_declaration("commonType", NULL, bloc);
+ Type* ft = Type::make_forward_declaration(named_type_descriptor_type);
+ Type* pointer_type_descriptor_type = Type::make_pointer_type(ft);
+
+ // The type of a method on a concrete type.
+ Struct_type* method_type =
+ Type::make_builtin_struct_type(5,
+ "name", pointer_string_type,
+ "pkgPath", pointer_string_type,
+ "mtyp", pointer_type_descriptor_type,
+ "typ", pointer_type_descriptor_type,
+ "tfn", unsafe_pointer_type);
+ Named_type* named_method_type =
+ Type::make_builtin_named_type("method", method_type);
+
+ // Information for types with a name or methods.
+ Type* slice_named_method_type =
+ Type::make_array_type(named_method_type, NULL);
+ Struct_type* uncommon_type =
+ Type::make_builtin_struct_type(3,
+ "name", pointer_string_type,
+ "pkgPath", pointer_string_type,
+ "methods", slice_named_method_type);
+ Named_type* named_uncommon_type =
+ Type::make_builtin_named_type("uncommonType", uncommon_type);
+
+ Type* pointer_uncommon_type =
+ Type::make_pointer_type(named_uncommon_type);
+
+ // The type descriptor type.
+
+ Typed_identifier_list* params = new Typed_identifier_list();
+ params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
+ params->push_back(Typed_identifier("", uintptr_type, bloc));
+
+ Typed_identifier_list* results = new Typed_identifier_list();
+ results->push_back(Typed_identifier("", uintptr_type, bloc));
+
+ Type* hashfn_type = Type::make_function_type(NULL, params, results, bloc);
+
+ params = new Typed_identifier_list();
+ params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
+ params->push_back(Typed_identifier("", unsafe_pointer_type, bloc));
+ params->push_back(Typed_identifier("", uintptr_type, bloc));
+
+ results = new Typed_identifier_list();
+ results->push_back(Typed_identifier("", Type::lookup_bool_type(), bloc));
+
+ Type* equalfn_type = Type::make_function_type(NULL, params, results,
+ bloc);
+
+ Struct_type* type_descriptor_type =
+ Type::make_builtin_struct_type(9,
+ "Kind", uint8_type,
+ "align", uint8_type,
+ "fieldAlign", uint8_type,
+ "size", uintptr_type,
+ "hash", uint32_type,
+ "hashfn", hashfn_type,
+ "equalfn", equalfn_type,
+ "string", pointer_string_type,
+ "", pointer_uncommon_type);
+
+ Named_type* named = Type::make_builtin_named_type("commonType",
+ type_descriptor_type);
+
+ named_type_descriptor_type->set_type_value(named);
+
+ ret = named;
+ }
+
+ return ret;
+}
+
+// Make the type of a pointer to a type descriptor as represented in
+// Go.
+
+Type*
+Type::make_type_descriptor_ptr_type()
+{
+ static Type* ret;
+ if (ret == NULL)
+ ret = Type::make_pointer_type(Type::make_type_descriptor_type());
+ return ret;
+}
+
+// Return the names of runtime functions which compute a hash code for
+// this type and which compare whether two values of this type are
+// equal.
+
+void
+Type::type_functions(const char** hash_fn, const char** equal_fn) const
+{
+ switch (this->base()->classification())
+ {
+ case Type::TYPE_ERROR:
+ case Type::TYPE_VOID:
+ case Type::TYPE_NIL:
+ // These types can not be hashed or compared.
+ *hash_fn = "__go_type_hash_error";
+ *equal_fn = "__go_type_equal_error";
+ break;
+
+ case Type::TYPE_BOOLEAN:
+ case Type::TYPE_INTEGER:
+ case Type::TYPE_FLOAT:
+ case Type::TYPE_COMPLEX:
+ case Type::TYPE_POINTER:
+ case Type::TYPE_FUNCTION:
+ case Type::TYPE_MAP:
+ case Type::TYPE_CHANNEL:
+ *hash_fn = "__go_type_hash_identity";
+ *equal_fn = "__go_type_equal_identity";
+ break;
+
+ case Type::TYPE_STRING:
+ *hash_fn = "__go_type_hash_string";
+ *equal_fn = "__go_type_equal_string";
+ break;
+
+ case Type::TYPE_STRUCT:
+ case Type::TYPE_ARRAY:
+ // These types can not be hashed or compared.
+ *hash_fn = "__go_type_hash_error";
+ *equal_fn = "__go_type_equal_error";
+ break;
+
+ case Type::TYPE_INTERFACE:
+ if (this->interface_type()->is_empty())
+ {
+ *hash_fn = "__go_type_hash_empty_interface";
+ *equal_fn = "__go_type_equal_empty_interface";
+ }
+ else
+ {
+ *hash_fn = "__go_type_hash_interface";
+ *equal_fn = "__go_type_equal_interface";
+ }
+ break;
+
+ case Type::TYPE_NAMED:
+ case Type::TYPE_FORWARD:
+ gcc_unreachable();
+
+ default:
+ gcc_unreachable();
+ }
+}
+
+// Return a composite literal for the type descriptor for a plain type
+// of kind RUNTIME_TYPE_KIND named NAME.
+
+Expression*
+Type::type_descriptor_constructor(Gogo* gogo, int runtime_type_kind,
+ Named_type* name, const Methods* methods,
+ bool only_value_methods)
+{
+ source_location bloc = BUILTINS_LOCATION;
+
+ Type* td_type = Type::make_type_descriptor_type();
+ const Struct_field_list* fields = td_type->struct_type()->fields();
+
+ Expression_list* vals = new Expression_list();
+ vals->reserve(9);
+
+ Struct_field_list::const_iterator p = fields->begin();
+ gcc_assert(p->field_name() == "Kind");
+ mpz_t iv;
+ mpz_init_set_ui(iv, runtime_type_kind);
+ vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
+
+ ++p;
+ gcc_assert(p->field_name() == "align");
+ Expression::Type_info type_info = Expression::TYPE_INFO_ALIGNMENT;
+ vals->push_back(Expression::make_type_info(this, type_info));
+
+ ++p;
+ gcc_assert(p->field_name() == "fieldAlign");
+ type_info = Expression::TYPE_INFO_FIELD_ALIGNMENT;
+ vals->push_back(Expression::make_type_info(this, type_info));
+
+ ++p;
+ gcc_assert(p->field_name() == "size");
+ type_info = Expression::TYPE_INFO_SIZE;
+ vals->push_back(Expression::make_type_info(this, type_info));
+
+ ++p;
+ gcc_assert(p->field_name() == "hash");
+ mpz_set_ui(iv, this->hash_for_method(gogo));
+ vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
+
+ const char* hash_fn;
+ const char* equal_fn;
+ this->type_functions(&hash_fn, &equal_fn);
+
+ ++p;
+ gcc_assert(p->field_name() == "hashfn");
+ Function_type* fntype = p->type()->function_type();
+ Named_object* no = Named_object::make_function_declaration(hash_fn, NULL,
+ fntype,
+ bloc);
+ no->func_declaration_value()->set_asm_name(hash_fn);
+ vals->push_back(Expression::make_func_reference(no, NULL, bloc));
+
+ ++p;
+ gcc_assert(p->field_name() == "equalfn");
+ fntype = p->type()->function_type();
+ no = Named_object::make_function_declaration(equal_fn, NULL, fntype, bloc);
+ no->func_declaration_value()->set_asm_name(equal_fn);
+ vals->push_back(Expression::make_func_reference(no, NULL, bloc));
+
+ ++p;
+ gcc_assert(p->field_name() == "string");
+ Expression* s = Expression::make_string((name != NULL
+ ? name->reflection(gogo)
+ : this->reflection(gogo)),
+ bloc);
+ vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
+
+ ++p;
+ gcc_assert(p->field_name() == "uncommonType");
+ if (name == NULL && methods == NULL)
+ vals->push_back(Expression::make_nil(bloc));
+ else
+ {
+ if (methods == NULL)
+ methods = name->methods();
+ vals->push_back(this->uncommon_type_constructor(gogo,
+ p->type()->deref(),
+ name, methods,
+ only_value_methods));
+ }
+
+ ++p;
+ gcc_assert(p == fields->end());
+
+ mpz_clear(iv);
+
+ return Expression::make_struct_composite_literal(td_type, vals, bloc);
+}
+
+// Return a composite literal for the uncommon type information for
+// this type. UNCOMMON_STRUCT_TYPE is the type of the uncommon type
+// struct. If name is not NULL, it is the name of the type. If
+// METHODS is not NULL, it is the list of methods. ONLY_VALUE_METHODS
+// is true if only value methods should be included. At least one of
+// NAME and METHODS must not be NULL.
+
+Expression*
+Type::uncommon_type_constructor(Gogo* gogo, Type* uncommon_type,
+ Named_type* name, const Methods* methods,
+ bool only_value_methods) const
+{
+ source_location bloc = BUILTINS_LOCATION;
+
+ const Struct_field_list* fields = uncommon_type->struct_type()->fields();
+
+ Expression_list* vals = new Expression_list();
+ vals->reserve(3);
+
+ Struct_field_list::const_iterator p = fields->begin();
+ gcc_assert(p->field_name() == "name");
+
+ ++p;
+ gcc_assert(p->field_name() == "pkgPath");
+
+ if (name == NULL)
+ {
+ vals->push_back(Expression::make_nil(bloc));
+ vals->push_back(Expression::make_nil(bloc));
+ }
+ else
+ {
+ Named_object* no = name->named_object();
+ std::string n = Gogo::unpack_hidden_name(no->name());
+ Expression* s = Expression::make_string(n, bloc);
+ vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
+
+ if (name->is_builtin())
+ vals->push_back(Expression::make_nil(bloc));
+ else
+ {
+ const Package* package = no->package();
+ const std::string& unique_prefix(package == NULL
+ ? gogo->unique_prefix()
+ : package->unique_prefix());
+ const std::string& package_name(package == NULL
+ ? gogo->package_name()
+ : package->name());
+ n.assign(unique_prefix);
+ n.append(1, '.');
+ n.append(package_name);
+ if (name->in_function() != NULL)
+ {
+ n.append(1, '.');
+ n.append(Gogo::unpack_hidden_name(name->in_function()->name()));
+ }
+ s = Expression::make_string(n, bloc);
+ vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
+ }
+ }
+
+ ++p;
+ gcc_assert(p->field_name() == "methods");
+ vals->push_back(this->methods_constructor(gogo, p->type(), methods,
+ only_value_methods));
+
+ ++p;
+ gcc_assert(p == fields->end());
+
+ Expression* r = Expression::make_struct_composite_literal(uncommon_type,
+ vals, bloc);
+ return Expression::make_unary(OPERATOR_AND, r, bloc);
+}
+
+// Sort methods by name.
+
+class Sort_methods
+{
+ public:
+ bool
+ operator()(const std::pair<std::string, const Method*>& m1,
+ const std::pair<std::string, const Method*>& m2) const
+ { return m1.first < m2.first; }
+};
+
+// Return a composite literal for the type method table for this type.
+// METHODS_TYPE is the type of the table, and is a slice type.
+// METHODS is the list of methods. If ONLY_VALUE_METHODS is true,
+// then only value methods are used.
+
+Expression*
+Type::methods_constructor(Gogo* gogo, Type* methods_type,
+ const Methods* methods,
+ bool only_value_methods) const
+{
+ source_location bloc = BUILTINS_LOCATION;
+
+ std::vector<std::pair<std::string, const Method*> > smethods;
+ if (methods != NULL)
+ {
+ smethods.reserve(methods->count());
+ for (Methods::const_iterator p = methods->begin();
+ p != methods->end();
+ ++p)
+ {
+ if (p->second->is_ambiguous())
+ continue;
+ if (only_value_methods && !p->second->is_value_method())
+ continue;
+ smethods.push_back(std::make_pair(p->first, p->second));
+ }
+ }
+
+ if (smethods.empty())
+ return Expression::make_slice_composite_literal(methods_type, NULL, bloc);
+
+ std::sort(smethods.begin(), smethods.end(), Sort_methods());
+
+ Type* method_type = methods_type->array_type()->element_type();
+
+ Expression_list* vals = new Expression_list();
+ vals->reserve(smethods.size());
+ for (std::vector<std::pair<std::string, const Method*> >::const_iterator p
+ = smethods.begin();
+ p != smethods.end();
+ ++p)
+ vals->push_back(this->method_constructor(gogo, method_type, p->first,
+ p->second));
+
+ return Expression::make_slice_composite_literal(methods_type, vals, bloc);
+}
+
+// Return a composite literal for a single method. METHOD_TYPE is the
+// type of the entry. METHOD_NAME is the name of the method and M is
+// the method information.
+
+Expression*
+Type::method_constructor(Gogo*, Type* method_type,
+ const std::string& method_name,
+ const Method* m) const
+{
+ source_location bloc = BUILTINS_LOCATION;
+
+ const Struct_field_list* fields = method_type->struct_type()->fields();
+
+ Expression_list* vals = new Expression_list();
+ vals->reserve(5);
+
+ Struct_field_list::const_iterator p = fields->begin();
+ gcc_assert(p->field_name() == "name");
+ const std::string n = Gogo::unpack_hidden_name(method_name);
+ Expression* s = Expression::make_string(n, bloc);
+ vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
+
+ ++p;
+ gcc_assert(p->field_name() == "pkgPath");
+ if (!Gogo::is_hidden_name(method_name))
+ vals->push_back(Expression::make_nil(bloc));
+ else
+ {
+ s = Expression::make_string(Gogo::hidden_name_prefix(method_name), bloc);
+ vals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
+ }
+
+ Named_object* no = (m->needs_stub_method()
+ ? m->stub_object()
+ : m->named_object());
+
+ Function_type* mtype;
+ if (no->is_function())
+ mtype = no->func_value()->type();
+ else
+ mtype = no->func_declaration_value()->type();
+ gcc_assert(mtype->is_method());
+ Type* nonmethod_type = mtype->copy_without_receiver();
+
+ ++p;
+ gcc_assert(p->field_name() == "mtyp");
+ vals->push_back(Expression::make_type_descriptor(nonmethod_type, bloc));
+
+ ++p;
+ gcc_assert(p->field_name() == "typ");
+ vals->push_back(Expression::make_type_descriptor(mtype, bloc));
+
+ ++p;
+ gcc_assert(p->field_name() == "tfn");
+ vals->push_back(Expression::make_func_reference(no, NULL, bloc));
+
+ ++p;
+ gcc_assert(p == fields->end());
+
+ return Expression::make_struct_composite_literal(method_type, vals, bloc);
+}
+
+// Return a composite literal for the type descriptor of a plain type.
+// RUNTIME_TYPE_KIND is the value of the kind field. If NAME is not
+// NULL, it is the name to use as well as the list of methods.
+
+Expression*
+Type::plain_type_descriptor(Gogo* gogo, int runtime_type_kind,
+ Named_type* name)
+{
+ return this->type_descriptor_constructor(gogo, runtime_type_kind,
+ name, NULL, true);
+}
+
+// Return the type reflection string for this type.
+
+std::string
+Type::reflection(Gogo* gogo) const
+{
+ std::string ret;
+
+ // The do_reflection virtual function should set RET to the
+ // reflection string.
+ this->do_reflection(gogo, &ret);
+
+ return ret;
+}
+
+// Return a mangled name for the type.
+
+std::string
+Type::mangled_name(Gogo* gogo) const
+{
+ std::string ret;
+
+ // The do_mangled_name virtual function should set RET to the
+ // mangled name. For a composite type it should append a code for
+ // the composition and then call do_mangled_name on the components.
+ this->do_mangled_name(gogo, &ret);
+
+ return ret;
+}
+
+// Default function to export a type.
+
+void
+Type::do_export(Export*) const
+{
+ gcc_unreachable();
+}
+
+// Import a type.
+
+Type*
+Type::import_type(Import* imp)
+{
+ if (imp->match_c_string("("))
+ return Function_type::do_import(imp);
+ else if (imp->match_c_string("*"))
+ return Pointer_type::do_import(imp);
+ else if (imp->match_c_string("struct "))
+ return Struct_type::do_import(imp);
+ else if (imp->match_c_string("["))
+ return Array_type::do_import(imp);
+ else if (imp->match_c_string("map "))
+ return Map_type::do_import(imp);
+ else if (imp->match_c_string("chan "))
+ return Channel_type::do_import(imp);
+ else if (imp->match_c_string("interface"))
+ return Interface_type::do_import(imp);
+ else
+ {
+ error_at(imp->location(), "import error: expected type");
+ return Type::make_error_type();
+ }
+}
+
+// A type used to indicate a parsing error. This exists to simplify
+// later error detection.
+
+class Error_type : public Type
+{
+ public:
+ Error_type()
+ : Type(TYPE_ERROR)
+ { }
+
+ protected:
+ tree
+ do_get_tree(Gogo*)
+ { return error_mark_node; }
+
+ tree
+ do_get_init_tree(Gogo*, tree, bool)
+ { return error_mark_node; }
+
+ Expression*
+ do_type_descriptor(Gogo*, Named_type*)
+ { return Expression::make_error(BUILTINS_LOCATION); }
+
+ void
+ do_reflection(Gogo*, std::string*) const
+ { gcc_assert(saw_errors()); }
+
+ void
+ do_mangled_name(Gogo*, std::string* ret) const
+ { ret->push_back('E'); }
+};
+
+Type*
+Type::make_error_type()
+{
+ static Error_type singleton_error_type;
+ return &singleton_error_type;
+}
+
+// The void type.
+
+class Void_type : public Type
+{
+ public:
+ Void_type()
+ : Type(TYPE_VOID)
+ { }
+
+ protected:
+ tree
+ do_get_tree(Gogo*)
+ { return void_type_node; }
+
+ tree
+ do_get_init_tree(Gogo*, tree, bool)
+ { gcc_unreachable(); }
+
+ Expression*
+ do_type_descriptor(Gogo*, Named_type*)
+ { gcc_unreachable(); }
+
+ void
+ do_reflection(Gogo*, std::string*) const
+ { }
+
+ void
+ do_mangled_name(Gogo*, std::string* ret) const
+ { ret->push_back('v'); }
+};
+
+Type*
+Type::make_void_type()
+{
+ static Void_type singleton_void_type;
+ return &singleton_void_type;
+}
+
+// The boolean type.
+
+class Boolean_type : public Type
+{
+ public:
+ Boolean_type()
+ : Type(TYPE_BOOLEAN)
+ { }
+
+ protected:
+ tree
+ do_get_tree(Gogo*)
+ { return boolean_type_node; }
+
+ tree
+ do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
+ { return is_clear ? NULL : fold_convert(type_tree, boolean_false_node); }
+
+ Expression*
+ do_type_descriptor(Gogo*, Named_type* name);
+
+ // We should not be asked for the reflection string of a basic type.
+ void
+ do_reflection(Gogo*, std::string* ret) const
+ { ret->append("bool"); }
+
+ void
+ do_mangled_name(Gogo*, std::string* ret) const
+ { ret->push_back('b'); }
+};
+
+// Make the type descriptor.
+
+Expression*
+Boolean_type::do_type_descriptor(Gogo* gogo, Named_type* name)
+{
+ if (name != NULL)
+ return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_BOOL, name);
+ else
+ {
+ Named_object* no = gogo->lookup_global("bool");
+ gcc_assert(no != NULL);
+ return Type::type_descriptor(gogo, no->type_value());
+ }
+}
+
+Type*
+Type::make_boolean_type()
+{
+ static Boolean_type boolean_type;
+ return &boolean_type;
+}
+
+// The named type "bool".
+
+static Named_type* named_bool_type;
+
+// Get the named type "bool".
+
+Named_type*
+Type::lookup_bool_type()
+{
+ return named_bool_type;
+}
+
+// Make the named type "bool".
+
+Named_type*
+Type::make_named_bool_type()
+{
+ Type* bool_type = Type::make_boolean_type();
+ Named_object* named_object = Named_object::make_type("bool", NULL,
+ bool_type,
+ BUILTINS_LOCATION);
+ Named_type* named_type = named_object->type_value();
+ named_bool_type = named_type;
+ return named_type;
+}
+
+// Class Integer_type.
+
+Integer_type::Named_integer_types Integer_type::named_integer_types;
+
+// Create a new integer type. Non-abstract integer types always have
+// names.
+
+Named_type*
+Integer_type::create_integer_type(const char* name, bool is_unsigned,
+ int bits, int runtime_type_kind)
+{
+ Integer_type* integer_type = new Integer_type(false, is_unsigned, bits,
+ runtime_type_kind);
+ std::string sname(name);
+ Named_object* named_object = Named_object::make_type(sname, NULL,
+ integer_type,
+ BUILTINS_LOCATION);
+ Named_type* named_type = named_object->type_value();
+ std::pair<Named_integer_types::iterator, bool> ins =
+ Integer_type::named_integer_types.insert(std::make_pair(sname, named_type));
+ gcc_assert(ins.second);
+ return named_type;
+}
+
+// Look up an existing integer type.
+
+Named_type*
+Integer_type::lookup_integer_type(const char* name)
+{
+ Named_integer_types::const_iterator p =
+ Integer_type::named_integer_types.find(name);
+ gcc_assert(p != Integer_type::named_integer_types.end());
+ return p->second;
+}
+
+// Create a new abstract integer type.
+
+Integer_type*
+Integer_type::create_abstract_integer_type()
+{
+ static Integer_type* abstract_type;
+ if (abstract_type == NULL)
+ abstract_type = new Integer_type(true, false, INT_TYPE_SIZE,
+ RUNTIME_TYPE_KIND_INT);
+ return abstract_type;
+}
+
+// Integer type compatibility.
+
+bool
+Integer_type::is_identical(const Integer_type* t) const
+{
+ if (this->is_unsigned_ != t->is_unsigned_ || this->bits_ != t->bits_)
+ return false;
+ return this->is_abstract_ == t->is_abstract_;
+}
+
+// Hash code.
+
+unsigned int
+Integer_type::do_hash_for_method(Gogo*) const
+{
+ return ((this->bits_ << 4)
+ + ((this->is_unsigned_ ? 1 : 0) << 8)
+ + ((this->is_abstract_ ? 1 : 0) << 9));
+}
+
+// Get the tree for an Integer_type.
+
+tree
+Integer_type::do_get_tree(Gogo*)
+{
+ if (this->is_abstract_)
+ {
+ gcc_assert(saw_errors());
+ return error_mark_node;
+ }
+
+ if (this->is_unsigned_)
+ {
+ if (this->bits_ == INT_TYPE_SIZE)
+ return unsigned_type_node;
+ else if (this->bits_ == CHAR_TYPE_SIZE)
+ return unsigned_char_type_node;
+ else if (this->bits_ == SHORT_TYPE_SIZE)
+ return short_unsigned_type_node;
+ else if (this->bits_ == LONG_TYPE_SIZE)
+ return long_unsigned_type_node;
+ else if (this->bits_ == LONG_LONG_TYPE_SIZE)
+ return long_long_unsigned_type_node;
+ else
+ return make_unsigned_type(this->bits_);
+ }
+ else
+ {
+ if (this->bits_ == INT_TYPE_SIZE)
+ return integer_type_node;
+ else if (this->bits_ == CHAR_TYPE_SIZE)
+ return signed_char_type_node;
+ else if (this->bits_ == SHORT_TYPE_SIZE)
+ return short_integer_type_node;
+ else if (this->bits_ == LONG_TYPE_SIZE)
+ return long_integer_type_node;
+ else if (this->bits_ == LONG_LONG_TYPE_SIZE)
+ return long_long_integer_type_node;
+ else
+ return make_signed_type(this->bits_);
+ }
+}
+
+tree
+Integer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
+{
+ return is_clear ? NULL : build_int_cst(type_tree, 0);
+}
+
+// The type descriptor for an integer type. Integer types are always
+// named.
+
+Expression*
+Integer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
+{
+ gcc_assert(name != NULL);
+ return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
+}
+
+// We should not be asked for the reflection string of a basic type.
+
+void
+Integer_type::do_reflection(Gogo*, std::string*) const
+{
+ gcc_assert(saw_errors());
+}
+
+// Mangled name.
+
+void
+Integer_type::do_mangled_name(Gogo*, std::string* ret) const
+{
+ char buf[100];
+ snprintf(buf, sizeof buf, "i%s%s%de",
+ this->is_abstract_ ? "a" : "",
+ this->is_unsigned_ ? "u" : "",
+ this->bits_);
+ ret->append(buf);
+}
+
+// Make an integer type.
+
+Named_type*
+Type::make_integer_type(const char* name, bool is_unsigned, int bits,
+ int runtime_type_kind)
+{
+ return Integer_type::create_integer_type(name, is_unsigned, bits,
+ runtime_type_kind);
+}
+
+// Make an abstract integer type.
+
+Integer_type*
+Type::make_abstract_integer_type()
+{
+ return Integer_type::create_abstract_integer_type();
+}
+
+// Look up an integer type.
+
+Named_type*
+Type::lookup_integer_type(const char* name)
+{
+ return Integer_type::lookup_integer_type(name);
+}
+
+// Class Float_type.
+
+Float_type::Named_float_types Float_type::named_float_types;
+
+// Create a new float type. Non-abstract float types always have
+// names.
+
+Named_type*
+Float_type::create_float_type(const char* name, int bits,
+ int runtime_type_kind)
+{
+ Float_type* float_type = new Float_type(false, bits, runtime_type_kind);
+ std::string sname(name);
+ Named_object* named_object = Named_object::make_type(sname, NULL, float_type,
+ BUILTINS_LOCATION);
+ Named_type* named_type = named_object->type_value();
+ std::pair<Named_float_types::iterator, bool> ins =
+ Float_type::named_float_types.insert(std::make_pair(sname, named_type));
+ gcc_assert(ins.second);
+ return named_type;
+}
+
+// Look up an existing float type.
+
+Named_type*
+Float_type::lookup_float_type(const char* name)
+{
+ Named_float_types::const_iterator p =
+ Float_type::named_float_types.find(name);
+ gcc_assert(p != Float_type::named_float_types.end());
+ return p->second;
+}
+
+// Create a new abstract float type.
+
+Float_type*
+Float_type::create_abstract_float_type()
+{
+ static Float_type* abstract_type;
+ if (abstract_type == NULL)
+ abstract_type = new Float_type(true, 64, RUNTIME_TYPE_KIND_FLOAT64);
+ return abstract_type;
+}
+
+// Whether this type is identical with T.
+
+bool
+Float_type::is_identical(const Float_type* t) const
+{
+ if (this->bits_ != t->bits_)
+ return false;
+ return this->is_abstract_ == t->is_abstract_;
+}
+
+// Hash code.
+
+unsigned int
+Float_type::do_hash_for_method(Gogo*) const
+{
+ return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
+}
+
+// Get a tree without using a Gogo*.
+
+tree
+Float_type::type_tree() const
+{
+ if (this->bits_ == FLOAT_TYPE_SIZE)
+ return float_type_node;
+ else if (this->bits_ == DOUBLE_TYPE_SIZE)
+ return double_type_node;
+ else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE)
+ return long_double_type_node;
+ else
+ {
+ tree ret = make_node(REAL_TYPE);
+ TYPE_PRECISION(ret) = this->bits_;
+ layout_type(ret);
+ return ret;
+ }
+}
+
+// Get a tree.
+
+tree
+Float_type::do_get_tree(Gogo*)
+{
+ return this->type_tree();
+}
+
+tree
+Float_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
+{
+ if (is_clear)
+ return NULL;
+ REAL_VALUE_TYPE r;
+ real_from_integer(&r, TYPE_MODE(type_tree), 0, 0, 0);
+ return build_real(type_tree, r);
+}
+
+// The type descriptor for a float type. Float types are always named.
+
+Expression*
+Float_type::do_type_descriptor(Gogo* gogo, Named_type* name)
+{
+ gcc_assert(name != NULL);
+ return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
+}
+
+// We should not be asked for the reflection string of a basic type.
+
+void
+Float_type::do_reflection(Gogo*, std::string*) const
+{
+ gcc_assert(saw_errors());
+}
+
+// Mangled name.
+
+void
+Float_type::do_mangled_name(Gogo*, std::string* ret) const
+{
+ char buf[100];
+ snprintf(buf, sizeof buf, "f%s%de",
+ this->is_abstract_ ? "a" : "",
+ this->bits_);
+ ret->append(buf);
+}
+
+// Make a floating point type.
+
+Named_type*
+Type::make_float_type(const char* name, int bits, int runtime_type_kind)
+{
+ return Float_type::create_float_type(name, bits, runtime_type_kind);
+}
+
+// Make an abstract float type.
+
+Float_type*
+Type::make_abstract_float_type()
+{
+ return Float_type::create_abstract_float_type();
+}
+
+// Look up a float type.
+
+Named_type*
+Type::lookup_float_type(const char* name)
+{
+ return Float_type::lookup_float_type(name);
+}
+
+// Class Complex_type.
+
+Complex_type::Named_complex_types Complex_type::named_complex_types;
+
+// Create a new complex type. Non-abstract complex types always have
+// names.
+
+Named_type*
+Complex_type::create_complex_type(const char* name, int bits,
+ int runtime_type_kind)
+{
+ Complex_type* complex_type = new Complex_type(false, bits,
+ runtime_type_kind);
+ std::string sname(name);
+ Named_object* named_object = Named_object::make_type(sname, NULL,
+ complex_type,
+ BUILTINS_LOCATION);
+ Named_type* named_type = named_object->type_value();
+ std::pair<Named_complex_types::iterator, bool> ins =
+ Complex_type::named_complex_types.insert(std::make_pair(sname,
+ named_type));
+ gcc_assert(ins.second);
+ return named_type;
+}
+
+// Look up an existing complex type.
+
+Named_type*
+Complex_type::lookup_complex_type(const char* name)
+{
+ Named_complex_types::const_iterator p =
+ Complex_type::named_complex_types.find(name);
+ gcc_assert(p != Complex_type::named_complex_types.end());
+ return p->second;
+}
+
+// Create a new abstract complex type.
+
+Complex_type*
+Complex_type::create_abstract_complex_type()
+{
+ static Complex_type* abstract_type;
+ if (abstract_type == NULL)
+ abstract_type = new Complex_type(true, 128, RUNTIME_TYPE_KIND_COMPLEX128);
+ return abstract_type;
+}
+
+// Whether this type is identical with T.
+
+bool
+Complex_type::is_identical(const Complex_type *t) const
+{
+ if (this->bits_ != t->bits_)
+ return false;
+ return this->is_abstract_ == t->is_abstract_;
+}
+
+// Hash code.
+
+unsigned int
+Complex_type::do_hash_for_method(Gogo*) const
+{
+ return (this->bits_ << 4) + ((this->is_abstract_ ? 1 : 0) << 8);
+}
+
+// Get a tree without using a Gogo*.
+
+tree
+Complex_type::type_tree() const
+{
+ if (this->bits_ == FLOAT_TYPE_SIZE * 2)
+ return complex_float_type_node;
+ else if (this->bits_ == DOUBLE_TYPE_SIZE * 2)
+ return complex_double_type_node;
+ else if (this->bits_ == LONG_DOUBLE_TYPE_SIZE * 2)
+ return complex_long_double_type_node;
+ else
+ {
+ tree ret = make_node(REAL_TYPE);
+ TYPE_PRECISION(ret) = this->bits_ / 2;
+ layout_type(ret);
+ return build_complex_type(ret);
+ }
+}
+
+// Get a tree.
+
+tree
+Complex_type::do_get_tree(Gogo*)
+{
+ return this->type_tree();
+}
+
+// Zero initializer.
+
+tree
+Complex_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
+{
+ if (is_clear)
+ return NULL;
+ REAL_VALUE_TYPE r;
+ real_from_integer(&r, TYPE_MODE(TREE_TYPE(type_tree)), 0, 0, 0);
+ return build_complex(type_tree, build_real(TREE_TYPE(type_tree), r),
+ build_real(TREE_TYPE(type_tree), r));
+}
+
+// The type descriptor for a complex type. Complex types are always
+// named.
+
+Expression*
+Complex_type::do_type_descriptor(Gogo* gogo, Named_type* name)
+{
+ gcc_assert(name != NULL);
+ return this->plain_type_descriptor(gogo, this->runtime_type_kind_, name);
+}
+
+// We should not be asked for the reflection string of a basic type.
+
+void
+Complex_type::do_reflection(Gogo*, std::string*) const
+{
+ gcc_assert(saw_errors());
+}
+
+// Mangled name.
+
+void
+Complex_type::do_mangled_name(Gogo*, std::string* ret) const
+{
+ char buf[100];
+ snprintf(buf, sizeof buf, "c%s%de",
+ this->is_abstract_ ? "a" : "",
+ this->bits_);
+ ret->append(buf);
+}
+
+// Make a complex type.
+
+Named_type*
+Type::make_complex_type(const char* name, int bits, int runtime_type_kind)
+{
+ return Complex_type::create_complex_type(name, bits, runtime_type_kind);
+}
+
+// Make an abstract complex type.
+
+Complex_type*
+Type::make_abstract_complex_type()
+{
+ return Complex_type::create_abstract_complex_type();
+}
+
+// Look up a complex type.
+
+Named_type*
+Type::lookup_complex_type(const char* name)
+{
+ return Complex_type::lookup_complex_type(name);
+}
+
+// Class String_type.
+
+// Return the tree for String_type. A string is a struct with two
+// fields: a pointer to the characters and a length.
+
+tree
+String_type::do_get_tree(Gogo*)
+{
+ static tree struct_type;
+ return Gogo::builtin_struct(&struct_type, "__go_string", NULL_TREE, 2,
+ "__data",
+ build_pointer_type(unsigned_char_type_node),
+ "__length",
+ integer_type_node);
+}
+
+// Return a tree for the length of STRING.
+
+tree
+String_type::length_tree(Gogo*, tree string)
+{
+ tree string_type = TREE_TYPE(string);
+ gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
+ tree length_field = DECL_CHAIN(TYPE_FIELDS(string_type));
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(length_field)),
+ "__length") == 0);
+ return fold_build3(COMPONENT_REF, integer_type_node, string,
+ length_field, NULL_TREE);
+}
+
+// Return a tree for a pointer to the bytes of STRING.
+
+tree
+String_type::bytes_tree(Gogo*, tree string)
+{
+ tree string_type = TREE_TYPE(string);
+ gcc_assert(TREE_CODE(string_type) == RECORD_TYPE);
+ tree bytes_field = TYPE_FIELDS(string_type);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(bytes_field)),
+ "__data") == 0);
+ return fold_build3(COMPONENT_REF, TREE_TYPE(bytes_field), string,
+ bytes_field, NULL_TREE);
+}
+
+// We initialize a string to { NULL, 0 }.
+
+tree
+String_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
+{
+ if (is_clear)
+ return NULL_TREE;
+
+ gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
+
+ VEC(constructor_elt, gc)* init = VEC_alloc(constructor_elt, gc, 2);
+
+ for (tree field = TYPE_FIELDS(type_tree);
+ field != NULL_TREE;
+ field = DECL_CHAIN(field))
+ {
+ constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
+ elt->index = field;
+ elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
+ }
+
+ tree ret = build_constructor(type_tree, init);
+ TREE_CONSTANT(ret) = 1;
+ return ret;
+}
+
+// The type descriptor for the string type.
+
+Expression*
+String_type::do_type_descriptor(Gogo* gogo, Named_type* name)
+{
+ if (name != NULL)
+ return this->plain_type_descriptor(gogo, RUNTIME_TYPE_KIND_STRING, name);
+ else
+ {
+ Named_object* no = gogo->lookup_global("string");
+ gcc_assert(no != NULL);
+ return Type::type_descriptor(gogo, no->type_value());
+ }
+}
+
+// We should not be asked for the reflection string of a basic type.
+
+void
+String_type::do_reflection(Gogo*, std::string* ret) const
+{
+ ret->append("string");
+}
+
+// Mangled name of a string type.
+
+void
+String_type::do_mangled_name(Gogo*, std::string* ret) const
+{
+ ret->push_back('z');
+}
+
+// Make a string type.
+
+Type*
+Type::make_string_type()
+{
+ static String_type string_type;
+ return &string_type;
+}
+
+// The named type "string".
+
+static Named_type* named_string_type;
+
+// Get the named type "string".
+
+Named_type*
+Type::lookup_string_type()
+{
+ return named_string_type;
+}
+
+// Make the named type string.
+
+Named_type*
+Type::make_named_string_type()
+{
+ Type* string_type = Type::make_string_type();
+ Named_object* named_object = Named_object::make_type("string", NULL,
+ string_type,
+ BUILTINS_LOCATION);
+ Named_type* named_type = named_object->type_value();
+ named_string_type = named_type;
+ return named_type;
+}
+
+// The sink type. This is the type of the blank identifier _. Any
+// type may be assigned to it.
+
+class Sink_type : public Type
+{
+ public:
+ Sink_type()
+ : Type(TYPE_SINK)
+ { }
+
+ protected:
+ tree
+ do_get_tree(Gogo*)
+ { gcc_unreachable(); }
+
+ tree
+ do_get_init_tree(Gogo*, tree, bool)
+ { gcc_unreachable(); }
+
+ Expression*
+ do_type_descriptor(Gogo*, Named_type*)
+ { gcc_unreachable(); }
+
+ void
+ do_reflection(Gogo*, std::string*) const
+ { gcc_unreachable(); }
+
+ void
+ do_mangled_name(Gogo*, std::string*) const
+ { gcc_unreachable(); }
+};
+
+// Make the sink type.
+
+Type*
+Type::make_sink_type()
+{
+ static Sink_type sink_type;
+ return &sink_type;
+}
+
+// Class Function_type.
+
+// Traversal.
+
+int
+Function_type::do_traverse(Traverse* traverse)
+{
+ if (this->receiver_ != NULL
+ && Type::traverse(this->receiver_->type(), traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ if (this->parameters_ != NULL
+ && this->parameters_->traverse(traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ if (this->results_ != NULL
+ && this->results_->traverse(traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ return TRAVERSE_CONTINUE;
+}
+
+// Returns whether T is a valid redeclaration of this type. If this
+// returns false, and REASON is not NULL, *REASON may be set to a
+// brief explanation of why it returned false.
+
+bool
+Function_type::is_valid_redeclaration(const Function_type* t,
+ std::string* reason) const
+{
+ if (!this->is_identical(t, false, true, reason))
+ return false;
+
+ // A redeclaration of a function is required to use the same names
+ // for the receiver and parameters.
+ if (this->receiver() != NULL
+ && this->receiver()->name() != t->receiver()->name()
+ && this->receiver()->name() != Import::import_marker
+ && t->receiver()->name() != Import::import_marker)
+ {
+ if (reason != NULL)
+ *reason = "receiver name changed";
+ return false;
+ }
+
+ const Typed_identifier_list* parms1 = this->parameters();
+ const Typed_identifier_list* parms2 = t->parameters();
+ if (parms1 != NULL)
+ {
+ Typed_identifier_list::const_iterator p1 = parms1->begin();
+ for (Typed_identifier_list::const_iterator p2 = parms2->begin();
+ p2 != parms2->end();
+ ++p2, ++p1)
+ {
+ if (p1->name() != p2->name()
+ && p1->name() != Import::import_marker
+ && p2->name() != Import::import_marker)
+ {
+ if (reason != NULL)
+ *reason = "parameter name changed";
+ return false;
+ }
+
+ // This is called at parse time, so we may have unknown
+ // types.
+ Type* t1 = p1->type()->forwarded();
+ Type* t2 = p2->type()->forwarded();
+ if (t1 != t2
+ && t1->forward_declaration_type() != NULL
+ && (t2->forward_declaration_type() == NULL
+ || (t1->forward_declaration_type()->named_object()
+ != t2->forward_declaration_type()->named_object())))
+ return false;
+ }
+ }
+
+ const Typed_identifier_list* results1 = this->results();
+ const Typed_identifier_list* results2 = t->results();
+ if (results1 != NULL)
+ {
+ Typed_identifier_list::const_iterator res1 = results1->begin();
+ for (Typed_identifier_list::const_iterator res2 = results2->begin();
+ res2 != results2->end();
+ ++res2, ++res1)
+ {
+ if (res1->name() != res2->name()
+ && res1->name() != Import::import_marker
+ && res2->name() != Import::import_marker)
+ {
+ if (reason != NULL)
+ *reason = "result name changed";
+ return false;
+ }
+
+ // This is called at parse time, so we may have unknown
+ // types.
+ Type* t1 = res1->type()->forwarded();
+ Type* t2 = res2->type()->forwarded();
+ if (t1 != t2
+ && t1->forward_declaration_type() != NULL
+ && (t2->forward_declaration_type() == NULL
+ || (t1->forward_declaration_type()->named_object()
+ != t2->forward_declaration_type()->named_object())))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+// Check whether T is the same as this type.
+
+bool
+Function_type::is_identical(const Function_type* t, bool ignore_receiver,
+ bool errors_are_identical,
+ std::string* reason) const
+{
+ if (!ignore_receiver)
+ {
+ const Typed_identifier* r1 = this->receiver();
+ const Typed_identifier* r2 = t->receiver();
+ if ((r1 != NULL) != (r2 != NULL))
+ {
+ if (reason != NULL)
+ *reason = _("different receiver types");
+ return false;
+ }
+ if (r1 != NULL)
+ {
+ if (!Type::are_identical(r1->type(), r2->type(), errors_are_identical,
+ reason))
+ {
+ if (reason != NULL && !reason->empty())
+ *reason = "receiver: " + *reason;
+ return false;
+ }
+ }
+ }
+
+ const Typed_identifier_list* parms1 = this->parameters();
+ const Typed_identifier_list* parms2 = t->parameters();
+ if ((parms1 != NULL) != (parms2 != NULL))
+ {
+ if (reason != NULL)
+ *reason = _("different number of parameters");
+ return false;
+ }
+ if (parms1 != NULL)
+ {
+ Typed_identifier_list::const_iterator p1 = parms1->begin();
+ for (Typed_identifier_list::const_iterator p2 = parms2->begin();
+ p2 != parms2->end();
+ ++p2, ++p1)
+ {
+ if (p1 == parms1->end())
+ {
+ if (reason != NULL)
+ *reason = _("different number of parameters");
+ return false;
+ }
+
+ if (!Type::are_identical(p1->type(), p2->type(),
+ errors_are_identical, NULL))
+ {
+ if (reason != NULL)
+ *reason = _("different parameter types");
+ return false;
+ }
+ }
+ if (p1 != parms1->end())
+ {
+ if (reason != NULL)
+ *reason = _("different number of parameters");
+ return false;
+ }
+ }
+
+ if (this->is_varargs() != t->is_varargs())
+ {
+ if (reason != NULL)
+ *reason = _("different varargs");
+ return false;
+ }
+
+ const Typed_identifier_list* results1 = this->results();
+ const Typed_identifier_list* results2 = t->results();
+ if ((results1 != NULL) != (results2 != NULL))
+ {
+ if (reason != NULL)
+ *reason = _("different number of results");
+ return false;
+ }
+ if (results1 != NULL)
+ {
+ Typed_identifier_list::const_iterator res1 = results1->begin();
+ for (Typed_identifier_list::const_iterator res2 = results2->begin();
+ res2 != results2->end();
+ ++res2, ++res1)
+ {
+ if (res1 == results1->end())
+ {
+ if (reason != NULL)
+ *reason = _("different number of results");
+ return false;
+ }
+
+ if (!Type::are_identical(res1->type(), res2->type(),
+ errors_are_identical, NULL))
+ {
+ if (reason != NULL)
+ *reason = _("different result types");
+ return false;
+ }
+ }
+ if (res1 != results1->end())
+ {
+ if (reason != NULL)
+ *reason = _("different number of results");
+ return false;
+ }
+ }
+
+ return true;
+}
+
+// Hash code.
+
+unsigned int
+Function_type::do_hash_for_method(Gogo* gogo) const
+{
+ unsigned int ret = 0;
+ // We ignore the receiver type for hash codes, because we need to
+ // get the same hash code for a method in an interface and a method
+ // declared for a type. The former will not have a receiver.
+ if (this->parameters_ != NULL)
+ {
+ int shift = 1;
+ for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
+ p != this->parameters_->end();
+ ++p, ++shift)
+ ret += p->type()->hash_for_method(gogo) << shift;
+ }
+ if (this->results_ != NULL)
+ {
+ int shift = 2;
+ for (Typed_identifier_list::const_iterator p = this->results_->begin();
+ p != this->results_->end();
+ ++p, ++shift)
+ ret += p->type()->hash_for_method(gogo) << shift;
+ }
+ if (this->is_varargs_)
+ ret += 1;
+ ret <<= 4;
+ return ret;
+}
+
+// Get the tree for a function type.
+
+tree
+Function_type::do_get_tree(Gogo* gogo)
+{
+ tree args = NULL_TREE;
+ tree* pp = &args;
+
+ if (this->receiver_ != NULL)
+ {
+ Type* rtype = this->receiver_->type();
+ tree ptype = rtype->get_tree(gogo);
+ if (ptype == error_mark_node)
+ return error_mark_node;
+
+ // We always pass the address of the receiver parameter, in
+ // order to make interface calls work with unknown types.
+ if (rtype->points_to() == NULL)
+ ptype = build_pointer_type(ptype);
+
+ *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
+ pp = &TREE_CHAIN (*pp);
+ }
+
+ if (this->parameters_ != NULL)
+ {
+ for (Typed_identifier_list::const_iterator p = this->parameters_->begin();
+ p != this->parameters_->end();
+ ++p)
+ {
+ tree ptype = p->type()->get_tree(gogo);
+ if (ptype == error_mark_node)
+ return error_mark_node;
+ *pp = tree_cons (NULL_TREE, ptype, NULL_TREE);
+ pp = &TREE_CHAIN (*pp);
+ }
+ }
+
+ // Varargs is handled entirely at the Go level. At the tree level,
+ // functions are not varargs.
+ *pp = void_list_node;
+
+ tree result;
+ if (this->results_ == NULL)
+ result = void_type_node;
+ else if (this->results_->size() == 1)
+ result = this->results_->begin()->type()->get_tree(gogo);
+ else
+ {
+ result = make_node(RECORD_TYPE);
+ tree field_trees = NULL_TREE;
+ tree* pp = &field_trees;
+ for (Typed_identifier_list::const_iterator p = this->results_->begin();
+ p != this->results_->end();
+ ++p)
+ {
+ const std::string name = (p->name().empty()
+ ? "UNNAMED"
+ : Gogo::unpack_hidden_name(p->name()));
+ tree name_tree = get_identifier_with_length(name.data(),
+ name.length());
+ tree field_type_tree = p->type()->get_tree(gogo);
+ if (field_type_tree == error_mark_node)
+ return error_mark_node;
+ tree field = build_decl(this->location_, FIELD_DECL, name_tree,
+ field_type_tree);
+ DECL_CONTEXT(field) = result;
+ *pp = field;
+ pp = &DECL_CHAIN(field);
+ }
+ TYPE_FIELDS(result) = field_trees;
+ layout_type(result);
+ }
+
+ if (result == error_mark_node)
+ return error_mark_node;
+
+ tree fntype = build_function_type(result, args);
+ if (fntype == error_mark_node)
+ return fntype;
+
+ return build_pointer_type(fntype);
+}
+
+// Functions are initialized to NULL.
+
+tree
+Function_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
+{
+ if (is_clear)
+ return NULL;
+ return fold_convert(type_tree, null_pointer_node);
+}
+
+// The type of a function type descriptor.
+
+Type*
+Function_type::make_function_type_descriptor_type()
+{
+ static Type* ret;
+ if (ret == NULL)
+ {
+ Type* tdt = Type::make_type_descriptor_type();
+ Type* ptdt = Type::make_type_descriptor_ptr_type();
+
+ Type* bool_type = Type::lookup_bool_type();
+
+ Type* slice_type = Type::make_array_type(ptdt, NULL);
+
+ Struct_type* s = Type::make_builtin_struct_type(4,
+ "", tdt,
+ "dotdotdot", bool_type,
+ "in", slice_type,
+ "out", slice_type);
+
+ ret = Type::make_builtin_named_type("FuncType", s);
+ }
+
+ return ret;
+}
+
+// The type descriptor for a function type.
+
+Expression*
+Function_type::do_type_descriptor(Gogo* gogo, Named_type* name)
+{
+ source_location bloc = BUILTINS_LOCATION;
+
+ Type* ftdt = Function_type::make_function_type_descriptor_type();
+
+ const Struct_field_list* fields = ftdt->struct_type()->fields();
+
+ Expression_list* vals = new Expression_list();
+ vals->reserve(4);
+
+ Struct_field_list::const_iterator p = fields->begin();
+ gcc_assert(p->field_name() == "commonType");
+ vals->push_back(this->type_descriptor_constructor(gogo,
+ RUNTIME_TYPE_KIND_FUNC,
+ name, NULL, true));
+
+ ++p;
+ gcc_assert(p->field_name() == "dotdotdot");
+ vals->push_back(Expression::make_boolean(this->is_varargs(), bloc));
+
+ ++p;
+ gcc_assert(p->field_name() == "in");
+ vals->push_back(this->type_descriptor_params(p->type(), this->receiver(),
+ this->parameters()));
+
+ ++p;
+ gcc_assert(p->field_name() == "out");
+ vals->push_back(this->type_descriptor_params(p->type(), NULL,
+ this->results()));
+
+ ++p;
+ gcc_assert(p == fields->end());
+
+ return Expression::make_struct_composite_literal(ftdt, vals, bloc);
+}
+
+// Return a composite literal for the parameters or results of a type
+// descriptor.
+
+Expression*
+Function_type::type_descriptor_params(Type* params_type,
+ const Typed_identifier* receiver,
+ const Typed_identifier_list* params)
+{
+ source_location bloc = BUILTINS_LOCATION;
+
+ if (receiver == NULL && params == NULL)
+ return Expression::make_slice_composite_literal(params_type, NULL, bloc);
+
+ Expression_list* vals = new Expression_list();
+ vals->reserve((params == NULL ? 0 : params->size())
+ + (receiver != NULL ? 1 : 0));
+
+ if (receiver != NULL)
+ {
+ Type* rtype = receiver->type();
+ // The receiver is always passed as a pointer. FIXME: Is this
+ // right? Should that fact affect the type descriptor?
+ if (rtype->points_to() == NULL)
+ rtype = Type::make_pointer_type(rtype);
+ vals->push_back(Expression::make_type_descriptor(rtype, bloc));
+ }
+
+ if (params != NULL)
+ {
+ for (Typed_identifier_list::const_iterator p = params->begin();
+ p != params->end();
+ ++p)
+ vals->push_back(Expression::make_type_descriptor(p->type(), bloc));
+ }
+
+ return Expression::make_slice_composite_literal(params_type, vals, bloc);
+}
+
+// The reflection string.
+
+void
+Function_type::do_reflection(Gogo* gogo, std::string* ret) const
+{
+ // FIXME: Turn this off until we straighten out the type of the
+ // struct field used in a go statement which calls a method.
+ // gcc_assert(this->receiver_ == NULL);
+
+ ret->append("func");
+
+ if (this->receiver_ != NULL)
+ {
+ ret->push_back('(');
+ this->append_reflection(this->receiver_->type(), gogo, ret);
+ ret->push_back(')');
+ }
+
+ ret->push_back('(');
+ const Typed_identifier_list* params = this->parameters();
+ if (params != NULL)
+ {
+ bool is_varargs = this->is_varargs_;
+ for (Typed_identifier_list::const_iterator p = params->begin();
+ p != params->end();
+ ++p)
+ {
+ if (p != params->begin())
+ ret->append(", ");
+ if (!is_varargs || p + 1 != params->end())
+ this->append_reflection(p->type(), gogo, ret);
+ else
+ {
+ ret->append("...");
+ this->append_reflection(p->type()->array_type()->element_type(),
+ gogo, ret);
+ }
+ }
+ }
+ ret->push_back(')');
+
+ const Typed_identifier_list* results = this->results();
+ if (results != NULL && !results->empty())
+ {
+ if (results->size() == 1)
+ ret->push_back(' ');
+ else
+ ret->append(" (");
+ for (Typed_identifier_list::const_iterator p = results->begin();
+ p != results->end();
+ ++p)
+ {
+ if (p != results->begin())
+ ret->append(", ");
+ this->append_reflection(p->type(), gogo, ret);
+ }
+ if (results->size() > 1)
+ ret->push_back(')');
+ }
+}
+
+// Mangled name.
+
+void
+Function_type::do_mangled_name(Gogo* gogo, std::string* ret) const
+{
+ ret->push_back('F');
+
+ if (this->receiver_ != NULL)
+ {
+ ret->push_back('m');
+ this->append_mangled_name(this->receiver_->type(), gogo, ret);
+ }
+
+ const Typed_identifier_list* params = this->parameters();
+ if (params != NULL)
+ {
+ ret->push_back('p');
+ for (Typed_identifier_list::const_iterator p = params->begin();
+ p != params->end();
+ ++p)
+ this->append_mangled_name(p->type(), gogo, ret);
+ if (this->is_varargs_)
+ ret->push_back('V');
+ ret->push_back('e');
+ }
+
+ const Typed_identifier_list* results = this->results();
+ if (results != NULL)
+ {
+ ret->push_back('r');
+ for (Typed_identifier_list::const_iterator p = results->begin();
+ p != results->end();
+ ++p)
+ this->append_mangled_name(p->type(), gogo, ret);
+ ret->push_back('e');
+ }
+
+ ret->push_back('e');
+}
+
+// Export a function type.
+
+void
+Function_type::do_export(Export* exp) const
+{
+ // We don't write out the receiver. The only function types which
+ // should have a receiver are the ones associated with explicitly
+ // defined methods. For those the receiver type is written out by
+ // Function::export_func.
+
+ exp->write_c_string("(");
+ bool first = true;
+ if (this->parameters_ != NULL)
+ {
+ bool is_varargs = this->is_varargs_;
+ for (Typed_identifier_list::const_iterator p =
+ this->parameters_->begin();
+ p != this->parameters_->end();
+ ++p)
+ {
+ if (first)
+ first = false;
+ else
+ exp->write_c_string(", ");
+ if (!is_varargs || p + 1 != this->parameters_->end())
+ exp->write_type(p->type());
+ else
+ {
+ exp->write_c_string("...");
+ exp->write_type(p->type()->array_type()->element_type());
+ }
+ }
+ }
+ exp->write_c_string(")");
+
+ const Typed_identifier_list* results = this->results_;
+ if (results != NULL)
+ {
+ exp->write_c_string(" ");
+ if (results->size() == 1)
+ exp->write_type(results->begin()->type());
+ else
+ {
+ first = true;
+ exp->write_c_string("(");
+ for (Typed_identifier_list::const_iterator p = results->begin();
+ p != results->end();
+ ++p)
+ {
+ if (first)
+ first = false;
+ else
+ exp->write_c_string(", ");
+ exp->write_type(p->type());
+ }
+ exp->write_c_string(")");
+ }
+ }
+}
+
+// Import a function type.
+
+Function_type*
+Function_type::do_import(Import* imp)
+{
+ imp->require_c_string("(");
+ Typed_identifier_list* parameters;
+ bool is_varargs = false;
+ if (imp->peek_char() == ')')
+ parameters = NULL;
+ else
+ {
+ parameters = new Typed_identifier_list();
+ while (true)
+ {
+ if (imp->match_c_string("..."))
+ {
+ imp->advance(3);
+ is_varargs = true;
+ }
+
+ Type* ptype = imp->read_type();
+ if (is_varargs)
+ ptype = Type::make_array_type(ptype, NULL);
+ parameters->push_back(Typed_identifier(Import::import_marker,
+ ptype, imp->location()));
+ if (imp->peek_char() != ',')
+ break;
+ gcc_assert(!is_varargs);
+ imp->require_c_string(", ");
+ }
+ }
+ imp->require_c_string(")");
+
+ Typed_identifier_list* results;
+ if (imp->peek_char() != ' ')
+ results = NULL;
+ else
+ {
+ imp->advance(1);
+ results = new Typed_identifier_list;
+ if (imp->peek_char() != '(')
+ {
+ Type* rtype = imp->read_type();
+ results->push_back(Typed_identifier(Import::import_marker, rtype,
+ imp->location()));
+ }
+ else
+ {
+ imp->advance(1);
+ while (true)
+ {
+ Type* rtype = imp->read_type();
+ results->push_back(Typed_identifier(Import::import_marker,
+ rtype, imp->location()));
+ if (imp->peek_char() != ',')
+ break;
+ imp->require_c_string(", ");
+ }
+ imp->require_c_string(")");
+ }
+ }
+
+ Function_type* ret = Type::make_function_type(NULL, parameters, results,
+ imp->location());
+ if (is_varargs)
+ ret->set_is_varargs();
+ return ret;
+}
+
+// Make a copy of a function type without a receiver.
+
+Function_type*
+Function_type::copy_without_receiver() const
+{
+ gcc_assert(this->is_method());
+ Function_type *ret = Type::make_function_type(NULL, this->parameters_,
+ this->results_,
+ this->location_);
+ if (this->is_varargs())
+ ret->set_is_varargs();
+ if (this->is_builtin())
+ ret->set_is_builtin();
+ return ret;
+}
+
+// Make a copy of a function type with a receiver.
+
+Function_type*
+Function_type::copy_with_receiver(Type* receiver_type) const
+{
+ gcc_assert(!this->is_method());
+ Typed_identifier* receiver = new Typed_identifier("", receiver_type,
+ this->location_);
+ return Type::make_function_type(receiver, this->parameters_,
+ this->results_, this->location_);
+}
+
+// Make a function type.
+
+Function_type*
+Type::make_function_type(Typed_identifier* receiver,
+ Typed_identifier_list* parameters,
+ Typed_identifier_list* results,
+ source_location location)
+{
+ return new Function_type(receiver, parameters, results, location);
+}
+
+// Class Pointer_type.
+
+// Traversal.
+
+int
+Pointer_type::do_traverse(Traverse* traverse)
+{
+ return Type::traverse(this->to_type_, traverse);
+}
+
+// Hash code.
+
+unsigned int
+Pointer_type::do_hash_for_method(Gogo* gogo) const
+{
+ return this->to_type_->hash_for_method(gogo) << 4;
+}
+
+// The tree for a pointer type.
+
+tree
+Pointer_type::do_get_tree(Gogo* gogo)
+{
+ return build_pointer_type(this->to_type_->get_tree(gogo));
+}
+
+// Initialize a pointer type.
+
+tree
+Pointer_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
+{
+ if (is_clear)
+ return NULL;
+ return fold_convert(type_tree, null_pointer_node);
+}
+
+// The type of a pointer type descriptor.
+
+Type*
+Pointer_type::make_pointer_type_descriptor_type()
+{
+ static Type* ret;
+ if (ret == NULL)
+ {
+ Type* tdt = Type::make_type_descriptor_type();
+ Type* ptdt = Type::make_type_descriptor_ptr_type();
+
+ Struct_type* s = Type::make_builtin_struct_type(2,
+ "", tdt,
+ "elem", ptdt);
+
+ ret = Type::make_builtin_named_type("PtrType", s);
+ }
+
+ return ret;
+}
+
+// The type descriptor for a pointer type.
+
+Expression*
+Pointer_type::do_type_descriptor(Gogo* gogo, Named_type* name)
+{
+ if (this->is_unsafe_pointer_type())
+ {
+ gcc_assert(name != NULL);
+ return this->plain_type_descriptor(gogo,
+ RUNTIME_TYPE_KIND_UNSAFE_POINTER,
+ name);
+ }
+ else
+ {
+ source_location bloc = BUILTINS_LOCATION;
+
+ const Methods* methods;
+ Type* deref = this->points_to();
+ if (deref->named_type() != NULL)
+ methods = deref->named_type()->methods();
+ else if (deref->struct_type() != NULL)
+ methods = deref->struct_type()->methods();
+ else
+ methods = NULL;
+
+ Type* ptr_tdt = Pointer_type::make_pointer_type_descriptor_type();
+
+ const Struct_field_list* fields = ptr_tdt->struct_type()->fields();
+
+ Expression_list* vals = new Expression_list();
+ vals->reserve(2);
+
+ Struct_field_list::const_iterator p = fields->begin();
+ gcc_assert(p->field_name() == "commonType");
+ vals->push_back(this->type_descriptor_constructor(gogo,
+ RUNTIME_TYPE_KIND_PTR,
+ name, methods, false));
+
+ ++p;
+ gcc_assert(p->field_name() == "elem");
+ vals->push_back(Expression::make_type_descriptor(deref, bloc));
+
+ return Expression::make_struct_composite_literal(ptr_tdt, vals, bloc);
+ }
+}
+
+// Reflection string.
+
+void
+Pointer_type::do_reflection(Gogo* gogo, std::string* ret) const
+{
+ ret->push_back('*');
+ this->append_reflection(this->to_type_, gogo, ret);
+}
+
+// Mangled name.
+
+void
+Pointer_type::do_mangled_name(Gogo* gogo, std::string* ret) const
+{
+ ret->push_back('p');
+ this->append_mangled_name(this->to_type_, gogo, ret);
+}
+
+// Export.
+
+void
+Pointer_type::do_export(Export* exp) const
+{
+ exp->write_c_string("*");
+ if (this->is_unsafe_pointer_type())
+ exp->write_c_string("any");
+ else
+ exp->write_type(this->to_type_);
+}
+
+// Import.
+
+Pointer_type*
+Pointer_type::do_import(Import* imp)
+{
+ imp->require_c_string("*");
+ if (imp->match_c_string("any"))
+ {
+ imp->advance(3);
+ return Type::make_pointer_type(Type::make_void_type());
+ }
+ Type* to = imp->read_type();
+ return Type::make_pointer_type(to);
+}
+
+// Make a pointer type.
+
+Pointer_type*
+Type::make_pointer_type(Type* to_type)
+{
+ typedef Unordered_map(Type*, Pointer_type*) Hashtable;
+ static Hashtable pointer_types;
+ Hashtable::const_iterator p = pointer_types.find(to_type);
+ if (p != pointer_types.end())
+ return p->second;
+ Pointer_type* ret = new Pointer_type(to_type);
+ pointer_types[to_type] = ret;
+ return ret;
+}
+
+// The nil type. We use a special type for nil because it is not the
+// same as any other type. In C term nil has type void*, but there is
+// no such type in Go.
+
+class Nil_type : public Type
+{
+ public:
+ Nil_type()
+ : Type(TYPE_NIL)
+ { }
+
+ protected:
+ tree
+ do_get_tree(Gogo*)
+ { return ptr_type_node; }
+
+ tree
+ do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
+ { return is_clear ? NULL : fold_convert(type_tree, null_pointer_node); }
+
+ Expression*
+ do_type_descriptor(Gogo*, Named_type*)
+ { gcc_unreachable(); }
+
+ void
+ do_reflection(Gogo*, std::string*) const
+ { gcc_unreachable(); }
+
+ void
+ do_mangled_name(Gogo*, std::string* ret) const
+ { ret->push_back('n'); }
+};
+
+// Make the nil type.
+
+Type*
+Type::make_nil_type()
+{
+ static Nil_type singleton_nil_type;
+ return &singleton_nil_type;
+}
+
+// The type of a function call which returns multiple values. This is
+// really a struct, but we don't want to confuse a function call which
+// returns a struct with a function call which returns multiple
+// values.
+
+class Call_multiple_result_type : public Type
+{
+ public:
+ Call_multiple_result_type(Call_expression* call)
+ : Type(TYPE_CALL_MULTIPLE_RESULT),
+ call_(call)
+ { }
+
+ protected:
+ bool
+ do_has_pointer() const
+ {
+ gcc_assert(saw_errors());
+ return false;
+ }
+
+ tree
+ do_get_tree(Gogo*);
+
+ tree
+ do_get_init_tree(Gogo*, tree, bool)
+ {
+ gcc_assert(saw_errors());
+ return error_mark_node;
+ }
+
+ Expression*
+ do_type_descriptor(Gogo*, Named_type*)
+ {
+ gcc_assert(saw_errors());
+ return Expression::make_error(UNKNOWN_LOCATION);
+ }
+
+ void
+ do_reflection(Gogo*, std::string*) const
+ { gcc_assert(saw_errors()); }
+
+ void
+ do_mangled_name(Gogo*, std::string*) const
+ { gcc_assert(saw_errors()); }
+
+ private:
+ // The expression being called.
+ Call_expression* call_;
+};
+
+// Return the tree for a call result.
+
+tree
+Call_multiple_result_type::do_get_tree(Gogo* gogo)
+{
+ Function_type* fntype = this->call_->get_function_type();
+ gcc_assert(fntype != NULL);
+ const Typed_identifier_list* results = fntype->results();
+ gcc_assert(results != NULL && results->size() > 1);
+ tree fntype_tree = fntype->get_tree(gogo);
+ if (fntype_tree == error_mark_node)
+ return error_mark_node;
+ return TREE_TYPE(fntype_tree);
+}
+
+// Make a call result type.
+
+Type*
+Type::make_call_multiple_result_type(Call_expression* call)
+{
+ return new Call_multiple_result_type(call);
+}
+
+// Class Struct_field.
+
+// Get the name of a field.
+
+const std::string&
+Struct_field::field_name() const
+{
+ const std::string& name(this->typed_identifier_.name());
+ if (!name.empty())
+ return name;
+ else
+ {
+ // This is called during parsing, before anything is lowered, so
+ // we have to be pretty careful to avoid dereferencing an
+ // unknown type name.
+ Type* t = this->typed_identifier_.type();
+ Type* dt = t;
+ if (t->classification() == Type::TYPE_POINTER)
+ {
+ // Very ugly.
+ Pointer_type* ptype = static_cast<Pointer_type*>(t);
+ dt = ptype->points_to();
+ }
+ if (dt->forward_declaration_type() != NULL)
+ return dt->forward_declaration_type()->name();
+ else if (dt->named_type() != NULL)
+ return dt->named_type()->name();
+ else if (t->is_error_type() || dt->is_error_type())
+ {
+ static const std::string error_string = "*error*";
+ return error_string;
+ }
+ else
+ {
+ // Avoid crashing in the erroneous case where T is named but
+ // DT is not.
+ gcc_assert(t != dt);
+ if (t->forward_declaration_type() != NULL)
+ return t->forward_declaration_type()->name();
+ else if (t->named_type() != NULL)
+ return t->named_type()->name();
+ else
+ gcc_unreachable();
+ }
+ }
+}
+
+// Class Struct_type.
+
+// Traversal.
+
+int
+Struct_type::do_traverse(Traverse* traverse)
+{
+ Struct_field_list* fields = this->fields_;
+ if (fields != NULL)
+ {
+ for (Struct_field_list::iterator p = fields->begin();
+ p != fields->end();
+ ++p)
+ {
+ if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ }
+ return TRAVERSE_CONTINUE;
+}
+
+// Verify that the struct type is complete and valid.
+
+bool
+Struct_type::do_verify()
+{
+ Struct_field_list* fields = this->fields_;
+ if (fields == NULL)
+ return true;
+ bool ret = true;
+ for (Struct_field_list::iterator p = fields->begin();
+ p != fields->end();
+ ++p)
+ {
+ Type* t = p->type();
+ if (t->is_undefined())
+ {
+ error_at(p->location(), "struct field type is incomplete");
+ p->set_type(Type::make_error_type());
+ ret = false;
+ }
+ else if (p->is_anonymous())
+ {
+ if (t->named_type() != NULL && t->points_to() != NULL)
+ {
+ error_at(p->location(), "embedded type may not be a pointer");
+ p->set_type(Type::make_error_type());
+ return false;
+ }
+ }
+ }
+ return ret;
+}
+
+// Whether this contains a pointer.
+
+bool
+Struct_type::do_has_pointer() const
+{
+ const Struct_field_list* fields = this->fields();
+ if (fields == NULL)
+ return false;
+ for (Struct_field_list::const_iterator p = fields->begin();
+ p != fields->end();
+ ++p)
+ {
+ if (p->type()->has_pointer())
+ return true;
+ }
+ return false;
+}
+
+// Whether this type is identical to T.
+
+bool
+Struct_type::is_identical(const Struct_type* t,
+ bool errors_are_identical) const
+{
+ const Struct_field_list* fields1 = this->fields();
+ const Struct_field_list* fields2 = t->fields();
+ if (fields1 == NULL || fields2 == NULL)
+ return fields1 == fields2;
+ Struct_field_list::const_iterator pf2 = fields2->begin();
+ for (Struct_field_list::const_iterator pf1 = fields1->begin();
+ pf1 != fields1->end();
+ ++pf1, ++pf2)
+ {
+ if (pf2 == fields2->end())
+ return false;
+ if (pf1->field_name() != pf2->field_name())
+ return false;
+ if (pf1->is_anonymous() != pf2->is_anonymous()
+ || !Type::are_identical(pf1->type(), pf2->type(),
+ errors_are_identical, NULL))
+ return false;
+ if (!pf1->has_tag())
+ {
+ if (pf2->has_tag())
+ return false;
+ }
+ else
+ {
+ if (!pf2->has_tag())
+ return false;
+ if (pf1->tag() != pf2->tag())
+ return false;
+ }
+ }
+ if (pf2 != fields2->end())
+ return false;
+ return true;
+}
+
+// Whether this struct type has any hidden fields.
+
+bool
+Struct_type::struct_has_hidden_fields(const Named_type* within,
+ std::string* reason) const
+{
+ const Struct_field_list* fields = this->fields();
+ if (fields == NULL)
+ return false;
+ const Package* within_package = (within == NULL
+ ? NULL
+ : within->named_object()->package());
+ for (Struct_field_list::const_iterator pf = fields->begin();
+ pf != fields->end();
+ ++pf)
+ {
+ if (within_package != NULL
+ && !pf->is_anonymous()
+ && Gogo::is_hidden_name(pf->field_name()))
+ {
+ if (reason != NULL)
+ {
+ std::string within_name = within->named_object()->message_name();
+ std::string name = Gogo::message_name(pf->field_name());
+ size_t bufsize = 200 + within_name.length() + name.length();
+ char* buf = new char[bufsize];
+ snprintf(buf, bufsize,
+ _("implicit assignment of %s%s%s hidden field %s%s%s"),
+ open_quote, within_name.c_str(), close_quote,
+ open_quote, name.c_str(), close_quote);
+ reason->assign(buf);
+ delete[] buf;
+ }
+ return true;
+ }
+
+ if (pf->type()->has_hidden_fields(within, reason))
+ return true;
+ }
+
+ return false;
+}
+
+// Hash code.
+
+unsigned int
+Struct_type::do_hash_for_method(Gogo* gogo) const
+{
+ unsigned int ret = 0;
+ if (this->fields() != NULL)
+ {
+ for (Struct_field_list::const_iterator pf = this->fields()->begin();
+ pf != this->fields()->end();
+ ++pf)
+ ret = (ret << 1) + pf->type()->hash_for_method(gogo);
+ }
+ return ret <<= 2;
+}
+
+// Find the local field NAME.
+
+const Struct_field*
+Struct_type::find_local_field(const std::string& name,
+ unsigned int *pindex) const
+{
+ const Struct_field_list* fields = this->fields_;
+ if (fields == NULL)
+ return NULL;
+ unsigned int i = 0;
+ for (Struct_field_list::const_iterator pf = fields->begin();
+ pf != fields->end();
+ ++pf, ++i)
+ {
+ if (pf->field_name() == name)
+ {
+ if (pindex != NULL)
+ *pindex = i;
+ return &*pf;
+ }
+ }
+ return NULL;
+}
+
+// Return an expression for field NAME in STRUCT_EXPR, or NULL.
+
+Field_reference_expression*
+Struct_type::field_reference(Expression* struct_expr, const std::string& name,
+ source_location location) const
+{
+ unsigned int depth;
+ return this->field_reference_depth(struct_expr, name, location, NULL,
+ &depth);
+}
+
+// Return an expression for a field, along with the depth at which it
+// was found.
+
+Field_reference_expression*
+Struct_type::field_reference_depth(Expression* struct_expr,
+ const std::string& name,
+ source_location location,
+ Saw_named_type* saw,
+ unsigned int* depth) const
+{
+ const Struct_field_list* fields = this->fields_;
+ if (fields == NULL)
+ return NULL;
+
+ // Look for a field with this name.
+ unsigned int i = 0;
+ for (Struct_field_list::const_iterator pf = fields->begin();
+ pf != fields->end();
+ ++pf, ++i)
+ {
+ if (pf->field_name() == name)
+ {
+ *depth = 0;
+ return Expression::make_field_reference(struct_expr, i, location);
+ }
+ }
+
+ // Look for an anonymous field which contains a field with this
+ // name.
+ unsigned int found_depth = 0;
+ Field_reference_expression* ret = NULL;
+ i = 0;
+ for (Struct_field_list::const_iterator pf = fields->begin();
+ pf != fields->end();
+ ++pf, ++i)
+ {
+ if (!pf->is_anonymous())
+ continue;
+
+ Struct_type* st = pf->type()->deref()->struct_type();
+ if (st == NULL)
+ continue;
+
+ Saw_named_type* hold_saw = saw;
+ Saw_named_type saw_here;
+ Named_type* nt = pf->type()->named_type();
+ if (nt == NULL)
+ nt = pf->type()->deref()->named_type();
+ if (nt != NULL)
+ {
+ Saw_named_type* q;
+ for (q = saw; q != NULL; q = q->next)
+ {
+ if (q->nt == nt)
+ {
+ // If this is an error, it will be reported
+ // elsewhere.
+ break;
+ }
+ }
+ if (q != NULL)
+ continue;
+ saw_here.next = saw;
+ saw_here.nt = nt;
+ saw = &saw_here;
+ }
+
+ // Look for a reference using a NULL struct expression. If we
+ // find one, fill in the struct expression with a reference to
+ // this field.
+ unsigned int subdepth;
+ Field_reference_expression* sub = st->field_reference_depth(NULL, name,
+ location,
+ saw,
+ &subdepth);
+
+ saw = hold_saw;
+
+ if (sub == NULL)
+ continue;
+
+ if (ret == NULL || subdepth < found_depth)
+ {
+ if (ret != NULL)
+ delete ret;
+ ret = sub;
+ found_depth = subdepth;
+ Expression* here = Expression::make_field_reference(struct_expr, i,
+ location);
+ if (pf->type()->points_to() != NULL)
+ here = Expression::make_unary(OPERATOR_MULT, here, location);
+ while (sub->expr() != NULL)
+ {
+ sub = sub->expr()->deref()->field_reference_expression();
+ gcc_assert(sub != NULL);
+ }
+ sub->set_struct_expression(here);
+ }
+ else if (subdepth > found_depth)
+ delete sub;
+ else
+ {
+ // We do not handle ambiguity here--it should be handled by
+ // Type::bind_field_or_method.
+ delete sub;
+ found_depth = 0;
+ ret = NULL;
+ }
+ }
+
+ if (ret != NULL)
+ *depth = found_depth + 1;
+
+ return ret;
+}
+
+// Return the total number of fields, including embedded fields.
+
+unsigned int
+Struct_type::total_field_count() const
+{
+ if (this->fields_ == NULL)
+ return 0;
+ unsigned int ret = 0;
+ for (Struct_field_list::const_iterator pf = this->fields_->begin();
+ pf != this->fields_->end();
+ ++pf)
+ {
+ if (!pf->is_anonymous() || pf->type()->deref()->struct_type() == NULL)
+ ++ret;
+ else
+ ret += pf->type()->struct_type()->total_field_count();
+ }
+ return ret;
+}
+
+// Return whether NAME is an unexported field, for better error reporting.
+
+bool
+Struct_type::is_unexported_local_field(Gogo* gogo,
+ const std::string& name) const
+{
+ const Struct_field_list* fields = this->fields_;
+ if (fields != NULL)
+ {
+ for (Struct_field_list::const_iterator pf = fields->begin();
+ pf != fields->end();
+ ++pf)
+ {
+ const std::string& field_name(pf->field_name());
+ if (Gogo::is_hidden_name(field_name)
+ && name == Gogo::unpack_hidden_name(field_name)
+ && gogo->pack_hidden_name(name, false) != field_name)
+ return true;
+ }
+ }
+ return false;
+}
+
+// Finalize the methods of an unnamed struct.
+
+void
+Struct_type::finalize_methods(Gogo* gogo)
+{
+ if (this->all_methods_ != NULL)
+ return;
+ Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
+}
+
+// Return the method NAME, or NULL if there isn't one or if it is
+// ambiguous. Set *IS_AMBIGUOUS if the method exists but is
+// ambiguous.
+
+Method*
+Struct_type::method_function(const std::string& name, bool* is_ambiguous) const
+{
+ return Type::method_function(this->all_methods_, name, is_ambiguous);
+}
+
+// Get the tree for a struct type.
+
+tree
+Struct_type::do_get_tree(Gogo* gogo)
+{
+ tree type = make_node(RECORD_TYPE);
+ return this->fill_in_tree(gogo, type);
+}
+
+// Fill in the fields for a struct type.
+
+tree
+Struct_type::fill_in_tree(Gogo* gogo, tree type)
+{
+ tree field_trees = NULL_TREE;
+ tree* pp = &field_trees;
+ for (Struct_field_list::const_iterator p = this->fields_->begin();
+ p != this->fields_->end();
+ ++p)
+ {
+ std::string name = Gogo::unpack_hidden_name(p->field_name());
+ tree name_tree = get_identifier_with_length(name.data(), name.length());
+
+ tree field_type_tree = p->type()->get_tree(gogo);
+ if (field_type_tree == error_mark_node)
+ return error_mark_node;
+ gcc_assert(TYPE_SIZE(field_type_tree) != NULL_TREE);
+
+ tree field = build_decl(p->location(), FIELD_DECL, name_tree,
+ field_type_tree);
+ DECL_CONTEXT(field) = type;
+ *pp = field;
+ pp = &DECL_CHAIN(field);
+ }
+
+ TYPE_FIELDS(type) = field_trees;
+
+ layout_type(type);
+
+ return type;
+}
+
+// Initialize struct fields.
+
+tree
+Struct_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
+{
+ if (this->fields_ == NULL || this->fields_->empty())
+ {
+ if (is_clear)
+ return NULL;
+ else
+ {
+ tree ret = build_constructor(type_tree,
+ VEC_alloc(constructor_elt, gc, 0));
+ TREE_CONSTANT(ret) = 1;
+ return ret;
+ }
+ }
+
+ bool is_constant = true;
+ bool any_fields_set = false;
+ VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc,
+ this->fields_->size());
+
+ tree field = TYPE_FIELDS(type_tree);
+ for (Struct_field_list::const_iterator p = this->fields_->begin();
+ p != this->fields_->end();
+ ++p, field = DECL_CHAIN(field))
+ {
+ tree value = p->type()->get_init_tree(gogo, is_clear);
+ if (value == error_mark_node)
+ return error_mark_node;
+ gcc_assert(field != NULL_TREE);
+ if (value != NULL)
+ {
+ constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
+ elt->index = field;
+ elt->value = value;
+ any_fields_set = true;
+ if (!TREE_CONSTANT(value))
+ is_constant = false;
+ }
+ }
+ gcc_assert(field == NULL_TREE);
+
+ if (!any_fields_set)
+ {
+ gcc_assert(is_clear);
+ VEC_free(constructor_elt, gc, init);
+ return NULL;
+ }
+
+ tree ret = build_constructor(type_tree, init);
+ if (is_constant)
+ TREE_CONSTANT(ret) = 1;
+ return ret;
+}
+
+// The type of a struct type descriptor.
+
+Type*
+Struct_type::make_struct_type_descriptor_type()
+{
+ static Type* ret;
+ if (ret == NULL)
+ {
+ Type* tdt = Type::make_type_descriptor_type();
+ Type* ptdt = Type::make_type_descriptor_ptr_type();
+
+ Type* uintptr_type = Type::lookup_integer_type("uintptr");
+ Type* string_type = Type::lookup_string_type();
+ Type* pointer_string_type = Type::make_pointer_type(string_type);
+
+ Struct_type* sf =
+ Type::make_builtin_struct_type(5,
+ "name", pointer_string_type,
+ "pkgPath", pointer_string_type,
+ "typ", ptdt,
+ "tag", pointer_string_type,
+ "offset", uintptr_type);
+ Type* nsf = Type::make_builtin_named_type("structField", sf);
+
+ Type* slice_type = Type::make_array_type(nsf, NULL);
+
+ Struct_type* s = Type::make_builtin_struct_type(2,
+ "", tdt,
+ "fields", slice_type);
+
+ ret = Type::make_builtin_named_type("StructType", s);
+ }
+
+ return ret;
+}
+
+// Build a type descriptor for a struct type.
+
+Expression*
+Struct_type::do_type_descriptor(Gogo* gogo, Named_type* name)
+{
+ source_location bloc = BUILTINS_LOCATION;
+
+ Type* stdt = Struct_type::make_struct_type_descriptor_type();
+
+ const Struct_field_list* fields = stdt->struct_type()->fields();
+
+ Expression_list* vals = new Expression_list();
+ vals->reserve(2);
+
+ const Methods* methods = this->methods();
+ // A named struct should not have methods--the methods should attach
+ // to the named type.
+ gcc_assert(methods == NULL || name == NULL);
+
+ Struct_field_list::const_iterator ps = fields->begin();
+ gcc_assert(ps->field_name() == "commonType");
+ vals->push_back(this->type_descriptor_constructor(gogo,
+ RUNTIME_TYPE_KIND_STRUCT,
+ name, methods, true));
+
+ ++ps;
+ gcc_assert(ps->field_name() == "fields");
+
+ Expression_list* elements = new Expression_list();
+ elements->reserve(this->fields_->size());
+ Type* element_type = ps->type()->array_type()->element_type();
+ for (Struct_field_list::const_iterator pf = this->fields_->begin();
+ pf != this->fields_->end();
+ ++pf)
+ {
+ const Struct_field_list* f = element_type->struct_type()->fields();
+
+ Expression_list* fvals = new Expression_list();
+ fvals->reserve(5);
+
+ Struct_field_list::const_iterator q = f->begin();
+ gcc_assert(q->field_name() == "name");
+ if (pf->is_anonymous())
+ fvals->push_back(Expression::make_nil(bloc));
+ else
+ {
+ std::string n = Gogo::unpack_hidden_name(pf->field_name());
+ Expression* s = Expression::make_string(n, bloc);
+ fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
+ }
+
+ ++q;
+ gcc_assert(q->field_name() == "pkgPath");
+ if (!Gogo::is_hidden_name(pf->field_name()))
+ fvals->push_back(Expression::make_nil(bloc));
+ else
+ {
+ std::string n = Gogo::hidden_name_prefix(pf->field_name());
+ Expression* s = Expression::make_string(n, bloc);
+ fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
+ }
+
+ ++q;
+ gcc_assert(q->field_name() == "typ");
+ fvals->push_back(Expression::make_type_descriptor(pf->type(), bloc));
+
+ ++q;
+ gcc_assert(q->field_name() == "tag");
+ if (!pf->has_tag())
+ fvals->push_back(Expression::make_nil(bloc));
+ else
+ {
+ Expression* s = Expression::make_string(pf->tag(), bloc);
+ fvals->push_back(Expression::make_unary(OPERATOR_AND, s, bloc));
+ }
+
+ ++q;
+ gcc_assert(q->field_name() == "offset");
+ fvals->push_back(Expression::make_struct_field_offset(this, &*pf));
+
+ Expression* v = Expression::make_struct_composite_literal(element_type,
+ fvals, bloc);
+ elements->push_back(v);
+ }
+
+ vals->push_back(Expression::make_slice_composite_literal(ps->type(),
+ elements, bloc));
+
+ return Expression::make_struct_composite_literal(stdt, vals, bloc);
+}
+
+// Reflection string.
+
+void
+Struct_type::do_reflection(Gogo* gogo, std::string* ret) const
+{
+ ret->append("struct { ");
+
+ for (Struct_field_list::const_iterator p = this->fields_->begin();
+ p != this->fields_->end();
+ ++p)
+ {
+ if (p != this->fields_->begin())
+ ret->append("; ");
+ if (p->is_anonymous())
+ ret->push_back('?');
+ else
+ ret->append(Gogo::unpack_hidden_name(p->field_name()));
+ ret->push_back(' ');
+ this->append_reflection(p->type(), gogo, ret);
+
+ if (p->has_tag())
+ {
+ const std::string& tag(p->tag());
+ ret->append(" \"");
+ for (std::string::const_iterator p = tag.begin();
+ p != tag.end();
+ ++p)
+ {
+ if (*p == '\0')
+ ret->append("\\x00");
+ else if (*p == '\n')
+ ret->append("\\n");
+ else if (*p == '\t')
+ ret->append("\\t");
+ else if (*p == '"')
+ ret->append("\\\"");
+ else if (*p == '\\')
+ ret->append("\\\\");
+ else
+ ret->push_back(*p);
+ }
+ ret->push_back('"');
+ }
+ }
+
+ ret->append(" }");
+}
+
+// Mangled name.
+
+void
+Struct_type::do_mangled_name(Gogo* gogo, std::string* ret) const
+{
+ ret->push_back('S');
+
+ const Struct_field_list* fields = this->fields_;
+ if (fields != NULL)
+ {
+ for (Struct_field_list::const_iterator p = fields->begin();
+ p != fields->end();
+ ++p)
+ {
+ if (p->is_anonymous())
+ ret->append("0_");
+ else
+ {
+ std::string n = Gogo::unpack_hidden_name(p->field_name());
+ char buf[20];
+ snprintf(buf, sizeof buf, "%u_",
+ static_cast<unsigned int>(n.length()));
+ ret->append(buf);
+ ret->append(n);
+ }
+ this->append_mangled_name(p->type(), gogo, ret);
+ if (p->has_tag())
+ {
+ const std::string& tag(p->tag());
+ std::string out;
+ for (std::string::const_iterator p = tag.begin();
+ p != tag.end();
+ ++p)
+ {
+ if (ISALNUM(*p) || *p == '_')
+ out.push_back(*p);
+ else
+ {
+ char buf[20];
+ snprintf(buf, sizeof buf, ".%x.",
+ static_cast<unsigned int>(*p));
+ out.append(buf);
+ }
+ }
+ char buf[20];
+ snprintf(buf, sizeof buf, "T%u_",
+ static_cast<unsigned int>(out.length()));
+ ret->append(buf);
+ ret->append(out);
+ }
+ }
+ }
+
+ ret->push_back('e');
+}
+
+// Export.
+
+void
+Struct_type::do_export(Export* exp) const
+{
+ exp->write_c_string("struct { ");
+ const Struct_field_list* fields = this->fields_;
+ gcc_assert(fields != NULL);
+ for (Struct_field_list::const_iterator p = fields->begin();
+ p != fields->end();
+ ++p)
+ {
+ if (p->is_anonymous())
+ exp->write_string("? ");
+ else
+ {
+ exp->write_string(p->field_name());
+ exp->write_c_string(" ");
+ }
+ exp->write_type(p->type());
+
+ if (p->has_tag())
+ {
+ exp->write_c_string(" ");
+ Expression* expr = Expression::make_string(p->tag(),
+ BUILTINS_LOCATION);
+ expr->export_expression(exp);
+ delete expr;
+ }
+
+ exp->write_c_string("; ");
+ }
+ exp->write_c_string("}");
+}
+
+// Import.
+
+Struct_type*
+Struct_type::do_import(Import* imp)
+{
+ imp->require_c_string("struct { ");
+ Struct_field_list* fields = new Struct_field_list;
+ if (imp->peek_char() != '}')
+ {
+ while (true)
+ {
+ std::string name;
+ if (imp->match_c_string("? "))
+ imp->advance(2);
+ else
+ {
+ name = imp->read_identifier();
+ imp->require_c_string(" ");
+ }
+ Type* ftype = imp->read_type();
+
+ Struct_field sf(Typed_identifier(name, ftype, imp->location()));
+
+ if (imp->peek_char() == ' ')
+ {
+ imp->advance(1);
+ Expression* expr = Expression::import_expression(imp);
+ String_expression* sexpr = expr->string_expression();
+ gcc_assert(sexpr != NULL);
+ sf.set_tag(sexpr->val());
+ delete sexpr;
+ }
+
+ imp->require_c_string("; ");
+ fields->push_back(sf);
+ if (imp->peek_char() == '}')
+ break;
+ }
+ }
+ imp->require_c_string("}");
+
+ return Type::make_struct_type(fields, imp->location());
+}
+
+// Make a struct type.
+
+Struct_type*
+Type::make_struct_type(Struct_field_list* fields,
+ source_location location)
+{
+ return new Struct_type(fields, location);
+}
+
+// Class Array_type.
+
+// Whether two array types are identical.
+
+bool
+Array_type::is_identical(const Array_type* t, bool errors_are_identical) const
+{
+ if (!Type::are_identical(this->element_type(), t->element_type(),
+ errors_are_identical, NULL))
+ return false;
+
+ Expression* l1 = this->length();
+ Expression* l2 = t->length();
+
+ // Slices of the same element type are identical.
+ if (l1 == NULL && l2 == NULL)
+ return true;
+
+ // Arrays of the same element type are identical if they have the
+ // same length.
+ if (l1 != NULL && l2 != NULL)
+ {
+ if (l1 == l2)
+ return true;
+
+ // Try to determine the lengths. If we can't, assume the arrays
+ // are not identical.
+ bool ret = false;
+ mpz_t v1;
+ mpz_init(v1);
+ Type* type1;
+ mpz_t v2;
+ mpz_init(v2);
+ Type* type2;
+ if (l1->integer_constant_value(true, v1, &type1)
+ && l2->integer_constant_value(true, v2, &type2))
+ ret = mpz_cmp(v1, v2) == 0;
+ mpz_clear(v1);
+ mpz_clear(v2);
+ return ret;
+ }
+
+ // Otherwise the arrays are not identical.
+ return false;
+}
+
+// Traversal.
+
+int
+Array_type::do_traverse(Traverse* traverse)
+{
+ if (Type::traverse(this->element_type_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ if (this->length_ != NULL
+ && Expression::traverse(&this->length_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ return TRAVERSE_CONTINUE;
+}
+
+// Check that the length is valid.
+
+bool
+Array_type::verify_length()
+{
+ if (this->length_ == NULL)
+ return true;
+
+ Type_context context(Type::lookup_integer_type("int"), false);
+ this->length_->determine_type(&context);
+
+ if (!this->length_->is_constant())
+ {
+ error_at(this->length_->location(), "array bound is not constant");
+ return false;
+ }
+
+ mpz_t val;
+ mpz_init(val);
+ Type* vt;
+ if (!this->length_->integer_constant_value(true, val, &vt))
+ {
+ mpfr_t fval;
+ mpfr_init(fval);
+ if (!this->length_->float_constant_value(fval, &vt))
+ {
+ if (this->length_->type()->integer_type() != NULL
+ || this->length_->type()->float_type() != NULL)
+ error_at(this->length_->location(),
+ "array bound is not constant");
+ else
+ error_at(this->length_->location(),
+ "array bound is not numeric");
+ mpfr_clear(fval);
+ mpz_clear(val);
+ return false;
+ }
+ if (!mpfr_integer_p(fval))
+ {
+ error_at(this->length_->location(),
+ "array bound truncated to integer");
+ mpfr_clear(fval);
+ mpz_clear(val);
+ return false;
+ }
+ mpz_init(val);
+ mpfr_get_z(val, fval, GMP_RNDN);
+ mpfr_clear(fval);
+ }
+
+ if (mpz_sgn(val) < 0)
+ {
+ error_at(this->length_->location(), "negative array bound");
+ mpz_clear(val);
+ return false;
+ }
+
+ Type* int_type = Type::lookup_integer_type("int");
+ int tbits = int_type->integer_type()->bits();
+ int vbits = mpz_sizeinbase(val, 2);
+ if (vbits + 1 > tbits)
+ {
+ error_at(this->length_->location(), "array bound overflows");
+ mpz_clear(val);
+ return false;
+ }
+
+ mpz_clear(val);
+
+ return true;
+}
+
+// Verify the type.
+
+bool
+Array_type::do_verify()
+{
+ if (!this->verify_length())
+ {
+ this->length_ = Expression::make_error(this->length_->location());
+ return false;
+ }
+ return true;
+}
+
+// Array type hash code.
+
+unsigned int
+Array_type::do_hash_for_method(Gogo* gogo) const
+{
+ // There is no very convenient way to get a hash code for the
+ // length.
+ return this->element_type_->hash_for_method(gogo) + 1;
+}
+
+// See if the expression passed to make is suitable. The first
+// argument is required, and gives the length. An optional second
+// argument is permitted for the capacity.
+
+bool
+Array_type::do_check_make_expression(Expression_list* args,
+ source_location location)
+{
+ gcc_assert(this->length_ == NULL);
+ if (args == NULL || args->empty())
+ {
+ error_at(location, "length required when allocating a slice");
+ return false;
+ }
+ else if (args->size() > 2)
+ {
+ error_at(location, "too many expressions passed to make");
+ return false;
+ }
+ else
+ {
+ if (!Type::check_int_value(args->front(),
+ _("bad length when making slice"), location))
+ return false;
+
+ if (args->size() > 1)
+ {
+ if (!Type::check_int_value(args->back(),
+ _("bad capacity when making slice"),
+ location))
+ return false;
+ }
+
+ return true;
+ }
+}
+
+// Get a tree for the length of a fixed array. The length may be
+// computed using a function call, so we must only evaluate it once.
+
+tree
+Array_type::get_length_tree(Gogo* gogo)
+{
+ gcc_assert(this->length_ != NULL);
+ if (this->length_tree_ == NULL_TREE)
+ {
+ mpz_t val;
+ mpz_init(val);
+ Type* t;
+ if (this->length_->integer_constant_value(true, val, &t))
+ {
+ if (t == NULL)
+ t = Type::lookup_integer_type("int");
+ else if (t->is_abstract())
+ t = t->make_non_abstract_type();
+ tree tt = t->get_tree(gogo);
+ this->length_tree_ = Expression::integer_constant_tree(val, tt);
+ mpz_clear(val);
+ }
+ else
+ {
+ mpz_clear(val);
+
+ // Make up a translation context for the array length
+ // expression. FIXME: This won't work in general.
+ Translate_context context(gogo, NULL, NULL, NULL_TREE);
+ tree len = this->length_->get_tree(&context);
+ if (len != error_mark_node)
+ {
+ len = convert_to_integer(integer_type_node, len);
+ len = save_expr(len);
+ }
+ this->length_tree_ = len;
+ }
+ }
+ return this->length_tree_;
+}
+
+// Get a tree for the type of this array. A fixed array is simply
+// represented as ARRAY_TYPE with the appropriate index--i.e., it is
+// just like an array in C. An open array is a struct with three
+// fields: a data pointer, the length, and the capacity.
+
+tree
+Array_type::do_get_tree(Gogo* gogo)
+{
+ if (this->length_ == NULL)
+ {
+ tree struct_type = gogo->slice_type_tree(void_type_node);
+ return this->fill_in_slice_tree(gogo, struct_type);
+ }
+ else
+ {
+ tree array_type = make_node(ARRAY_TYPE);
+ return this->fill_in_array_tree(gogo, array_type);
+ }
+}
+
+// Fill in the fields for an array type. This is used for named array
+// types.
+
+tree
+Array_type::fill_in_array_tree(Gogo* gogo, tree array_type)
+{
+ gcc_assert(this->length_ != NULL);
+
+ tree element_type_tree = this->element_type_->get_tree(gogo);
+ tree length_tree = this->get_length_tree(gogo);
+ if (element_type_tree == error_mark_node
+ || length_tree == error_mark_node)
+ return error_mark_node;
+
+ gcc_assert(TYPE_SIZE(element_type_tree) != NULL_TREE);
+
+ length_tree = fold_convert(sizetype, length_tree);
+
+ // build_index_type takes the maximum index, which is one less than
+ // the length.
+ tree index_type = build_index_type(fold_build2(MINUS_EXPR, sizetype,
+ length_tree,
+ size_one_node));
+
+ TREE_TYPE(array_type) = element_type_tree;
+ TYPE_DOMAIN(array_type) = index_type;
+ TYPE_ADDR_SPACE(array_type) = TYPE_ADDR_SPACE(element_type_tree);
+ layout_type(array_type);
+
+ if (TYPE_STRUCTURAL_EQUALITY_P(element_type_tree)
+ || TYPE_STRUCTURAL_EQUALITY_P(index_type))
+ SET_TYPE_STRUCTURAL_EQUALITY(array_type);
+ else if (TYPE_CANONICAL(element_type_tree) != element_type_tree
+ || TYPE_CANONICAL(index_type) != index_type)
+ TYPE_CANONICAL(array_type) =
+ build_array_type(TYPE_CANONICAL(element_type_tree),
+ TYPE_CANONICAL(index_type));
+
+ return array_type;
+}
+
+// Fill in the fields for a slice type. This is used for named slice
+// types.
+
+tree
+Array_type::fill_in_slice_tree(Gogo* gogo, tree struct_type)
+{
+ gcc_assert(this->length_ == NULL);
+
+ tree element_type_tree = this->element_type_->get_tree(gogo);
+ if (element_type_tree == error_mark_node)
+ return error_mark_node;
+ tree field = TYPE_FIELDS(struct_type);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
+ gcc_assert(POINTER_TYPE_P(TREE_TYPE(field))
+ && TREE_TYPE(TREE_TYPE(field)) == void_type_node);
+ TREE_TYPE(field) = build_pointer_type(element_type_tree);
+
+ return struct_type;
+}
+
+// Return an initializer for an array type.
+
+tree
+Array_type::do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
+{
+ if (this->length_ == NULL)
+ {
+ // Open array.
+
+ if (is_clear)
+ return NULL;
+
+ gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
+
+ VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
+
+ for (tree field = TYPE_FIELDS(type_tree);
+ field != NULL_TREE;
+ field = DECL_CHAIN(field))
+ {
+ constructor_elt* elt = VEC_quick_push(constructor_elt, init,
+ NULL);
+ elt->index = field;
+ elt->value = fold_convert(TREE_TYPE(field), size_zero_node);
+ }
+
+ tree ret = build_constructor(type_tree, init);
+ TREE_CONSTANT(ret) = 1;
+ return ret;
+ }
+ else
+ {
+ // Fixed array.
+
+ tree value = this->element_type_->get_init_tree(gogo, is_clear);
+ if (value == NULL)
+ return NULL;
+ if (value == error_mark_node)
+ return error_mark_node;
+
+ tree length_tree = this->get_length_tree(gogo);
+ if (length_tree == error_mark_node)
+ return error_mark_node;
+
+ length_tree = fold_convert(sizetype, length_tree);
+ tree range = build2(RANGE_EXPR, sizetype, size_zero_node,
+ fold_build2(MINUS_EXPR, sizetype,
+ length_tree, size_one_node));
+ tree ret = build_constructor_single(type_tree, range, value);
+ if (TREE_CONSTANT(value))
+ TREE_CONSTANT(ret) = 1;
+ return ret;
+ }
+}
+
+// Handle the builtin make function for a slice.
+
+tree
+Array_type::do_make_expression_tree(Translate_context* context,
+ Expression_list* args,
+ source_location location)
+{
+ gcc_assert(this->length_ == NULL);
+
+ Gogo* gogo = context->gogo();
+ tree type_tree = this->get_tree(gogo);
+ if (type_tree == error_mark_node)
+ return error_mark_node;
+
+ tree values_field = TYPE_FIELDS(type_tree);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(values_field)),
+ "__values") == 0);
+
+ tree count_field = DECL_CHAIN(values_field);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(count_field)),
+ "__count") == 0);
+
+ tree element_type_tree = this->element_type_->get_tree(gogo);
+ if (element_type_tree == error_mark_node)
+ return error_mark_node;
+ tree element_size_tree = TYPE_SIZE_UNIT(element_type_tree);
+
+ tree value = this->element_type_->get_init_tree(gogo, true);
+ if (value == error_mark_node)
+ return error_mark_node;
+
+ // The first argument is the number of elements, the optional second
+ // argument is the capacity.
+ gcc_assert(args != NULL && args->size() >= 1 && args->size() <= 2);
+
+ tree length_tree = args->front()->get_tree(context);
+ if (length_tree == error_mark_node)
+ return error_mark_node;
+ if (!DECL_P(length_tree))
+ length_tree = save_expr(length_tree);
+ if (!INTEGRAL_TYPE_P(TREE_TYPE(length_tree)))
+ length_tree = convert_to_integer(TREE_TYPE(count_field), length_tree);
+
+ tree bad_index = Expression::check_bounds(length_tree,
+ TREE_TYPE(count_field),
+ NULL_TREE, location);
+
+ length_tree = fold_convert_loc(location, TREE_TYPE(count_field), length_tree);
+ tree capacity_tree;
+ if (args->size() == 1)
+ capacity_tree = length_tree;
+ else
+ {
+ capacity_tree = args->back()->get_tree(context);
+ if (capacity_tree == error_mark_node)
+ return error_mark_node;
+ if (!DECL_P(capacity_tree))
+ capacity_tree = save_expr(capacity_tree);
+ if (!INTEGRAL_TYPE_P(TREE_TYPE(capacity_tree)))
+ capacity_tree = convert_to_integer(TREE_TYPE(count_field),
+ capacity_tree);
+
+ bad_index = Expression::check_bounds(capacity_tree,
+ TREE_TYPE(count_field),
+ bad_index, location);
+
+ tree chktype = (((TYPE_SIZE(TREE_TYPE(capacity_tree))
+ > TYPE_SIZE(TREE_TYPE(length_tree)))
+ || ((TYPE_SIZE(TREE_TYPE(capacity_tree))
+ == TYPE_SIZE(TREE_TYPE(length_tree)))
+ && TYPE_UNSIGNED(TREE_TYPE(capacity_tree))))
+ ? TREE_TYPE(capacity_tree)
+ : TREE_TYPE(length_tree));
+ tree chk = fold_build2_loc(location, LT_EXPR, boolean_type_node,
+ fold_convert_loc(location, chktype,
+ capacity_tree),
+ fold_convert_loc(location, chktype,
+ length_tree));
+ if (bad_index == NULL_TREE)
+ bad_index = chk;
+ else
+ bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
+ bad_index, chk);
+
+ capacity_tree = fold_convert_loc(location, TREE_TYPE(count_field),
+ capacity_tree);
+ }
+
+ tree size_tree = fold_build2_loc(location, MULT_EXPR, sizetype,
+ element_size_tree,
+ fold_convert_loc(location, sizetype,
+ capacity_tree));
+
+ tree chk = fold_build2_loc(location, TRUTH_AND_EXPR, boolean_type_node,
+ fold_build2_loc(location, GT_EXPR,
+ boolean_type_node,
+ fold_convert_loc(location,
+ sizetype,
+ capacity_tree),
+ size_zero_node),
+ fold_build2_loc(location, LT_EXPR,
+ boolean_type_node,
+ size_tree, element_size_tree));
+ if (bad_index == NULL_TREE)
+ bad_index = chk;
+ else
+ bad_index = fold_build2_loc(location, TRUTH_OR_EXPR, boolean_type_node,
+ bad_index, chk);
+
+ tree space = context->gogo()->allocate_memory(this->element_type_,
+ size_tree, location);
+
+ if (value != NULL_TREE)
+ space = save_expr(space);
+
+ space = fold_convert(TREE_TYPE(values_field), space);
+
+ if (bad_index != NULL_TREE && bad_index != boolean_false_node)
+ {
+ tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_SLICE_OUT_OF_BOUNDS,
+ location);
+ space = build2(COMPOUND_EXPR, TREE_TYPE(space),
+ build3(COND_EXPR, void_type_node,
+ bad_index, crash, NULL_TREE),
+ space);
+ }
+
+ tree constructor = gogo->slice_constructor(type_tree, space, length_tree,
+ capacity_tree);
+
+ if (value == NULL_TREE)
+ {
+ // The array contents are zero initialized.
+ return constructor;
+ }
+
+ // The elements must be initialized.
+
+ tree max = fold_build2_loc(location, MINUS_EXPR, TREE_TYPE(count_field),
+ capacity_tree,
+ fold_convert_loc(location, TREE_TYPE(count_field),
+ integer_one_node));
+
+ tree array_type = build_array_type(element_type_tree,
+ build_index_type(max));
+
+ tree value_pointer = fold_convert_loc(location,
+ build_pointer_type(array_type),
+ space);
+
+ tree range = build2(RANGE_EXPR, sizetype, size_zero_node, max);
+ tree space_init = build_constructor_single(array_type, range, value);
+
+ return build2(COMPOUND_EXPR, TREE_TYPE(constructor),
+ build2(MODIFY_EXPR, void_type_node,
+ build_fold_indirect_ref(value_pointer),
+ space_init),
+ constructor);
+}
+
+// Return a tree for a pointer to the values in ARRAY.
+
+tree
+Array_type::value_pointer_tree(Gogo*, tree array) const
+{
+ tree ret;
+ if (this->length() != NULL)
+ {
+ // Fixed array.
+ ret = fold_convert(build_pointer_type(TREE_TYPE(TREE_TYPE(array))),
+ build_fold_addr_expr(array));
+ }
+ else
+ {
+ // Open array.
+ tree field = TYPE_FIELDS(TREE_TYPE(array));
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
+ "__values") == 0);
+ ret = fold_build3(COMPONENT_REF, TREE_TYPE(field), array, field,
+ NULL_TREE);
+ }
+ if (TREE_CONSTANT(array))
+ TREE_CONSTANT(ret) = 1;
+ return ret;
+}
+
+// Return a tree for the length of the array ARRAY which has this
+// type.
+
+tree
+Array_type::length_tree(Gogo* gogo, tree array)
+{
+ if (this->length_ != NULL)
+ {
+ if (TREE_CODE(array) == SAVE_EXPR)
+ return fold_convert(integer_type_node, this->get_length_tree(gogo));
+ else
+ return omit_one_operand(integer_type_node,
+ this->get_length_tree(gogo), array);
+ }
+
+ // This is an open array. We need to read the length field.
+
+ tree type = TREE_TYPE(array);
+ gcc_assert(TREE_CODE(type) == RECORD_TYPE);
+
+ tree field = DECL_CHAIN(TYPE_FIELDS(type));
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
+
+ tree ret = build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
+ if (TREE_CONSTANT(array))
+ TREE_CONSTANT(ret) = 1;
+ return ret;
+}
+
+// Return a tree for the capacity of the array ARRAY which has this
+// type.
+
+tree
+Array_type::capacity_tree(Gogo* gogo, tree array)
+{
+ if (this->length_ != NULL)
+ return omit_one_operand(sizetype, this->get_length_tree(gogo), array);
+
+ // This is an open array. We need to read the capacity field.
+
+ tree type = TREE_TYPE(array);
+ gcc_assert(TREE_CODE(type) == RECORD_TYPE);
+
+ tree field = DECL_CHAIN(DECL_CHAIN(TYPE_FIELDS(type)));
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
+
+ return build3(COMPONENT_REF, TREE_TYPE(field), array, field, NULL_TREE);
+}
+
+// Export.
+
+void
+Array_type::do_export(Export* exp) const
+{
+ exp->write_c_string("[");
+ if (this->length_ != NULL)
+ this->length_->export_expression(exp);
+ exp->write_c_string("] ");
+ exp->write_type(this->element_type_);
+}
+
+// Import.
+
+Array_type*
+Array_type::do_import(Import* imp)
+{
+ imp->require_c_string("[");
+ Expression* length;
+ if (imp->peek_char() == ']')
+ length = NULL;
+ else
+ length = Expression::import_expression(imp);
+ imp->require_c_string("] ");
+ Type* element_type = imp->read_type();
+ return Type::make_array_type(element_type, length);
+}
+
+// The type of an array type descriptor.
+
+Type*
+Array_type::make_array_type_descriptor_type()
+{
+ static Type* ret;
+ if (ret == NULL)
+ {
+ Type* tdt = Type::make_type_descriptor_type();
+ Type* ptdt = Type::make_type_descriptor_ptr_type();
+
+ Type* uintptr_type = Type::lookup_integer_type("uintptr");
+
+ Struct_type* sf =
+ Type::make_builtin_struct_type(3,
+ "", tdt,
+ "elem", ptdt,
+ "len", uintptr_type);
+
+ ret = Type::make_builtin_named_type("ArrayType", sf);
+ }
+
+ return ret;
+}
+
+// The type of an slice type descriptor.
+
+Type*
+Array_type::make_slice_type_descriptor_type()
+{
+ static Type* ret;
+ if (ret == NULL)
+ {
+ Type* tdt = Type::make_type_descriptor_type();
+ Type* ptdt = Type::make_type_descriptor_ptr_type();
+
+ Struct_type* sf =
+ Type::make_builtin_struct_type(2,
+ "", tdt,
+ "elem", ptdt);
+
+ ret = Type::make_builtin_named_type("SliceType", sf);
+ }
+
+ return ret;
+}
+
+// Build a type descriptor for an array/slice type.
+
+Expression*
+Array_type::do_type_descriptor(Gogo* gogo, Named_type* name)
+{
+ if (this->length_ != NULL)
+ return this->array_type_descriptor(gogo, name);
+ else
+ return this->slice_type_descriptor(gogo, name);
+}
+
+// Build a type descriptor for an array type.
+
+Expression*
+Array_type::array_type_descriptor(Gogo* gogo, Named_type* name)
+{
+ source_location bloc = BUILTINS_LOCATION;
+
+ Type* atdt = Array_type::make_array_type_descriptor_type();
+
+ const Struct_field_list* fields = atdt->struct_type()->fields();
+
+ Expression_list* vals = new Expression_list();
+ vals->reserve(3);
+
+ Struct_field_list::const_iterator p = fields->begin();
+ gcc_assert(p->field_name() == "commonType");
+ vals->push_back(this->type_descriptor_constructor(gogo,
+ RUNTIME_TYPE_KIND_ARRAY,
+ name, NULL, true));
+
+ ++p;
+ gcc_assert(p->field_name() == "elem");
+ vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
+
+ ++p;
+ gcc_assert(p->field_name() == "len");
+ vals->push_back(Expression::make_cast(p->type(), this->length_, bloc));
+
+ ++p;
+ gcc_assert(p == fields->end());
+
+ return Expression::make_struct_composite_literal(atdt, vals, bloc);
+}
+
+// Build a type descriptor for a slice type.
+
+Expression*
+Array_type::slice_type_descriptor(Gogo* gogo, Named_type* name)
+{
+ source_location bloc = BUILTINS_LOCATION;
+
+ Type* stdt = Array_type::make_slice_type_descriptor_type();
+
+ const Struct_field_list* fields = stdt->struct_type()->fields();
+
+ Expression_list* vals = new Expression_list();
+ vals->reserve(2);
+
+ Struct_field_list::const_iterator p = fields->begin();
+ gcc_assert(p->field_name() == "commonType");
+ vals->push_back(this->type_descriptor_constructor(gogo,
+ RUNTIME_TYPE_KIND_SLICE,
+ name, NULL, true));
+
+ ++p;
+ gcc_assert(p->field_name() == "elem");
+ vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
+
+ ++p;
+ gcc_assert(p == fields->end());
+
+ return Expression::make_struct_composite_literal(stdt, vals, bloc);
+}
+
+// Reflection string.
+
+void
+Array_type::do_reflection(Gogo* gogo, std::string* ret) const
+{
+ ret->push_back('[');
+ if (this->length_ != NULL)
+ {
+ mpz_t val;
+ mpz_init(val);
+ Type* type;
+ if (!this->length_->integer_constant_value(true, val, &type))
+ error_at(this->length_->location(),
+ "array length must be integer constant expression");
+ else if (mpz_cmp_si(val, 0) < 0)
+ error_at(this->length_->location(), "array length is negative");
+ else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
+ error_at(this->length_->location(), "array length is too large");
+ else
+ {
+ char buf[50];
+ snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
+ ret->append(buf);
+ }
+ mpz_clear(val);
+ }
+ ret->push_back(']');
+
+ this->append_reflection(this->element_type_, gogo, ret);
+}
+
+// Mangled name.
+
+void
+Array_type::do_mangled_name(Gogo* gogo, std::string* ret) const
+{
+ ret->push_back('A');
+ this->append_mangled_name(this->element_type_, gogo, ret);
+ if (this->length_ != NULL)
+ {
+ mpz_t val;
+ mpz_init(val);
+ Type* type;
+ if (!this->length_->integer_constant_value(true, val, &type))
+ error_at(this->length_->location(),
+ "array length must be integer constant expression");
+ else if (mpz_cmp_si(val, 0) < 0)
+ error_at(this->length_->location(), "array length is negative");
+ else if (mpz_cmp_ui(val, mpz_get_ui(val)) != 0)
+ error_at(this->length_->location(), "array size is too large");
+ else
+ {
+ char buf[50];
+ snprintf(buf, sizeof buf, "%lu", mpz_get_ui(val));
+ ret->append(buf);
+ }
+ mpz_clear(val);
+ }
+ ret->push_back('e');
+}
+
+// Make an array type.
+
+Array_type*
+Type::make_array_type(Type* element_type, Expression* length)
+{
+ return new Array_type(element_type, length);
+}
+
+// Class Map_type.
+
+// Traversal.
+
+int
+Map_type::do_traverse(Traverse* traverse)
+{
+ if (Type::traverse(this->key_type_, traverse) == TRAVERSE_EXIT
+ || Type::traverse(this->val_type_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ return TRAVERSE_CONTINUE;
+}
+
+// Check that the map type is OK.
+
+bool
+Map_type::do_verify()
+{
+ if (this->key_type_->struct_type() != NULL
+ || this->key_type_->array_type() != NULL)
+ {
+ error_at(this->location_, "invalid map key type");
+ return false;
+ }
+ return true;
+}
+
+// Whether two map types are identical.
+
+bool
+Map_type::is_identical(const Map_type* t, bool errors_are_identical) const
+{
+ return (Type::are_identical(this->key_type(), t->key_type(),
+ errors_are_identical, NULL)
+ && Type::are_identical(this->val_type(), t->val_type(),
+ errors_are_identical, NULL));
+}
+
+// Hash code.
+
+unsigned int
+Map_type::do_hash_for_method(Gogo* gogo) const
+{
+ return (this->key_type_->hash_for_method(gogo)
+ + this->val_type_->hash_for_method(gogo)
+ + 2);
+}
+
+// Check that a call to the builtin make function is valid. For a map
+// the optional argument is the number of spaces to preallocate for
+// values.
+
+bool
+Map_type::do_check_make_expression(Expression_list* args,
+ source_location location)
+{
+ if (args != NULL && !args->empty())
+ {
+ if (!Type::check_int_value(args->front(), _("bad size when making map"),
+ location))
+ return false;
+ else if (args->size() > 1)
+ {
+ error_at(location, "too many arguments when making map");
+ return false;
+ }
+ }
+ return true;
+}
+
+// Get a tree for a map type. A map type is represented as a pointer
+// to a struct. The struct is __go_map in libgo/map.h.
+
+tree
+Map_type::do_get_tree(Gogo* gogo)
+{
+ static tree type_tree;
+ if (type_tree == NULL_TREE)
+ {
+ tree struct_type = make_node(RECORD_TYPE);
+
+ tree map_descriptor_type = gogo->map_descriptor_type();
+ tree const_map_descriptor_type =
+ build_qualified_type(map_descriptor_type, TYPE_QUAL_CONST);
+ tree name = get_identifier("__descriptor");
+ tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
+ build_pointer_type(const_map_descriptor_type));
+ DECL_CONTEXT(field) = struct_type;
+ TYPE_FIELDS(struct_type) = field;
+ tree last_field = field;
+
+ name = get_identifier("__element_count");
+ field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
+ DECL_CONTEXT(field) = struct_type;
+ DECL_CHAIN(last_field) = field;
+ last_field = field;
+
+ name = get_identifier("__bucket_count");
+ field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name, sizetype);
+ DECL_CONTEXT(field) = struct_type;
+ DECL_CHAIN(last_field) = field;
+ last_field = field;
+
+ name = get_identifier("__buckets");
+ field = build_decl(BUILTINS_LOCATION, FIELD_DECL, name,
+ build_pointer_type(ptr_type_node));
+ DECL_CONTEXT(field) = struct_type;
+ DECL_CHAIN(last_field) = field;
+
+ layout_type(struct_type);
+
+ // Give the struct a name for better debugging info.
+ name = get_identifier("__go_map");
+ tree type_decl = build_decl(BUILTINS_LOCATION, TYPE_DECL, name,
+ struct_type);
+ DECL_ARTIFICIAL(type_decl) = 1;
+ TYPE_NAME(struct_type) = type_decl;
+ go_preserve_from_gc(type_decl);
+ rest_of_decl_compilation(type_decl, 1, 0);
+
+ type_tree = build_pointer_type(struct_type);
+ go_preserve_from_gc(type_tree);
+ }
+
+ return type_tree;
+}
+
+// Initialize a map.
+
+tree
+Map_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
+{
+ if (is_clear)
+ return NULL;
+ return fold_convert(type_tree, null_pointer_node);
+}
+
+// Return an expression for a newly allocated map.
+
+tree
+Map_type::do_make_expression_tree(Translate_context* context,
+ Expression_list* args,
+ source_location location)
+{
+ tree bad_index = NULL_TREE;
+
+ tree expr_tree;
+ if (args == NULL || args->empty())
+ expr_tree = size_zero_node;
+ else
+ {
+ expr_tree = args->front()->get_tree(context);
+ if (expr_tree == error_mark_node)
+ return error_mark_node;
+ if (!DECL_P(expr_tree))
+ expr_tree = save_expr(expr_tree);
+ if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
+ expr_tree = convert_to_integer(sizetype, expr_tree);
+ bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
+ location);
+ }
+
+ tree map_type = this->get_tree(context->gogo());
+
+ static tree new_map_fndecl;
+ tree ret = Gogo::call_builtin(&new_map_fndecl,
+ location,
+ "__go_new_map",
+ 2,
+ map_type,
+ TREE_TYPE(TYPE_FIELDS(TREE_TYPE(map_type))),
+ context->gogo()->map_descriptor(this),
+ sizetype,
+ expr_tree);
+ if (ret == error_mark_node)
+ return error_mark_node;
+ // This can panic if the capacity is out of range.
+ TREE_NOTHROW(new_map_fndecl) = 0;
+
+ if (bad_index == NULL_TREE)
+ return ret;
+ else
+ {
+ tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_MAP_OUT_OF_BOUNDS,
+ location);
+ return build2(COMPOUND_EXPR, TREE_TYPE(ret),
+ build3(COND_EXPR, void_type_node,
+ bad_index, crash, NULL_TREE),
+ ret);
+ }
+}
+
+// The type of a map type descriptor.
+
+Type*
+Map_type::make_map_type_descriptor_type()
+{
+ static Type* ret;
+ if (ret == NULL)
+ {
+ Type* tdt = Type::make_type_descriptor_type();
+ Type* ptdt = Type::make_type_descriptor_ptr_type();
+
+ Struct_type* sf =
+ Type::make_builtin_struct_type(3,
+ "", tdt,
+ "key", ptdt,
+ "elem", ptdt);
+
+ ret = Type::make_builtin_named_type("MapType", sf);
+ }
+
+ return ret;
+}
+
+// Build a type descriptor for a map type.
+
+Expression*
+Map_type::do_type_descriptor(Gogo* gogo, Named_type* name)
+{
+ source_location bloc = BUILTINS_LOCATION;
+
+ Type* mtdt = Map_type::make_map_type_descriptor_type();
+
+ const Struct_field_list* fields = mtdt->struct_type()->fields();
+
+ Expression_list* vals = new Expression_list();
+ vals->reserve(3);
+
+ Struct_field_list::const_iterator p = fields->begin();
+ gcc_assert(p->field_name() == "commonType");
+ vals->push_back(this->type_descriptor_constructor(gogo,
+ RUNTIME_TYPE_KIND_MAP,
+ name, NULL, true));
+
+ ++p;
+ gcc_assert(p->field_name() == "key");
+ vals->push_back(Expression::make_type_descriptor(this->key_type_, bloc));
+
+ ++p;
+ gcc_assert(p->field_name() == "elem");
+ vals->push_back(Expression::make_type_descriptor(this->val_type_, bloc));
+
+ ++p;
+ gcc_assert(p == fields->end());
+
+ return Expression::make_struct_composite_literal(mtdt, vals, bloc);
+}
+
+// Reflection string for a map.
+
+void
+Map_type::do_reflection(Gogo* gogo, std::string* ret) const
+{
+ ret->append("map[");
+ this->append_reflection(this->key_type_, gogo, ret);
+ ret->append("] ");
+ this->append_reflection(this->val_type_, gogo, ret);
+}
+
+// Mangled name for a map.
+
+void
+Map_type::do_mangled_name(Gogo* gogo, std::string* ret) const
+{
+ ret->push_back('M');
+ this->append_mangled_name(this->key_type_, gogo, ret);
+ ret->append("__");
+ this->append_mangled_name(this->val_type_, gogo, ret);
+}
+
+// Export a map type.
+
+void
+Map_type::do_export(Export* exp) const
+{
+ exp->write_c_string("map [");
+ exp->write_type(this->key_type_);
+ exp->write_c_string("] ");
+ exp->write_type(this->val_type_);
+}
+
+// Import a map type.
+
+Map_type*
+Map_type::do_import(Import* imp)
+{
+ imp->require_c_string("map [");
+ Type* key_type = imp->read_type();
+ imp->require_c_string("] ");
+ Type* val_type = imp->read_type();
+ return Type::make_map_type(key_type, val_type, imp->location());
+}
+
+// Make a map type.
+
+Map_type*
+Type::make_map_type(Type* key_type, Type* val_type, source_location location)
+{
+ return new Map_type(key_type, val_type, location);
+}
+
+// Class Channel_type.
+
+// Hash code.
+
+unsigned int
+Channel_type::do_hash_for_method(Gogo* gogo) const
+{
+ unsigned int ret = 0;
+ if (this->may_send_)
+ ret += 1;
+ if (this->may_receive_)
+ ret += 2;
+ if (this->element_type_ != NULL)
+ ret += this->element_type_->hash_for_method(gogo) << 2;
+ return ret << 3;
+}
+
+// Whether this type is the same as T.
+
+bool
+Channel_type::is_identical(const Channel_type* t,
+ bool errors_are_identical) const
+{
+ if (!Type::are_identical(this->element_type(), t->element_type(),
+ errors_are_identical, NULL))
+ return false;
+ return (this->may_send_ == t->may_send_
+ && this->may_receive_ == t->may_receive_);
+}
+
+// Check whether the parameters for a call to the builtin function
+// make are OK for a channel. A channel can take an optional single
+// parameter which is the buffer size.
+
+bool
+Channel_type::do_check_make_expression(Expression_list* args,
+ source_location location)
+{
+ if (args != NULL && !args->empty())
+ {
+ if (!Type::check_int_value(args->front(),
+ _("bad buffer size when making channel"),
+ location))
+ return false;
+ else if (args->size() > 1)
+ {
+ error_at(location, "too many arguments when making channel");
+ return false;
+ }
+ }
+ return true;
+}
+
+// Return the tree for a channel type. A channel is a pointer to a
+// __go_channel struct. The __go_channel struct is defined in
+// libgo/runtime/channel.h.
+
+tree
+Channel_type::do_get_tree(Gogo*)
+{
+ static tree type_tree;
+ if (type_tree == NULL_TREE)
+ {
+ tree ret = make_node(RECORD_TYPE);
+ TYPE_NAME(ret) = get_identifier("__go_channel");
+ TYPE_STUB_DECL(ret) = build_decl(BUILTINS_LOCATION, TYPE_DECL, NULL_TREE,
+ ret);
+ type_tree = build_pointer_type(ret);
+ go_preserve_from_gc(type_tree);
+ }
+ return type_tree;
+}
+
+// Initialize a channel variable.
+
+tree
+Channel_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
+{
+ if (is_clear)
+ return NULL;
+ return fold_convert(type_tree, null_pointer_node);
+}
+
+// Handle the builtin function make for a channel.
+
+tree
+Channel_type::do_make_expression_tree(Translate_context* context,
+ Expression_list* args,
+ source_location location)
+{
+ Gogo* gogo = context->gogo();
+ tree channel_type = this->get_tree(gogo);
+
+ tree element_tree = this->element_type_->get_tree(gogo);
+ tree element_size_tree = size_in_bytes(element_tree);
+
+ tree bad_index = NULL_TREE;
+
+ tree expr_tree;
+ if (args == NULL || args->empty())
+ expr_tree = size_zero_node;
+ else
+ {
+ expr_tree = args->front()->get_tree(context);
+ if (expr_tree == error_mark_node)
+ return error_mark_node;
+ if (!DECL_P(expr_tree))
+ expr_tree = save_expr(expr_tree);
+ if (!INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
+ expr_tree = convert_to_integer(sizetype, expr_tree);
+ bad_index = Expression::check_bounds(expr_tree, sizetype, bad_index,
+ location);
+ }
+
+ static tree new_channel_fndecl;
+ tree ret = Gogo::call_builtin(&new_channel_fndecl,
+ location,
+ "__go_new_channel",
+ 2,
+ channel_type,
+ sizetype,
+ element_size_tree,
+ sizetype,
+ expr_tree);
+ if (ret == error_mark_node)
+ return error_mark_node;
+ // This can panic if the capacity is out of range.
+ TREE_NOTHROW(new_channel_fndecl) = 0;
+
+ if (bad_index == NULL_TREE)
+ return ret;
+ else
+ {
+ tree crash = Gogo::runtime_error(RUNTIME_ERROR_MAKE_CHAN_OUT_OF_BOUNDS,
+ location);
+ return build2(COMPOUND_EXPR, TREE_TYPE(ret),
+ build3(COND_EXPR, void_type_node,
+ bad_index, crash, NULL_TREE),
+ ret);
+ }
+}
+
+// Build a type descriptor for a channel type.
+
+Type*
+Channel_type::make_chan_type_descriptor_type()
+{
+ static Type* ret;
+ if (ret == NULL)
+ {
+ Type* tdt = Type::make_type_descriptor_type();
+ Type* ptdt = Type::make_type_descriptor_ptr_type();
+
+ Type* uintptr_type = Type::lookup_integer_type("uintptr");
+
+ Struct_type* sf =
+ Type::make_builtin_struct_type(3,
+ "", tdt,
+ "elem", ptdt,
+ "dir", uintptr_type);
+
+ ret = Type::make_builtin_named_type("ChanType", sf);
+ }
+
+ return ret;
+}
+
+// Build a type descriptor for a map type.
+
+Expression*
+Channel_type::do_type_descriptor(Gogo* gogo, Named_type* name)
+{
+ source_location bloc = BUILTINS_LOCATION;
+
+ Type* ctdt = Channel_type::make_chan_type_descriptor_type();
+
+ const Struct_field_list* fields = ctdt->struct_type()->fields();
+
+ Expression_list* vals = new Expression_list();
+ vals->reserve(3);
+
+ Struct_field_list::const_iterator p = fields->begin();
+ gcc_assert(p->field_name() == "commonType");
+ vals->push_back(this->type_descriptor_constructor(gogo,
+ RUNTIME_TYPE_KIND_CHAN,
+ name, NULL, true));
+
+ ++p;
+ gcc_assert(p->field_name() == "elem");
+ vals->push_back(Expression::make_type_descriptor(this->element_type_, bloc));
+
+ ++p;
+ gcc_assert(p->field_name() == "dir");
+ // These bits must match the ones in libgo/runtime/go-type.h.
+ int val = 0;
+ if (this->may_receive_)
+ val |= 1;
+ if (this->may_send_)
+ val |= 2;
+ mpz_t iv;
+ mpz_init_set_ui(iv, val);
+ vals->push_back(Expression::make_integer(&iv, p->type(), bloc));
+ mpz_clear(iv);
+
+ ++p;
+ gcc_assert(p == fields->end());
+
+ return Expression::make_struct_composite_literal(ctdt, vals, bloc);
+}
+
+// Reflection string.
+
+void
+Channel_type::do_reflection(Gogo* gogo, std::string* ret) const
+{
+ if (!this->may_send_)
+ ret->append("<-");
+ ret->append("chan");
+ if (!this->may_receive_)
+ ret->append("<-");
+ ret->push_back(' ');
+ this->append_reflection(this->element_type_, gogo, ret);
+}
+
+// Mangled name.
+
+void
+Channel_type::do_mangled_name(Gogo* gogo, std::string* ret) const
+{
+ ret->push_back('C');
+ this->append_mangled_name(this->element_type_, gogo, ret);
+ if (this->may_send_)
+ ret->push_back('s');
+ if (this->may_receive_)
+ ret->push_back('r');
+ ret->push_back('e');
+}
+
+// Export.
+
+void
+Channel_type::do_export(Export* exp) const
+{
+ exp->write_c_string("chan ");
+ if (this->may_send_ && !this->may_receive_)
+ exp->write_c_string("-< ");
+ else if (this->may_receive_ && !this->may_send_)
+ exp->write_c_string("<- ");
+ exp->write_type(this->element_type_);
+}
+
+// Import.
+
+Channel_type*
+Channel_type::do_import(Import* imp)
+{
+ imp->require_c_string("chan ");
+
+ bool may_send;
+ bool may_receive;
+ if (imp->match_c_string("-< "))
+ {
+ imp->advance(3);
+ may_send = true;
+ may_receive = false;
+ }
+ else if (imp->match_c_string("<- "))
+ {
+ imp->advance(3);
+ may_receive = true;
+ may_send = false;
+ }
+ else
+ {
+ may_send = true;
+ may_receive = true;
+ }
+
+ Type* element_type = imp->read_type();
+
+ return Type::make_channel_type(may_send, may_receive, element_type);
+}
+
+// Make a new channel type.
+
+Channel_type*
+Type::make_channel_type(bool send, bool receive, Type* element_type)
+{
+ return new Channel_type(send, receive, element_type);
+}
+
+// Class Interface_type.
+
+// Traversal.
+
+int
+Interface_type::do_traverse(Traverse* traverse)
+{
+ if (this->methods_ == NULL)
+ return TRAVERSE_CONTINUE;
+ return this->methods_->traverse(traverse);
+}
+
+// Finalize the methods. This handles interface inheritance.
+
+void
+Interface_type::finalize_methods()
+{
+ if (this->methods_ == NULL)
+ return;
+ std::vector<Named_type*> seen;
+ bool is_recursive = false;
+ size_t from = 0;
+ size_t to = 0;
+ while (from < this->methods_->size())
+ {
+ const Typed_identifier* p = &this->methods_->at(from);
+ if (!p->name().empty())
+ {
+ size_t i;
+ for (i = 0; i < to; ++i)
+ {
+ if (this->methods_->at(i).name() == p->name())
+ {
+ error_at(p->location(), "duplicate method %qs",
+ Gogo::message_name(p->name()).c_str());
+ break;
+ }
+ }
+ if (i == to)
+ {
+ if (from != to)
+ this->methods_->set(to, *p);
+ ++to;
+ }
+ ++from;
+ continue;
+ }
+
+ Interface_type* it = p->type()->interface_type();
+ if (it == NULL)
+ {
+ error_at(p->location(), "interface contains embedded non-interface");
+ ++from;
+ continue;
+ }
+ if (it == this)
+ {
+ if (!is_recursive)
+ {
+ error_at(p->location(), "invalid recursive interface");
+ is_recursive = true;
+ }
+ ++from;
+ continue;
+ }
+
+ Named_type* nt = p->type()->named_type();
+ if (nt != NULL)
+ {
+ std::vector<Named_type*>::const_iterator q;
+ for (q = seen.begin(); q != seen.end(); ++q)
+ {
+ if (*q == nt)
+ {
+ error_at(p->location(), "inherited interface loop");
+ break;
+ }
+ }
+ if (q != seen.end())
+ {
+ ++from;
+ continue;
+ }
+ seen.push_back(nt);
+ }
+
+ const Typed_identifier_list* methods = it->methods();
+ if (methods == NULL)
+ {
+ ++from;
+ continue;
+ }
+ for (Typed_identifier_list::const_iterator q = methods->begin();
+ q != methods->end();
+ ++q)
+ {
+ if (q->name().empty())
+ {
+ if (q->type()->forwarded() == p->type()->forwarded())
+ error_at(p->location(), "interface inheritance loop");
+ else
+ {
+ size_t i;
+ for (i = from + 1; i < this->methods_->size(); ++i)
+ {
+ const Typed_identifier* r = &this->methods_->at(i);
+ if (r->name().empty()
+ && r->type()->forwarded() == q->type()->forwarded())
+ {
+ error_at(p->location(),
+ "inherited interface listed twice");
+ break;
+ }
+ }
+ if (i == this->methods_->size())
+ this->methods_->push_back(Typed_identifier(q->name(),
+ q->type(),
+ p->location()));
+ }
+ }
+ else if (this->find_method(q->name()) == NULL)
+ this->methods_->push_back(Typed_identifier(q->name(), q->type(),
+ p->location()));
+ else
+ {
+ if (!is_recursive)
+ error_at(p->location(), "inherited method %qs is ambiguous",
+ Gogo::message_name(q->name()).c_str());
+ }
+ }
+ ++from;
+ }
+ if (to == 0)
+ {
+ delete this->methods_;
+ this->methods_ = NULL;
+ }
+ else
+ {
+ this->methods_->resize(to);
+ this->methods_->sort_by_name();
+ }
+}
+
+// Return the method NAME, or NULL.
+
+const Typed_identifier*
+Interface_type::find_method(const std::string& name) const
+{
+ if (this->methods_ == NULL)
+ return NULL;
+ for (Typed_identifier_list::const_iterator p = this->methods_->begin();
+ p != this->methods_->end();
+ ++p)
+ if (p->name() == name)
+ return &*p;
+ return NULL;
+}
+
+// Return the method index.
+
+size_t
+Interface_type::method_index(const std::string& name) const
+{
+ gcc_assert(this->methods_ != NULL);
+ size_t ret = 0;
+ for (Typed_identifier_list::const_iterator p = this->methods_->begin();
+ p != this->methods_->end();
+ ++p, ++ret)
+ if (p->name() == name)
+ return ret;
+ gcc_unreachable();
+}
+
+// Return whether NAME is an unexported method, for better error
+// reporting.
+
+bool
+Interface_type::is_unexported_method(Gogo* gogo, const std::string& name) const
+{
+ if (this->methods_ == NULL)
+ return false;
+ for (Typed_identifier_list::const_iterator p = this->methods_->begin();
+ p != this->methods_->end();
+ ++p)
+ {
+ const std::string& method_name(p->name());
+ if (Gogo::is_hidden_name(method_name)
+ && name == Gogo::unpack_hidden_name(method_name)
+ && gogo->pack_hidden_name(name, false) != method_name)
+ return true;
+ }
+ return false;
+}
+
+// Whether this type is identical with T.
+
+bool
+Interface_type::is_identical(const Interface_type* t,
+ bool errors_are_identical) const
+{
+ // We require the same methods with the same types. The methods
+ // have already been sorted.
+ if (this->methods() == NULL || t->methods() == NULL)
+ return this->methods() == t->methods();
+
+ Typed_identifier_list::const_iterator p1 = this->methods()->begin();
+ for (Typed_identifier_list::const_iterator p2 = t->methods()->begin();
+ p2 != t->methods()->end();
+ ++p1, ++p2)
+ {
+ if (p1 == this->methods()->end())
+ return false;
+ if (p1->name() != p2->name()
+ || !Type::are_identical(p1->type(), p2->type(),
+ errors_are_identical, NULL))
+ return false;
+ }
+ if (p1 != this->methods()->end())
+ return false;
+ return true;
+}
+
+// Whether we can assign the interface type T to this type. The types
+// are known to not be identical. An interface assignment is only
+// permitted if T is known to implement all methods in THIS.
+// Otherwise a type guard is required.
+
+bool
+Interface_type::is_compatible_for_assign(const Interface_type* t,
+ std::string* reason) const
+{
+ if (this->methods() == NULL)
+ return true;
+ for (Typed_identifier_list::const_iterator p = this->methods()->begin();
+ p != this->methods()->end();
+ ++p)
+ {
+ const Typed_identifier* m = t->find_method(p->name());
+ if (m == NULL)
+ {
+ if (reason != NULL)
+ {
+ char buf[200];
+ snprintf(buf, sizeof buf,
+ _("need explicit conversion; missing method %s%s%s"),
+ open_quote, Gogo::message_name(p->name()).c_str(),
+ close_quote);
+ reason->assign(buf);
+ }
+ return false;
+ }
+
+ std::string subreason;
+ if (!Type::are_identical(p->type(), m->type(), true, &subreason))
+ {
+ if (reason != NULL)
+ {
+ std::string n = Gogo::message_name(p->name());
+ size_t len = 100 + n.length() + subreason.length();
+ char* buf = new char[len];
+ if (subreason.empty())
+ snprintf(buf, len, _("incompatible type for method %s%s%s"),
+ open_quote, n.c_str(), close_quote);
+ else
+ snprintf(buf, len,
+ _("incompatible type for method %s%s%s (%s)"),
+ open_quote, n.c_str(), close_quote,
+ subreason.c_str());
+ reason->assign(buf);
+ delete[] buf;
+ }
+ return false;
+ }
+ }
+
+ return true;
+}
+
+// Hash code.
+
+unsigned int
+Interface_type::do_hash_for_method(Gogo* gogo) const
+{
+ unsigned int ret = 0;
+ if (this->methods_ != NULL)
+ {
+ for (Typed_identifier_list::const_iterator p = this->methods_->begin();
+ p != this->methods_->end();
+ ++p)
+ {
+ ret = Type::hash_string(p->name(), ret);
+ ret += p->type()->hash_for_method(gogo);
+ ret <<= 1;
+ }
+ }
+ return ret;
+}
+
+// Return true if T implements the interface. If it does not, and
+// REASON is not NULL, set *REASON to a useful error message.
+
+bool
+Interface_type::implements_interface(const Type* t, std::string* reason) const
+{
+ if (this->methods_ == NULL)
+ return true;
+
+ bool is_pointer = false;
+ const Named_type* nt = t->named_type();
+ const Struct_type* st = t->struct_type();
+ // If we start with a named type, we don't dereference it to find
+ // methods.
+ if (nt == NULL)
+ {
+ const Type* pt = t->points_to();
+ if (pt != NULL)
+ {
+ // If T is a pointer to a named type, then we need to look at
+ // the type to which it points.
+ is_pointer = true;
+ nt = pt->named_type();
+ st = pt->struct_type();
+ }
+ }
+
+ // If we have a named type, get the methods from it rather than from
+ // any struct type.
+ if (nt != NULL)
+ st = NULL;
+
+ // Only named and struct types have methods.
+ if (nt == NULL && st == NULL)
+ {
+ if (reason != NULL)
+ {
+ if (t->points_to() != NULL
+ && t->points_to()->interface_type() != NULL)
+ reason->assign(_("pointer to interface type has no methods"));
+ else
+ reason->assign(_("type has no methods"));
+ }
+ return false;
+ }
+
+ if (nt != NULL ? !nt->has_any_methods() : !st->has_any_methods())
+ {
+ if (reason != NULL)
+ {
+ if (t->points_to() != NULL
+ && t->points_to()->interface_type() != NULL)
+ reason->assign(_("pointer to interface type has no methods"));
+ else
+ reason->assign(_("type has no methods"));
+ }
+ return false;
+ }
+
+ for (Typed_identifier_list::const_iterator p = this->methods_->begin();
+ p != this->methods_->end();
+ ++p)
+ {
+ bool is_ambiguous = false;
+ Method* m = (nt != NULL
+ ? nt->method_function(p->name(), &is_ambiguous)
+ : st->method_function(p->name(), &is_ambiguous));
+ if (m == NULL)
+ {
+ if (reason != NULL)
+ {
+ std::string n = Gogo::message_name(p->name());
+ size_t len = n.length() + 100;
+ char* buf = new char[len];
+ if (is_ambiguous)
+ snprintf(buf, len, _("ambiguous method %s%s%s"),
+ open_quote, n.c_str(), close_quote);
+ else
+ snprintf(buf, len, _("missing method %s%s%s"),
+ open_quote, n.c_str(), close_quote);
+ reason->assign(buf);
+ delete[] buf;
+ }
+ return false;
+ }
+
+ Function_type *p_fn_type = p->type()->function_type();
+ Function_type* m_fn_type = m->type()->function_type();
+ gcc_assert(p_fn_type != NULL && m_fn_type != NULL);
+ std::string subreason;
+ if (!p_fn_type->is_identical(m_fn_type, true, true, &subreason))
+ {
+ if (reason != NULL)
+ {
+ std::string n = Gogo::message_name(p->name());
+ size_t len = 100 + n.length() + subreason.length();
+ char* buf = new char[len];
+ if (subreason.empty())
+ snprintf(buf, len, _("incompatible type for method %s%s%s"),
+ open_quote, n.c_str(), close_quote);
+ else
+ snprintf(buf, len,
+ _("incompatible type for method %s%s%s (%s)"),
+ open_quote, n.c_str(), close_quote,
+ subreason.c_str());
+ reason->assign(buf);
+ delete[] buf;
+ }
+ return false;
+ }
+
+ if (!is_pointer && !m->is_value_method())
+ {
+ if (reason != NULL)
+ {
+ std::string n = Gogo::message_name(p->name());
+ size_t len = 100 + n.length();
+ char* buf = new char[len];
+ snprintf(buf, len, _("method %s%s%s requires a pointer"),
+ open_quote, n.c_str(), close_quote);
+ reason->assign(buf);
+ delete[] buf;
+ }
+ return false;
+ }
+ }
+
+ return true;
+}
+
+// Return a tree for an interface type. An interface is a pointer to
+// a struct. The struct has three fields. The first field is a
+// pointer to the type descriptor for the dynamic type of the object.
+// The second field is a pointer to a table of methods for the
+// interface to be used with the object. The third field is the value
+// of the object itself.
+
+tree
+Interface_type::do_get_tree(Gogo* gogo)
+{
+ if (this->methods_ == NULL)
+ return Interface_type::empty_type_tree(gogo);
+ else
+ {
+ tree t = Interface_type::non_empty_type_tree(this->location_);
+ return this->fill_in_tree(gogo, t);
+ }
+}
+
+// Return a singleton struct for an empty interface type. We use the
+// same type for all empty interfaces. This lets us assign them to
+// each other directly without triggering GIMPLE type errors.
+
+tree
+Interface_type::empty_type_tree(Gogo* gogo)
+{
+ static tree empty_interface;
+ if (empty_interface != NULL_TREE)
+ return empty_interface;
+
+ tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
+ dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
+ return Gogo::builtin_struct(&empty_interface, "__go_empty_interface",
+ NULL_TREE, 2,
+ "__type_descriptor",
+ dtype,
+ "__object",
+ ptr_type_node);
+}
+
+// Return a new struct for a non-empty interface type. The correct
+// values are filled in by fill_in_tree.
+
+tree
+Interface_type::non_empty_type_tree(source_location location)
+{
+ tree ret = make_node(RECORD_TYPE);
+
+ tree field_trees = NULL_TREE;
+ tree* pp = &field_trees;
+
+ tree name_tree = get_identifier("__methods");
+ tree field = build_decl(location, FIELD_DECL, name_tree, ptr_type_node);
+ DECL_CONTEXT(field) = ret;
+ *pp = field;
+ pp = &DECL_CHAIN(field);
+
+ name_tree = get_identifier("__object");
+ field = build_decl(location, FIELD_DECL, name_tree, ptr_type_node);
+ DECL_CONTEXT(field) = ret;
+ *pp = field;
+
+ TYPE_FIELDS(ret) = field_trees;
+
+ layout_type(ret);
+
+ return ret;
+}
+
+// Fill in the tree for an interface type. This is used for named
+// interface types.
+
+tree
+Interface_type::fill_in_tree(Gogo* gogo, tree type)
+{
+ gcc_assert(this->methods_ != NULL);
+
+ // Build the type of the table of methods.
+
+ tree method_table = make_node(RECORD_TYPE);
+
+ // The first field is a pointer to the type descriptor.
+ tree name_tree = get_identifier("__type_descriptor");
+ tree dtype = Type::make_type_descriptor_type()->get_tree(gogo);
+ dtype = build_pointer_type(build_qualified_type(dtype, TYPE_QUAL_CONST));
+ tree field = build_decl(this->location_, FIELD_DECL, name_tree, dtype);
+ DECL_CONTEXT(field) = method_table;
+ TYPE_FIELDS(method_table) = field;
+
+ std::string last_name = "";
+ tree* pp = &DECL_CHAIN(field);
+ for (Typed_identifier_list::const_iterator p = this->methods_->begin();
+ p != this->methods_->end();
+ ++p)
+ {
+ std::string name = Gogo::unpack_hidden_name(p->name());
+ name_tree = get_identifier_with_length(name.data(), name.length());
+ tree field_type = p->type()->get_tree(gogo);
+ if (field_type == error_mark_node)
+ return error_mark_node;
+ field = build_decl(this->location_, FIELD_DECL, name_tree, field_type);
+ DECL_CONTEXT(field) = method_table;
+ *pp = field;
+ pp = &DECL_CHAIN(field);
+ // Sanity check: the names should be sorted.
+ gcc_assert(p->name() > last_name);
+ last_name = p->name();
+ }
+ layout_type(method_table);
+
+ // Update the type of the __methods field from a generic pointer to
+ // a pointer to the method table.
+ field = TYPE_FIELDS(type);
+ gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
+
+ TREE_TYPE(field) = build_pointer_type(method_table);
+
+ return type;
+}
+
+// Initialization value.
+
+tree
+Interface_type::do_get_init_tree(Gogo*, tree type_tree, bool is_clear)
+{
+ if (is_clear)
+ return NULL;
+
+ VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
+ for (tree field = TYPE_FIELDS(type_tree);
+ field != NULL_TREE;
+ field = DECL_CHAIN(field))
+ {
+ constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
+ elt->index = field;
+ elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
+ }
+
+ tree ret = build_constructor(type_tree, init);
+ TREE_CONSTANT(ret) = 1;
+ return ret;
+}
+
+// The type of an interface type descriptor.
+
+Type*
+Interface_type::make_interface_type_descriptor_type()
+{
+ static Type* ret;
+ if (ret == NULL)
+ {
+ Type* tdt = Type::make_type_descriptor_type();
+ Type* ptdt = Type::make_type_descriptor_ptr_type();
+
+ Type* string_type = Type::lookup_string_type();
+ Type* pointer_string_type = Type::make_pointer_type(string_type);
+
+ Struct_type* sm =
+ Type::make_builtin_struct_type(3,
+ "name", pointer_string_type,
+ "pkgPath", pointer_string_type,
+ "typ", ptdt);
+
+ Type* nsm = Type::make_builtin_named_type("imethod", sm);
+
+ Type* slice_nsm = Type::make_array_type(nsm, NULL);
+
+ Struct_type* s = Type::make_builtin_struct_type(2,
+ "", tdt,
+ "methods", slice_nsm);
+
+ ret = Type::make_builtin_named_type("InterfaceType", s);
+ }
+
+ return ret;
+}
+
+// Build a type descriptor for an interface type.
+
+Expression*
+Interface_type::do_type_descriptor(Gogo* gogo, Named_type* name)
+{
+ source_location bloc = BUILTINS_LOCATION;
+
+ Type* itdt = Interface_type::make_interface_type_descriptor_type();
+
+ const Struct_field_list* ifields = itdt->struct_type()->fields();
+
+ Expression_list* ivals = new Expression_list();
+ ivals->reserve(2);
+
+ Struct_field_list::const_iterator pif = ifields->begin();
+ gcc_assert(pif->field_name() == "commonType");
+ ivals->push_back(this->type_descriptor_constructor(gogo,
+ RUNTIME_TYPE_KIND_INTERFACE,
+ name, NULL, true));
+
+ ++pif;
+ gcc_assert(pif->field_name() == "methods");
+
+ Expression_list* methods = new Expression_list();
+ if (this->methods_ != NULL && !this->methods_->empty())
+ {
+ Type* elemtype = pif->type()->array_type()->element_type();
+
+ methods->reserve(this->methods_->size());
+ for (Typed_identifier_list::const_iterator pm = this->methods_->begin();
+ pm != this->methods_->end();
+ ++pm)
+ {
+ const Struct_field_list* mfields = elemtype->struct_type()->fields();
+
+ Expression_list* mvals = new Expression_list();
+ mvals->reserve(3);
+
+ Struct_field_list::const_iterator pmf = mfields->begin();
+ gcc_assert(pmf->field_name() == "name");
+ std::string s = Gogo::unpack_hidden_name(pm->name());
+ Expression* e = Expression::make_string(s, bloc);
+ mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
+
+ ++pmf;
+ gcc_assert(pmf->field_name() == "pkgPath");
+ if (!Gogo::is_hidden_name(pm->name()))
+ mvals->push_back(Expression::make_nil(bloc));
+ else
+ {
+ s = Gogo::hidden_name_prefix(pm->name());
+ e = Expression::make_string(s, bloc);
+ mvals->push_back(Expression::make_unary(OPERATOR_AND, e, bloc));
+ }
+
+ ++pmf;
+ gcc_assert(pmf->field_name() == "typ");
+ mvals->push_back(Expression::make_type_descriptor(pm->type(), bloc));
+
+ ++pmf;
+ gcc_assert(pmf == mfields->end());
+
+ e = Expression::make_struct_composite_literal(elemtype, mvals,
+ bloc);
+ methods->push_back(e);
+ }
+ }
+
+ ivals->push_back(Expression::make_slice_composite_literal(pif->type(),
+ methods, bloc));
+
+ ++pif;
+ gcc_assert(pif == ifields->end());
+
+ return Expression::make_struct_composite_literal(itdt, ivals, bloc);
+}
+
+// Reflection string.
+
+void
+Interface_type::do_reflection(Gogo* gogo, std::string* ret) const
+{
+ ret->append("interface {");
+ if (this->methods_ != NULL)
+ {
+ for (Typed_identifier_list::const_iterator p = this->methods_->begin();
+ p != this->methods_->end();
+ ++p)
+ {
+ if (p != this->methods_->begin())
+ ret->append(";");
+ ret->push_back(' ');
+ ret->append(Gogo::unpack_hidden_name(p->name()));
+ std::string sub = p->type()->reflection(gogo);
+ gcc_assert(sub.compare(0, 4, "func") == 0);
+ sub = sub.substr(4);
+ ret->append(sub);
+ }
+ }
+ ret->append(" }");
+}
+
+// Mangled name.
+
+void
+Interface_type::do_mangled_name(Gogo* gogo, std::string* ret) const
+{
+ ret->push_back('I');
+
+ const Typed_identifier_list* methods = this->methods_;
+ if (methods != NULL)
+ {
+ for (Typed_identifier_list::const_iterator p = methods->begin();
+ p != methods->end();
+ ++p)
+ {
+ std::string n = Gogo::unpack_hidden_name(p->name());
+ char buf[20];
+ snprintf(buf, sizeof buf, "%u_",
+ static_cast<unsigned int>(n.length()));
+ ret->append(buf);
+ ret->append(n);
+ this->append_mangled_name(p->type(), gogo, ret);
+ }
+ }
+
+ ret->push_back('e');
+}
+
+// Export.
+
+void
+Interface_type::do_export(Export* exp) const
+{
+ exp->write_c_string("interface { ");
+
+ const Typed_identifier_list* methods = this->methods_;
+ if (methods != NULL)
+ {
+ for (Typed_identifier_list::const_iterator pm = methods->begin();
+ pm != methods->end();
+ ++pm)
+ {
+ exp->write_string(pm->name());
+ exp->write_c_string(" (");
+
+ const Function_type* fntype = pm->type()->function_type();
+
+ bool first = true;
+ const Typed_identifier_list* parameters = fntype->parameters();
+ if (parameters != NULL)
+ {
+ bool is_varargs = fntype->is_varargs();
+ for (Typed_identifier_list::const_iterator pp =
+ parameters->begin();
+ pp != parameters->end();
+ ++pp)
+ {
+ if (first)
+ first = false;
+ else
+ exp->write_c_string(", ");
+ if (!is_varargs || pp + 1 != parameters->end())
+ exp->write_type(pp->type());
+ else
+ {
+ exp->write_c_string("...");
+ Type *pptype = pp->type();
+ exp->write_type(pptype->array_type()->element_type());
+ }
+ }
+ }
+
+ exp->write_c_string(")");
+
+ const Typed_identifier_list* results = fntype->results();
+ if (results != NULL)
+ {
+ exp->write_c_string(" ");
+ if (results->size() == 1)
+ exp->write_type(results->begin()->type());
+ else
+ {
+ first = true;
+ exp->write_c_string("(");
+ for (Typed_identifier_list::const_iterator p =
+ results->begin();
+ p != results->end();
+ ++p)
+ {
+ if (first)
+ first = false;
+ else
+ exp->write_c_string(", ");
+ exp->write_type(p->type());
+ }
+ exp->write_c_string(")");
+ }
+ }
+
+ exp->write_c_string("; ");
+ }
+ }
+
+ exp->write_c_string("}");
+}
+
+// Import an interface type.
+
+Interface_type*
+Interface_type::do_import(Import* imp)
+{
+ imp->require_c_string("interface { ");
+
+ Typed_identifier_list* methods = new Typed_identifier_list;
+ while (imp->peek_char() != '}')
+ {
+ std::string name = imp->read_identifier();
+ imp->require_c_string(" (");
+
+ Typed_identifier_list* parameters;
+ bool is_varargs = false;
+ if (imp->peek_char() == ')')
+ parameters = NULL;
+ else
+ {
+ parameters = new Typed_identifier_list;
+ while (true)
+ {
+ if (imp->match_c_string("..."))
+ {
+ imp->advance(3);
+ is_varargs = true;
+ }
+
+ Type* ptype = imp->read_type();
+ if (is_varargs)
+ ptype = Type::make_array_type(ptype, NULL);
+ parameters->push_back(Typed_identifier(Import::import_marker,
+ ptype, imp->location()));
+ if (imp->peek_char() != ',')
+ break;
+ gcc_assert(!is_varargs);
+ imp->require_c_string(", ");
+ }
+ }
+ imp->require_c_string(")");
+
+ Typed_identifier_list* results;
+ if (imp->peek_char() != ' ')
+ results = NULL;
+ else
+ {
+ results = new Typed_identifier_list;
+ imp->advance(1);
+ if (imp->peek_char() != '(')
+ {
+ Type* rtype = imp->read_type();
+ results->push_back(Typed_identifier(Import::import_marker,
+ rtype, imp->location()));
+ }
+ else
+ {
+ imp->advance(1);
+ while (true)
+ {
+ Type* rtype = imp->read_type();
+ results->push_back(Typed_identifier(Import::import_marker,
+ rtype, imp->location()));
+ if (imp->peek_char() != ',')
+ break;
+ imp->require_c_string(", ");
+ }
+ imp->require_c_string(")");
+ }
+ }
+
+ Function_type* fntype = Type::make_function_type(NULL, parameters,
+ results,
+ imp->location());
+ if (is_varargs)
+ fntype->set_is_varargs();
+ methods->push_back(Typed_identifier(name, fntype, imp->location()));
+
+ imp->require_c_string("; ");
+ }
+
+ imp->require_c_string("}");
+
+ if (methods->empty())
+ {
+ delete methods;
+ methods = NULL;
+ }
+
+ return Type::make_interface_type(methods, imp->location());
+}
+
+// Make an interface type.
+
+Interface_type*
+Type::make_interface_type(Typed_identifier_list* methods,
+ source_location location)
+{
+ return new Interface_type(methods, location);
+}
+
+// Class Method.
+
+// Bind a method to an object.
+
+Expression*
+Method::bind_method(Expression* expr, source_location location) const
+{
+ if (this->stub_ == NULL)
+ {
+ // When there is no stub object, the binding is determined by
+ // the child class.
+ return this->do_bind_method(expr, location);
+ }
+
+ Expression* func = Expression::make_func_reference(this->stub_, NULL,
+ location);
+ return Expression::make_bound_method(expr, func, location);
+}
+
+// Return the named object associated with a method. This may only be
+// called after methods are finalized.
+
+Named_object*
+Method::named_object() const
+{
+ if (this->stub_ != NULL)
+ return this->stub_;
+ return this->do_named_object();
+}
+
+// Class Named_method.
+
+// The type of the method.
+
+Function_type*
+Named_method::do_type() const
+{
+ if (this->named_object_->is_function())
+ return this->named_object_->func_value()->type();
+ else if (this->named_object_->is_function_declaration())
+ return this->named_object_->func_declaration_value()->type();
+ else
+ gcc_unreachable();
+}
+
+// Return the location of the method receiver.
+
+source_location
+Named_method::do_receiver_location() const
+{
+ return this->do_type()->receiver()->location();
+}
+
+// Bind a method to an object.
+
+Expression*
+Named_method::do_bind_method(Expression* expr, source_location location) const
+{
+ Expression* func = Expression::make_func_reference(this->named_object_, NULL,
+ location);
+ Bound_method_expression* bme = Expression::make_bound_method(expr, func,
+ location);
+ // If this is not a local method, and it does not use a stub, then
+ // the real method expects a different type. We need to cast the
+ // first argument.
+ if (this->depth() > 0 && !this->needs_stub_method())
+ {
+ Function_type* ftype = this->do_type();
+ gcc_assert(ftype->is_method());
+ Type* frtype = ftype->receiver()->type();
+ bme->set_first_argument_type(frtype);
+ }
+ return bme;
+}
+
+// Class Interface_method.
+
+// Bind a method to an object.
+
+Expression*
+Interface_method::do_bind_method(Expression* expr,
+ source_location location) const
+{
+ return Expression::make_interface_field_reference(expr, this->name_,
+ location);
+}
+
+// Class Methods.
+
+// Insert a new method. Return true if it was inserted, false
+// otherwise.
+
+bool
+Methods::insert(const std::string& name, Method* m)
+{
+ std::pair<Method_map::iterator, bool> ins =
+ this->methods_.insert(std::make_pair(name, m));
+ if (ins.second)
+ return true;
+ else
+ {
+ Method* old_method = ins.first->second;
+ if (m->depth() < old_method->depth())
+ {
+ delete old_method;
+ ins.first->second = m;
+ return true;
+ }
+ else
+ {
+ if (m->depth() == old_method->depth())
+ old_method->set_is_ambiguous();
+ return false;
+ }
+ }
+}
+
+// Return the number of unambiguous methods.
+
+size_t
+Methods::count() const
+{
+ size_t ret = 0;
+ for (Method_map::const_iterator p = this->methods_.begin();
+ p != this->methods_.end();
+ ++p)
+ if (!p->second->is_ambiguous())
+ ++ret;
+ return ret;
+}
+
+// Class Named_type.
+
+// Return the name of the type.
+
+const std::string&
+Named_type::name() const
+{
+ return this->named_object_->name();
+}
+
+// Return the name of the type to use in an error message.
+
+std::string
+Named_type::message_name() const
+{
+ return this->named_object_->message_name();
+}
+
+// Return the base type for this type. We have to be careful about
+// circular type definitions, which are invalid but may be seen here.
+
+Type*
+Named_type::named_base()
+{
+ if (this->seen_ > 0)
+ return this;
+ ++this->seen_;
+ Type* ret = this->type_->base();
+ --this->seen_;
+ return ret;
+}
+
+const Type*
+Named_type::named_base() const
+{
+ if (this->seen_ > 0)
+ return this;
+ ++this->seen_;
+ const Type* ret = this->type_->base();
+ --this->seen_;
+ return ret;
+}
+
+// Return whether this is an error type. We have to be careful about
+// circular type definitions, which are invalid but may be seen here.
+
+bool
+Named_type::is_named_error_type() const
+{
+ if (this->seen_ > 0)
+ return false;
+ ++this->seen_;
+ bool ret = this->type_->is_error_type();
+ --this->seen_;
+ return ret;
+}
+
+// Add a method to this type.
+
+Named_object*
+Named_type::add_method(const std::string& name, Function* function)
+{
+ if (this->local_methods_ == NULL)
+ this->local_methods_ = new Bindings(NULL);
+ return this->local_methods_->add_function(name, NULL, function);
+}
+
+// Add a method declaration to this type.
+
+Named_object*
+Named_type::add_method_declaration(const std::string& name, Package* package,
+ Function_type* type,
+ source_location location)
+{
+ if (this->local_methods_ == NULL)
+ this->local_methods_ = new Bindings(NULL);
+ return this->local_methods_->add_function_declaration(name, package, type,
+ location);
+}
+
+// Add an existing method to this type.
+
+void
+Named_type::add_existing_method(Named_object* no)
+{
+ if (this->local_methods_ == NULL)
+ this->local_methods_ = new Bindings(NULL);
+ this->local_methods_->add_named_object(no);
+}
+
+// Look for a local method NAME, and returns its named object, or NULL
+// if not there.
+
+Named_object*
+Named_type::find_local_method(const std::string& name) const
+{
+ if (this->local_methods_ == NULL)
+ return NULL;
+ return this->local_methods_->lookup(name);
+}
+
+// Return whether NAME is an unexported field or method, for better
+// error reporting.
+
+bool
+Named_type::is_unexported_local_method(Gogo* gogo,
+ const std::string& name) const
+{
+ Bindings* methods = this->local_methods_;
+ if (methods != NULL)
+ {
+ for (Bindings::const_declarations_iterator p =
+ methods->begin_declarations();
+ p != methods->end_declarations();
+ ++p)
+ {
+ if (Gogo::is_hidden_name(p->first)
+ && name == Gogo::unpack_hidden_name(p->first)
+ && gogo->pack_hidden_name(name, false) != p->first)
+ return true;
+ }
+ }
+ return false;
+}
+
+// Build the complete list of methods for this type, which means
+// recursively including all methods for anonymous fields. Create all
+// stub methods.
+
+void
+Named_type::finalize_methods(Gogo* gogo)
+{
+ if (this->all_methods_ != NULL)
+ return;
+
+ if (this->local_methods_ != NULL
+ && (this->points_to() != NULL || this->interface_type() != NULL))
+ {
+ const Bindings* lm = this->local_methods_;
+ for (Bindings::const_declarations_iterator p = lm->begin_declarations();
+ p != lm->end_declarations();
+ ++p)
+ error_at(p->second->location(),
+ "invalid pointer or interface receiver type");
+ delete this->local_methods_;
+ this->local_methods_ = NULL;
+ return;
+ }
+
+ Type::finalize_methods(gogo, this, this->location_, &this->all_methods_);
+}
+
+// Return the method NAME, or NULL if there isn't one or if it is
+// ambiguous. Set *IS_AMBIGUOUS if the method exists but is
+// ambiguous.
+
+Method*
+Named_type::method_function(const std::string& name, bool* is_ambiguous) const
+{
+ return Type::method_function(this->all_methods_, name, is_ambiguous);
+}
+
+// Return a pointer to the interface method table for this type for
+// the interface INTERFACE. IS_POINTER is true if this is for a
+// pointer to THIS.
+
+tree
+Named_type::interface_method_table(Gogo* gogo, const Interface_type* interface,
+ bool is_pointer)
+{
+ gcc_assert(!interface->is_empty());
+
+ Interface_method_tables** pimt = (is_pointer
+ ? &this->interface_method_tables_
+ : &this->pointer_interface_method_tables_);
+
+ if (*pimt == NULL)
+ *pimt = new Interface_method_tables(5);
+
+ std::pair<const Interface_type*, tree> val(interface, NULL_TREE);
+ std::pair<Interface_method_tables::iterator, bool> ins = (*pimt)->insert(val);
+
+ if (ins.second)
+ {
+ // This is a new entry in the hash table.
+ gcc_assert(ins.first->second == NULL_TREE);
+ ins.first->second = gogo->interface_method_table_for_type(interface,
+ this,
+ is_pointer);
+ }
+
+ tree decl = ins.first->second;
+ if (decl == error_mark_node)
+ return error_mark_node;
+ gcc_assert(decl != NULL_TREE && TREE_CODE(decl) == VAR_DECL);
+ return build_fold_addr_expr(decl);
+}
+
+// Return whether a named type has any hidden fields.
+
+bool
+Named_type::named_type_has_hidden_fields(std::string* reason) const
+{
+ if (this->seen_ > 0)
+ return false;
+ ++this->seen_;
+ bool ret = this->type_->has_hidden_fields(this, reason);
+ --this->seen_;
+ return ret;
+}
+
+// Look for a use of a complete type within another type. This is
+// used to check that we don't try to use a type within itself.
+
+class Find_type_use : public Traverse
+{
+ public:
+ Find_type_use(Named_type* find_type)
+ : Traverse(traverse_types),
+ find_type_(find_type), found_(false)
+ { }
+
+ // Whether we found the type.
+ bool
+ found() const
+ { return this->found_; }
+
+ protected:
+ int
+ type(Type*);
+
+ private:
+ // The type we are looking for.
+ Named_type* find_type_;
+ // Whether we found the type.
+ bool found_;
+};
+
+// Check for FIND_TYPE in TYPE.
+
+int
+Find_type_use::type(Type* type)
+{
+ if (type->named_type() != NULL && this->find_type_ == type->named_type())
+ {
+ this->found_ = true;
+ return TRAVERSE_EXIT;
+ }
+
+ // It's OK if we see a reference to the type in any type which is
+ // essentially a pointer: a pointer, a slice, a function, a map, or
+ // a channel.
+ if (type->points_to() != NULL
+ || type->is_open_array_type()
+ || type->function_type() != NULL
+ || type->map_type() != NULL
+ || type->channel_type() != NULL)
+ return TRAVERSE_SKIP_COMPONENTS;
+
+ // For an interface, a reference to the type in a method type should
+ // be ignored, but we have to consider direct inheritance. When
+ // this is called, there may be cases of direct inheritance
+ // represented as a method with no name.
+ if (type->interface_type() != NULL)
+ {
+ const Typed_identifier_list* methods = type->interface_type()->methods();
+ if (methods != NULL)
+ {
+ for (Typed_identifier_list::const_iterator p = methods->begin();
+ p != methods->end();
+ ++p)
+ {
+ if (p->name().empty())
+ {
+ if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ }
+ }
+ return TRAVERSE_SKIP_COMPONENTS;
+ }
+
+ // Otherwise, FIND_TYPE_ depends on TYPE, in the sense that we need
+ // to convert TYPE to the backend representation before we convert
+ // FIND_TYPE_.
+ if (type->named_type() != NULL)
+ {
+ switch (type->base()->classification())
+ {
+ case Type::TYPE_ERROR:
+ case Type::TYPE_BOOLEAN:
+ case Type::TYPE_INTEGER:
+ case Type::TYPE_FLOAT:
+ case Type::TYPE_COMPLEX:
+ case Type::TYPE_STRING:
+ case Type::TYPE_NIL:
+ break;
+
+ case Type::TYPE_ARRAY:
+ case Type::TYPE_STRUCT:
+ this->find_type_->add_dependency(type->named_type());
+ break;
+
+ case Type::TYPE_VOID:
+ case Type::TYPE_SINK:
+ case Type::TYPE_FUNCTION:
+ case Type::TYPE_POINTER:
+ case Type::TYPE_CALL_MULTIPLE_RESULT:
+ case Type::TYPE_MAP:
+ case Type::TYPE_CHANNEL:
+ case Type::TYPE_INTERFACE:
+ case Type::TYPE_NAMED:
+ case Type::TYPE_FORWARD:
+ default:
+ gcc_unreachable();
+ }
+ }
+
+ return TRAVERSE_CONTINUE;
+}
+
+// Verify that a named type does not refer to itself.
+
+bool
+Named_type::do_verify()
+{
+ Find_type_use find(this);
+ Type::traverse(this->type_, &find);
+ if (find.found())
+ {
+ error_at(this->location_, "invalid recursive type %qs",
+ this->message_name().c_str());
+ this->is_error_ = true;
+ return false;
+ }
+
+ // Check whether any of the local methods overloads an existing
+ // struct field or interface method. We don't need to check the
+ // list of methods against itself: that is handled by the Bindings
+ // code.
+ if (this->local_methods_ != NULL)
+ {
+ Struct_type* st = this->type_->struct_type();
+ Interface_type* it = this->type_->interface_type();
+ bool found_dup = false;
+ if (st != NULL || it != NULL)
+ {
+ for (Bindings::const_declarations_iterator p =
+ this->local_methods_->begin_declarations();
+ p != this->local_methods_->end_declarations();
+ ++p)
+ {
+ const std::string& name(p->first);
+ if (st != NULL && st->find_local_field(name, NULL) != NULL)
+ {
+ error_at(p->second->location(),
+ "method %qs redeclares struct field name",
+ Gogo::message_name(name).c_str());
+ found_dup = true;
+ }
+ if (it != NULL && it->find_method(name) != NULL)
+ {
+ error_at(p->second->location(),
+ "method %qs redeclares interface method name",
+ Gogo::message_name(name).c_str());
+ found_dup = true;
+ }
+ }
+ }
+ if (found_dup)
+ return false;
+ }
+
+ return true;
+}
+
+// Return whether this type is or contains a pointer.
+
+bool
+Named_type::do_has_pointer() const
+{
+ if (this->seen_ > 0)
+ return false;
+ ++this->seen_;
+ bool ret = this->type_->has_pointer();
+ --this->seen_;
+ return ret;
+}
+
+// Return a hash code. This is used for method lookup. We simply
+// hash on the name itself.
+
+unsigned int
+Named_type::do_hash_for_method(Gogo* gogo) const
+{
+ const std::string& name(this->named_object()->name());
+ unsigned int ret = Type::hash_string(name, 0);
+
+ // GOGO will be NULL here when called from Type_hash_identical.
+ // That is OK because that is only used for internal hash tables
+ // where we are going to be comparing named types for equality. In
+ // other cases, which are cases where the runtime is going to
+ // compare hash codes to see if the types are the same, we need to
+ // include the package prefix and name in the hash.
+ if (gogo != NULL && !Gogo::is_hidden_name(name) && !this->is_builtin())
+ {
+ const Package* package = this->named_object()->package();
+ if (package == NULL)
+ {
+ ret = Type::hash_string(gogo->unique_prefix(), ret);
+ ret = Type::hash_string(gogo->package_name(), ret);
+ }
+ else
+ {
+ ret = Type::hash_string(package->unique_prefix(), ret);
+ ret = Type::hash_string(package->name(), ret);
+ }
+ }
+
+ return ret;
+}
+
+// Convert a named type to the backend representation. In order to
+// get dependencies right, we fill in a dummy structure for this type,
+// then convert all the dependencies, then complete this type. When
+// this function is complete, the size of the type is known.
+
+void
+Named_type::convert(Gogo* gogo)
+{
+ if (this->is_error_ || this->is_converted_)
+ return;
+
+ this->create_placeholder(gogo);
+
+ // Convert all the dependencies. If they refer indirectly back to
+ // this type, they will pick up the intermediate tree we just
+ // created.
+ for (std::vector<Named_type*>::const_iterator p = this->dependencies_.begin();
+ p != this->dependencies_.end();
+ ++p)
+ (*p)->convert(gogo);
+
+ // Complete this type.
+ tree t = this->named_tree_;
+ Type* base = this->type_->base();
+ switch (base->classification())
+ {
+ case TYPE_VOID:
+ case TYPE_BOOLEAN:
+ case TYPE_INTEGER:
+ case TYPE_FLOAT:
+ case TYPE_COMPLEX:
+ case TYPE_STRING:
+ case TYPE_NIL:
+ break;
+
+ case TYPE_MAP:
+ case TYPE_CHANNEL:
+ break;
+
+ case TYPE_FUNCTION:
+ case TYPE_POINTER:
+ // The size of these types is already correct.
+ break;
+
+ case TYPE_STRUCT:
+ t = base->struct_type()->fill_in_tree(gogo, t);
+ break;
+
+ case TYPE_ARRAY:
+ if (!base->is_open_array_type())
+ t = base->array_type()->fill_in_array_tree(gogo, t);
+ break;
+
+ case TYPE_INTERFACE:
+ if (!base->interface_type()->is_empty())
+ t = base->interface_type()->fill_in_tree(gogo, t);
+ break;
+
+ case TYPE_ERROR:
+ return;
+
+ default:
+ case TYPE_SINK:
+ case TYPE_CALL_MULTIPLE_RESULT:
+ case TYPE_NAMED:
+ case TYPE_FORWARD:
+ gcc_unreachable();
+ }
+
+ this->named_tree_ = t;
+
+ if (t == error_mark_node)
+ this->is_error_ = true;
+ else
+ gcc_assert(TYPE_SIZE(t) != NULL_TREE);
+
+ this->is_converted_ = true;
+}
+
+// Create the placeholder for a named type. This is the first step in
+// converting to the backend representation.
+
+void
+Named_type::create_placeholder(Gogo* gogo)
+{
+ if (this->is_error_)
+ this->named_tree_ = error_mark_node;
+
+ if (this->named_tree_ != NULL_TREE)
+ return;
+
+ // Create the structure for this type. Note that because we call
+ // base() here, we don't attempt to represent a named type defined
+ // as another named type. Instead both named types will point to
+ // different base representations.
+ Type* base = this->type_->base();
+ tree t;
+ switch (base->classification())
+ {
+ case TYPE_ERROR:
+ this->is_error_ = true;
+ this->named_tree_ = error_mark_node;
+ return;
+
+ case TYPE_VOID:
+ case TYPE_BOOLEAN:
+ case TYPE_INTEGER:
+ case TYPE_FLOAT:
+ case TYPE_COMPLEX:
+ case TYPE_STRING:
+ case TYPE_NIL:
+ // These are simple basic types, we can just create them
+ // directly.
+ t = Type::get_named_type_tree(gogo, base);
+ if (t == error_mark_node)
+ {
+ this->is_error_ = true;
+ this->named_tree_ = error_mark_node;
+ return;
+ }
+ t = build_variant_type_copy(t);
+ break;
+
+ case TYPE_MAP:
+ case TYPE_CHANNEL:
+ // All maps and channels have the same type in GENERIC.
+ t = Type::get_named_type_tree(gogo, base);
+ if (t == error_mark_node)
+ {
+ this->is_error_ = true;
+ this->named_tree_ = error_mark_node;
+ return;
+ }
+ t = build_variant_type_copy(t);
+ break;
+
+ case TYPE_FUNCTION:
+ case TYPE_POINTER:
+ t = build_variant_type_copy(ptr_type_node);
+ break;
+
+ case TYPE_STRUCT:
+ t = make_node(RECORD_TYPE);
+ break;
+
+ case TYPE_ARRAY:
+ if (base->is_open_array_type())
+ t = gogo->slice_type_tree(void_type_node);
+ else
+ t = make_node(ARRAY_TYPE);
+ break;
+
+ case TYPE_INTERFACE:
+ if (base->interface_type()->is_empty())
+ {
+ t = Interface_type::empty_type_tree(gogo);
+ t = build_variant_type_copy(t);
+ }
+ else
+ {
+ source_location loc = base->interface_type()->location();
+ t = Interface_type::non_empty_type_tree(loc);
+ }
+ break;
+
+ default:
+ case TYPE_SINK:
+ case TYPE_CALL_MULTIPLE_RESULT:
+ case TYPE_NAMED:
+ case TYPE_FORWARD:
+ gcc_unreachable();
+ }
+
+ // Create the named type.
+
+ tree id = this->named_object_->get_id(gogo);
+ tree decl = build_decl(this->location_, TYPE_DECL, id, t);
+ TYPE_NAME(t) = decl;
+
+ this->named_tree_ = t;
+}
+
+// Get a tree for a named type.
+
+tree
+Named_type::do_get_tree(Gogo* gogo)
+{
+ if (this->is_error_)
+ return error_mark_node;
+
+ tree t = this->named_tree_;
+
+ // FIXME: GOGO can be NULL when called from go_type_for_size, which
+ // is only used for basic types.
+ if (gogo == NULL || !gogo->named_types_are_converted())
+ {
+ // We have not completed converting named types. NAMED_TREE_ is
+ // a placeholder and we shouldn't do anything further.
+ if (t != NULL_TREE)
+ return t;
+
+ // We don't build dependencies for types whose sizes do not
+ // change or are not relevant, so we may see them here while
+ // converting types.
+ this->create_placeholder(gogo);
+ t = this->named_tree_;
+ gcc_assert(t != NULL_TREE);
+ return t;
+ }
+
+ // We are not converting types. This should only be called if the
+ // type has already been converted.
+ if (!this->is_converted_)
+ {
+ gcc_assert(saw_errors());
+ return error_mark_node;
+ }
+
+ gcc_assert(t != NULL_TREE && TYPE_SIZE(t) != NULL_TREE);
+
+ // Complete the tree.
+ Type* base = this->type_->base();
+ tree t1;
+ switch (base->classification())
+ {
+ case TYPE_ERROR:
+ return error_mark_node;
+
+ case TYPE_VOID:
+ case TYPE_BOOLEAN:
+ case TYPE_INTEGER:
+ case TYPE_FLOAT:
+ case TYPE_COMPLEX:
+ case TYPE_STRING:
+ case TYPE_NIL:
+ case TYPE_MAP:
+ case TYPE_CHANNEL:
+ case TYPE_STRUCT:
+ case TYPE_INTERFACE:
+ return t;
+
+ case TYPE_FUNCTION:
+ // Don't build a circular data structure. GENERIC can't handle
+ // it.
+ if (this->seen_ > 0)
+ {
+ this->is_circular_ = true;
+ return ptr_type_node;
+ }
+ ++this->seen_;
+ t1 = Type::get_named_type_tree(gogo, base);
+ --this->seen_;
+ if (t1 == error_mark_node)
+ return error_mark_node;
+ if (this->is_circular_)
+ t1 = ptr_type_node;
+ gcc_assert(t != NULL_TREE && TREE_CODE(t) == POINTER_TYPE);
+ gcc_assert(TREE_CODE(t1) == POINTER_TYPE);
+ TREE_TYPE(t) = TREE_TYPE(t1);
+ return t;
+
+ case TYPE_POINTER:
+ // Don't build a circular data structure. GENERIC can't handle
+ // it.
+ if (this->seen_ > 0)
+ {
+ this->is_circular_ = true;
+ return ptr_type_node;
+ }
+ ++this->seen_;
+ t1 = Type::get_named_type_tree(gogo, base);
+ --this->seen_;
+ if (t1 == error_mark_node)
+ return error_mark_node;
+ if (this->is_circular_)
+ t1 = ptr_type_node;
+ gcc_assert(t != NULL_TREE && TREE_CODE(t) == POINTER_TYPE);
+ gcc_assert(TREE_CODE(t1) == POINTER_TYPE);
+ TREE_TYPE(t) = TREE_TYPE(t1);
+ return t;
+
+ case TYPE_ARRAY:
+ if (base->is_open_array_type())
+ {
+ if (this->seen_ > 0)
+ return t;
+ else
+ {
+ ++this->seen_;
+ t = base->array_type()->fill_in_slice_tree(gogo, t);
+ --this->seen_;
+ }
+ }
+ return t;
+
+ default:
+ case TYPE_SINK:
+ case TYPE_CALL_MULTIPLE_RESULT:
+ case TYPE_NAMED:
+ case TYPE_FORWARD:
+ gcc_unreachable();
+ }
+
+ gcc_unreachable();
+}
+
+// Build a type descriptor for a named type.
+
+Expression*
+Named_type::do_type_descriptor(Gogo* gogo, Named_type* name)
+{
+ // If NAME is not NULL, then we don't really want the type
+ // descriptor for this type; we want the descriptor for the
+ // underlying type, giving it the name NAME.
+ return this->named_type_descriptor(gogo, this->type_,
+ name == NULL ? this : name);
+}
+
+// Add to the reflection string. This is used mostly for the name of
+// the type used in a type descriptor, not for actual reflection
+// strings.
+
+void
+Named_type::do_reflection(Gogo* gogo, std::string* ret) const
+{
+ if (this->location() != BUILTINS_LOCATION)
+ {
+ const Package* package = this->named_object_->package();
+ if (package != NULL)
+ ret->append(package->name());
+ else
+ ret->append(gogo->package_name());
+ ret->push_back('.');
+ }
+ if (this->in_function_ != NULL)
+ {
+ ret->append(Gogo::unpack_hidden_name(this->in_function_->name()));
+ ret->push_back('$');
+ }
+ ret->append(Gogo::unpack_hidden_name(this->named_object_->name()));
+}
+
+// Get the mangled name.
+
+void
+Named_type::do_mangled_name(Gogo* gogo, std::string* ret) const
+{
+ Named_object* no = this->named_object_;
+ std::string name;
+ if (this->location() == BUILTINS_LOCATION)
+ gcc_assert(this->in_function_ == NULL);
+ else
+ {
+ const std::string& unique_prefix(no->package() == NULL
+ ? gogo->unique_prefix()
+ : no->package()->unique_prefix());
+ const std::string& package_name(no->package() == NULL
+ ? gogo->package_name()
+ : no->package()->name());
+ name = unique_prefix;
+ name.append(1, '.');
+ name.append(package_name);
+ name.append(1, '.');
+ if (this->in_function_ != NULL)
+ {
+ name.append(Gogo::unpack_hidden_name(this->in_function_->name()));
+ name.append(1, '$');
+ }
+ }
+ name.append(Gogo::unpack_hidden_name(no->name()));
+ char buf[20];
+ snprintf(buf, sizeof buf, "N%u_", static_cast<unsigned int>(name.length()));
+ ret->append(buf);
+ ret->append(name);
+}
+
+// Export the type. This is called to export a global type.
+
+void
+Named_type::export_named_type(Export* exp, const std::string&) const
+{
+ // We don't need to write the name of the type here, because it will
+ // be written by Export::write_type anyhow.
+ exp->write_c_string("type ");
+ exp->write_type(this);
+ exp->write_c_string(";\n");
+}
+
+// Import a named type.
+
+void
+Named_type::import_named_type(Import* imp, Named_type** ptype)
+{
+ imp->require_c_string("type ");
+ Type *type = imp->read_type();
+ *ptype = type->named_type();
+ gcc_assert(*ptype != NULL);
+ imp->require_c_string(";\n");
+}
+
+// Export the type when it is referenced by another type. In this
+// case Export::export_type will already have issued the name.
+
+void
+Named_type::do_export(Export* exp) const
+{
+ exp->write_type(this->type_);
+
+ // To save space, we only export the methods directly attached to
+ // this type.
+ Bindings* methods = this->local_methods_;
+ if (methods == NULL)
+ return;
+
+ exp->write_c_string("\n");
+ for (Bindings::const_definitions_iterator p = methods->begin_definitions();
+ p != methods->end_definitions();
+ ++p)
+ {
+ exp->write_c_string(" ");
+ (*p)->export_named_object(exp);
+ }
+
+ for (Bindings::const_declarations_iterator p = methods->begin_declarations();
+ p != methods->end_declarations();
+ ++p)
+ {
+ if (p->second->is_function_declaration())
+ {
+ exp->write_c_string(" ");
+ p->second->export_named_object(exp);
+ }
+ }
+}
+
+// Make a named type.
+
+Named_type*
+Type::make_named_type(Named_object* named_object, Type* type,
+ source_location location)
+{
+ return new Named_type(named_object, type, location);
+}
+
+// Finalize the methods for TYPE. It will be a named type or a struct
+// type. This sets *ALL_METHODS to the list of methods, and builds
+// all required stubs.
+
+void
+Type::finalize_methods(Gogo* gogo, const Type* type, source_location location,
+ Methods** all_methods)
+{
+ *all_methods = NULL;
+ Types_seen types_seen;
+ Type::add_methods_for_type(type, NULL, 0, false, false, &types_seen,
+ all_methods);
+ Type::build_stub_methods(gogo, type, *all_methods, location);
+}
+
+// Add the methods for TYPE to *METHODS. FIELD_INDEXES is used to
+// build up the struct field indexes as we go. DEPTH is the depth of
+// the field within TYPE. IS_EMBEDDED_POINTER is true if we are
+// adding these methods for an anonymous field with pointer type.
+// NEEDS_STUB_METHOD is true if we need to use a stub method which
+// calls the real method. TYPES_SEEN is used to avoid infinite
+// recursion.
+
+void
+Type::add_methods_for_type(const Type* type,
+ const Method::Field_indexes* field_indexes,
+ unsigned int depth,
+ bool is_embedded_pointer,
+ bool needs_stub_method,
+ Types_seen* types_seen,
+ Methods** methods)
+{
+ // Pointer types may not have methods.
+ if (type->points_to() != NULL)
+ return;
+
+ const Named_type* nt = type->named_type();
+ if (nt != NULL)
+ {
+ std::pair<Types_seen::iterator, bool> ins = types_seen->insert(nt);
+ if (!ins.second)
+ return;
+ }
+
+ if (nt != NULL)
+ Type::add_local_methods_for_type(nt, field_indexes, depth,
+ is_embedded_pointer, needs_stub_method,
+ methods);
+
+ Type::add_embedded_methods_for_type(type, field_indexes, depth,
+ is_embedded_pointer, needs_stub_method,
+ types_seen, methods);
+
+ // If we are called with depth > 0, then we are looking at an
+ // anonymous field of a struct. If such a field has interface type,
+ // then we need to add the interface methods. We don't want to add
+ // them when depth == 0, because we will already handle them
+ // following the usual rules for an interface type.
+ if (depth > 0)
+ Type::add_interface_methods_for_type(type, field_indexes, depth, methods);
+}
+
+// Add the local methods for the named type NT to *METHODS. The
+// parameters are as for add_methods_to_type.
+
+void
+Type::add_local_methods_for_type(const Named_type* nt,
+ const Method::Field_indexes* field_indexes,
+ unsigned int depth,
+ bool is_embedded_pointer,
+ bool needs_stub_method,
+ Methods** methods)
+{
+ const Bindings* local_methods = nt->local_methods();
+ if (local_methods == NULL)
+ return;
+
+ if (*methods == NULL)
+ *methods = new Methods();
+
+ for (Bindings::const_declarations_iterator p =
+ local_methods->begin_declarations();
+ p != local_methods->end_declarations();
+ ++p)
+ {
+ Named_object* no = p->second;
+ bool is_value_method = (is_embedded_pointer
+ || !Type::method_expects_pointer(no));
+ Method* m = new Named_method(no, field_indexes, depth, is_value_method,
+ (needs_stub_method
+ || (depth > 0 && is_value_method)));
+ if (!(*methods)->insert(no->name(), m))
+ delete m;
+ }
+}
+
+// Add the embedded methods for TYPE to *METHODS. These are the
+// methods attached to anonymous fields. The parameters are as for
+// add_methods_to_type.
+
+void
+Type::add_embedded_methods_for_type(const Type* type,
+ const Method::Field_indexes* field_indexes,
+ unsigned int depth,
+ bool is_embedded_pointer,
+ bool needs_stub_method,
+ Types_seen* types_seen,
+ Methods** methods)
+{
+ // Look for anonymous fields in TYPE. TYPE has fields if it is a
+ // struct.
+ const Struct_type* st = type->struct_type();
+ if (st == NULL)
+ return;
+
+ const Struct_field_list* fields = st->fields();
+ if (fields == NULL)
+ return;
+
+ unsigned int i = 0;
+ for (Struct_field_list::const_iterator pf = fields->begin();
+ pf != fields->end();
+ ++pf, ++i)
+ {
+ if (!pf->is_anonymous())
+ continue;
+
+ Type* ftype = pf->type();
+ bool is_pointer = false;
+ if (ftype->points_to() != NULL)
+ {
+ ftype = ftype->points_to();
+ is_pointer = true;
+ }
+ Named_type* fnt = ftype->named_type();
+ if (fnt == NULL)
+ {
+ // This is an error, but it will be diagnosed elsewhere.
+ continue;
+ }
+
+ Method::Field_indexes* sub_field_indexes = new Method::Field_indexes();
+ sub_field_indexes->next = field_indexes;
+ sub_field_indexes->field_index = i;
+
+ Type::add_methods_for_type(fnt, sub_field_indexes, depth + 1,
+ (is_embedded_pointer || is_pointer),
+ (needs_stub_method
+ || is_pointer
+ || i > 0),
+ types_seen,
+ methods);
+ }
+}
+
+// If TYPE is an interface type, then add its method to *METHODS.
+// This is for interface methods attached to an anonymous field. The
+// parameters are as for add_methods_for_type.
+
+void
+Type::add_interface_methods_for_type(const Type* type,
+ const Method::Field_indexes* field_indexes,
+ unsigned int depth,
+ Methods** methods)
+{
+ const Interface_type* it = type->interface_type();
+ if (it == NULL)
+ return;
+
+ const Typed_identifier_list* imethods = it->methods();
+ if (imethods == NULL)
+ return;
+
+ if (*methods == NULL)
+ *methods = new Methods();
+
+ for (Typed_identifier_list::const_iterator pm = imethods->begin();
+ pm != imethods->end();
+ ++pm)
+ {
+ Function_type* fntype = pm->type()->function_type();
+ if (fntype == NULL)
+ {
+ // This is an error, but it should be reported elsewhere
+ // when we look at the methods for IT.
+ continue;
+ }
+ gcc_assert(!fntype->is_method());
+ fntype = fntype->copy_with_receiver(const_cast<Type*>(type));
+ Method* m = new Interface_method(pm->name(), pm->location(), fntype,
+ field_indexes, depth);
+ if (!(*methods)->insert(pm->name(), m))
+ delete m;
+ }
+}
+
+// Build stub methods for TYPE as needed. METHODS is the set of
+// methods for the type. A stub method may be needed when a type
+// inherits a method from an anonymous field. When we need the
+// address of the method, as in a type descriptor, we need to build a
+// little stub which does the required field dereferences and jumps to
+// the real method. LOCATION is the location of the type definition.
+
+void
+Type::build_stub_methods(Gogo* gogo, const Type* type, const Methods* methods,
+ source_location location)
+{
+ if (methods == NULL)
+ return;
+ for (Methods::const_iterator p = methods->begin();
+ p != methods->end();
+ ++p)
+ {
+ Method* m = p->second;
+ if (m->is_ambiguous() || !m->needs_stub_method())
+ continue;
+
+ const std::string& name(p->first);
+
+ // Build a stub method.
+
+ const Function_type* fntype = m->type();
+
+ static unsigned int counter;
+ char buf[100];
+ snprintf(buf, sizeof buf, "$this%u", counter);
+ ++counter;
+
+ Type* receiver_type = const_cast<Type*>(type);
+ if (!m->is_value_method())
+ receiver_type = Type::make_pointer_type(receiver_type);
+ source_location receiver_location = m->receiver_location();
+ Typed_identifier* receiver = new Typed_identifier(buf, receiver_type,
+ receiver_location);
+
+ const Typed_identifier_list* fnparams = fntype->parameters();
+ Typed_identifier_list* stub_params;
+ if (fnparams == NULL || fnparams->empty())
+ stub_params = NULL;
+ else
+ {
+ // We give each stub parameter a unique name.
+ stub_params = new Typed_identifier_list();
+ for (Typed_identifier_list::const_iterator pp = fnparams->begin();
+ pp != fnparams->end();
+ ++pp)
+ {
+ char pbuf[100];
+ snprintf(pbuf, sizeof pbuf, "$p%u", counter);
+ stub_params->push_back(Typed_identifier(pbuf, pp->type(),
+ pp->location()));
+ ++counter;
+ }
+ }
+
+ const Typed_identifier_list* fnresults = fntype->results();
+ Typed_identifier_list* stub_results;
+ if (fnresults == NULL || fnresults->empty())
+ stub_results = NULL;
+ else
+ {
+ // We create the result parameters without any names, since
+ // we won't refer to them.
+ stub_results = new Typed_identifier_list();
+ for (Typed_identifier_list::const_iterator pr = fnresults->begin();
+ pr != fnresults->end();
+ ++pr)
+ stub_results->push_back(Typed_identifier("", pr->type(),
+ pr->location()));
+ }
+
+ Function_type* stub_type = Type::make_function_type(receiver,
+ stub_params,
+ stub_results,
+ fntype->location());
+ if (fntype->is_varargs())
+ stub_type->set_is_varargs();
+
+ // We only create the function in the package which creates the
+ // type.
+ const Package* package;
+ if (type->named_type() == NULL)
+ package = NULL;
+ else
+ package = type->named_type()->named_object()->package();
+ Named_object* stub;
+ if (package != NULL)
+ stub = Named_object::make_function_declaration(name, package,
+ stub_type, location);
+ else
+ {
+ stub = gogo->start_function(name, stub_type, false,
+ fntype->location());
+ Type::build_one_stub_method(gogo, m, buf, stub_params,
+ fntype->is_varargs(), location);
+ gogo->finish_function(fntype->location());
+ }
+
+ m->set_stub_object(stub);
+ }
+}
+
+// Build a stub method which adjusts the receiver as required to call
+// METHOD. RECEIVER_NAME is the name we used for the receiver.
+// PARAMS is the list of function parameters.
+
+void
+Type::build_one_stub_method(Gogo* gogo, Method* method,
+ const char* receiver_name,
+ const Typed_identifier_list* params,
+ bool is_varargs,
+ source_location location)
+{
+ Named_object* receiver_object = gogo->lookup(receiver_name, NULL);
+ gcc_assert(receiver_object != NULL);
+
+ Expression* expr = Expression::make_var_reference(receiver_object, location);
+ expr = Type::apply_field_indexes(expr, method->field_indexes(), location);
+ if (expr->type()->points_to() == NULL)
+ expr = Expression::make_unary(OPERATOR_AND, expr, location);
+
+ Expression_list* arguments;
+ if (params == NULL || params->empty())
+ arguments = NULL;
+ else
+ {
+ arguments = new Expression_list();
+ for (Typed_identifier_list::const_iterator p = params->begin();
+ p != params->end();
+ ++p)
+ {
+ Named_object* param = gogo->lookup(p->name(), NULL);
+ gcc_assert(param != NULL);
+ Expression* param_ref = Expression::make_var_reference(param,
+ location);
+ arguments->push_back(param_ref);
+ }
+ }
+
+ Expression* func = method->bind_method(expr, location);
+ gcc_assert(func != NULL);
+ Call_expression* call = Expression::make_call(func, arguments, is_varargs,
+ location);
+ size_t count = call->result_count();
+ if (count == 0)
+ gogo->add_statement(Statement::make_statement(call));
+ else
+ {
+ Expression_list* retvals = new Expression_list();
+ if (count <= 1)
+ retvals->push_back(call);
+ else
+ {
+ for (size_t i = 0; i < count; ++i)
+ retvals->push_back(Expression::make_call_result(call, i));
+ }
+ const Function* function = gogo->current_function()->func_value();
+ const Typed_identifier_list* results = function->type()->results();
+ Statement* retstat = Statement::make_return_statement(results, retvals,
+ location);
+ gogo->add_statement(retstat);
+ }
+}
+
+// Apply FIELD_INDEXES to EXPR. The field indexes have to be applied
+// in reverse order.
+
+Expression*
+Type::apply_field_indexes(Expression* expr,
+ const Method::Field_indexes* field_indexes,
+ source_location location)
+{
+ if (field_indexes == NULL)
+ return expr;
+ expr = Type::apply_field_indexes(expr, field_indexes->next, location);
+ Struct_type* stype = expr->type()->deref()->struct_type();
+ gcc_assert(stype != NULL
+ && field_indexes->field_index < stype->field_count());
+ if (expr->type()->struct_type() == NULL)
+ {
+ gcc_assert(expr->type()->points_to() != NULL);
+ expr = Expression::make_unary(OPERATOR_MULT, expr, location);
+ gcc_assert(expr->type()->struct_type() == stype);
+ }
+ return Expression::make_field_reference(expr, field_indexes->field_index,
+ location);
+}
+
+// Return whether NO is a method for which the receiver is a pointer.
+
+bool
+Type::method_expects_pointer(const Named_object* no)
+{
+ const Function_type *fntype;
+ if (no->is_function())
+ fntype = no->func_value()->type();
+ else if (no->is_function_declaration())
+ fntype = no->func_declaration_value()->type();
+ else
+ gcc_unreachable();
+ return fntype->receiver()->type()->points_to() != NULL;
+}
+
+// Given a set of methods for a type, METHODS, return the method NAME,
+// or NULL if there isn't one or if it is ambiguous. If IS_AMBIGUOUS
+// is not NULL, then set *IS_AMBIGUOUS to true if the method exists
+// but is ambiguous (and return NULL).
+
+Method*
+Type::method_function(const Methods* methods, const std::string& name,
+ bool* is_ambiguous)
+{
+ if (is_ambiguous != NULL)
+ *is_ambiguous = false;
+ if (methods == NULL)
+ return NULL;
+ Methods::const_iterator p = methods->find(name);
+ if (p == methods->end())
+ return NULL;
+ Method* m = p->second;
+ if (m->is_ambiguous())
+ {
+ if (is_ambiguous != NULL)
+ *is_ambiguous = true;
+ return NULL;
+ }
+ return m;
+}
+
+// Look for field or method NAME for TYPE. Return an Expression for
+// the field or method bound to EXPR. If there is no such field or
+// method, give an appropriate error and return an error expression.
+
+Expression*
+Type::bind_field_or_method(Gogo* gogo, const Type* type, Expression* expr,
+ const std::string& name,
+ source_location location)
+{
+ if (type->deref()->is_error_type())
+ return Expression::make_error(location);
+
+ const Named_type* nt = type->deref()->named_type();
+ const Struct_type* st = type->deref()->struct_type();
+ const Interface_type* it = type->deref()->interface_type();
+
+ // If this is a pointer to a pointer, then it is possible that the
+ // pointed-to type has methods.
+ if (nt == NULL
+ && st == NULL
+ && it == NULL
+ && type->points_to() != NULL
+ && type->points_to()->points_to() != NULL)
+ {
+ expr = Expression::make_unary(OPERATOR_MULT, expr, location);
+ type = type->points_to();
+ if (type->deref()->is_error_type())
+ return Expression::make_error(location);
+ nt = type->points_to()->named_type();
+ st = type->points_to()->struct_type();
+ it = type->points_to()->interface_type();
+ }
+
+ bool receiver_can_be_pointer = (expr->type()->points_to() != NULL
+ || expr->is_addressable());
+ std::vector<const Named_type*> seen;
+ bool is_method = false;
+ bool found_pointer_method = false;
+ std::string ambig1;
+ std::string ambig2;
+ if (Type::find_field_or_method(type, name, receiver_can_be_pointer,
+ &seen, NULL, &is_method,
+ &found_pointer_method, &ambig1, &ambig2))
+ {
+ Expression* ret;
+ if (!is_method)
+ {
+ gcc_assert(st != NULL);
+ if (type->struct_type() == NULL)
+ {
+ gcc_assert(type->points_to() != NULL);
+ expr = Expression::make_unary(OPERATOR_MULT, expr,
+ location);
+ gcc_assert(expr->type()->struct_type() == st);
+ }
+ ret = st->field_reference(expr, name, location);
+ }
+ else if (it != NULL && it->find_method(name) != NULL)
+ ret = Expression::make_interface_field_reference(expr, name,
+ location);
+ else
+ {
+ Method* m;
+ if (nt != NULL)
+ m = nt->method_function(name, NULL);
+ else if (st != NULL)
+ m = st->method_function(name, NULL);
+ else
+ gcc_unreachable();
+ gcc_assert(m != NULL);
+ if (!m->is_value_method() && expr->type()->points_to() == NULL)
+ expr = Expression::make_unary(OPERATOR_AND, expr, location);
+ ret = m->bind_method(expr, location);
+ }
+ gcc_assert(ret != NULL);
+ return ret;
+ }
+ else
+ {
+ if (!ambig1.empty())
+ error_at(location, "%qs is ambiguous via %qs and %qs",
+ Gogo::message_name(name).c_str(),
+ Gogo::message_name(ambig1).c_str(),
+ Gogo::message_name(ambig2).c_str());
+ else if (found_pointer_method)
+ error_at(location, "method requires a pointer");
+ else if (nt == NULL && st == NULL && it == NULL)
+ error_at(location,
+ ("reference to field %qs in object which "
+ "has no fields or methods"),
+ Gogo::message_name(name).c_str());
+ else
+ {
+ bool is_unexported;
+ if (!Gogo::is_hidden_name(name))
+ is_unexported = false;
+ else
+ {
+ std::string unpacked = Gogo::unpack_hidden_name(name);
+ seen.clear();
+ is_unexported = Type::is_unexported_field_or_method(gogo, type,
+ unpacked,
+ &seen);
+ }
+ if (is_unexported)
+ error_at(location, "reference to unexported field or method %qs",
+ Gogo::message_name(name).c_str());
+ else
+ error_at(location, "reference to undefined field or method %qs",
+ Gogo::message_name(name).c_str());
+ }
+ return Expression::make_error(location);
+ }
+}
+
+// Look in TYPE for a field or method named NAME, return true if one
+// is found. This looks through embedded anonymous fields and handles
+// ambiguity. If a method is found, sets *IS_METHOD to true;
+// otherwise, if a field is found, set it to false. If
+// RECEIVER_CAN_BE_POINTER is false, then the receiver is a value
+// whose address can not be taken. SEEN is used to avoid infinite
+// recursion on invalid types.
+
+// When returning false, this sets *FOUND_POINTER_METHOD if we found a
+// method we couldn't use because it requires a pointer. LEVEL is
+// used for recursive calls, and can be NULL for a non-recursive call.
+// When this function returns false because it finds that the name is
+// ambiguous, it will store a path to the ambiguous names in *AMBIG1
+// and *AMBIG2. If the name is not found at all, *AMBIG1 and *AMBIG2
+// will be unchanged.
+
+// This function just returns whether or not there is a field or
+// method, and whether it is a field or method. It doesn't build an
+// expression to refer to it. If it is a method, we then look in the
+// list of all methods for the type. If it is a field, the search has
+// to be done again, looking only for fields, and building up the
+// expression as we go.
+
+bool
+Type::find_field_or_method(const Type* type,
+ const std::string& name,
+ bool receiver_can_be_pointer,
+ std::vector<const Named_type*>* seen,
+ int* level,
+ bool* is_method,
+ bool* found_pointer_method,
+ std::string* ambig1,
+ std::string* ambig2)
+{
+ // Named types can have locally defined methods.
+ const Named_type* nt = type->named_type();
+ if (nt == NULL && type->points_to() != NULL)
+ nt = type->points_to()->named_type();
+ if (nt != NULL)
+ {
+ Named_object* no = nt->find_local_method(name);
+ if (no != NULL)
+ {
+ if (receiver_can_be_pointer || !Type::method_expects_pointer(no))
+ {
+ *is_method = true;
+ return true;
+ }
+
+ // Record that we have found a pointer method in order to
+ // give a better error message if we don't find anything
+ // else.
+ *found_pointer_method = true;
+ }
+
+ for (std::vector<const Named_type*>::const_iterator p = seen->begin();
+ p != seen->end();
+ ++p)
+ {
+ if (*p == nt)
+ {
+ // We've already seen this type when searching for methods.
+ return false;
+ }
+ }
+ }
+
+ // Interface types can have methods.
+ const Interface_type* it = type->deref()->interface_type();
+ if (it != NULL && it->find_method(name) != NULL)
+ {
+ *is_method = true;
+ return true;
+ }
+
+ // Struct types can have fields. They can also inherit fields and
+ // methods from anonymous fields.
+ const Struct_type* st = type->deref()->struct_type();
+ if (st == NULL)
+ return false;
+ const Struct_field_list* fields = st->fields();
+ if (fields == NULL)
+ return false;
+
+ if (nt != NULL)
+ seen->push_back(nt);
+
+ int found_level = 0;
+ bool found_is_method = false;
+ std::string found_ambig1;
+ std::string found_ambig2;
+ const Struct_field* found_parent = NULL;
+ for (Struct_field_list::const_iterator pf = fields->begin();
+ pf != fields->end();
+ ++pf)
+ {
+ if (pf->field_name() == name)
+ {
+ *is_method = false;
+ if (nt != NULL)
+ seen->pop_back();
+ return true;
+ }
+
+ if (!pf->is_anonymous())
+ continue;
+
+ if (pf->type()->deref()->is_error_type()
+ || pf->type()->deref()->is_undefined())
+ continue;
+
+ Named_type* fnt = pf->type()->named_type();
+ if (fnt == NULL)
+ fnt = pf->type()->deref()->named_type();
+ gcc_assert(fnt != NULL);
+
+ int sublevel = level == NULL ? 1 : *level + 1;
+ bool sub_is_method;
+ std::string subambig1;
+ std::string subambig2;
+ bool subfound = Type::find_field_or_method(fnt,
+ name,
+ receiver_can_be_pointer,
+ seen,
+ &sublevel,
+ &sub_is_method,
+ found_pointer_method,
+ &subambig1,
+ &subambig2);
+ if (!subfound)
+ {
+ if (!subambig1.empty())
+ {
+ // The name was found via this field, but is ambiguous.
+ // if the ambiguity is lower or at the same level as
+ // anything else we have already found, then we want to
+ // pass the ambiguity back to the caller.
+ if (found_level == 0 || sublevel <= found_level)
+ {
+ found_ambig1 = pf->field_name() + '.' + subambig1;
+ found_ambig2 = pf->field_name() + '.' + subambig2;
+ found_level = sublevel;
+ }
+ }
+ }
+ else
+ {
+ // The name was found via this field. Use the level to see
+ // if we want to use this one, or whether it introduces an
+ // ambiguity.
+ if (found_level == 0 || sublevel < found_level)
+ {
+ found_level = sublevel;
+ found_is_method = sub_is_method;
+ found_ambig1.clear();
+ found_ambig2.clear();
+ found_parent = &*pf;
+ }
+ else if (sublevel > found_level)
+ ;
+ else if (found_ambig1.empty())
+ {
+ // We found an ambiguity.
+ gcc_assert(found_parent != NULL);
+ found_ambig1 = found_parent->field_name();
+ found_ambig2 = pf->field_name();
+ }
+ else
+ {
+ // We found an ambiguity, but we already know of one.
+ // Just report the earlier one.
+ }
+ }
+ }
+
+ // Here if we didn't find anything FOUND_LEVEL is 0. If we found
+ // something ambiguous, FOUND_LEVEL is not 0 and FOUND_AMBIG1 and
+ // FOUND_AMBIG2 are not empty. If we found the field, FOUND_LEVEL
+ // is not 0 and FOUND_AMBIG1 and FOUND_AMBIG2 are empty.
+
+ if (nt != NULL)
+ seen->pop_back();
+
+ if (found_level == 0)
+ return false;
+ else if (!found_ambig1.empty())
+ {
+ gcc_assert(!found_ambig1.empty());
+ ambig1->assign(found_ambig1);
+ ambig2->assign(found_ambig2);
+ if (level != NULL)
+ *level = found_level;
+ return false;
+ }
+ else
+ {
+ if (level != NULL)
+ *level = found_level;
+ *is_method = found_is_method;
+ return true;
+ }
+}
+
+// Return whether NAME is an unexported field or method for TYPE.
+
+bool
+Type::is_unexported_field_or_method(Gogo* gogo, const Type* type,
+ const std::string& name,
+ std::vector<const Named_type*>* seen)
+{
+ const Named_type* nt = type->named_type();
+ if (nt == NULL)
+ nt = type->deref()->named_type();
+ if (nt != NULL)
+ {
+ if (nt->is_unexported_local_method(gogo, name))
+ return true;
+
+ for (std::vector<const Named_type*>::const_iterator p = seen->begin();
+ p != seen->end();
+ ++p)
+ {
+ if (*p == nt)
+ {
+ // We've already seen this type.
+ return false;
+ }
+ }
+ }
+
+ type = type->deref();
+
+ const Interface_type* it = type->interface_type();
+ if (it != NULL && it->is_unexported_method(gogo, name))
+ return true;
+
+ const Struct_type* st = type->struct_type();
+ if (st != NULL && st->is_unexported_local_field(gogo, name))
+ return true;
+
+ if (st == NULL)
+ return false;
+
+ const Struct_field_list* fields = st->fields();
+ if (fields == NULL)
+ return false;
+
+ if (nt != NULL)
+ seen->push_back(nt);
+
+ for (Struct_field_list::const_iterator pf = fields->begin();
+ pf != fields->end();
+ ++pf)
+ {
+ if (pf->is_anonymous()
+ && !pf->type()->deref()->is_error_type()
+ && !pf->type()->deref()->is_undefined())
+ {
+ Named_type* subtype = pf->type()->named_type();
+ if (subtype == NULL)
+ subtype = pf->type()->deref()->named_type();
+ if (subtype == NULL)
+ {
+ // This is an error, but it will be diagnosed elsewhere.
+ continue;
+ }
+ if (Type::is_unexported_field_or_method(gogo, subtype, name, seen))
+ {
+ if (nt != NULL)
+ seen->pop_back();
+ return true;
+ }
+ }
+ }
+
+ if (nt != NULL)
+ seen->pop_back();
+
+ return false;
+}
+
+// Class Forward_declaration.
+
+Forward_declaration_type::Forward_declaration_type(Named_object* named_object)
+ : Type(TYPE_FORWARD),
+ named_object_(named_object->resolve()), warned_(false)
+{
+ gcc_assert(this->named_object_->is_unknown()
+ || this->named_object_->is_type_declaration());
+}
+
+// Return the named object.
+
+Named_object*
+Forward_declaration_type::named_object()
+{
+ return this->named_object_->resolve();
+}
+
+const Named_object*
+Forward_declaration_type::named_object() const
+{
+ return this->named_object_->resolve();
+}
+
+// Return the name of the forward declared type.
+
+const std::string&
+Forward_declaration_type::name() const
+{
+ return this->named_object()->name();
+}
+
+// Warn about a use of a type which has been declared but not defined.
+
+void
+Forward_declaration_type::warn() const
+{
+ Named_object* no = this->named_object_->resolve();
+ if (no->is_unknown())
+ {
+ // The name was not defined anywhere.
+ if (!this->warned_)
+ {
+ error_at(this->named_object_->location(),
+ "use of undefined type %qs",
+ no->message_name().c_str());
+ this->warned_ = true;
+ }
+ }
+ else if (no->is_type_declaration())
+ {
+ // The name was seen as a type, but the type was never defined.
+ if (no->type_declaration_value()->using_type())
+ {
+ error_at(this->named_object_->location(),
+ "use of undefined type %qs",
+ no->message_name().c_str());
+ this->warned_ = true;
+ }
+ }
+ else
+ {
+ // The name was defined, but not as a type.
+ if (!this->warned_)
+ {
+ error_at(this->named_object_->location(), "expected type");
+ this->warned_ = true;
+ }
+ }
+}
+
+// Get the base type of a declaration. This gives an error if the
+// type has not yet been defined.
+
+Type*
+Forward_declaration_type::real_type()
+{
+ if (this->is_defined())
+ return this->named_object()->type_value();
+ else
+ {
+ this->warn();
+ return Type::make_error_type();
+ }
+}
+
+const Type*
+Forward_declaration_type::real_type() const
+{
+ if (this->is_defined())
+ return this->named_object()->type_value();
+ else
+ {
+ this->warn();
+ return Type::make_error_type();
+ }
+}
+
+// Return whether the base type is defined.
+
+bool
+Forward_declaration_type::is_defined() const
+{
+ return this->named_object()->is_type();
+}
+
+// Add a method. This is used when methods are defined before the
+// type.
+
+Named_object*
+Forward_declaration_type::add_method(const std::string& name,
+ Function* function)
+{
+ Named_object* no = this->named_object();
+ if (no->is_unknown())
+ no->declare_as_type();
+ return no->type_declaration_value()->add_method(name, function);
+}
+
+// Add a method declaration. This is used when methods are declared
+// before the type.
+
+Named_object*
+Forward_declaration_type::add_method_declaration(const std::string& name,
+ Function_type* type,
+ source_location location)
+{
+ Named_object* no = this->named_object();
+ if (no->is_unknown())
+ no->declare_as_type();
+ Type_declaration* td = no->type_declaration_value();
+ return td->add_method_declaration(name, type, location);
+}
+
+// Traversal.
+
+int
+Forward_declaration_type::do_traverse(Traverse* traverse)
+{
+ if (this->is_defined()
+ && Type::traverse(this->real_type(), traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ return TRAVERSE_CONTINUE;
+}
+
+// Get a tree for the type.
+
+tree
+Forward_declaration_type::do_get_tree(Gogo* gogo)
+{
+ if (this->is_defined())
+ return Type::get_named_type_tree(gogo, this->real_type());
+
+ if (this->warned_)
+ return error_mark_node;
+
+ // We represent an undefined type as a struct with no fields. That
+ // should work fine for the middle-end, since the same case can
+ // arise in C.
+ Named_object* no = this->named_object();
+ tree type_tree = make_node(RECORD_TYPE);
+ tree id = no->get_id(gogo);
+ tree decl = build_decl(no->location(), TYPE_DECL, id, type_tree);
+ TYPE_NAME(type_tree) = decl;
+ layout_type(type_tree);
+ return type_tree;
+}
+
+// Build a type descriptor for a forwarded type.
+
+Expression*
+Forward_declaration_type::do_type_descriptor(Gogo* gogo, Named_type* name)
+{
+ if (!this->is_defined())
+ return Expression::make_nil(BUILTINS_LOCATION);
+ else
+ {
+ Type* t = this->real_type();
+ if (name != NULL)
+ return this->named_type_descriptor(gogo, t, name);
+ else
+ return Expression::make_type_descriptor(t, BUILTINS_LOCATION);
+ }
+}
+
+// The reflection string.
+
+void
+Forward_declaration_type::do_reflection(Gogo* gogo, std::string* ret) const
+{
+ this->append_reflection(this->real_type(), gogo, ret);
+}
+
+// The mangled name.
+
+void
+Forward_declaration_type::do_mangled_name(Gogo* gogo, std::string* ret) const
+{
+ if (this->is_defined())
+ this->append_mangled_name(this->real_type(), gogo, ret);
+ else
+ {
+ const Named_object* no = this->named_object();
+ std::string name;
+ if (no->package() == NULL)
+ name = gogo->package_name();
+ else
+ name = no->package()->name();
+ name += '.';
+ name += Gogo::unpack_hidden_name(no->name());
+ char buf[20];
+ snprintf(buf, sizeof buf, "N%u_",
+ static_cast<unsigned int>(name.length()));
+ ret->append(buf);
+ ret->append(name);
+ }
+}
+
+// Export a forward declaration. This can happen when a defined type
+// refers to a type which is only declared (and is presumably defined
+// in some other file in the same package).
+
+void
+Forward_declaration_type::do_export(Export*) const
+{
+ // If there is a base type, that should be exported instead of this.
+ gcc_assert(!this->is_defined());
+
+ // We don't output anything.
+}
+
+// Make a forward declaration.
+
+Type*
+Type::make_forward_declaration(Named_object* named_object)
+{
+ return new Forward_declaration_type(named_object);
+}
+
+// Class Typed_identifier_list.
+
+// Sort the entries by name.
+
+struct Typed_identifier_list_sort
+{
+ public:
+ bool
+ operator()(const Typed_identifier& t1, const Typed_identifier& t2) const
+ { return t1.name() < t2.name(); }
+};
+
+void
+Typed_identifier_list::sort_by_name()
+{
+ std::sort(this->entries_.begin(), this->entries_.end(),
+ Typed_identifier_list_sort());
+}
+
+// Traverse types.
+
+int
+Typed_identifier_list::traverse(Traverse* traverse)
+{
+ for (Typed_identifier_list::const_iterator p = this->begin();
+ p != this->end();
+ ++p)
+ {
+ if (Type::traverse(p->type(), traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ return TRAVERSE_CONTINUE;
+}
+
+// Copy the list.
+
+Typed_identifier_list*
+Typed_identifier_list::copy() const
+{
+ Typed_identifier_list* ret = new Typed_identifier_list();
+ for (Typed_identifier_list::const_iterator p = this->begin();
+ p != this->end();
+ ++p)
+ ret->push_back(Typed_identifier(p->name(), p->type(), p->location()));
+ return ret;
+}